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Abstract

We develop extensions of the variance-ratio statistic for testing the hy-
pothesis a time series is uncorrelated and investigate their finite-sample
performance. The tests employ an estimator of the asymptotic covari-
ance matrix of the sample autocorrelations that is consistent under the
null for general classes of innovations including non-Gaussian GARCH
processes and non-MDS processes. Monte Carlo experiments show that
our tests have better finite-sample power and size properties than the
standard variance-ratio tests in experiments using time series generated
by non-MDS processes.
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1 Introduction

The variance-ratio (VR) statistic has been widely used for testing the hypoth-
esis that financial or economic time series follow a random walk. It has been
popularized by the work of Lo and MacKinlay (1988). If a series {z;}>__ follows
a random walk, the first differences y; = x; — x;—;1 are independent (and hence
also uncorrelated) for all lags and the series z; is said to belong to the class
of martingale difference sequences (MDS). The VR statistic exploits the fact
that the increments of a random walk - here y; - are by definition stationary
and uncorrelated at all lags. The variance-ratio statistic for aggregation value
g [ VR(q) ] is defined as the variance of the ¢-th period difference z; — x;—_,
over ¢ times the variance of the one-period or first difference y; = 2y — x4_1. It
converges to 1 under the null that x; is a random walk.

The essence of whether a time series is a random walk is related to its pre-
dictability. Strictly speaking, when a series follows a random walk model, the
increments are independently distributed and thus are unpredictable. The VR
statistic can be thought of as a test of the unforecastability of the first differ-
ence of the time series under study.! The importance of the unforecastability of
finacial time series has lead to the development of VR tests under weaker con-
ditions of statistical dependence. In particular, the first differences of the series
can be uncorrelated rather than independent and do not have to be Gaussian.
For example, the increments can be uncorrelated but statistically dependent
and conditionally heteroskedastic.

Lo and MacKinlay (1988) derive the asymptotic distribution of the VR sta-
tistic for the following two cases: i) the increments are independent and iden-
tically normally distributed and ii) the increments are uncorrelated but exhibit
conditional heteroskedasticity.> The basis of their derivation stems from the
observation that the VR(q) statistic can be expressed as a weighted sum of the
sample autocorrelations. Asymptotically valid tests based on the VR statistic
can be obtained from consistent estimates of the asymptotic covariance matrix
of the sample autocorrelations. More specifically, the asymptotic covariance ma-
trix of the sample autocorrelations is an identity matrix when the increments are
independent and identically distributed (#id). Lo and MacKinlay have extended
the test for the case of conditionally heteroskedastic increments. More specif-
ically, for particular MDS processes, a consistent estimator of the asymptotic
variance of the sample autocorrelations takes the form of a diagonal matrix.
Guo and Phillips (1998) have proposed a consistent estimator for the case of
general MDS processes. The form of the asymptotic variance-covariance matrix
of the sample autocorrelations is nondiagonal in the latter case.

I The forecastability of a series (i.e. stock prices) is usually related to tests of the Efficient
Market Hypotheses (EMH). Although predictability is a necessary condition for the rejection
of the EMH, it is by no means sufficient.

2While Lo and MacKinlay consider the asymptotic distribution when the sample size n —
00, Richardson and Watson (1989) derive the asymptotic distribution when n — oo , ¢ — oo
and g/n — 6 > 0. More importantly, Chen and Deo (2004) derive the asymptotic distribution
when n — 0o, ¢ — oo and ¢/n — 0. The latter case is to be preferred when considering tests
over longer horizons or when q is relatively large compared to the sample size n.



The Guo and Phillips covariance matrix is more general in the sense that
it allows for asymmetric errors. The results of Lo and MacKinlay allow for
increments (y;) that are conditionally heteroskedastic and hence exhibit heavy
tails. The Guo and Phillips results allow not only for leptokurtosis but also for
skewness in the distribution of the errors. The importance of skewed returns
has been well established in the financial economics literature and was first
reported by Black (1976). The intuition behind skewness in stock returns is
that volatility is higher after negative shocks than after positive shocks of the
same magnitude. The stylized fact of asymmetric unconditional returns is also
known as the leverage effect.

Extensions of the standard GARCH models have been suggested to account
for asymmetry in the returns (Zakoian 1994, Nelson 1991, Ding, Granger and
Engle 1993). Another approach that attempts to capture the excess kurtosis and
asymmetry of unconditional returns is modeling volatility clustering via GARCH
models that allow for asymmetric returns. For example, Hansen (1994) suggests
a skewed Student distribution while Ferndndez and Steel (1998) propose another
skewed type distribution that was applied in a GARCH framework by Lambert
and Laurent (2001).

In this paper, extensions of the variance-ratio statistic are developed by
adopting an approach similar to the extension of the Box-Pierce statistic by Lo-
bato, Nankervis and Savin (2002). Like the Box-Pierce statistic, the VR statistic
can be expressed as a functional of the sample autocorrelations. The Box-Pierce
statistic is the sample size times the sum of the squares of the sample autocor-
relations. The Box-Pierce statistic has been developed both for a general class
of MDS processes as well as for non-MDS processes. Lobato et al. suggested
a statistic which is in the spirit of a Lagrange multiplier because it is based on
a consistent estimator of the asymptotic covariance matrix of the sample auto-
correlation under the null. The extension of the Box-Pierce statistic is based
on a consistent nonparametric estimator of the variance-covariance matrix of
the sample autocorrelations and is therefore applicable to the construction of
an extended variance-ratio statistic.

The finite sample performance of the VR statistic is assessed by Monte Carlo
experiments. The standard versions of the VR statistics, as suggested by Lo
and MacKinlay are compared relative to the alternative extensions. In order to
evaluate the size of the different VR versions, we consider examples of uncorre-
lated series when the data generating process is either a martingale difference
sequence (MDS) or a non-martingale difference sequence (non-MDS). In par-
ticular, we consider the data generating process to be either a GARCH(1,1) or
an EGARCH(1,1) for the MDS case. Non-MDS examples include uncorrelated
time series, such as the bilinear model of Granger and Andersen(1978) or the
nonlinear moving average model of Tong (1990). The power of the test is exam-
ined by considering the DGP of the increments to be either an autoregressive
process of first or sixth order, or alternatively a first or a second order moving
average process, where the errors follow the processes used for the corresponding
size evaluation.

The paper is organized as follows. Section 2 introduces the necessary nota-



tion and assumptions while Section 3 develops the extensions of the variance-
ratio statistic. The results of the Monte Carlo experiments regarding the size
of the variance ratio are reported in Section 4 while the corresponding results
for the power of the test are presented in Section 5. Section 6 concludes.

