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Abstract

This paper analyses the asymptotic and …nite sample implications of di¤erent
types of nonstationary behavior among the dependent and explanatory variables
in a linear spurious regression model. We study cases when the nonstationarity
in the dependent and explanatory variables is deterministic as well as stochas-
tic. In particular, we derive the order in probability of the t¡statistic in a
spurious regression equation under a variety of empirically relevant data gener-
ation processes, and show that the spurious regression phenomenon is present
in all cases when at least one of the variables behaves in a nonstationary way.
Simulation experiments con…rm our asymptotic results.
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1 Introduction
It has been documented in recent studies that the phenomenon of spurious re-
gression is present under di¤erent forms of nonstationarity in the data generating
process (DGP ). In particular, when the variables yt and xt are nonstationary,
independent of each other, ordinary least squares applied to the regression model

yt = α + δxt + ut

have the following implications: 1) the estimator of δ (bδ) does not converge
to its true value of zero, and 2) the t-statistic for testing the null hypothesis
H0 : δ = 0 (tδ̂) diverges, thus indicating the presence of an asymptotic spurious
relationship between yt and xt .

The rate at which tδ̂ diverges depends on the type of nonstationarity present
in the process generating yt and xt . In Phillips (1986), where a driftless random
walk is assumed for both variables, the t-statistic is Op(T1/2). For the case of a
random walk with drift, Entorf (1997) shows that tδ̂ diverges at rate T . More
recently, Kim, Lee and Newbold (2004) (KLN henceforth) show that the phe-
nomenon of spurious regression is still present even when the nonstationarity in
individual series is of a deterministic nature: they …nd that, under a linear trend
stationary assumption for both variables, the t-statistic is Op(T 3/2). Extending
KLN’s results, Noriega and Ventosa-Santaulària (2005) (NVS hereafter), show
that adding breaks in the DGP still generates the phenomenon of spurious re-
gression, but at a reduced divergence rate; i.e. tδ̂ is O(T1/2) under either single
or multiple breaks in each variable. In all these works, the implicit assumption
is that both variables share the same type of nonstationarity, either stochastic
(Phillips, Entorf ), or deterministic (KLN, NVS).3

Although the literature on this issue has grown considerably, there are still
gaps, particularly when regressions involve variables with di¤erent types of
trending mechanisms. The purpose of the present paper is to …ll these gaps.
Our results uncover the presence of spurious regressions under a wide variety
of combinations of empirically relevant DGP s, not explored before in the lit-
erature. For instance, we consider regressions of a random walk with drift on
a trend (with and without breaks)-stationary process (and viceversa). We …nd
that the rate at which the phenomenon occurs is generally T1/2, as predicted by
Phillips (1998). However, for a few combinations of trending mechanisms the
divergence rate is higher. We also show that the spurious regression vanishes
when one of the variables is stationary.

The rest of the paper is organized as follows. Section 2 discusses the DGP s
considered. Section 3 and 4 present the main asymptotic results, and Monte
Carlo evidence for …nite samples, respectively. Section 5 concludes.

3 Some related papers share this same feature: Marmol (1995, 1996, 1998), Cappuccio and
Lubian (1997), Granger et. al. (1998) and Tsay and Chung (1999).

2



2 Trending mechanisms in the data generating
process

In a simple regression equation, the nature of the trending mechanism in the
dependent and explanatory variables is unknown a priory. This is mainly due to
a lack of economic knowledge on trending mechanisms. We study the spurious
regression phenomenon under eight di¤erent DGP s, widely used in applied work
in economics.

We consider the following spurious ordinary least squares regression model:

yt = bα + bδxt + but (1)

used as a vehicle for testing the null hypothesis H0 : δ = 0. The following
assumption summarizes the DGP s considered below for both the dependent
and the explanatory variables in model (1).

Assumption. The DGP s for zt = yt ,xt are as follows.

