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Abstract
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performance. The tests employ an estimator of the asymptotic covari-
ance matrix of the sample autocorrelations that is consistent under the
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1 Introduction

The variance-ratio (VR) statistic has been widely used for testing the hypoth-
esis that �nancial or economic time series follow a random walk. It has been
popularized by the work of Lo and MacKinlay (1988). If a series fxtg1�1 follows
a random walk, the �rst di¤erences yt = xt � xt�1 are independent (and hence
also uncorrelated) for all lags and the series xt is said to belong to the class
of martingale di¤erence sequences (MDS). The VR statistic exploits the fact
that the increments of a random walk - here yt - are by de�nition stationary
and uncorrelated at all lags. The variance-ratio statistic for aggregation value
q [ VR(q) ] is de�ned as the variance of the q-th period di¤erence xt � xt�q
over q times the variance of the one-period or �rst di¤erence yt = xt � xt�1. It
converges to 1 under the null that xt is a random walk.
The essence of whether a time series is a random walk is related to its pre-

dictability. Strictly speaking, when a series follows a random walk model, the
increments are independently distributed and thus are unpredictable. The VR
statistic can be thought of as a test of the unforecastability of the �rst di¤er-
ence of the time series under study.1 The importance of the unforecastability of
�nacial time series has lead to the development of VR tests under weaker con-
ditions of statistical dependence. In particular, the �rst di¤erences of the series
can be uncorrelated rather than independent and do not have to be Gaussian.
For example, the increments can be uncorrelated but statistically dependent
and conditionally heteroskedastic.
Lo and MacKinlay (1988) derive the asymptotic distribution of the VR sta-

tistic for the following two cases: i) the increments are independent and iden-
tically normally distributed and ii) the increments are uncorrelated but exhibit
conditional heteroskedasticity.2 The basis of their derivation stems from the
observation that the VR(q) statistic can be expressed as a weighted sum of the
sample autocorrelations. Asymptotically valid tests based on the VR statistic
can be obtained from consistent estimates of the asymptotic covariance matrix
of the sample autocorrelations. More speci�cally, the asymptotic covariance ma-
trix of the sample autocorrelations is an identity matrix when the increments are
independent and identically distributed (iid). Lo and MacKinlay have extended
the test for the case of conditionally heteroskedastic increments. More specif-
ically, for particular MDS processes, a consistent estimator of the asymptotic
variance of the sample autocorrelations takes the form of a diagonal matrix.
Guo and Phillips (1998) have proposed a consistent estimator for the case of
general MDS processes. The form of the asymptotic variance-covariance matrix
of the sample autocorrelations is nondiagonal in the latter case.

1The forecastability of a series (i.e. stock prices) is usually related to tests of the E¢ cient
Market Hypotheses (EMH). Although predictability is a necessary condition for the rejection
of the EMH, it is by no means su¢ cient.

2While Lo and MacKinlay consider the asymptotic distribution when the sample size n!
1, Richardson and Watson (1989) derive the asymptotic distribution when n!1 , q !1
and q=n! � > 0. More importantly, Chen and Deo (2004) derive the asymptotic distribution
when n!1 , q !1 and q=n! 0. The latter case is to be preferred when considering tests
over longer horizons or when q is relatively large compared to the sample size n.

2



The Guo and Phillips covariance matrix is more general in the sense that
it allows for asymmetric errors. The results of Lo and MacKinlay allow for
increments (yt) that are conditionally heteroskedastic and hence exhibit heavy
tails. The Guo and Phillips results allow not only for leptokurtosis but also for
skewness in the distribution of the errors. The importance of skewed returns
has been well established in the �nancial economics literature and was �rst
reported by Black (1976). The intuition behind skewness in stock returns is
that volatility is higher after negative shocks than after positive shocks of the
same magnitude. The stylized fact of asymmetric unconditional returns is also
known as the leverage e¤ect.
Extensions of the standard GARCH models have been suggested to account

for asymmetry in the returns (Zakoian 1994, Nelson 1991, Ding, Granger and
Engle 1993). Another approach that attempts to capture the excess kurtosis and
asymmetry of unconditional returns is modeling volatility clustering via GARCH
models that allow for asymmetric returns. For example, Hansen (1994) suggests
a skewed Student distribution while Fernández and Steel (1998) propose another
skewed type distribution that was applied in a GARCH framework by Lambert
and Laurent (2001).
In this paper, extensions of the variance-ratio statistic are developed by

adopting an approach similar to the extension of the Box-Pierce statistic by Lo-
bato, Nankervis and Savin (2002). Like the Box-Pierce statistic, the VR statistic
can be expressed as a functional of the sample autocorrelations. The Box-Pierce
statistic is the sample size times the sum of the squares of the sample autocor-
relations. The Box-Pierce statistic has been developed both for a general class
of MDS processes as well as for non-MDS processes. Lobato et al. suggested
a statistic which is in the spirit of a Lagrange multiplier because it is based on
a consistent estimator of the asymptotic covariance matrix of the sample auto-
correlation under the null. The extension of the Box-Pierce statistic is based
on a consistent nonparametric estimator of the variance-covariance matrix of
the sample autocorrelations and is therefore applicable to the construction of
an extended variance-ratio statistic.
The �nite sample performance of the VR statistic is assessed by Monte Carlo

experiments. The standard versions of the VR statistics, as suggested by Lo
and MacKinlay are compared relative to the alternative extensions. In order to
evaluate the size of the di¤erent VR versions, we consider examples of uncorre-
lated series when the data generating process is either a martingale di¤erence
sequence (MDS) or a non-martingale di¤erence sequence (non-MDS). In par-
ticular, we consider the data generating process to be either a GARCH(1,1) or
an EGARCH(1,1) for the MDS case. Non-MDS examples include uncorrelated
time series, such as the bilinear model of Granger and Andersen(1978) or the
nonlinear moving average model of Tong (1990). The power of the test is exam-
ined by considering the DGP of the increments to be either an autoregressive
process of �rst or sixth order, or alternatively a �rst or a second order moving
average process, where the errors follow the processes used for the corresponding
size evaluation.
The paper is organized as follows. Section 2 introduces the necessary nota-
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tion and assumptions while Section 3 develops the extensions of the variance-
ratio statistic. The results of the Monte Carlo experiments regarding the size
of the variance ratio are reported in Section 4 while the corresponding results
for the power of the test are presented in Section 5. Section 6 concludes.

