قابلية التطاير للتنبوءات المالية طويلة المدى

كدليل على سوق الأوراق المالية الأردني

ملخص
نماذج وتقديرات متنوعة تم طرحها لقياس قابلية التطاير لعائدات الموجودات في الأسواق المالية. في هذه  الدراسة تم التركيز على تقييم ألأنماط الطويلة المدى المتنوعة التي تم طرحها مثل ( ARFIMA و FIGARCH والنموذج  MFالمتعدد الأجزاء  الذي تم طرحة حديثا كنموذج للأنماط طويلة المدى) بالمقارنة مع مثيلاتها من الأنماط القصيرة المدى مثل نموذج  GARCH باستخدام بيانات من سلاسل زمنية لتسعين شركة متداولة في السوق المالي الأردني من عام 1987 إلى عام 2004 لتقييم دقة عملية ألتبوء في قابلية التطاير للأربعة نماذج على أساس فترات مختلفة تتراوح من يوم واحد وخمسة أيام وعشرة أيام وشهر واحد وشهرين وثلاثة أشهر باستخدام  مقياس  RMAE و RMSE. وقد بينت نتائج هذه الدراسة على أن عملية ألتبوء لقابلية التطاير للنماذج طويلة المدى ( ARFIMA و FIGARCH و MF) تتفوق علي نموذج GARCH القصير المدى. لكن بينما أثبتت حالات عديدة لنماذج ARFIMA و FIGARCH فشلا ذريعا في تنوءاتها, فان نموذج MF يخلو من نقطة الضعف هذه وان اسخدامة يودي دائما إلى تحسين التبوء الساذج التي تعاني منة نماذج قابلية التطاير الأخرى.
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Abstract

Various volatility estimators and models have been proposed  in the literature to measure volatility of asset returns. The particular emphasis of this paper is on assessing empirical performance of various long memory models (ARFIMA, FIGARCH models, and MF multi-fractal model which is recently been introduced as a new model)  in comparison to short memory such as GARCH model, using time-series data from 1987-2004 of 90 stocks traded on the Amman Stock Exchange (ASE). Since long memory models should have a particular advantage over long forecasting horizons, we consider predictions of volatility models by one-day, five-day, ten-day, one-moth, two-moth, and three-month ahead Two different measures are used to evaluate the forecast accuracy, RMSE and RMAE. Our results indicate that while conditional volatility (ARFIMA ,FIGARCH and MF models) dominate over GARCH model. However, while FIGARCH and ARFIMA also have a number of cases with dramatic failure of their forecast, the MF model does not suffer from this shortcoming and its performance practically always improves upon the naïve forecast provided by historical volatility. 

1
Introduction: 

Volatility in financial markets has attracted growing attention by academics, policy makers and practitioners during the past two decades. First, volatility receives a great deal of concern from policy makers and financial market participants because it can be used as a measurement of risk. Second, greater volatility in the stock, bond and foreign exchange markets raises important public policy issues about the stability of financial markets and the impact of volatility on the economy. Third, from a theoretical perspective, volatility plays a central role in the pricing of derivative securities. Therefore, option markets can be regarded as a place where people trade volatility. Finally, for the purpose of forecasting return series, forecast confidence intervals may be time varying, so that more accurate intervals can be obtained by modeling volatility of returns.

It is well known that volatility is characterized by a much higher degree of predictability than the returns of financial assets. In the huge literature on forecasting volatility, the vast majority of papers use variants of the GARCH family of stochastic processes, which provide an easy and convenient way to capture the basic autoregressive structure of conditional variances (see Poon and Granger, 2003, for a recent survey of the voluminous literature on volatility forecasting). However, results are not unanimously in favor of the potential of GARCH models to improve upon the forecasting performance of simpler models like the historical mean volatility or moving average or smoothed representations of it. Figlewski (1997) find that simpler models can indeed outperform GARCH or related approaches at least when applied to low-frequency (weekly, monthly) data. On the other hand, dozens of papers investigate whether improvements over GARCH as a benchmark are possible using non-linear models or artificial intelligence techniques (e.g. West and Cho, 1995; Brailsford and Faff, 1996; Klaasen, 2002). However, given the ample evidence for long-term dependence in volatility (i.e. hyperbolic decay of its autocorrelation function rather than the exponential decay characteristic of short-memory models), it also appears worthwhile to explore the potential value added by models sharing this feature. 