Case Name* Model
1. I(0) zt = µz + uzt

2. I(0)+br zt = µz +
PNz

i=1 θiz DUizt + uzt
3. TS zt = µz + βzt + uzt

4. TS+br zt = µz +
PNz

i=1 θiz DUizt + βz t +
PMz

i=1 γizDTizt + uzt
5. I(1) ¢zt = uzt
6. I(1)+dr ¢zt = µz + uzt

7. I(1)+dr+br ¢zt = µz +
PNz

i=1 θizDUizt + uzt
8. I(2) ¢2zt = uzt

* TS, br, and dr stand for Trend-Stationary, breaks, and drift, respectively.

Note that cases 5, 6 and 7 can be written as

zt = z0 + Szt

zt = z0 + µzt + Szt

zt = z0 + µzt +
PMz

i=1 θizDTizt + Szt

where Szt =
Pt

i=1 uzi , DTizt =
Pt

i=1 DUizt, z0 is an initial condition, uzt =
φzuzt¡1 + εzt, jφz j < 1, εzt are iid(0, σ2

z) independent of each other, and DUizt ,
DTizt are dummy variables allowing changes in the trend’s level and slope re-
spectively, that is, DUizt = 1(t > Tbiz) and DTizt = (t ¡ Tbiz)1(t > Tbiz),
where 1(¢) is the indicator function, and Tbiz is the unknown date of the ith

break in z. We denote the break fraction as λiz = (Tbiz/T) 2 (0, 1), where T is
the sample size. We maintain the same structure for the innovations uzt as in
KLN, although it can also be assumed that innovations obey the (general-level)
conditions stated in Phillips (1986, p. 313).
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Cases 1 and 2 are used to model the behaviour of (theoretically) mean sta-
tionary variables, such as real exchange rates, unemployment rates, great ratios
(i.e. output-capital ratio), and the current account. Examples of I(0) and
I(0) with breaks variables have been presented in Perron and Vogelsang (1992),
Wu (2000), and D’Adda and Scorcu (2003). Cases 3 to 8 are widely used to
model growing variables, real and nominal, such as output, consumption, money,
prices, etc. Macro variables have been described as I(0) around a linear trend,
I(0) around a linear trend with structural breaks, and I(1) in Perron (1992,
1997), Lumsdaine and Papell (1997), Mehl (2000), and Noriega and de Alba
(2001). Combinations of case 8 with other cases are often behind the empirical
modelling of nominal speci…cations expressed in terms of I(2) (nominal) and
I(1) or I(0)+breaks (real) variables. Economic models involving I(2) variables
include models of money demand relations, purchasing power parity, and in‡a-
tion and the markup. Examples of variables described as I(2) can be found in
Juselius (1996, 1999), Haldrup (1998), Muscatelli and Spinelli (2000), Coenen
and Vega (2001), and Nielsen (2002).

The DGP s include both deterministic and stochastic trending mechanisms,
with 49 possible nonstationary combinations of them among the dependent and
the explanatory variables, where case 1 is included as a benchmark.4

The spurious regression phenomenon has already been analyzed for a few
combinations of DGP s in the assumption. For instance, the case of both vari-
ables following a unit root (case 5) was studied by Granger and Newbold (1974)
and Phillips (1986), and case 6 by Entorf (1997). The case (3) of a trend-
stationary model for both variables was studied by KLN, while its extension to
multiple breaks (case 4) by NVS. Mixtures of integrated processes were studied
by Marmol (1995), who considers cases 5 and 8 (y follows a unit root, while
x follows two unit roots, and viceversa). Many other combinations, however,
have not been analyzed. Among them, combinations 3-6 and 4-6, which have
practical importance, given the empirical relevance of structural breaks in the
time series properties of many macro variables.

3 Asymptotics for spurious regressions
In this section we present the asymptotic behaviour of the t-statistic for testing
the null hypothesis H0 : δ = 0 (tδ̂) in model (1) when the dependent and
explanatory variables are generated according to combinations of DGP s in the
Assumption. Table 1 summarizes the main results.