2 Preliminaries

Suppose that the hypothesis to be tested is that the series fxtg follows a random
walk with drift3 . The essence of testing this hypothesis is the unforecastability of
the xt series and therefore the restrictive assumption that the errors are i.i.d. can
be relaxed. De�ne the real valued covariance stationary time series yt = �xt =

xt � xt�1 with mean � and square integrable spectrum. Let b� = (1=T )
TP
t=1

yt

denote the sample mean of the series yt for a sample of size T . The lag-j
autocorrelation of yt is de�ned as 
(j) = E[(yt � �)(yt�j � �)] , while the lag-j
autocovariance of yt is �(j) = 
(j)=
(0). The sample analogues of the lag-j auto-
covariance and autocorrelation are denoted as b
(j) = (1=T )P(yt�b�)(yt�j�b�)
and r(j) = b
(j)= b
(0), respectively. The vector of the sample autocovariances
is denoted by b
 = [b
(0); b
(1); : : : ; b
(K)]0 where K is the highest lag considered.
Similarly, the vector of sample autocovariances is r = [r(1); : : : r(K)]0. The vec-
tors of population autocorrelations and population autocovariances are denoted
as 
 = [
(0); 
(1); : : : ; 
(K)]0 and � = [�(1); : : : �(K)]0 respectively.
The process yt is assumed to be a weakly dependent process for which the

vector of sample autocovariances satis�es
p
T (b
 � 
)) N(0; C) (1)

The matrix C is assumed to be �nite and positive de�nite. C is 2� times the
spectral density matrix at zero frequency of the vector !t. The later is de�ned
as !t = [!1;t; !2;t; : : : !K;t]0 where !k;t = (yt��)(yt�k��) for all k = 1; 2; :::K.
The ijth component of the matrix C is given by:

cij =
d=+1X
d=�1

fE(yt � �)((yt�i � �)(yt+d � �)(yt+d�j � �)

� E(yt � �)(yt�i � �)E(yt+d � �)(yt+d�j � �)g
for i; j = 0; 1; ::::K

Applying the delta method to equation (1) it can be shown that the sample
autocovariances converge asymptotically to N(0,V).

p
T (r � �)) N(0; V ) (2)

3Under the null that xt follows a random walk with drift � we have,

xt = �+ xt�1 + ut
where the ut � IN(0; 1).

4



where the ijth component of V is given by

vi;j = 
(0)�2[ci;j � �(i)c0j � �(j)c0i + �(i)�(j)c00

3 Existing and new VR(q) tests

In the �rst part of this section the main fomulae regarding the variance-ratio
test are brie�y presented. A detailed exposition of the variance-ratio statistic
can be found in Lo&MacKinlay (1988, 1989). Our extensions of the VR(q) test
are developed in the second part.

3.1 Existing VR(q) test

The maintained (null) hypothesis can be described by the following relationship:

xt = �+ xt�1 + ut (3)

where � is an arbitrary drift parameter and ut is a zero mean random distur-
bance term with variance E(u2t ) = �2u and E(utut�j) = 0 for all t; j. Equation
(3) reduces to the traditional random walk model by imposing the additional
restriction that the ut are i:i:d:. However, this stronger assumption can be re-
laxed and the VR test can be studied under more general conditions of statistical
dependence.
The VR statistic is based on the fact that the variance of the increments ut

is linear in the observation interval. For example, under the null, the variance
of the qth di¤erences of xt � (xt � xt�q)� is q times the variance of the �rst
di¤erences (xt � xt�1): The scalar q is known as the aggregation value.
The overlapping adjusted variance-ratio statistic for aggregation value q and

for sample size of T + 1 = nq + 1 observations of xt is de�ned as:

V R(q) =

PT
t=q [xt � xt�q � qb�]2PT
t=1 [xt � xt�1 � b�]2 � (T � 1)

q(T � q + 1)(1� q
T )

(4)

By noting that the qth di¤erence of xt is

xt � xt�q =
q�1P
s=0

yt�s

equation(4) can be rewritten as

V R(q) =

PT
t=q

hPq�1
s=0(yt�s)� qb�i2PT
t=1 [yt � b�]2 � (T � 1)

q(T � q + 1)(1� q
T )

(4.1)
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3.2 Extending the VR test

The VR(q) statistic for aggregation value q, can be shown to be approximately
a linear combination of the �rst q � 1 autocorrelation coe¢ cient estimators of
the �rst di¤erences of xt, the yt, with arithmetically declining weights (Lo and
MacKinlay 1988, 1989).
In particular we have

V R(q) ' 1 + 2(q � 1)
q

r(1) +
2(q � 2)

q
r(2) + : : :+

2

q
r(q � 1) (5)

Denoting the (q � 1) � 1 vector of the weights as w = [ 2(q�1)q ; 2(q�2)q ; : : : ; 2q ]
0

and the centered variance ratio as V Rc(q) = V R(q) � 1, equation (5) can be
expressed as4 :

V Rc(q) ' w0r (5.1)

where r = [r(1); : : : r(q � 1)]0 is the vector of sample autocorrelations of the
series yt up to order q � 1.
Recalling that

p
T (r � �) ) N(0; V ) by equation (2) and with respect to

V Rc(q) ' w0r the asymptotic distribution of the VR statistic can be obtained.
In particular

p
Tw0(r � �)) N(0; w0V w) (6)

which after normalization reduces to
p
T [w0(r � �)](w0V w)� 1

2 ) N(0; 1) (6.1)

where V is the (q � 1) � (q � 1) asymptotic variance-covariance matrix of the
autocovariances. It is then obvious that the centered variance-ratio statistic
follows the standard normal distribution. In particular by equation (5.1) and
(6.1) we have:

p
T�V Rc(q) � (w0V w)�

1
2 ) N(0; 1) (7)

A feasible test for the VR statistic can be obtained either by replacing V by a
known matrix or by estimating V . More speci�cally, we propose a test based on

the form
p
TV Rc(q)(w

0 beV w)� 1
2 where beV is a consistent estimator of eV under the

null. Lo and MacKinlay replace the V matrix with the identity matrix when the
�rst di¤erence of the xt series � fytg � is independent normally distributed.5

The extension of the VR(q) we propose is based on a consistent estimator
of V under the null (H0 : � = 0 ). The estimation of V by exploiting the
restrictions imposed by the null is in the spirit of the Lagrange multiplier (LM)

4We denote the centered overlapping adjusted variance ratio as V Rc(q): Note, however
that Lo and MacKinlay denote the same statistic as Mr(q).