The statistical analysis of financial time series provides evidence of various stylized facts, among which volatility clustering has received considerable attention. Many models have been added throughout the years to the Autoregressive Conditional Heteroskedasticity (ARCH) family, following the seminal paper by Engle (1982), which capture the short-run dependency of the conditional variances. Among the many empirical regularities which volatility models try to capture, one is that the decay exhibited by estimated conditional variances seems to be decreasing hyperbolically rather than exponentially. Another way of expressing this feature is that the process possesses long memory properties in the conditional variance. The advantage of modeling long memory applied to volatility processes is that the forecasting properties of the model so derived better suit the needs of medium-to-long term predictions which is crucial in derivative pricing models. 

One class of models that was suggested in this direction is the so-called Fractionally Integrated GARCH (FIGARCH) process in which the ideas of fractional integration suggested by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. Fractional integration serves the purpose of extending ARIMA processes to a more general class, ARFIMA, giving a continuum of possibilities between the polar cases of unit roots processes and of integrated processes of order 0. The order of integration in such a case becomes a real parameter d assuming values between 0 and 1 which can be estimated in the time or in the frequency domain.

In the FIGARCH case (Baillie et al. 1996), the extension captures the same idea, with  some characterizations which we will summarize in what follows, and exploits the fact that estimated GARCH models often border with the case in which the conditional variance is an integrated process. Applications have shown that these long memory models fit well the data and research is still being undertaken as of which statistical properties these models possess. 

Long memory generalizations of standard short-memory time series models are available in the ARFIMA (Granger and Joyeux, 1980) and FIGARCH models (Baillie et al., 1996). When browsing the literature on volatility forecasting, it comes as a certain surprise that these candidate models have received relatively scant attention so far. Basically, only two papers with a direct comparison between GARCH and FIGARCH forecasts appear to be available at present, Vilasuso (2002) and Zumbach (2004) both considering volatility forecasts in foreign exchange markets. Vilasuso reports relatively large reductions of both mean squared error and mean absolute errors over forecasting horizons of 1 to 10 days with FIGARCH compared to GARCH. Zumbach’s result using intra-daily data are more sobering in that he finds improvements in daily forecasts to be only of the order of one to two percent of MSE. Given that there is essentially only one study supportive of superior predictability of long-memory models, a more systematic analysis of this issue seems to be worthwhile. 
The purpose of this study is to compare the performance of four models for predicting volatility in the Jordanian stock market. For all these stocks we estimated four time series models for their volatility dynamics: GARCH, FIGARCH, ARFIMA and the ‘causal multi-fractal model’ recently introduced by Calvet and Fisher (2001), another model that at least allows to ‘mimic’ long-term dependence (see below for details). We included ARFIMA models to see whether a difference exists between the performance of the original ARFIMA structure applied to volatility and its embedding into a GARCH framework (i.e., the FIGARCH model). The multi-fractal model (a variant of the one proposed originally by Mandelbrot, Calvet and Fisher, 2003) provides an alternative formalization of long-term dependence in volatility and has already been found to outperform GARCH and FIGARCH in some time series (Calvet and Fisher, 2003; Lux, 2003). In contrast to the additive structure of the GARCH dynasty, the multi-fractal model conceives volatility as a hierarchical, multiplicative process with heterogeneous components, but, in fact, achieves this in a rather parsimonious way using (in the version applied here) only two parameters. Our overall finding is that improvements over GARCH can be achieved by alternative models which is in contrast to frequent findings of the opposite in the literature (which, however, mostly does not include long-memory models as alternatives).
The paper  is organized as follows. In Section 2 outlines the four competing models used in this paper for volatility forecast. Then the estimated methods are presented in Section 3. Section 4 describes the forecasting performance of the candidate models and Section 5 Concludes.
2
Competing models

Volatility refers to the spread of all likely outcomes of an uncertain variable. Typically, in financial markets, we are often concerned with the spread of asset returns. Statistically, volatility is often measured as the sample standard deviation
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where rt is the return on day t, and µ is the average return over the T –day period.
Consider a time series of returns rt , t = 1, · · · , T , the standard deviation, σ, in (1) above  is the unconditional volatility over the T period. 