2 Preliminaries

Suppose that the hypothesis to be tested is that the series {x;} follows a random

walk with drift®. The essence of testing this hypothesis is the unforecastability of

the z; series and therefore the restrictive assumption that the errors are i.i.d. can

be relaxed. Define the real valued covariance stationary time series iy, = Axy; =
T

x¢ — xy—1 with mean p and square integrable spectrum. Let g = (1/T) >y
i=1
denote the sample mean of the series y; for a sample of size T.  The lag-j

autocorrelation of y; is defined as v(j) = E[(y: — ) (yt—; — p)] , while the lag-j
autocovariance of y; is p(j) = v(4)/7(0). The sample analogues of the lag-j auto-
covariance and autocorrelation are denoted as 7(j) = (1/T) > (y: — 1) (yt—; — i)
and 7(j) = 7(5)/ 7(0), respectively. The vector of the sample autocovariances
is denoted by 7 = [7(0),7(1),...,5(K)]" where K is the highest lag considered.
Similarly, the vector of sample autocovariances is r = [r(1),...r(K)]’. The vec-
tors of population autocorrelations and population autocovariances are denoted
as v = [y(0),y(1),...,v(K)]) and p = [p(1), ... p(K)] respectively.

The process y; is assumed to be a weakly dependent process for which the
vector of sample autocovariances satisfies

VT(H =)= N(0,C) (1)

The matrix C is assumed to be finite and positive definite. C is 27 times the
spectral density matrix at zero frequency of the vector w;. The later is defined
as wy = (Wi, way, .. Wi, where wy = (yr —p)(yi—p —p) forall k = 1,2, .. K.

The ijth component of the matrix C is given by:

d=+4o00
ci = Y ABwe — m)((e—i — 1) Wrsa — 1) Yrsa—j — 12)
d=—o0
=By — 1) Yt—i — WEYt+d — 1) Yt+d—j — 1)}
fori,; = 0,1,...K

Applying the delta method to equation (1) it can be shown that the sample
autocovariances converge asymptotically to N(0,V).

VI(r - p) = N(0,V) (2)

3Under the null that z; follows a random walk with drift x4 we have,

Tt =+ xe—1 + ut
where the uy ~ IN(0,1).



where the ijth component of V is given by

vij =7(0)"?[ci; — p(i)co; — p(5)coi + p(i)p(d)coo

3 Existing and new VR(q) tests

In the first part of this section the main fomulae regarding the variance-ratio
test are briefly presented. A detailed exposition of the variance-ratio statistic
can be found in Lo&MacKinlay (1988, 1989). Our extensions of the VR(q) test
are developed in the second part.

3.1 Existing VR(q) test
The maintained (null) hypothesis can be described by the following relationship:

Ty =+ Te1 + Ut (3)

where p is an arbitrary drift parameter and wu; is a zero mean random distur-
bance term with variance E(u?) = 02 and E(utus—j) = 0 for all ¢, j. Equation
(3) reduces to the traditional random walk model by imposing the additional
restriction that the u; are ¢.7.d.. However, this stronger assumption can be re-
laxed and the VR test can be studied under more general conditions of statistical
dependence.

The VR statistic is based on the fact that the variance of the increments u;
is linear in the observation interval. For example, under the null, the variance
of the gth differences of x; —(z; — x,—4)— is ¢ times the variance of the first
differences (x;+ — x1—1). The scalar ¢ is known as the aggregation value.

The overlapping adjusted variance-ratio statistic for aggregation value g and
for sample size of T+ 1 = ng + 1 observations of x; is defined as:
B Z?:q (2 — x1—g — qfi” . (T'-1)

St e - - T —q+1)(A-F)

By noting that the gth difference of x; is

VR(q) (4)
q—1
Tt —Tp—q = ) Yt—s
s=0
equation(4) can be rewritten as

- Y, [ T o(-s) — qfi i (T —1)

v Sy [y — 1) AT —q+ )1 1)




3.2 Extending the VR test

The VR(q) statistic for aggregation value ¢, can be shown to be approximately
a linear combination of the first ¢ — 1 autocorrelation coefficient estimators of
the first differences of x¢, the y;, with arithmetically declining weights (Lo and
MacKinlay 1988, 1989).

In particular we have

VR(g)~ 1+ 2(qq_ Vo) + 2((1; @) +.. + gr(q _ ) (5)

Denoting the (¢ — 1) x 1 vector of the weights as w = [M, 26=2) %]'

q q
and the centered variance ratio as VR.(q) = VR(q) — 1, equation (5) can be
expressed as?:

VR.(q) ~w'r (5.1)

where r = [r(1),...7(¢ — 1)]’ is the vector of sample autocorrelations of the
series y; up to order ¢ — 1.

Recalling that v/T(r — p) = N(0,V) by equation (2) and with respect to
VR.(q) =~ w'r the asymptotic distribution of the VR statistic can be obtained.
In particular

VTw' (r — p) = N(0,w'Vw) (6)

which after normalization reduces to
VTw' (r — p))(w'Vw) ™2 = N(0,1) (6.1)

where V' is the (¢ — 1) x (¢ — 1) asymptotic variance-covariance matrix of the
autocovariances. It is then obvious that the centered variance-ratio statistic
follows the standard normal distribution. In particular by equation (5.1) and
(6.1) we have:

VT*VR.(q) * (W' Vw) 2 = N(0,1) (7)

A feasible test for the VR statistic can be obtained either by replacing V' by a
known matrix or by estimating V. More specifically, we propose a test based on

the form TV R,(q)(w'Vw)~ 2 where V is a consistent estimator of V under the
null. Lo and MacKinlay replace the V matrix with the identity matrix when the
first difference of the x; series — {y;} — is independent normally distributed.?