5 In particular when yt = xt � xt�1 is i.i.d. normal, � = 0 and the null that the xt series

is a random walk can be tested by
p
TV Rc(q)(

2(2q�1)(q�1)
3q

)�1=2
a
~N(0; 1)
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test. Under the null, the �rst di¤erences of xt are uncorrelated so that the
matrix V simpli�es to eV = f
(0)�2 eCg where eC has its ijth element

ecij = d=1X
d=�1

E(yt��)(yt�i��)(yt+d��)(yt+d�j ��); i:j = 1; : : : q�1 (7)

For MDS processes the only possible nonzero elements of eC occur at d = 0 and
have the form E(yt � �)2(yt�i � �)(yt�j � �): The ijth element of eC for MDS
processes reduces to

ecij = E(yt � �)2(yt�i � �)(yt�j � �); i; j = 1; ::; q � 1 (8)

Guo and Phillips (1998, Theorem 5) have developed a test, the GPk-test for
uncorrelatedness up to order K for the MDS case. Assuming that we have a
MDS process, then we have a special case of thegV R(q) test where ecij is replaced
by the sample analogue of E(yt � �)2(yt�i � �)(yt�j � �). For some particular
MDS processes, the test can be specialized further by assuming that ecij 6= 0

only when d = 0 and i = j. In this case eV is a diagonal matrix and is denoted
by V � with

c�jj = E(yt � �)2(yt�j � �)2; j = 1; ::; q � 1 (9)

and the diagonal elements of V � are v�jj =
c�jj

(0)2 . The version of the VR test

when the asymptotic covariance matrix is diagonal was introduced by Lo and
MacKinlay (1988) and has been widely used in the literature when the yt series
is assumed to exhibit conditional heteroskedasticity.
For the general case � when yt is either an MDS or a non-MDS process

� an estimator of eV is required. A consistent estimator can be obtained by
estimating 
(0) with b
(0) and a nonparametric (or semi-parametric) estimate
of the matrix eC. Under the null, the matrix eC is the spectral density at zero
frequency of the (q � 1)- dimensional vector process !t. Therefore a consistent
time-domain estimator of eC is given by

beC =X
j

k(
j

`
)g(j) =

1

T

X
j

X
t

k(
j

`
)b!tb!0t�j (10)

where g(j) = 1
T

P
t
k( j` )b!tb!0t�j with b!t = [b!1;t; b!2;t; : : : b!q�1;t]0 where b!k;t =

(yt � b�)(yt�k � b�) for all k = 1; 2; :::q � 1, ` > 0 is the bandwidth parameter,
and k(�) is the kernel or lag window. The above estimator of the matrix V
was proposed by Lobato, Nankervis and Savin (2002) and was applied to the
Box-Pierce test statistic.
As in Lobato et al. the kernel and the bandwidth are assumed to satisfy the

following assumptions:
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1. The kernel k(�) belongs to K where K is the class of functions K =
fk(�):R;�! [�1; 1]g that is symmetric around zero, continuous at zero at
all but a �nite number of points, and satis�es

k(0) = 1;

Z 1

�1
jk(x)jdx <1;

Z 1

�1
j (�)jd� <1;

where  (�) = (1=2�)
R1
�1 k(x)ei�xdx:

2. The bandwidth ` sequence satis�es

lim
T!1

(
1

`
+
`

T
) = 0

For the consistency of the nonparametric estimator of eC; the interested
reader is referred to Lobato et al. (2002), lemmas 1 and 2.

4 Monte Carlo experiments

To assess the �nite sample performance of alternative versions of the VR sta-
tistic, we run simulations and report estimates of the probability of making
a type I error.6 ;7 All versions of the VR(q) test have an asymptotic standard
normal distribution. However their �nite sample performance di¤ers due to the
alternative estimates of the asymptotic variance-covariance matrix V . More
particularly, we consider the standard VR statistic where the V is an identity
matrix, the VR* under which the V is diagonal, the VRGP for the general MDS
case and two versions of a nonparametric estimate of V , the eV .
The estimated rejection probabilities are computed for two MDS and two

non-MDS examples. The sample sizes considered are 1024 and 5120 observations
of the time series yt. The aggregation values considered are q = 2; 4; 8; 16; 32; 64.
The empirical rejection probabilities are compared against nominal 5% and 10%
levels. The estimates of the empirical rejection probabilities are calculated us-
ing 25,000 replications. In the tables, an asterisk denotes that the empirical
rejection probability is signi�cantly di¤erent at the 0.01 level from the nominal
rejection probability where signi�cance is evaluated using a 0.01 level two-sided
asymptotic test.
We employ an automatic data-based covariance matrix estimation proce-

dure for the nonparametric estimation of the bV matrix. More speci�cally,
the VARHAC procedure suggested by Den Haan and Levin (1997) is applied.
This involves estimating a vector autoregression (VAR) of the vector process !t
where, for each equation in the VAR, the maximum lag order of the elements

6The probability of making a type I error is, by de�nition, the probability of rejecting the
null, when it is true.

7The random number generator utilized is the modi�ed version of Park and Miller(1998)
and uses a period of 4x109. The simulations were run in a GNU/Linux environment using the
Ox programming language. Calculations were performed on a cluster of Shuttle XPC nodes,
with AMD Athlon XP 2800+ (Barton core) processors and connected by a Gigabit ethernet.
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is selected by the AIC (Akaike, 1973) and the SC (Schwarz, 1978) criteria. The
estimated residual series is then recolored to obtain the spectral density matrix
at zero frequency of the series !t. The maximum lag order considered for each
sample size and aggregation value is 3.8 The same lag length is used for each
element of the vector process.
The explicit formula for the VARHAC estimation procedure is given as

follows. Denote the vector autoregression (VAR) of the vector process !t =
[!1;t; !2;t; : : : !K;t]

0, where !k;t = (yt � �)(yt�k � �) for all k = 1; 2; :::K as9 :

!t = �1!t�1 +�2!t�2 + :::+�t�S!t�S + �t (11)

The maximum lag order considered for the VAR is denoted by S. First, for
each element k of the VAR the AIC and SC are calculated for each lag order
s = 1; :::; S. For each element of !t the optimal lag order bs, is chosen as the
value that minimizes the model selection criterion.
Then an estimate of 2� times the spectral density of the prewhitened resid-

uals is calculated. Let S be the largest lag order chosen by the model selection
criterion for the K elements of the VAR. The estimated residuals from the re-
stricted vector autoregression are b�t = c!t �PS

s=1
b�sb!t�s and the innovation

covariance matrix is: b� = TX
t=bS+1

b�tb�0t=T (12)

where T denotes the sample size of !k;t.
Finally, using the results of the above steps, the VARHAC estimator of 2�

times the spectral density at zero frequency of the vector process !t is calculated
as :

bC = (I � bSX
s=1

b�s)�1b�(I � bSX
s=1

b�0s)�1 (13)

By the construction of the vector process !t, bC is an estimate of the variance-
covariance matrix C of the autocorrelation vector 
 of the scalar process yt.

4.1 MDS examples

Monte Carlo experiments were conducted using two examples of martingale
di¤erence processes. The two MDS models are variants of the GARCH model
of Bollerslev (1996). The �rst is a GARCH(1,1) model with normal errors while
the second is an EGARCH(1,1) model with normal errors. The GARCH(1,1)
model is yt = zt�t where zt is an i.i.d. sequence and �2t = � + �y2t�1 + ��2t�1 ,

8Setting the maximum lag order at 3 allows for su¢ cient degrees of freedom in the estima-
tion of the VARHAC especially for small sample sizes and large aggregation values. It should
however be noted that the results of our simulation experiments are not altered by allowing
for plausibly larger values of the maximum lag order.