According to our …ndings, Table 1 is symmetric, implying that the order in
probability does not depend on the type of nonstationarity among dependent
and explanatory variables. As expected, when both variables are stationary
(case 1-1) the spurious regression phenomenon is not present, since the t-statistic
collapses to zero (at rate T1/2). When one of the variables is stationary the t-

4 We do not consider the cases of I(1) processes with long memory errors, and fractionally
integrated processes, studied in Cappuccio and Lubian (1997), and Marmol (1998), respec-
tively.
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statistic converges (to a constant, or to a random variable, depending on the
DGP ), as indicated in row 1, columns 2-8: the t-statistic is Op(1). For the rest
of combinations, divergence at rate T 1/2 is prominent, indicating the presence
of spurious regression.

Table 1. Orders in probability of tδ̂
1

DGP 1 2 3 4 5 6 7 8
1 T¡1/2 1 1 1 1 1 1 1
2 T1/2 T1/2 T1/2 T1/2 T1/2 T1/2 T1/2

3 T3/2 T1/2 T1/2 T T1/2 T1/2

4 T1/2 T1/2 T1/2 T1/2 T1/2

5 T1/2 T1/2 T1/2 T1/2

6 T T1/2 T1/2

7 T1/2 T1/2

8 T1/2

1. Results for combinations 3-3 and 1-3 come from KLN; for 5-5, 6-6, 8-8, and 5-8 results
come from Phillips (1986), Entorf (1997), Marmol (1995), and Marmol (1996), respectively.

For the rest see the appendix at the end of the paper.

Therefore, when two independent random variables follow any of the nonsta-
tionary combinations considered in the Assumption, OLS inference will indicate,
asymptotically, a signi…cant (spurious) relationship among them.

The representation theory developed by Phillips (1998) shows that a trend-
ing stochastic (or deterministic) process can be represented in various ways. In
particular, it can be written as an in…nite linear combination of trending deter-
ministic (stochastic) functions with random coe¢cients. In such an asymptotic
environment, he shows that the regression t-ratios of the …tted coe¢cients di-
verge at rate Op(T1/2). Results from the Table indicate that relatively simple
nonstationary time series models correctly indicate the presence of the limiting
representation.5

4 Experimental results
We computed rejection rates of the t-statistic for testing the null hypotheses
H0 : δ = 0, in model (1), using a 1.96 critical value (5% level) for a standard
normal distribution. In order to assess the usefulness for a …nite sample of the
asymptotic results presented in Table 1, rejection rates were based on simulated
data, for samples of size T = 25,50, 100,250, 500, 1, 000, and 10, 000, under
various combinations of the DGP s in the Assumption.6 In all experiments, the

5 A few cases do not conform with the general level results of Phillips (1998) in terms of
divergence rates. These are the cases 3-3, 3-6, and 6-6 (the …rst one studied in KLN and the
last one in Entorf (1997)). In all three cases the divergence rates are higher.

6 Note that the experimental results in this section do not pretend to analyze every possible
combination of DGP s in the assumption. They serve as a guide on the …nite sample behaviour
of some particular cases.
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number of replications is 10,000.

Table 2. Rejection Rates for tδ̂ ; the case of two breaks
Combinations of cases (DGP s) in the Assumption

T 1-7 2-2 2-4 2-6 3-4 3-6 4-4 4-6 4-7 4-8 6-8 7-8
25 .06 .06 .06 .07 .14 .25 .32 .61 .66 .65 .93 .94
50 .06 .06 .06 .06 .89 .95 .99 .99 .99 .94 .95 .96
100 .05 .05 .06 .06 1.0 .99 1.0 1.0 1.0 .97 .97 .97
250 .05 .05 .07 .07 1.0 1.0 1.0 1.0 1.0 .98 .98 .98
500 .06 .05 .10 .10 1.0 1.0 1.0 1.0 1.0 .99 .99 .99
1000 .05 .05 .14 .15 1.0 1.0 1.0 1.0 1.0 .99 .99 .99
10000 .05 .05 .80 .79 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The values of the parameters in the DGP s are as follows: σz = 1, φz = 0, µx = 0.4,
µy = 0.7, βx = 0.07, βy = 0.04, θxi = 0.07, θyi = 0.04, γxi = 0.02, γyi = 0.04, for
i = 1, ...Mz , Mz = 2, for z = x, y. Breaks in x (y) occur at 20% (40%) and 70% (80%)
of total data length.