The extension of the VR(q) we propose is based on a consistent estimator
of V under the null (Hy : p = 0 ). The estimation of V' by exploiting the
restrictions imposed by the null is in the spirit of the Lagrange multiplier (LM)

4We denote the centered overlapping adjusted variance ratio as V Rc(q). Note, however
that Lo and MacKinlay denote the same statistic as Mr(q).
5Tn particular when y¢ = x¢ — x¢—1 is i.i.d. normal, p = 0 and the null that the z; series

is a random walk can be tested by \/TVRC(q)(m%;(q_l))_l/ng(O, 1)



test. Under the null, the first differences of z; are uncorrelated so that the
matrix V simplifies to V = {7(0)72C} where C has its ijth element

d=o0

Gi= Y By—m) Wi =) Wera—m)Wera—p)  ij=1,...q—1(7)

d=—o0

For MDS processes the only possible nonzero elements of C occur at d =0 and
have the form E(y; — p1)*(y4—i — p)(y—j — p1). The ijth element of C for MDS
processes reduces to

Cij = By — 10)* (Wi — 1) (Ye—j — R); i,j=1,.,q—1 (8)

Guo and Phillips (1998, Theorem 5) have developed a test, the GP-test for
uncorrelatedness up to order K for the MDS case. Assuming that we have a
MDS process, then we have a special case of the V R(q) test where ¢;; is replaced
by the sample analogue of E(y: — p)*(y+—i — p)(y¢—; — p). For some particular
MDS processes, the test can be specialized further by assuming that ¢;; # 0
only when d = 0 and ¢ = 7. In this case Visa diagonal matrix and is denoted
by V* with

i =By — ) (ye—j — ), j=1,.,q-1 (9)

and the diagonal elements of V* are vy, = A/C(’T’)g The version of the VR test
when the asymptotic covariance matrix is diagonal was introduced by Lo and
MacKinlay (1988) and has been widely used in the literature when the y; series
is assumed to exhibit conditional heteroskedasticity.

For the general case — when y; is either an MDS or a non-MDS process
— an estimator of V is required. A consistent estimator can be obtained by
estimating v(0) with 7(0) and a nonparametric (or semi-parametric) estimate
of the matrix C. Under the null, the matrix C is the spectral density at zero
frequency of the (¢ — 1)- dimensional vector process w;. Therefore a consistent
time-domain estimator of C is given by

€= ko) =73 > k), (10)

Where g(]) = %;k(%)@tai_] Wlth @t = [@Lt,@g,t,...c’\uq_l,t]’ Where L’Jk,t =

(yr — ) (yt—r — ) for all k = 1,2,...¢ — 1, £ > 0 is the bandwidth parameter,
and k(e) is the kernel or lag window. The above estimator of the matrix V'
was proposed by Lobato, Nankervis and Savin (2002) and was applied to the
Box-Pierce test statistic.

As in Lobato et al. the kernel and the bandwidth are assumed to satisfy the
following assumptions:



1. The kernel k(e) belongs to K where K is the class of functions K =
{k(e):R; — [—1,1]} that is symmetric around zero, continuous at zero at
all but a finite number of points, and satisfies

ko) =1, [ " Jk(@)ldz < oo, / " (©)lde < o,

where ¥(&) = (1/27) [*°_k(x)e'*dz.

— 00

2. The bandwidth ¢ sequence satisfies

. 1
o (Gt 7)) =0

For the consistency of the nonparametric estimator of é, the interested
reader is referred to Lobato et al. (2002), lemmas 1 and 2.

4 Monte Carlo experiments

To assess the finite sample performance of alternative versions of the VR sta-
tistic, we run simulations and report estimates of the probability of making
a type I error.5:7 All versions of the VR(q) test have an asymptotic standard
normal distribution. However their finite sample performance differs due to the
alternative estimates of the asymptotic variance-covariance matrix V. More
particularly, we consider the standard VR statistic where the V is an identity
matrix, the VR* under which the V' is diagonal, the VRgp for the general MDS
case and two versions of a nonparametric estimate of V', the V.

The estimated rejection probabilities are computed for two MDS and two
non-MDS examples. The sample sizes considered are 1024 and 5120 observations
of the time series y;. The aggregation values considered are ¢ = 2,4, 8,16, 32, 64.
The empirical rejection probabilities are compared against nominal 5% and 10%
levels. The estimates of the empirical rejection probabilities are calculated us-
ing 25,000 replications. In the tables, an asterisk denotes that the empirical
rejection probability is significantly different at the 0.01 level from the nominal
rejection probability where significance is evaluated using a 0.01 level two-sided
asymptotic test.

We employ an automatic data-based covariance matrix estimation proce-
dure for the nonparametric estimation of the V matrix. More specifically,
the VARHAC procedure suggested by Den Haan and Levin (1997) is applied.
This involves estimating a vector autoregression (VAR) of the vector process wy
where, for each equation in the VAR, the maximum lag order of the elements

6The probability of making a type I error is, by definition, the probability of rejecting the
null, when it is true.

"The random number generator utilized is the modified version of Park and Miller(1998)
and uses a period of 4x10°. The simulations were run in a GNU/Linux environment using the
Ox programming language. Calculations were performed on a cluster of Shuttle XPC nodes,
with AMD Athlon XP 2800+ (Barton core) processors and connected by a Gigabit ethernet.



is selected by the AIC (Akaike, 1973) and the SC (Schwarz, 1978) criteria. The
estimated residual series is then recolored to obtain the spectral density matrix
at zero frequency of the series w;. The maximum lag order considered for each
sample size and aggregation value is 3.°> The same lag length is used for each
element of the vector process.

The explicit formula for the VARHAC estimation procedure is given as
follows. Denote the vector autoregression (VAR) of the vector process w; =
(Wi, w2ty . wi ]’y where wi s = (y+ — ) (ys—x — ) for all k =1,2,..K as’:

Wy = <I>1wt_1 + (I)th_g + ...+ (I)t_swt_s + €4 (11)

The maximum lag order considered for the VAR is denoted by S. First, for
each element k of the VAR the AIC and SC are calculated for each lag order
s = 1,...,S. For each element of w; the optimal lag order s, is chosen as the
value that minimizes the model selection criterion.

Then an estimate of 27 times the spectral density of the prewhitened resid-
uals is calculated. Let S be the largest lag order chosen by the model selection
criterion for the K elements of the VAR. The estimated residuals from the re-

. . ~ - S =~ . .
stricted vector autoregression are € = w; — » ._; P and the innovation
covariance matrix is:

T
S= Y &&/T (12)
t=S5+1

where T denotes the sample size of wy, ;.

Finally, using the results of the above steps, the VARHAC estimator of 27
times the spectral density at zero frequency of the vector process wy is calculated
as :

o)~ (13)

$,)" 181 —

1 s

R g
C=(-

S
s =

By the construction of the vector process wy, C is an estimate of the variance-
covariance matrix C of the autocorrelation vector « of the scalar process y;.

4.1 MDS examples

Monte Carlo experiments were conducted using two examples of martingale
difference processes. The two MDS models are variants of the GARCH model
of Bollerslev (1996). The first is a GARCH(1,1) model with normal errors while
the second is an EGARCH(1,1) model with normal errors. The GARCH(1,1)
model is y; = 2,0, where z; is an i.i.d. sequence and o7 = { + ay? | + Bo?_, ,

8Setting the maximum lag order at 3 allows for sufficient degrees of freedom in the estima-
tion of the VARHAC especially for small sample sizes and large aggregation values. It should
however be noted that the results of our simulation experiments are not altered by allowing
for plausibly larger values of the maximum lag order.