9When the VR(q) test statistic is considered, the dimension of the vector process !t is
K = q � 1.
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where � and � are constants. Provided that the condition �+� < 1 is satis�ed,
the yt series is covariance stationary. Estimates from stock market data suggest
that �+� as well as � are close to one.10 As shown by He and Teräsvirta (1999),
the unconditional fourth moment of yt exists for GARCH(1,1) models if and only
if �2+2��Ejztj2+�2Ejztj4 < 1. The EGARCH(1,1) model is yt = zt�t, where
zt is an i.i.d. sequence with zero mean and ln�2t = �0+g(zt�1)+�0ln�

2
t�1 where

g(zt) is a well-de�ned function of zt. He, Teräsvirta and Malmsten (2002) show
that yt is stationary if j�0j < 1. Furthermore, He et al. (2002) show that, if
{zt} is Gaussian, then all moments of yt exist.

4.1.1 Gaussian GARCH(1,1)

fztg is a sequence of i.i.d. N(0; 1) random variables. We set � = 0:001, � =
0:09 and � = 0:89. With this parameter setting the He and Teräsvirta (1999)
condition for the existence of the fourth moment is satis�ed. More precisely
for this process, 
(0) = E(yt � �)2 = 0:05; E(yt � �)3=
(0)3=2 = 0; E(yt �
�)4=
(0)2 = 5:08; and V is diagonal. We note that our results are invariant to
the value of �:

4.1.2 Gaussian EGARCH(1,1)

fztg is a sequence of i.i.d. N(0; 1) random variables and ln�2t = �0 +  jzt�1j+
�0zt�1 + �0ln�

2
t�1: We set �0 = 0:001;  = 0:5; �0 = �0:2 and �0 = 0:95.

We have that (the skewness is an estimate) 
(0) = E(yt � �)2 = 10:8, E(yt �
�)3=
(0)3=2 = 0, E(yt � �)3=
(0)4 = 23:4 and V is non-diagonal.
Table 1 reports the empirical rejection probabilities for the MDS examples

for sample sizes of T =1024 and 5120.

(Table 1 around here)

For the GARCH(1,1) process, the diagonal version of the VR test (V �) performs
better relative to the other versions. The rejection probabilities of the V RGP
and the two versions of the gV R tests are close to their V R� counterparts, espe-
cially for the larger sample size. In particular, for the larger sample the better
performance of the V � test is only distinguishable by the fact that the empiri-
cal rejection probability is not signi�cantly di¤erent from the nominal rejection
probability at the 10% signi�cance level. For the EGARCH(1,1) process, the
V RGP generally performs better than the other tests. However, the V � and theeV work more than satisfactory for small aggregation values (q) and even better
for q = 4.
On the other hand, the use of the identity variance-covariance matrix both

for the GARCH(1,1) and the EGARCH(1,1) processes results in substantial
overrejection of the null. The distortions in the rejection probabilities for the
identity covariance matrix become larger as the sample size increases from
T=1024 to T=5120. The main conclusions of the simulation experiments in Ta-
ble 1 can be summarized as follows : i) for the GARCH(1,1) and the EGARCH(1,1)

10See, for example, Bera and Higgins (1997).
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the V � and the VGP ; respectively, perform better than the other tests, as ex-
pected and ii) as the sample size increases to T=5120, the eV versions perform
similarly to the diagonal and the Guo-Phillips tests.

4.2 Non-MDS examples

In this section we examine the �nite sample performance of the tests when
the errors are uncorrelated but are non-MDS processes. In recent years, grow-
ing evidence that the MDS assumption is too restrictive for �nancial data has
emerged as El Babsiri and Zakoian (2001) show. In particular we examine two
examples of uncorrelated non-MDS errors. The �rst is the Granger and Ander-
sen (1978) bilinear model while the second is Tong�s (1990) nonlinear moving
average model.

4.2.1 Bilinear model

The bilinear model is yt = zt + bzt�1yt�2 where {zt} is a sequence of i.i.d.
N(0; �2) random variables. It has been �tted to stock return data by Bera
and Higgins (1997). The yt process, although not independent, is uncorrelated
and, as long as b2�2 < 1; it is covariance stationary. The condition for the
existence of the fourth moment of this process is 3b4�4 < 1: In the experiments
we set b=0.50 and �2 = 1:0: For this particular parameter setting we have
� = 0; 
(0) = E(yt � �)2 = �2=(1 � b2�2) = 1:33, E(yt � �)3=
(0)3=2 = 0,
E(yt � �)4=
(0)2 = 3(1 � b4�4)=(1 � 3b4�4) = 3:46 and the V matrix is non-
diagonal.

4.2.2 Nonlinear moving average

For this model we have yt = zt�1 � zt�2 � (zt�2+ zt+ c) where {zt} is a sequence
of i.i.d. N(0; 1) random variables and c = 1:0. For this process the second,
third and fourth moments are E(yt � �)2 = 5, E(yt � �)3=
(0)3=2 = 0 and
E(yt � �)4=
(0)4 = 37:80. The asymptotic variance-covariance matrix V is
non-diagonal for the nonlinear moving average model.
The results of the Monte Carlo experiments, when the underlying DGPs of

the yt series are non-MDS processes, are presented in Table 2.

(Table 2 around here)

For T=1024, the two versions of the eV , work relatively better than the other
tests for aggregation values up to q = 16. In particular, both for the bilinear
and the non linear moving average process, the eV considerably outperforms
the alternative versions. The eV tests perform better at the lager sample size
for both processes. The di¤erence between the nominal and empirical rejection
probabilities is around 1% for both examples and for all values of q at T=5120.
The results of Table 2 are in line with our a priori expectation that the gV R
tests should perform better for the non-MDS examples since only these tests
use consistent estimators of V .
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5 Power

We report the empirical power of the alternative versions of the VR test where
the DGPs of the yt series are either AR or MA processes with uncorrelated
errors.11 The errors (ut) for both the AR and the MA speci�cations, are assumed
to be generated by the processes examined in the previous section and hence
are uncorrelated.12

For the AR model we consider the AR(1) and the AR(6) speci�cations. The
AR(1) model is yt = �yt�1 + ut while the AR(6) model being considered is

yt = �
6P
j=1

7�j
6 yt�j + ut. The yt series following an AR(p) model is covariance

stationary as long as the roots of 1��1z��1z2�: : :��pzp = 0 all lie outside the
unit circle. The parameter values of � are chosen to range from 0.075 to 0.200,
for the case of the AR(1), while for the AR(6) model the values of � range
from 0.05 to 0.1.13 It follows from the de�nition of the AR models and the
uncorrelatedness of the errors that a zero coe¢ cient for � yields an uncorrelated
yt series.
We also allow the yt series to be either an MA(1) or an MA(2) model. The