There are various classes of models and estimators, which have been proposed in the literature for measuring volatility of asset returns. Models and estimators, assuming volatility to be constant are the oldest ones among the models which have been used to estimate and forecast volatility. 
2.2
GARCH and FIGARCH models:

Long memory in conditional variance is one of the empirical features of most financial time series. One class of models that was suggested to capture this behavior refers to the so-called Fractionally Integrated GARCH processes (Baillie, et. al., 1996) in which the ideas of fractional integration originally introduced by Granger (1980) and Hosking (1981) for processes for the mean are applied to a GARCH framework. In this paper we derive analytic expressions for the second-order derivatives of the log-likelihood function of FIGARCH processes with a view to the advantages that can be gained in computational speed and estimation accuracy. The comparison is computationally intensive given the typical sample size of the time series involved and the way the likelihood function is built. An illustration is provided on exchange rate and stock index data.
Assume the mean process has the following representation
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With volatility dynamics being governed by:
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that may be written as an ARMA model for the squared residuals 
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,  and the error term has a time-dependent variance called FIGARCH(1,d,1) with the following parameterization:
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Both GARCH and FIGARCH are estimated via the standard MLE procedures. 
2.2
ARFIMA model:

The concept of long memory was introduced in time series analysis by Granger (1980) and Hosking (1981). It is well known that, for standard ARMA models, the autocorrelation function decreases exponentially. By contrast, one way of arguing that a process possesses long memory suggested in the literature is that its autocorrelation function decreases “slowly”. The most simple way to obtain long memory is to incorporate in the standard ARMA(p; q) formulation the fractional difference operator (1 -L)d , with 0 ≤ d ≤ 1, where L denotes the lag operator. The resulting process is known as ARFIMA(p; d; q), that is Auto-Regressive Fractionally Integrated Moving Average: 
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with Ө(L) and Ф(L) the AR and MA polynomials in the difference operator L of order p, respectively, q, and d the parameter of fractional differentiation. In this paper, yt is given by residuals after filtering of linear dependence according to equation (2) above. Like with GARCH and FIGARCH, we restrict myself to a maximum of one AR and MA term. 
2.3
Multi-Fractal (MF) Model:

Multi-fractal processes are a relatively new tool of stock market analysis. Their power lies in the ability to take multiple orders of autocorrelations into account explicitly. Mandelbrot et al. (1997) are first introduced the Multi-Fractal Model, translating the approach of Mandelbrot (1974) from the pure physics area into finance. Fisher and Calvet (2004) report advantages of Multi-Fractal model compared to GARCH and FIGARCH in various financial time series. Lux (2004) provides related evidence on forecasting of future volatility generated from the Multi-Fractal model, the results demonstrating its potential advantage. 