9When the VR(q) test statistic is considered, the dimension of the vector process wy is
K=q—-1.



where o and 3 are constants. Provided that the condition a4+ 8 < 1 is satisfied,
the y; series is covariance stationary. Estimates from stock market data suggest
that a+ 3 as well as 3 are close to one.!’ As shown by He and Teriisvirta (1999),
the unconditional fourth moment of y; exists for GARCH(1,1) models if and only
if B2+ 20BE|z/|* + a*E|z|* < 1. The EGARCH(1,1) model is y; = 2.0, where
2; is an i.i.d. sequence with zero mean and Ino? = ag+g(2¢_1)+pBolno?_; where
g(z;) is a well-defined function of z;. He, Ter#isvirta and Malmsten (2002) show
that y; is stationary if |8y] < 1. Furthermore, He et al. (2002) show that, if
{z:} is Gaussian, then all moments of y; exist.

4.1.1 Gaussian GARCH(1,1)

{#:} is a sequence of i.i.d. N(0,1) random variables. We set ¢ = 0.001, o =
0.09 and 8 = 0.89. With this parameter setting the He and Terdsvirta (1999)
condition for the existence of the fourth moment is satisfied. More precisely
for this process, v(0) = E(y, — p)? = 0.05, E(y — p)?/7(0)>/2 = 0, E(y; —
p)*/7(0)2 = 5.08, and V is diagonal. We note that our results are invariant to
the value of (.

4.1.2 Gaussian EGARCH(1,1)

{2} is a sequence of i.i.d. N(0,1) random variables and Ino? = ag + 9|z _1| +
apzi—1 + Bolnoi_,. We set ag = 0.001,% = 0.5,a9 = —0.2 and 3, = 0.95.
We have that (the skewness is an estimate) v(0) = E(y, — p)? = 10.8, E(y; —
1)2/7(0)3/2 =0, E(y; — u)?/v(0)* = 23.4 and V is non-diagonal.

Table 1 reports the empirical rejection probabilities for the MDS examples
for sample sizes of T'=1024 and 5120.

(Table 1 around here)

For the GARCH(1,1) process, the diagonal version of the VR test (V*) performs
better relative to the other versions. The rejection probabilities of the V Rgp
and the two versions of the V R tests are close to their V R* counterparts, espe-
cially for the larger sample size. In particular, for the larger sample the better
performance of the V* test is only distinguishable by the fact that the empiri-
cal rejection probability is not significantly different from the nominal rejection
probability at the 10% significance level. For the EGARCH(1,1) process, the
V Rgp generally performs better than the other tests. However, the V* and the
V work more than satisfactory for small aggregation values (¢) and even better
for ¢ = 4.

On the other hand, the use of the identity variance-covariance matrix both
for the GARCH(1,1) and the EGARCH(1,1) processes results in substantial
overrejection of the null. The distortions in the rejection probabilities for the
identity covariance matrix become larger as the sample size increases from
T=1024 to T=5120. The main conclusions of the simulation experiments in Ta-
ble 1 can be summarized as follows : i) for the GARCH(1,1) and the EGARCH(1,1)

10Gee, for example, Bera and Higgins (1997).

10



the V* and the Vgp, respectively, perform better than the other tests, as ex-
pected and ii) as the sample size increases to T=5120, the V versions perform
similarly to the diagonal and the Guo-Phillips tests.

4.2 Non-MDS examples

In this section we examine the finite sample performance of the tests when
the errors are uncorrelated but are non-MDS processes. In recent years, grow-
ing evidence that the MDS assumption is too restrictive for financial data has
emerged as El Babsiri and Zakoian (2001) show. In particular we examine two
examples of uncorrelated non-MDS errors. The first is the Granger and Ander-
sen (1978) bilinear model while the second is Tong’s (1990) nonlinear moving
average model.

4.2.1 Bilinear model

The bilinear model is y; = 2 + bzy_1y:—2 where {z:} is a sequence of i.i.d.
N(0,0?%) random variables. It has been fitted to stock return data by Bera
and Higgins (1997). The y; process, although not independent, is uncorrelated
and, as long as b%0? < 1, it is covariance stationary. The condition for the
existence of the fourth moment of this process is 3b*c* < 1. In the experiments
we set b=0.50 and 02 = 1.0. For this particular parameter setting we have
p=0,90) = By, — p)* = 0°/(1 = b%07) = 1.33, E(y; — p)*/7(0)** = 0,
E(y; — u)*/v(0)2 = 3(1 — b*o*)/(1 — 3b*0*) = 3.46 and the V matrix is non-
diagonal.

4.2.2 Nonlinear moving average

For this model we have y; = 241 - 2zt—2 - (2¢—2 + 2t + ¢) where {z;} is a sequence
of i.i.d. N(0,1) random variables and ¢ = 1.0. For this process the second,
third and fourth moments are E(y; — u)? = 5, E(y: — p)?/7(0)>/? = 0 and
E(y; — p)*/v(0)* = 37.80. The asymptotic variance-covariance matrix V is
non-diagonal for the nonlinear moving average model.

The results of the Monte Carlo experiments, when the underlying DGPs of
the y; series are non-MDS processes, are presented in Table 2.

(Table 2 around here)

For T=1024, the two versions of the YN/, work relatively better than the other
tests for aggregation values up to ¢ = 16. In particular, both for the bilinear
and the non linear moving average process, the V' considerably outperforms
the alternative versions. The V tests perform better at the lager sample size
for both processes. The difference between the nominal and empirical rejection
probabilities is around 1% for both examples and for all values of ¢ at T=5120.
The results of Table 2 are in line with our a priori expectation that the VR
tests should perform better for the non-MDS examples since only these tests
use consistent estimators of V.

11



5 Power

We report the empirical power of the alternative versions of the VR test where
the DGPs of the y; series are either AR or MA processes with uncorrelated
errors.!! The errors (u;) for both the AR and the MA specifications, are assumed
to be generated by the processes examined in the previous section and hence
are uncorrelated.'?

For the AR model we consider the AR(1) and the AR(6) specifications. The
AR(1) model is ¥+ = ¢y:—1 + us while the AR(6) model being considered is

6

Yyr=¢ > %yt_j + ug. The y; series following an AR(p) model is covariance
j=1

stationary as long as the roots of 1 —¢;z— ¢ 2% —. .. — ¢,2P = 0 all lie outside the
unit circle. The parameter values of ¢ are chosen to range from 0.075 to 0.200,
for the case of the AR(1), while for the AR(6) model the values of ¢ range
from 0.05 to 0.1.13 It follows from the definition of the AR models and the
uncorrelatedness of the errors that a zero coefficient for ¢ yields an uncorrelated
Yy Series.