MA(1) model is yt = ut + �0ut�1 while the MA(2) model is yt = ut + �1ut�1 +
�2ut�2. However, unless the coe¢ cient �0, for the MA(1), and �1; �2 for the
MA(2) process are di¤erent from zero, the yt process is no longer uncorrelated.
The MA processes are covariance stationary no matter what value the moving
average coe¢ cients �i might take. However any MA(q) can be written as an
AR(1) process as long as the roots of the polynomial (1 + �1L+ �2L

2 + : : :+
+�qL

q) = 0 lie outside the unit circle. For the MA(1) case we set the value of
�0 so as to have an invertible MA and the �rst autocorrelation (�(1)) to take
values in the range of 0.075 to 0.150. For the MA(2) case we �nd the appropriate
�1 and �2 , by setting �(1) = �(2) = � and the values of � range from 0.040
to 0.085. Again, the appropriate values of �1 and �2 are selected in order to
have an invertible MA(2) process. In the power comparisons, both for the AR
and the MA models, the empirical powers are adjusted so that the empirical
rejections under the null are exactly 10% and 5% for two-sided tests.
Table 3 reports the empirical power when the underlying DGP is an AR (1)

model with uncorrelated errors.14

(Table 3 around here)

11Since yt is de�ned as the �rst di¤erence of the xt series, when the fomer follows an AR
or an MA process, xt follows an ARIMA(1,1,0) or an ARIMA(0,1,1), respectively.
12 In the power comparisons, caution in the selection of the appropriate q value for a given

sample size should be exercised due to the variance ratio test�s skewed empirical distribution.
Lo and MacKinlay (1989) select values of q so that the maximum value of the ratio q=T is 0.5.
13 In addition to selecting appropriate parameter values for � to ensure stationarity, the AR

models are simulated with an approximate stationary startup. This involves taking the last
T random observations from a simulated sequence of T +500 where the startup values are set
equal to zero.
14The power of a test statistic (or 1 minus the probability of making a Type II error) is by

de�nition the probability of rejecting the null hypothesis when it is actually false.
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In Panel A and B of this table we report the empirical power of the VR-tests for
aggregation values of q = 4 and q = 8, respectively. For the AR(1) model thegV R(AIC) and gV R(SC) outperform the other VR alternatives. In particular
when the errors follow either an EGARCH(1,1), bilinear or non-linear moving
average process the increase in power can be up to 10 percentage points com-
pared to the VR* and the VRGP versions. For example, in panel B, at the
10% level when the errors follow an EGARCH(1,1) and � = 0:200 the empirical
rejection probabilities for the VR*, VRGP andgV R are 60.6%, 64.3% and 72.7%,
respectively.
The empirical rejection probabilities for the AR(6) process are provided in

Table 4.

(Table 4 around here)

For the AR(6) model with GARCH(1,1) errors, the diagonal, VRGP and theeV versions of the VR-test seem to have similar power. When the errors follow
an EGARCH(1,1) process the VRGP performs better than the VR� by 2-5
percentage points while the two gV R versions result in a gain of power of 3-
13 percentage points relative to the VR*. Considering bilinear and nonlinear
moving average errors does not change the fact that the VRGP and the gV R
perform better than the VR� version. It should be noted that for the AR(6)
with bilinear errors the VRGP performs slightly better than the gV R and vice
versa for the AR(6) with nonlinear moving average errors.
The empirical rejection probabilities when yt is an MA(1) process are re-

ported in Table 5.
(Table 5 around here)

The main message from Table 5 is that the non-diagonal versions of the VR
test have more power and this is in line with the �ndings for the AR models. In
particular, the use of the VARHAC covariance matrix results in more powerful
tests. The resultant increase in power can be up to 10 percentage points com-
pared to the diagonal variance-covariance matrix and up to 8 percentage points
than the VRGP versions of the test.
The simulation outcomes for the MA(2) process are presented in Table 6.

(Table 6 around here)

The results provide further evidence that the gV R and VRGP have more power
than the standard identity and diagonal versions of the VR test statistic. Once
again the gV R performs better than the VRGP and the improvement is more
evident for EGARCH(1,1) errors.

6 Conclusions

We develop new extensions of the variance ratio test statistic to test for un-
correlatedness in the presence of statistical dependence that characterises many
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�nancial and economic time series. These extensions are similar in spirit to the
extension of the Box-Pierce suggested by Lobato,Nankervis and Savin (2002).
They employ consistent estimates of the asymptotic variance-covariance matrix
of the sample autocorrelations of the increments yt. Lo and MacKinlay (1988,
1989) show that when the increments are either iid or are conditionally het-
eroskedastic, the asymptotic variance-covariance matrix of the autocorrelations
is either an identity or diagonal matrix, respectively. However in more general
cases, this matrix is no longer diagonal in cases where the sample autocorrela-
tions of yt are not asymptotically uncorrelated. For example, the asymptotic
covariance matrix of the sample autocorrelations is non-diagonal when the un-
derlying DGP of the yt is either a GARCH process with non-symmetric errors
or an EGARCH process.
The �nite sample performance of the suggested extensions of the VR test is

evaluated in a Monte Carlo study. The size and power properties of the alter-
native VR versions are studied both when the underlying DGPs are martingale
di¤erence sequences (MDS) or non-MDS processes. The MDS employed for size
evaluation are the GARCH(1,1) and EGARCH(1,1) with normal errors while
the non-MDS examples are a bilinear and non-linear moving average model. The
alternative hypothesis for the power comparison is that the underlying process
for the increments is either an AR(1), AR(6), MA(1) or MA(2) model.
In the MDS framework, the VR*(diagonal case) version is best sized for the

GARCH(1,1) model as expected whereas the VRGP version performs better for
the EGARCH(1,1) model. The empirical rejections for both versions of our
proposed V R test are very close to their nominal levels for the larger sample
size. More interestingly, the results of the power study using adjusted critical
values show that the non-diagonal versions of the VR test are more powerful.
The use of our proposed gV R(AIC) and gV R(SC) tests result in an increase in
power of up to 10 percentage points.
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Table 1. Rejection probabilities (%) of tests: MDS examples
q=2 q=4 q=8 q=16 q=32 q=64

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � -
5 10 5 10 5 10 5 10 5 10 5 10

GARCH(1,1) with normal errors, T=1024
Vid 14.2* 21.4* 13.2* 20.5* 12.0* 19.4* 10.9* 18.1* 9.2* 16.4* 7.6* 13.6*
V � 6.3* 11.9* 6.1* 11.8* 5.6* 11.1* 5.5* 10.5* 5.6* 10.5* 6.3* 11.1*
VGP 6.3* 11.9* 6.6* 12.3* 6.4* 11.9* 6.7* 12.3* 7.4* 13.4* 9.1* 15.6*eVAIC 7.0* 12.9* 7.5* 13.1* 8.1* 13.7* 8.7* 14.1* 9.2* 15.5* 10.1* 16.8*eVSC 7.0* 12.8* 7.2* 12.9* 7.1* 12.9* 7.3* 12.9* 7.7* 13.8* 9.1* 15.6*