The first type of the MF proposed by Mandelbrot et al. (1997), named the Multi-Fractal Model of Assets Returns (MFAR), it assumes that returns x(t) follow a compound process:
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in which an incremental fractional Brownian motion with index H, BH[·], is subordinate to the cumulative distribution function θt of a multi-fractal measure, which was already employed by Mandelbrot (1974), when modeling the distribution of energy in turbulent dissipation. 
 Returns are modeled as:
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with a constant scale parameter σ, and ut drawn from a Standard Normal distribution N(0,1) and multipliers M1,t, M2,t,..., Mk,t are drawn from long normal distribution (i.e, 
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) in which the second parameter s can be determined by normalization of the mean value of each component to 0.5.  
The main attraction of Multi-Fractal model is that it shares certain properties of asset returns: fat tails and asymptotic power-law behavior of the auto-covariance function (long memory). Furthermore, multi-fractality implies that different powers of the measure have different decay rates of their auto-covariances. Calvet and Fisher (2002) show that this feature carries over to absolute moments of returns in the MF. In this sense, other alternatives like FIGARCH or ARFIMA models belong to the catalogue of uni-fractal model, i.e. they have the same decay rate for all moments. As a rather new model in financial economics, there are various attempts at estimating the parameters of the multi-fractal model. For both estimation of the long normal MF model and its use for forecasting purposes, we follow Lux (2004b)  by implementing the GMM approach to estimation of the MF model, the scale parameter σ drops out from the moment conditions and cannot be estimated together with λ 
3
Estimated Models
The parameter estimates of the GARCH, FIGARCH, ARFIMA and MF models are exhibited in Tables 1. Our data base consists of daily prices for all stocks traded in  the Jordan stock exchange Data are available at daily frequency over the 17 years period  from the 1 January 1987 to 31 December 2004. The length of the time series used for in-sample estimation of the parameters of the various models has been restricted to the 10 year period from 1987 to the end of 1996. Our main aim in restricting the in-sample period to roughly 45 percent of the data was to leave a relatively large sample for assessment of the forecasting quality of our models which then could be investigated over more than 8 years. Assuming a stationary volatility process according to one of our models, one may argue that ten years of data should be sufficient to estimate the model parameters reliably enough. 
When inspecting the distribution of parameter estimates (whose mean, standard deviation, minimum and maximum), one remarks a relatively large variability. For example, both the parameters α and β of the GARCH model as well as the parameter of fractal differencing d in the FIGARCH model have values spread over the entirety of their admissible range [0,1]. The same variability applies to the ARFIMA’s d although in the later case, we have not restricted the range of admissible vales to d < 1.2. Panel A of Table 1 also indicates how often the GARCH would be preferred over FIGARCH on the base of the Akaike and Schwartz information criteria (AIC and BIC). As it turns out, FIGARCH is preferred by about two out of three to four out of five cases and more so under AIC. This squares with the usual observation that BIC favors more parsimonious models. Panel D of Table 1 also reports the order of the ARFIRMA models (p,d,q) with p Є {0,1} and q Є {0,1} estimated by the AIC criterion. The (1,d,1) model is the preferred one.
Table 1: Parameter Estimates:
	
	Mean
	St. Dev.
	Min
	Max
	GARCH preferred

	Panel  A: GARCH model

	ω
	0.392
	0.371
	0.021
	1.872
	AIC
	BIC

	α
	0.823
	0.213
	0.011
	0.987
	18
	34

	β
	0.134
	0.153
	0.010
	0.999
	

	α +β
	0.957
	0.087
	0.543
	0.999
	

	Panel B:FIGARCH Model

	ω
	0.623
	0.411
	0.011
	1.767
	

	β
	0.765
	0.312
	0.002
	0.985
	

	φ
	0.432
	0.324
	0.008
	0.989
	

	d
	0.312
	0.223
	0.001
	0.999
	

	Panel C:  MF Model

	λ
	1.654
	0.432
	1.001
	4.321
	

	k
	15.453
	3.102
	2.000
	19.000
	

	Panel D: ARFIMA model

	
	Estimate of d
	Chosen models based on AIC

	
	Mean
	St. Dev.
	Min
	Max
	(1,d,1)     (1,d,0)     (0,d,0)    (0,d,0)

	
	0.231
	0.145
	0.001
	0.987
	    87            2             1             0


Lastly, turning to our parameter estimates for the MF model, we again see a large variation of parameter values. Note that the lognormal distribution parameter λ is restricted to the open half line [1,∞). Estimates λ = 1 make the volatility cascade collapse to a constant value which leads to the benchmark case of Normally distributed returns. The mean values of the number of cascade steps k are about 15. As we have pointed out above, the causal MF model mimics hyperbolic decline of the autocorrelation function over about 2k time lags after which one encounters an exponential drop-off of the ACF. Note that our average estimates of k, therefore, amount to slow decline of memory over up to 16,000 time steps – much more than used for estimating the model. The maximum estimate k = 19 even amounts to hyperbolic decline of the autocorrelation function over roughly half a million days, i.e. 2003 years of daily trading. It is, therefore, obvious that the deviation of the MF model from ‘true’ long memory can be arbitrarily small. On the other hand, the minimum k = 2 has a range of hyperbolic scaling of just 4 days which makes it a rather clear-cut short-memory model.
4
Forecasting Performance:

Now turn to the results of our models for forecasting volatility: our estimated models have been tested out-of-sample for the 8-year period 1997 to 2004. Forecasting horizons start at the daily level and proceed via 5, 10, 30 60 and 90 days ahead. Note that we have used only one set of parameter estimates and have not re-estimated the parameters within the out-of-sample period. The reason for not using rolling estimates is the computational burden of the FIGARCH model – with the other models it would have been feasible. We have also looked at the performance in sub-samples (1997-1990, and 1991-1994), but to our surprise found no remarkable differences. As these periods cover quite diverse financial and economic conditions in Jordan (including the stock market bubble, its crash and the subsequent stagnation) the homogeneity of the results speaks in favor of very regular structure in the volatility dynamics despite large changes in the level of volatility over time.