We also allow the y, series to be either an MA(1) or an MA(2) model. The
MA(1) model is y; = u; + Opus—1 while the MA(2) model is y; = u + O1up—1 +
Oou;_o. However, unless the coefficient 0y, for the MA(1), and 6,80, for the
MA(2) process are different from zero, the y; process is no longer uncorrelated.
The MA processes are covariance stationary no matter what value the moving
average coefficients 6; might take. However any MA(q) can be written as an
AR(c0) process as long as the roots of the polynomial (1 + 1L + 03L% + ... +
+0,L7) = 0 lie outside the unit circle. For the MA(1) case we set the value of
0o so as to have an invertible MA and the first autocorrelation (p(1)) to take
values in the range of 0.075 to 0.150. For the MA (2) case we find the appropriate
01 and 05 , by setting p(1) = p(2) = p and the values of p range from 0.040
to 0.085. Again, the appropriate values of 6; and 65 are selected in order to
have an invertible MA(2) process. In the power comparisons, both for the AR
and the MA models, the empirical powers are adjusted so that the empirical
rejections under the null are exactly 10% and 5% for two-sided tests.

Table 3 reports the empirical power when the underlying DGP is an AR (1)
model with uncorrelated errors.

(Table 3 around here)

HSince y¢ is defined as the first difference of the z¢ series, when the fomer follows an AR
or an MA process, z follows an ARIMA(1,1,0) or an ARIMA(0,1,1), respectively.

121n the power comparisons, caution in the selection of the appropriate g value for a given
sample size should be exercised due to the variance ratio test’s skewed empirical distribution.
Lo and MacKinlay (1989) select values of ¢ so that the maximum value of the ratio ¢/T is 0.5.

131n addition to selecting appropriate parameter values for ¢ to ensure stationarity, the AR
models are simulated with an approximate stationary startup. This involves taking the last
T random observations from a simulated sequence of T'+ 500 where the startup values are set
equal to zero.

14 The power of a test statistic (or 1 minus the probability of making a Type II error) is by
definition the probability of rejecting the null hypothesis when it is actually false.
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In Panel A and B of this table we report the empirical power of the VR-tests for
aggregation values of ¢ = 4 and ¢ = 8, respectively. For the AR(1) model the
v\}/%(AI C) and ﬁ(SC) outperform the other VR alternatives. In particular
when the errors follow either an EGARCH(1,1), bilinear or non-linear moving
average process the increase in power can be up to 10 percentage points com-
pared to the VR* and the VRgp versions. For example, in panel B, at the
10% level when the errors follow an EGARCH(1,1) and ¢ = 0.200 the empirical
rejection probabilities for the VR*, VRgp and VR are 60.6%, 64.3% and 72.7%,
respectively.

The empirical rejection probabilities for the AR(6) process are provided in
Table 4.

(Table 4 around here)

For the AR(6) model with GARCH(1,1) errors, the diagonal, VRgp and the
V versions of the VR-test seem to have similar power. When the errors follow
an EGARCH(1,1) process the VRgp performs better than the VR* by 2-5
percentage points while the two VR versions result in a gain of power of 3-
13 percentage points relative to the VR*. Considering bilinear and nonlinear
moving average errors does not change the fact that the VRgp and the VR
perform better than the VR* version. It should be noted that for the AR(6)
with bilinear errors the VRgp performs slightly better than the VR and vice
versa for the AR(6) with nonlinear moving average errors.

The empirical rejection probabilities when y; is an MA(1) process are re-
ported in Table 5.

(Table 5 around here)

The main message from Table 5 is that the non-diagonal versions of the VR
test have more power and this is in line with the findings for the AR models. In
particular, the use of the VARHAC covariance matrix results in more powerful
tests. The resultant increase in power can be up to 10 percentage points com-
pared to the diagonal variance-covariance matrix and up to 8 percentage points
than the VRgp versions of the test.

The simulation outcomes for the MA(2) process are presented in Table 6.

(Table 6 around here)
The results provide further evidence that the VR and VRgp have more power
than the standard identity and diagonal versions of the VR test statistic. Once
again the VR performs better than the VRgp and the improvement is more
evident for EGARCH(1,1) errors.
6 Conclusions

We develop new extensions of the variance ratio test statistic to test for un-
correlatedness in the presence of statistical dependence that characterises many
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financial and economic time series. These extensions are similar in spirit to the
extension of the Box-Pierce suggested by Lobato,Nankervis and Savin (2002).
They employ consistent estimates of the asymptotic variance-covariance matrix
of the sample autocorrelations of the increments y;. Lo and MacKinlay (1988,
1989) show that when the increments are either 4id or are conditionally het-
eroskedastic, the asymptotic variance-covariance matrix of the autocorrelations
is either an identity or diagonal matrix, respectively. However in more general
cases, this matrix is no longer diagonal in cases where the sample autocorrela-
tions of y; are not asymptotically uncorrelated. For example, the asymptotic
covariance matrix of the sample autocorrelations is non-diagonal when the un-
derlying DGP of the y; is either a GARCH process with non-symmetric errors
or an EGARCH process.

The finite sample performance of the suggested extensions of the VR test is
evaluated in a Monte Carlo study. The size and power properties of the alter-
native VR versions are studied both when the underlying DGPs are martingale
difference sequences (MDS) or non-MDS processes. The MDS employed for size
evaluation are the GARCH(1,1) and EGARCH(1,1) with normal errors while
the non-MDS examples are a bilinear and non-linear moving average model. The
alternative hypothesis for the power comparison is that the underlying process
for the increments is either an AR(1), AR(6), MA(1) or MA(2) model.