GARCH(1,1) with normal errors, T=5120
Vid 14.7* 22.2* 14.4* 21.9* 13.9* 21.5* 13.4* 21.1* 12.5* 19.7* 10.8* 17.6*
V � 5.3 10.3 5.2 10.3 5.1 10.3 5.1 10.0 5.1 10.0 5.2 9.9
VGP 5.3 10.3 5.4* 10.5 5.3 10.5 5.2 10.6* 5.4* 10.8* 5.7* 11.1*eVAIC 5.2 10.4 5.6* 10.7* 5.9* 11* 5.8* 11.2* 5.9* 11.4* 6.2* 11.5*eVSC 5.3 10.4 5.5* 10.6* 5.7* 10.9* 5.6* 10.8* 5.6* 11.1* 5.8* 11.3*

EGARCH(1,1) with normal errors, T=1024
Vid 35.3* 43.2* 33.6* 42.0* 31.2* 39.8* 27.7* 36.5* 21.9* 31.6* 15.2* 24.4*
V � 4.7 9.9 4.7 9.3* 4.8 9* 4.6* 8.4* 4.8 7.9* 5.2 7.9*
VGP 4.7 9.9 4.4* 9.4* 4.4* 9.2* 4.4* 9.1* 4.7 9.2* 5.5* 10.7*eVAIC 3.6* 8.9* 5.0 10.2 6.7* 12.1* 7.3* 13.2* 7.8* 14.2* 9.0* 16.0*eVSC 3.6* 8.9* 4.9 10.0 6.4* 11.7* 6.4* 11.9* 5.8* 11.2* 5.7* 11.2*

EGARCH(1,1) with normal errors, T=5120
Vid 44.0* 51.5* 43.6* 51.1* 42.1* 50* 39.9* 48.1* 35.9* 44.8* 29.0* 38.3*
V � 4.8 9.9 5.2 10.2 5.9* 10.9* 6.6* 11.6* 6.9* 12.0* 7.0* 12.1*
VGP 4.8 9.9 4.5* 9.3* 4.4* 9* 4.4* 9.2* 4.5* 9.3* 4.6* 9.6eVAIC 4.0* 8.9* 5.0 10.2 6.5* 11.7* 7.1* 12.4* 7.3* 12.7* 7.5* 13.2*eVSC 4.0* 9.0* 5.0 10.2 6.4* 11.6* 7.1* 12.2* 7.0* 12.3* 6.7* 12.4*

Notes: The number of replications is 25,000. An asterisk denotes that the empirical

rejection probability is signi�cantly di¤erent at the 0.01 level from the nominal rejection

probability, where the signi�cance is evaluated using a 0.01 level two-sided asymptotic test.
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Table 2. Rejection probabilities (%) of tests: Non-MDS examples
q=2 q=4 q=8 q=16 q=32 q=64

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
5 10 5 10 5 10 5 10 5 10 5 10

Bilinear, T=1024
Vid 15.2* 22.9* 17.0* 25.1* 14.5* 21.9* 10.4* 17.1* 7.6* 13.6* 6.1* 11.2*
V � 8* 14.7* 9.6* 16.4* 9.1* 15.9* 7.5* 13.5* 6.6* 12.0* 6.2* 11.3*
VGP 8* 14.7* 9.6* 16.8* 9.2* 15.8* 7.9* 14.2* 7.4* 13.5* 8.0* 14.5*eVAIC 4.8 10.1 6.1* 11.5* 7.5* 12.4* 7.2* 12.4* 7.1* 12.9* 7.9* 14.2*eVSC 5.9* 11.7* 6.9* 12.9* 7.2* 12.7* 7.0* 12.8* 7.1* 13.3* 8.0* 14.5*

Bilinear, T=5120
Vid 15* 22.7* 17.5* 25.5* 15.6* 23* 11.6* 18.8* 8.7* 15.1* 7.0* 12.7*
V � 8.0* 14.1* 9.6* 16.4* 9.7* 16.3* 8.3* 14.6* 7.1* 13.0* 6.3* 11.7*
VGP 8.0* 14.1* 9.7* 16.3* 9.2* 15.7* 8.0* 14.2* 6.9* 13.0* 6.4* 12.2*eVAIC 4.7 9.6 5.0 9.8 5.5* 10.4 5.5* 10.6* 5.5* 10.7* 5.6* 11.1*eVSC 4.7 9.6 4.9 9.7 5.4* 10.8* 6.0* 11.5* 6.2* 11.9* 6.2* 11.9*

Nonlinear Moving Average, T=1024
Vid 42* 49.9* 36.2* 44.5* 25.9* 34.7* 17.0* 25.1* 10.8* 17.6* 7.2* 17.2*
V � 7.8* 14.8* 8.0* 15.0* 7.4* 14.2* 6.9* 13.1* 6.2* 12.0* 6.2* 11.6*
VGP 7.8* 14.8* 7.7* 14.6* 7.4* 14.2* 7.3* 13.8* 7.4* 13.8* 8.5* 14.9*eVAIC 4.6* 10.1 6.7* 12.5* 7.2* 13.2* 7.5* 13.6* 7.8* 14.0* 8.1* 14.6*eVSC 4.7 10.1 6.7* 12.5* 6.9* 12.8* 6.8* 12.7* 6.9* 12.7* 7.7* 14.0*

Nonlinear Moving Average, T=5120
Vid 45.8* 53.1* 40.1* 48.0* 30.0* 38.3* 20.1* 28.5* 13.2* 20.5* 8.9* 15.6*
V � 8.2* 14.9* 8.6* 15.7* 8.2* 14.7* 7.2* 13.4* 6.5* 12.3* 5.7* 11.2*
VGP 8.2* 14.9* 8.2* 15.0* 7.7* 14.2* 7.0* 13.2* 6.5* 12.5* 6.1* 11.9*eVAIC 4.8 10 6.1* 11.2* 6.2* 11.7* 6.0* 11.4* 5.9* 11.4* 6.0* 11.3*eVSC 4.9 10.2 6.2* 11.3* 6.2* 11.6* 6.0* 11.2* 5.7* 11.0* 5.8* 10.9*

Notes: The number of replications is 25,000. An asterisk denotes that the empirical

rejection probability is signi�cantly di¤erent at the 0.01 level from the nominal rejection

probability, where the signi�cance is evaluated using a 0.01 level two-sided asymptotic test.
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Table 3A. Empirical power for an AR(1) process
Panel A: q = 4

� 0.075 0.100 0.125 0.150 0.200
� � � � � � � � � � � � � � �
10 5 10 5 10 5 10 5 10 5

GARCH(1,1) with normal errors
Vid 50.3 36.9 70.7 57.7 86.1 77.1 94.6 89.9 99.6 99.0
V � 51.0 38.3 71.1 59.0 85.8 77.7 94.2 89.7 99.4 98.6
VGP 51.7 39.3 71.7 60.1 86.3 78.5 94.4 90.3 99.4 98.7eVAIC 54.5 42.4 74.8 63.8 88.4 81.7 95.5 92.1 99.6 99.1eVSC 53.7 41.3 73.9 62.6 87.8 80.7 95.2 91.5 99.5 98.9