In order to compare the performance of the four candidate models, we apply the traditional concepts of mean squared error (MSE) and mean absolute error (MAE). However, since we want to have a meaningful measure allowing to compare the performance across stocks we have to standardize these statistics. We do so by reporting relative MSE and MAE obtained after division by the pertinent mean squared error and mean absolute error of the naïve predictor using historical volatility (i.e., the sample mean of squared returns over the period 1987 to 1996). In order not to compound errors in the mean equations and in the volatility dynamics, we also first filter out linear dependence analogously to eq. (1) and compute the naïve RMSE and RMAE from the squared residuals. 
Our means of comparing predictive accuracy are, thus:
-Relative Mean Square Error  (RMSE):
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-Rlative Mean Absolute Error (RMAE):
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with t=1,…,N the out sample observations, j = {GARCH, FIGARCH, ARFIMA, MF } the estimates from the candidate time series models, the subscript n denoting the naïve predictions using historical volatility and εt the residuals obtained after linear filtering of returns. 
Table 2: Forecasting  Volatility
	Horizon
	GARCH
	FIGARCH
	ARFIMA
	MF

	Panel A: RMSE

	1
	0.943
	0.932
	0.923
	0.936

	5
	0.967
	0.953
	0.945
	0.957

	10
	0.998
	0.981
	0.965
	0.988

	30
	1.021
	0.987
	0.977
	0.980

	60
	1.213
	1.023
	0.981
	0.991

	90
	1.342
	1.076
	0.993
	0.996

	Panel A: RMAE

	1
	1.054
	1.064
	1.045
	1.021

	5
	1.078
	1.094
	1.064
	1.054

	10
	1.098
	1.104
	1.081
	1.061

	30
	1.145
	1.164
	1.055
	1.043

	60
	1.254
	1.245
	1.041
	1.028

	90
	1.321
	1.274
	1.056
	1.017


Table 2 compares the RMSEs and RMAEs of our four models (in terms of its mean, standard deviation, minimum and maximum) for the stocks. The winner in terms of average RMSE reduction is the ARFIMA model (which so far has seldomly been considered as a model of volatility dynamics) followed by MF and FIGARCH. Interestingly, GARCH performs worse than all other models even over short horizons. The average improvement compared to naive forecasts are in the range of up to about 6 percent at daily horizons, 3 percent at ten days and still 1.5 percent at 100 day horizons. 
In contrast to GARCH, we, therefore, do find an improvement against the naïve prediction in the majority of cases with these models so that mean values above in Table 2 are due to very large entries in the upper end (the median is always < 1 for these methods). At the lower end, we find that for the one day horizon, RMSE can be reduced against the naïve forecast by as much as 18 % (GARCH, ARFIMA and FIGARCH and slightly less for MF) and still 7.5 % improvement can be found at 100 day horizons for one particular stock (here GARCH seems to dominate slightly).
In terms of the upper end (the worst prediction within the sample), MF is best with a maximum RMSE that never rises above unity (i.e., that is never worse than that of the naïve forecasts). Note that it, therefore, can be described as the least dangerous method. This is in contrast to all other models with which the user always appears to face the danger of forecasts, that are worse than the most naive ones (i.e. max > 1). Note in particular how ‘dangerous’ GARCH and FIGARCH forecasts can become! Lastly, it appears noteworthy that ARFIRMA and MF have very small variability of their performance which also decreases with time horizon, while the fluctuations across assets in the (FI)GARCH models rather show a tendency for increasing dispersion at long horizons.
With respect to RMAE, the multi-fractal model is the winner in all categories, over all time horizons. However, as a grain of salt, average performance of all models is worse than that of naive forecasts. On the other hand, the largest reduction of RMAE achieved is as much as 24 % (1 day), 20 percent (10 days) and still 13 percent (90 days). Otherwise, results are comparable to those for the MSE criterion with a narrow range of entries for MF and a wide variation for FIGARCH and GARCH. Note also that MF comes closest to at least being ‘neutral’ under this criterion while all other methods have the inter-quartile range above the benchmark value of 1 and, therefore, lead to a deterioration against naïve forecasts in the majority of cases.
A typical question arising in comparative studies of alternative predictors is whether the models under investigation use different information or not. The interesting consequence is that combinations of forecasts could improve results if the various models would not rely on the same information, whereas no such improvement appears feasible if their differences in performance are explained by different success in exploitation of the same underlying information. Typically one would use encompassing tests (Chong and Hendry, 1986) in order to shed light on this issue. However, our large sample of stocks renders this approach somewhat unpractical. Instead, we explore this question by computing the rank correlation of the forecasting success across all assets for each pair of methods. A high entry would suggest that two methods use virtually the same information so that the difference in their RMSEs and RMAEs is mainly to be explained by difference in the accuracy of the conditional expectations. Low rank correlation, on the other hand, might suggest room for improvement via forecast combination.
Table 3: Rank Correlations of Volatility Prediction Across Assets:
	Horizon
	GARCH
&
FIGARCH
	GARCH
&
ARFIMA
	GARCH
&
MF
	FIGARCH
&
ARFIMA
	FIGARCH
&
MF
	ARFIMA
&
MF