In the MDS framework, the VR*(diagonal case) version is best sized for the
GARCH(1,1) model as expected whereas the VRgp version performs better for
the EGARCH(1,1) model. The empirical rejections for both versions of our
proposed V R test are very close to their nominal levels for the larger sample
size. More interestingly, the results of the power study using adjusted critical
values show that the non-diagonal versions of the VR test are more powerful.
The use of our proposed VR(AIC) and VR(SC) tests result in an increase in
power of up to 10 percentage points.
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Table 1. Rejection probabilities (%) of tests: MDS examples
q=2 q=4 q=8 q=16 q=32 q=64
5 10 5 10 5 10 5 10 5 10 5 10

GARCH(1,1) with normal errors, T=1024

Via 14.2%  21.4* 13.2¥ 20.5% 12.0%¥ 19.4* 10.9* 18.1* 9.2%* 16.4*  7.6* 13.6%*

v+ 6.3% 11.9%  6.1%* 11.8%  5.6%* 11.1*  5.5% 10.5*  5.6%* 10.5*  6.3* 11.1%*

Vap 6.3% 11.9%  6.6* 12.3*  6.4* 11.9%  6.7* 12.3%  7.4% 13.4*  9.1%* 15.6*

VAIC 7.0% 12.9% 7.5% 13.1%  8.1%* 13.7%  8.7* 14.1%  9.2% 15.5*% 10.1* 16.8%*

‘750 7.0* 12.8%  7.2% 12.9%  7.1* 12.9% 7.3* 12.9%  7.7% 13.8% 9.1* 15.6*
GARCH(1,1) with normal errors, T=5120

Via 14.7%  22.2%  14.4* 21.9% 13.9* 21.5* 13.4* 21.1* 12.5* 19.7* 10.8% 17.6*

v+ 5.3 10.3 5.2 10.3 5.1 10.3 5.1 10.0 5.1 10.0 5.2 9.9

Vap 5.3 10.3 5.4%* 10.5 5.3 10.5 5.2 10.6* 5.4* 10.8%  5.7* 11.1*

Vare 52 104  56%  10.7¢ 59% 11¥  5.8%  11.2% 59%  11.4% 62%  11.5%

Vs¢ 53 104  55%  10.6* 57%  10.9% 5.6% 10.8% 5.6% 11.1* 5.8%  11.3*
EGARCH(1,1) with normal errors, T=1024

Via 35.3%  43.2*  33.6% 42.0%* 31.2*% 39.8%* 27.7% 36.5* 21.9%* 31.6* 15.2%¥ 24.4%*

v+ 4.7 9.9 4.7 9.3% 4.8 9%* 4.6% 8.4%* 4.8 7.9% 5.2 7.9%

Vap 4.7 9.9 4.4% 9.4%* 4.4% 9.2% 4.4% 9.1% 4.7 9.2% 5.5% 10.7*

Vare 3.6% 89% 50 102  6.7% 12.0% 7.3%  13.2%  7.8%  142%F 90%*  16.0%

‘750 3.6% 8.9% 4.9 10.0 6.4%* 11.7%  6.4* 11.9% 5.8% 11.2*  5.7* 11.2%
EGARCH(1,1) with normal errors, T=5120

Vi 44.0%  51.5% 43.6* 51.1* 42.1% 50* 39.9%  48.1*%  35.9* 44.8% 29.0* 38.3*

v+ 4.8 9.9 5.2 10.2 5.9% 10.9%  6.6* 11.6* 6.9* 12.0* 7.0%* 12.1%*

Vap 4.8 9.9 4.5% 9.3% 4.4* 9* 4.4% 9.2% 4.5% 9.3% 4.6% 9.6

Vare 40%  89% 50 102  6.5% 11.7% T.0%  12.4% 7.3%  127F  7.5%  13.2%

‘750 4.0* 9.0%* 5.0 10.2 6.4%* 11.6* 7.1%* 12.2%  7.0* 12.3*  6.7* 12.4%*

Notes: The number of replications is 25,000. An asterisk denotes that the empirical

rejection probability is significantly different at the 0.01 level from the nominal rejection

probability, where the significance is evaluated using a 0.01 level two-sided asymptotic test.
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Table 2. Rejection probabilities (%) of tests: Non-MDS examples

q=2 q=4 q=8 q=16 q=32 q=64
5 10 5 10 5 10 5 10 5 10 5 10
Bilinear, T=1024
Via 15.2%  22.9* 17.0%¥ 25.1*% 14.5* 21.9* 10.4*  17.1%* 7.6% 13.6* 6.1* 11.2*
v+ 8% 14.7%* 9.6% 16.4* 9.1%  15.9% 7.5% 13.5% 6.6% 12.0* 6.2¥ 11.3*
Vap 8% 14.7%* 9.6% 16.8* 9.2%  15.8% 7.9%  14.2% 7.4* 13.5% 8.0% 14.5%
VAIC 4.8 10.1 6.1% 11.5* 7.5%  12.4* 7.2%  12.4%* 7% 12.9%  7.9%  14.2*
‘750 5.9% 11.7* 6.9% 12.9*% 7.2%  12.7* 7.0 12.8* 7.1*  13.3%  8.0% 14.5%
Bilinear, T=5120
Via 15* 22.7% 17.5% 25.5*% 15.6* 23%* 11.6* 18.8* 8.7F 15.1*% T.0* 12.7*
% 8.0% 14.1* 9.6* 16.4* 9.7%  16.3* 8.3%  14.6* 7.1*  13.0* 6.3* 11.7*
Var 8.0* 14.1* 9.7* 16.3* 9.2%  15.7* 8.0%  14.2% 6.9% 13.0% 6.4% 12.2%
Vare 47 96 50 98  55% 104  55% 10.6%  55% 10.7F 5.6% 11.1%
‘730 4.7 9.6 4.9 9.7 5.4%  10.8* 6.0*  11.5* 6.2% 11.9%* 6.2* 11.9*
Nonlinear Moving Average, T=1024
Via 42%* 49.9*  36.2* 44.5* 25.9% 34.7* 17.0* 25.1* 10.8* 17.6% 7.2% 17.2%*
% 7.8%  14.8% 8.0* 15.0% 7.4%  14.2% 6.9% 13.1* 6.2% 12.0* 6.2* 11.6*
Vapr 7.8%  14.8%  7.7f 14.6% 7.4%  14.2% 7.3%  13.8* 7.4*% 13.8% 8.5% 14.9*
17,410 4.6* 10.1 6.7%  12.5% 7.2%  13.2% 7.5% 13.6* 7.8% 14.0* 8.1* 14.6*
‘750 4.7 10.1 6.7  12.5% 6.9% 12.8*% 6.8% 12.7* 6.9% 12.7% T.7*  14.0*
Nonlinear Moving Average, T=5120
Vi 45.8%  53.1* 40.1* 48.0* 30.0* 38.3* 20.1%  28.5* 13.2*% 20.5* 8.9* 15.6*
% 8.2*% 14.9%* 86* 15.7F 82* 14.7* 7.2%  13.4%* 6.5% 12.3* 5.7f 11.2*
Vap 8.2*% 14.9%* 82* 15.0%* T.7*  14.2% 7.0 13.2% 6.5% 12.5*%  6.1* 11.9*
‘71410 4.8 10 6.1* 11.2* 6.2 11.7* 6.0* 11.4* 5.9* 11.4* 6.0* 11.3*
‘750 4.9 10.2 6.2 11.3* 6.2* 11.6* 6.0%  11.2* 5.7% 11.0%* 5.8% 10.9*
Notes: The number of replications is 25,000. An asterisk denotes that the empirical

rejection probability is significantly different at the 0.01 level from the nominal rejection

probability, where the significance is evaluated using a 0.01 level two-sided asymptotic test.
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Table 3A. Empirical power for an AR(1) process
Panel A: q =4
10) 0.075 0.100 0.125 0.150 0.200