EGARCH(1,1) with normal errors
Vid 18.5 9.4 27.0 14.3 38.2 21.7 25.6 14.3 76.5 58.1
V � 22.7 14.1 33.7 22.3 46.3 33.5 30.8 20.1 80.1 70.4
VGP 24.3 15.2 36.0 24.6 48.8 36.7 32.5 21.7 82.1 73.5eVAIC 28.3 19.4 41.3 31.1 55.6 44.5 35.6 24.3 86.9 80.3eVSC 28.4 19.5 41.4 31.0 55.8 44.5 35.1 23.9 87.1 80.4

Bilinear
Vid 37.0 25.0 55.1 41.1 72.6 59.7 85.7 76.2 97.9 95.3
V � 37.5 26.2 55.6 42.9 72.8 61.5 85.9 77.8 97.9 95.8
VGP 38.4 27.6 56.8 44.9 74.1 63.8 86.8 79.8 98.1 96.3eVAIC 43.5 31.6 63.4 50.8 80.1 70.3 91.1 85.1 99.2 97.9eVSC 42.1 30.1 61.6 49.0 78.5 68.2 89.9 83.4 98.9 97.4

Nonlinear Moving Average
Vid 19.4 10.5 28.1 16.1 39.3 24.2 52.1 34.9 77.0 61.4
V � 24.8 15.8 36.2 25.2 49.2 36.8 62.2 50.3 83.4 75.0
VGP 27.0 17.8 39.3 28.6 53.1 41.6 66.3 55.7 86.0 79.6eVAIC 30.0 20.4 43.6 32.4 58.2 46.7 71.7 61.0 89.7 83.6eVSC 30.0 20.2 43.7 32.2 58.4 46.3 71.7 60.9 89.7 83.3

Notes: The number of replications is 25,000. The critical values are adjusted so that

empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05 for two-

sided tests. The empirical powers are in percentages.
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Table 3B. Empirical power for an AR(1) process
Panel B: q = 8

� 0.075 0.100 0.125 0.150 0.200
� � � � � � � � � � � � � � �
10 5 10 5 10 5 10 5 10 5

GARCH(1,1) with normal errors
Vid 34.0 22.1 49.0 35.4 64.8 50.8 78.2 66.5 94.4 89.4
V � 34.6 23.5 49.9 36.9 65.1 52.6 78.2 67.7 93.9 89.2
VGP 35.4 24.6 51.0 38.2 66.2 54.1 79.1 69.0 94.3 90.1eVAIC 38.3 26.9 54.7 41.9 70.1 58.5 82.2 73.2 95.8 92.0eVSC 36.4 25.6 52.5 39.6 67.5 55.7 80.2 70.1 94.8 90.2

EGARCH(1,1) with normal errors
Vid 14.2 6.7 18.8 9.2 25.0 12.6 33.1 17.6 53.2 32.1
V � 16.9 9.1 22.6 13.2 30.4 18.8 40.0 26.1 60.6 45.4
VGP 17.9 10.6 24.7 15.7 33.2 22.5 43.3 31.2 64.3 52.0eVAIC 21.2 12.9 30.0 19.7 40.2 28.8 52.0 39.3 72.7 62.0eVSC 21.2 12.9 29.9 19.6 40.2 28.7 51.5 39.3 72.7 61.9

Bilinear
Vid 26.7 16.4 39.1 26.5 53.5 39.2 67.6 53.9 88.9 80.5
V � 26.7 17.1 39.7 27.3 54.1 40.7 68.0 55.3 89.0 81.5
VGP 28.1 18.0 41.1 29.0 55.7 42.9 69.8 57.6 90.1 83.1eVAIC 32.6 21.9 47.5 35.3 63.0 51.3 77.0 66.7 94.0 89.2eVSC 30.2 19.4 44.0 31.3 58.7 45.3 72.8 59.9 91.4 84.3

Nonlinear Moving Average
Vid 17.5 9.7 24.4 14.4 34.1 21.0 45.7 30.2 69.5 53.9
V � 20.9 12.6 29.8 19.8 40.8 28.9 52.8 40.2 75.2 64.2
VGP 23.0 14.8 32.9 23.3 44.9 34.0 56.9 46.2 78.7 70.1eVAIC 25.4 16.5 36.8 26.2 49.2 37.8 62.0 50.7 83.0 74.4eVSC 25.0 16.9 36.4 26.7 48.9 38.5 61.4 51.3 82.7 75.0

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted

so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are in percentages.
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Table 4. Empirical power for an AR(6) process
q = 4 q = 8

� 0.050 0.075 0.100 0.050 0.075 0.100
� � � � � � � � � � � � � � � � � �
10 5 10 5 10 5 10 5 10 5 10 5

GARCH(1,1) with normal errors
Vid 65.6 52.8 92.2 86.7 99.2 98.3 72.1 60.0 95.6 91.9 99.7 99.4
V � 66.3 54.3 91.9 86.7 99.0 98.0 72.4 61.4 95.3 91.8 99.6 99.1
VGP 67.4 56.1 92.6 87.9 99.1 98.3 74.2 63.7 95.8 92.9 99.6 99.3eVAIC 66.5 54.8 92.0 86.3 98.9 97.7 75.9 65.4 96.3 93.0 99.6 99.2eVSC 67.3 55.2 92.2 86.6 98.9 97.7 75.0 64.9 96.0 92.7 99.6 99.0

EGARCH(1,1) with normal errors
Vid 25.8 14.1 48.4 31.2 74.0 57.5 29.8 16.0 58.2 37.7 84.4 68.4
V � 31.6 21.1 56.0 44.0 78.3 69.3 36.0 23.6 64.5 50.8 86.4 77.6
VGP 33.9 23.5 59.1 47.9 80.9 73.0 39.9 28.7 69.0 58.4 89.2 83.3eVAIC 34.9 25.1 60.3 49.2 81.3 72.6 45.4 33.3 74.4 63.8 91.5 85.3eVSC 35.0 25.3 60.6 49.3 81.4 72.8 45.5 33.5 74.5 64.1 91.5 85.4

Bilinear
Vid 51.0 38.0 82.2 72.7 96.9 94.0 61.6 47.9 91.1 84.3 99.3 98.4
V � 51.2 39.2 82.4 73.7 96.9 94.2 61.9 49.3 91.3 85.2 99.3 98.4
VGP 53.3 42.2 84.2 77.0 97.4 95.5 65.3 53.6 93.1 88.3 99.6 99.0eVAIC 55.1 42.4 85.3 76.8 97.7 95.0 70.1 58.7 94.8 90.8 99.7 99.2eVSC 54.0 41.4 84.5 75.5 97.2 94.2 68.1 56.7 93.9 89.4 99.5 98.7