Table 3. Rejection Rates for tδ̂ ; the case of four breaks
Combinations of cases (DGP s) in the Assumption

T 1-7 2-2 2-4 2-6 3-4 3-6 4-4 4-6 4-7 4-8 6-8 7-8
25 .06 .06 .06 .07 .18 .25 .81 .89 .97 .90 .93 .94
50 .06 .06 .07 .07 .94 .94 1.0 .99 .99 .96 .96 .96
100 .05 .05 .09 .09 1.0 1.0 1.0 1.0 1.0 .97 .97 .97
250 .05 .05 .14 .14 1.0 1.0 1.0 1.0 1.0 .98 .98 .98
500 .05 .05 .23 .23 1.0 1.0 1.0 1.0 1.0 .99 .99 .99
1000 .05 .05 .41 .41 1.0 1.0 1.0 1.0 1.0 .99 .99 .99
10000 .05 .08 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The values of the parameters in the DGPs are as follows: σz = 1, φz = 0, µx = 0.4,
µy = 0.7, βx = 0.07, βy = 0.04, θxi = 0.07, θyi = 0.04, γxi = 0.02, γyi = 0.04, for
i = 1, ...Mz , Mz = 4, for z = x, y. Breaks in x (y) occur at 15% (20%), 30% (35%), 50%
(55%) and 70% (80%) of total data length.

Tables 2 and 3 present rejection rates under 12 di¤erent combinations of
DGP s in the Assumption. In Table 2, the cases where breaks are considered (all
but 3-6 and 6-8) include 2 breaks, while Table 3 presents results when 4 breaks
are allowed. The column labeled 1-7 in both tables presents the …nite sample
counterpart of the Op(1) result in Table 1: the t-statistic does not diverge,
revealing that the spurious regression phenomenon is not a problem in …nite
samples either. The tables also show that a nonsense regression is not likely
in small samples (25 · T · 250) when one of the variables is generated by
a stationary process with structural breaks (combinations of cases 2-2, 2-4,
and 2.6), as long as there are not too many breaks.7 For the rest of cases,

7 For case 2-2 the simulation results seem not to detect a spurious regression even with
10,000 observations. For this case the …nite sample results converge very slowly to the asymp-
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the asymptotic results presented in Table 1 are supported by our simulation
experiments: the spurious regression phenomenon is present even for samples
as small as 25. In comparing results from Tables 2 and 3, it can be noted
that a nonsense regression is more likely when the number of structural breaks
increases in the DGP .

5 Conclusions
This paper has presented an asymptotic and experimental analysis of the spu-
rious regression phenomenon under a wide variety of empirically relevant data
generating processes in a linear regression model. It has shown that the t-
statistic for testing a linear relationship among independent variables diverges
if both variables are driven by a trending mechanism, whether deterministic or
stochastic. Our results particularize Phillips’ (1998) general results to empir-
ically useful models, by showing that the phenomenon of spurious regression
is present for time series with relatively simple trending mechanisms. This
phenomenon depends on the commonality of trends in both dependent and ex-
planatory variables. If a (stochastic or deterministic) trend is present in only
one of the variables, however, the spurious regression vanishes. Our simulation
experiments reveal that a spurious regression will also be present in …nite sam-
ples, except for the case of one of the variables following a stationary process
around a mean with a few structural breaks in level.