10 ) 10 5 10 5 10 5 10 5
GARCH(1,1) with normal errors
Vid 50.3 369 70.7 577 86.1 77.1 946 899 99.6 99.0
% 51.0 383 71.1 59.0 858 T77.7T 942 89.7 994 98.6
Vep 51.7 393 71.7 60.1 86.3 785 944 90.3 994 987
‘7,410 545 424 748 638 884 817 955 921 996 99.1
‘750 53.7 413 739 62.6 87.8 80.7 952 915 995 989

EGARCH(1,1) with normal errors
Via 185 9.4 270 143 382 21.7 256 143 76.5 58.1
% 227 141 33.7 223 463 335 30.8 20.1 801 704
Var 243 152 36.0 246 488 36.7 325 21.7 821 735
‘7,410 28.3 194 413 31.1 556 445 356 243 869 80.3
‘75(; 284 195 414 310 558 445 351 239 871 804

Bilinear
Vid 370 25.0 55.1 411 726 59.7 857 762 979 953
% 375 26.2 55.6 429 728 61.5 859 778 979 958
Vapr 384 276 56.8 449 741 63.8 86.8 79.8 981 96.3
‘7,410 43,5 316 634 50.8 80.1 703 91.1 851 99.2 979
‘75(; 42.1 30.1 61.6 49.0 785 682 89.9 834 989 974

Nonlinear Moving Average
Vi 194 105 281 16.1 393 242 521 349 770 614
% 24.8 158 36.2 252 49.2 36.8 622 503 834 750
Vep 270 178 393 28.6 531 416 66.3 557 86.0 79.6
‘71410 30.0 204 43.6 324 58.2 46.7 71.7 61.0 89.7 83.6
‘75(; 30.0 20.2 43.7 322 584 463 71.7 609 89.7 833

Notes: The number of replications is 25,000. The critical values are adjusted so that
empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05 for two-

sided tests. The empirical powers are in percentages.

19



Table 3B. Empirical power for an AR(1) process
Panel B: q =8
10) 0.075 0.100 0.125 0.150 0.200

10 ) 10 5 10 5 10 5 10 5
GARCH(1,1) with normal errors
Via 34.0 221 49.0 354 648 50.8 782 66.5 944 894
% 346 235 499 369 651 526 782 67.7 939 89.2
Var 354 246 51.0 382 66.2 541 79.1 69.0 943 90.1
‘7,410 38.3 269 547 419 70.1 585 822 732 958 920
‘750 364 25.6 525 39.6 67.5 557 80.2 70.1 948 90.2

EGARCH(1,1) with normal errors
Via 14.2 6.7 18.8 9.2 25.0 126 33.1 17.6 53.2 32.1
% 16.9 9.1 226 132 304 18.8 40.0 26.1 60.6 454
Var 179 10.6 24.7 15.7 33.2 225 433 312 643 520
Vare 212 12,9 300 197 402 288 520 39.3 727 62.0
Vso 212 12,9 299 19.6 40.2 28.7 515 39.3 727 619

Bilinear
Vid 26.7 164 39.1 26.5 53.5 39.2 67.6 539 889 80.5
% 26.7 17.1 39.7 273 54.1 40.7 68.0 553 89.0 81.5
Vap 28.1 18.0 41.1 29.0 557 429 69.8 57.6 90.1 83.1
‘7,410 326 219 475 353 63.0 513 77.0 66.7 94.0 89.2
‘75(; 30.2 194 44.0 31.3 587 453 728 599 914 843

Nonlinear Moving Average
Vi 175 9.7 244 144 341 21.0 457 30.2 69.5 539
% 209 126 29.8 198 40.8 28.9 528 40.2 752 64.2
Vep 230 14.8 329 233 449 34.0 56.9 46.2 78.7 70.1
‘7,410 254 16.5 36.8 26.2 49.2 37.8 62.0 50.7 830 744
‘75(; 25.0 169 36.4 26.7 489 385 614 513 827 750

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted
so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are in percentages.
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Table

4. Empirical power for an AR(6) process

q=1 q=28
0] 0.050 0.075 0.100 0.050 0.075 0.100
10 5 10 5 10 5 10 5 10 5 10 5
GARCH(1,1) with normal errors
Vid 65.6 52.8 92.2 86.7 99.2 98.3 72.1 60.0 95.6 91.9 99.7 99.4
% 66.3 54.3 919 86.7 99.0 98.0 724 614 953 91.8 99.6 99.1
Vap 674 56.1 92.6 879 99.1 98.3 742 63.7 95.8 929 99.6 99.3
‘7AIC 66.5 54.8 920 86.3 989 97.7 759 654 963 93.0 99.6 99.2
1750 67.3 55.2 922 86.6 989 97.7 75.0 649 96.0 92.7 99.6 99.0
EGARCH(1,1) with normal errors
Via 25.8 14.1 484 31.2 74.0 575 29.8 16.0 58.2 37.7 844 684
% 31.6 21.1 56.0 44.0 783 69.3 36.0 23.6 645 50.8 864 77.6
Vap 339 235 59.1 479 809 73.0 399 287 69.0 584 89.2 833
‘7AIC 349 251 60.3 49.2 813 726 454 33.3 744 638 915 853
1750 35.0 25.3 60.6 49.3 814 728 455 335 745 64.1 91.5 854
Bilinear
Vid 51.0 38.0 822 727 96.9 94.0 61.6 479 91.1 843 99.3 984
% 51.2 39.2 824 73.7 969 94.2 619 493 91.3 85.2 99.3 984
Vap 53.3 422 842 770 974 955 65.3 53.6 93.1 883 99.6 99.0
‘7AIC 55.1 424 85.3 76.8 97.7 95.0 70.1 58.7 94.8 90.8 99.7 99.2
‘750 54.0 414 84,5 755 97.2 94.2 68.1 56.7 939 89.4 99.5 98.7
Nonlinear Moving Average

Vi 272 16.0 50.4 348 759 61.8 409 275 733 59.8 933 87T.7
% 36.0 26.1 624 521 838 77.6 50.4 39.4 80.2 72.6 949 919
Vap 39.1 295 66.0 572 86.2 81.1 54.5 455 832 774 96.0 93.9
‘2410 379 272 644 533 8.1 771 54.0 43.1 826 744 956 919
‘750 38.6 27.5 648 53.5 853 T77.2 55.3 45.7 83.1 76.3 95.7 925