	Panel A: RMSE

	1
	0.884
	0.745
	0.521
	0.625
	0.487
	0.465

	5
	0.868
	0.712
	0.325
	0.741
	0.462
	0.426

	10
	0.812
	0.625
	0.214
	0.712
	0.435
	0.384

	30
	0.412
	0.365
	0.124
	0.695
	0.421
	0.364

	60
	0.354
	0.310
	0.154
	0.614
	0.384
	0.325

	90
	0.321
	0.145
	0.164
	0.605
	0.412
	0.341

	Panel B: RMAE

	1
	0.798
	0.687
	0.501
	0.654
	0.523
	0.475

	5
	0.752
	0.564
	0.412
	0.561
	0.398
	0.412

	10
	0.7012
	0.498
	0.324
	0.532
	0.354
	0.348

	30
	0.642
	0.364
	0.211
	0.512
	0.332
	0.324

	60
	0.561
	0.210
	0.117
	0.498
	0.254
	0.256

	90
	0.499
	0.123
	0.102
	0.412
	0.234
	0.244


Table 3 gives the rank correlation across assets for all pairs of two methods for both relative MSE and relative MAE. If all methods would have the same ranking of RMSEs and RMAEs across assets, rank correlations would be 1. This is not the case: although a relatively large rank correlation exists at small horizons, different methods are more or less successful in predicting the volatility of individual assets. This implies that they are not simply using the same information more or less efficient, but that they might perform differently on different assets. Combination of forecasts, therefore, might still improve the overall results. Furthermore, the highest correlations exist between FIGARCH and GARCH at small forecasting horizons and between FIGARCH and ARFIMA at longer horizons pointing to the built-in similarities in their behavior for short and long time horizons, respectively.
5 Conclusion
This paper has examined the potential of time series models with long memory (FIGARCH, ARFIMA, MF) to improve upon the forecasts derived from short-memory models (GARCH) . In order to get a broad picture, we have used a large data-base applying the competing models to long forecasting horizons for a long out-of sample period. The interesting results emerged form this paper as concerns volatility, our selection of long-memory models performs better in most cases than the naïve sample variance and GARCH forecasts. However, this potential improvement against short-memory models is overshadowed by occasional dramatic failures particularly by the FIGARCH model and to lesser extent by ARFIMA. Interestingly, the newly proposed multi-fractal approach seems not to suffer at all from this problem. Remarkably, results are better throughout for the RMSE than the RMAE criterion (some trial runs with other data suggest that this is not a particularity of the Japanese market). Time series methods, thus, seem to be better suited for forecasting large realizations of volatility rather than small or medium ones. These results suggest the following interpretation: volatility is characterized by processes which have strong persistency. This persistent component can be captured to some degree by different time series models which have built-in long correlations.  
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