6 Appendix
We present a guide on how to obtain the order in probability of one combination
of DGP s, namely, the combination 1-7, for which

yt = µy + uyt

xt = x0 + µxt +
PMx

i=1 θixDTixt + Sxt
The orders in probability for the rest of cases follow the same steps. The proofs
were assisted by the software Mathematica 4.1. The corresponding codes for all
combinations of DGP s are available at www.ventosa-santaularia.com/NVS_06a.zip.
Below, we describe the steps involved in the computerized calculations.
Write regression model yt = α + δxt + ut in matrix form: y = Xβ + u. The
vector of OLS estimators is bβ = (bα bδ)0 = (X 0X)¡1X 0y, and the t-statistic of

interest tδ̂ = bδ
h
bσ2

u(X 0X)¡1
22

i¡1/2
, where (X 0X)¡1

22 is the 2nd diagonal element of

(X 0X)¡1 and bσ2
u = T ¡1 PT

t=1 bu2
t = T ¡1 PT

t=1

³
yt ¡ bα ¡bδxt

´2
. tδ̂ is a function

of the following objects:
TP

t=1
yt = µyT + §uyT 1/2

totic one. When the sample size is increased to 100,000 (400,000), we obtained rejection rates
of 7.2% (11.8%) for Mz = 2, and 39.9% (91.9%) for Mz = 4.
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TP
t=1

y2
t =

¡
µ2

y + §u2y
¢
T + 2µy§uyT 1/2

TP
t=1

xt = 1
2

·
µx +

MxP
i=1

θi(1 ¡ λi)2
¸

T2+§sxT3/2+
·
x0 + 1

2

µ
µx +

MxP
i=1

θi(1 ¡ λi)
¶¸

T

TP
t=1

x2
t =

·
1
3µ2

x + λ+ + 1
3µx

MxP
i=1

θi(1 ¡ λi)2(λi + 2)
¸

T 3+2 (µx§tsx + §ts1xi)T 5/2

+Op (T2)
TP

t=1
ytxt =

h
1
2µy(µx +

PMx
i=1 θi(1 ¡ λi)2)

i
T2 + Op(T3/2)

with

§uy = T ¡1/2 PT
t=1 uyt

§u2y = T¡1
PT

t=1 u2
yt

§sx = T ¡3/2 PT
t=1 Sxt

§tsx = T ¡5/2 PT
t=1 tSxt

§ts1xi = T ¡5/2 PMx
i=1 θi

³PT
t=Tbi+1 tSxt ¡ λi

PT
t=Tbi+1 Sxt

´

λ+ = 1
3

PMx
i=1 θ2

i (1¡λi)2+
Mx¡1P

i=1

MxP
j=i+1

θiθj
£

2
3 (1 ¡ λu(i,j))3 + λd(i,j)(1 ¡ λu(i,j))2

¤

λu(i,j) = max(λi, λj), i, j = 1,2, ..., Mx

λl(i,j) = min(λi ,λj )
λd(i,j) = λu(i,j) ¡ λl(i,j)

where (see for instance Phillips (1986)),
§uy ) σyWy (1)
§u2y ) σ2

y

§sx ) σx
R 1

0 Wx(r)dr
§tsx ) σx

R 1
0 rWx(r)dr

§ts1xi ) σx
PMx

i=1 θi
R 1

λi
(r ¡ λi)Wx(r)dr

where ) signi…es convergence in distribution, and Wz(r), z = y, x is the stan-
dard Wiener process on r 2 [0, 1].
Using these expressions, Mathematica computes the limiting distribution of the
parameter vector and the rest of the elements of tδ̂ by factoring out the relevant
expressions in powers of the sample size. In this way, the orders in probability
can be determined, and the limiting expression obtained, by retaining only the
asymptotically relevant terms, upon a suitable normalization. From Mathemat-
ica ’s output it can be deducted that, for the case at hand

T 3/2bδ
h
bσ2

uT3(X 0X)¡1
22

i¡1/2
= bδ

h
bσ2

u(X 0X)¡1
22

i¡1/2
= Op(1),

as reported in Table 1.
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