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted
so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are in percentages.
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Table 5. Empirical power for an MA(1) process

q=4 q=38
P1 0.075 0.100 0.125 0.150 0.075 0.100 0.125 0.150
10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5
GARCH(1,1) with normal errors
Via 46.8 33.7 65.2 51.6 804 69.5 90.3 83.3 312 20.0 43.5 30.5 56.4 425 68.2 55.0
% 46.5 34.1 649 52.0 798 69.5 89.4 825 31.3 20.7 43,5 314 56.5 43.3 67.8 55.8
Vep 469 348 65.5 53.0 80.2 70.3 89.7 832 319 21.6 444 324 575 447 68.7 574
Vare 499 380 69.0 57.1 83.0 743 OL7 86.1 346 23.6 483 357 613 49.1 72.6 61.7
‘730 49.0 37.0 68.0 55.7 821 729 91.2 852 329 223 46.0 33.6 588 46.1 70.0 58.3
EGARCH(1,1) with normal errors
Via 179 9.2 249 13.2 339 189 445 263 136 6.5 17.2 8.3 222 109 277 141
% 215 13.2 306 198 41.1 286 51.7 39.0 156 8.3 205 11.5 26.1 15.6 33.0 20.7
Var 23.0 143 327 219 435 31.6 545 420 16.7 9.9 223 139 288 189 36.2 24.7
XN/AIC 26.8 18.0 380 278 50.2 394 620 51.1 199 11.8 271 174 353 243 441 32.1
‘730 269 180 382 277 503 396 619 51.2 199 11.8 270 173 35.1 24.1 438 319
Bilinear
Via 34.7 229 50.7 36.8 66.3 527 79.5 68.0 24.6 14.9 34.7 229 46.0 32.6 58.0 43.5
% 35.0 24.1 50.9 385 66.8 54.6 79.9 69.6 24.8 155 350 23.7 46.4 33.7 584 44.7
Vep 358 254 520 40.1 678 56.3 80.6 71.5 257 16.2 36.1 249 48.0 351 59.7 46.7
‘714[0 40.8 29.2 584 46.3 746 63.8 86.3 783 29.9 19.8 423 30.5 553 43.2 67.6 56.0
‘750 39.5 28.0 56.7 444 728 614 847 76.2 276 17.7 38.9 26.7 50.7 373 62.6 49.0
Nonlinear Moving Average

% 18,5 10.0 25.3 14.6 345 20.6 444 283 16.2 9.2 21.8 125 289 172 373 234
% 23.1 144 325 220 43.1 313 544 41.7 193 115 26.2 16.9 34.7 23.6 43.6 314
Var 249 16.3 354 249 469 355 582 46.8 21.1 134 29.1 19.7 384 276 47.8 36.7
‘714[0 27.8 18.7 40.0 289 53.1 414 651 54.1 236 153 32.8 229 434 325 54.0 425
‘N/SC 27.8 185 40.1 28.7 53.1 41.2 65.1 53.7 23.2 156 325 232 43.0 328 532 43.0

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted

so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are given in percentages.
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Table 6. Empirical Powers for an MA(2) process

q=4 q=238
P1 = Po 0.040 0.055 0.070 0.085 0.040 0.055 0.070 0.085
10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5
GARCH(1,1) with normal errors
Via 40.8 284 59.1 459 755 63.9 87.1 788 40.8 284 59.1 459 755 639 87.1 788
% 41.0 29.1 59.1 46.5 75.0 64.1 86.2 784 41.0 29.1 59.1 46.5 75.0 64.1 86.2 784
Var 41.6 30.0 60.1 479 759 655 869 79.6 41.6 30.0 60.1 479 759 655 86.9 79.6
XN/AIC 43.5 315 622 50.1 77.6 67.7 88.2 81.1 43.5 31.5 62.2 50.1 77.6 67.7 882 81.1
‘730 428 31.0 614 494 77.0 67.0 877 80.6 42.8 31.0 61.4 49.4 7T7.0 67.0 87.7 80.6
EGARCH(1,1) with normal errors
Via 16.3 84 229 119 31.1 172 41.0 243 16.3 84 229 119 31.1 17.2 41.0 243
% 19.6 11.7 27.8 18.0 37.7 26.0 48.2 358 19.6 11.7 27.8 18.0 37.7 26.0 48.2 35.8
Vap 21.0 128 29.7 199 40.2 28.7 51.3 39.0 21.0 12.8 29.7 19.9 40.2 28.7 51.3 39.0
Vare 23.3 15.5 33.5 239 452 345 56.8 46.0 23.3 155 33.5 23.9 45.2 345 56.8 46.0
‘750 234 153 335 24.0 452 344 56.8 458 234 153 33.5 24.0 452 344 56.8 45.8
Bilinear
Vid 30.0 194 45.0 32.1 60.9 472 749 62.7 30.0 19.4 45.0 32.1 60.9 47.2 749 62.7
% 304 20.5 454 33.6 61.6 49.0 75.5 64.8 304 20.5 454 33.6 61.6 49.0 75.5 64.8
Vap 31.7 22.0 47.1 36.1 63.7 52.1 77.3 67.8 31.7 22.0 47.1 36.1 63.7 52.1 77.3 67.8
Vare 34.7 23.8 51.6 39.2 68.1 56.5 81.1 72.0 34.7 23.8 51.6 39.2 68.1 56.5 81.1 72.0
‘750 33.8 23.1 50.3 37.8 66.5 54.8 79.9 70.3 33.8 23.1 50.3 37.8 66.5 54.8 79.9 70.3
Nonlinear Moving Average

Vi 171 9.1 236 13,5 321 194 418 26.6 17.1 9.1 23.6 13.5 32.1 194 41.8 26.6
% 21.7 13.7 31.3 21.5 419 31.1 52.8 41.5 21.7 13.7 31.3 21.5 41.9 31.1 52.8 41.5
Vep 23.6 154 339 24.2 453 34.7 56.6 46.2 23.6 154 33.9 24.2 453 34.7 56.6 46.2
‘7AIC 242 155 34.8 246 46.5 353 58.1 46.4 24.2 155 34.8 24.6 46.5 35.3 58.1 46.4
Vsc 243 154 349 244 46.6 35.0 58.0 46.4 24.3 154 349 244 46.6 35.0 58.0 46.4

Notes: The number of replications is 25,000 and and T=1024. The critical values are

adjusted so that empirical rejection probabilities of the tests under the null are exactly 0.1

and 0.05 for two-sided tests. The empirical powers are given in percentages.
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