Nonlinear Moving Average
Vid 27.2 16.0 50.4 34.8 75.9 61.8 40.9 27.5 73.3 59.8 93.3 87.7
V � 36.0 26.1 62.4 52.1 83.8 77.6 50.4 39.4 80.2 72.6 94.9 91.9
VGP 39.1 29.5 66.0 57.2 86.2 81.1 54.5 45.5 83.2 77.4 96.0 93.9eVAIC 37.9 27.2 64.4 53.3 85.1 77.1 54.0 43.1 82.6 74.4 95.6 91.9eVSC 38.6 27.5 64.8 53.5 85.3 77.2 55.3 45.7 83.1 76.3 95.7 92.5

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted
so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are in percentages.
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Table 5. Empirical power for an MA(1) process
q = 4 q = 8

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�1 0.075 0.100 0.125 0.150 0.075 0.100 0.125 0.150

� � � � � � � � � � � � � � � � � � � � � � � �
10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5

GARCH(1,1) with normal errors
Vid 46.8 33.7 65.2 51.6 80.4 69.5 90.3 83.3 31.2 20.0 43.5 30.5 56.4 42.5 68.2 55.0
V � 46.5 34.1 64.9 52.0 79.8 69.5 89.4 82.5 31.3 20.7 43.5 31.4 56.5 43.3 67.8 55.8
VGP 46.9 34.8 65.5 53.0 80.2 70.3 89.7 83.2 31.9 21.6 44.4 32.4 57.5 44.7 68.7 57.4eVAIC 49.9 38.0 69.0 57.1 83.0 74.3 91.7 86.1 34.6 23.6 48.3 35.7 61.3 49.1 72.6 61.7eVSC 49.0 37.0 68.0 55.7 82.1 72.9 91.2 85.2 32.9 22.3 46.0 33.6 58.8 46.1 70.0 58.3

EGARCH(1,1) with normal errors
Vid 17.9 9.2 24.9 13.2 33.9 18.9 44.5 26.3 13.6 6.5 17.2 8.3 22.2 10.9 27.7 14.1
V � 21.5 13.2 30.6 19.8 41.1 28.6 51.7 39.0 15.6 8.3 20.5 11.5 26.1 15.6 33.0 20.7
VGP 23.0 14.3 32.7 21.9 43.5 31.6 54.5 42.0 16.7 9.9 22.3 13.9 28.8 18.9 36.2 24.7eVAIC 26.8 18.0 38.0 27.8 50.2 39.4 62.0 51.1 19.9 11.8 27.1 17.4 35.3 24.3 44.1 32.1eVSC 26.9 18.0 38.2 27.7 50.3 39.6 61.9 51.2 19.9 11.8 27.0 17.3 35.1 24.1 43.8 31.9

Bilinear
Vid 34.7 22.9 50.7 36.8 66.3 52.7 79.5 68.0 24.6 14.9 34.7 22.9 46.0 32.6 58.0 43.5
V � 35.0 24.1 50.9 38.5 66.8 54.6 79.9 69.6 24.8 15.5 35.0 23.7 46.4 33.7 58.4 44.7
VGP 35.8 25.4 52.0 40.1 67.8 56.3 80.6 71.5 25.7 16.2 36.1 24.9 48.0 35.1 59.7 46.7eVAIC 40.8 29.2 58.4 46.3 74.6 63.8 86.3 78.3 29.9 19.8 42.3 30.5 55.3 43.2 67.6 56.0eVSC 39.5 28.0 56.7 44.4 72.8 61.4 84.7 76.2 27.6 17.7 38.9 26.7 50.7 37.3 62.6 49.0

Nonlinear Moving Average
Vid 18.5 10.0 25.3 14.6 34.5 20.6 44.4 28.3 16.2 9.2 21.8 12.5 28.9 17.2 37.3 23.4
V � 23.1 14.4 32.5 22.0 43.1 31.3 54.4 41.7 19.3 11.5 26.2 16.9 34.7 23.6 43.6 31.4
VGP 24.9 16.3 35.4 24.9 46.9 35.5 58.2 46.8 21.1 13.4 29.1 19.7 38.4 27.6 47.8 36.7eVAIC 27.8 18.7 40.0 28.9 53.1 41.4 65.1 54.1 23.6 15.3 32.8 22.9 43.4 32.5 54.0 42.5eVSC 27.8 18.5 40.1 28.7 53.1 41.2 65.1 53.7 23.2 15.6 32.5 23.2 43.0 32.8 53.2 43.0

Notes: The number of replications is 25,000 and T=1024. The critical values are adjusted
so that empirical rejection probabilities of the tests under the null are exactly 0.1 and 0.05

for two-sided tests. The empirical powers are given in percentages.
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Table 6. Empirical Powers for an MA(2) process
q = 4 q = 8

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�1 = �2 0.040 0.055 0.070 0.085 0.040 0.055 0.070 0.085

� � � � � � � � � � � � � � � � � � � � � � � �
10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5

GARCH(1,1) with normal errors
Vid 40.8 28.4 59.1 45.9 75.5 63.9 87.1 78.8 40.8 28.4 59.1 45.9 75.5 63.9 87.1 78.8
V � 41.0 29.1 59.1 46.5 75.0 64.1 86.2 78.4 41.0 29.1 59.1 46.5 75.0 64.1 86.2 78.4
VGP 41.6 30.0 60.1 47.9 75.9 65.5 86.9 79.6 41.6 30.0 60.1 47.9 75.9 65.5 86.9 79.6eVAIC 43.5 31.5 62.2 50.1 77.6 67.7 88.2 81.1 43.5 31.5 62.2 50.1 77.6 67.7 88.2 81.1eVSC 42.8 31.0 61.4 49.4 77.0 67.0 87.7 80.6 42.8 31.0 61.4 49.4 77.0 67.0 87.7 80.6

EGARCH(1,1) with normal errors
Vid 16.3 8.4 22.9 11.9 31.1 17.2 41.0 24.3 16.3 8.4 22.9 11.9 31.1 17.2 41.0 24.3
V � 19.6 11.7 27.8 18.0 37.7 26.0 48.2 35.8 19.6 11.7 27.8 18.0 37.7 26.0 48.2 35.8
VGP 21.0 12.8 29.7 19.9 40.2 28.7 51.3 39.0 21.0 12.8 29.7 19.9 40.2 28.7 51.3 39.0eVAIC 23.3 15.5 33.5 23.9 45.2 34.5 56.8 46.0 23.3 15.5 33.5 23.9 45.2 34.5 56.8 46.0eVSC 23.4 15.3 33.5 24.0 45.2 34.4 56.8 45.8 23.4 15.3 33.5 24.0 45.2 34.4 56.8 45.8

Bilinear
Vid 30.0 19.4 45.0 32.1 60.9 47.2 74.9 62.7 30.0 19.4 45.0 32.1 60.9 47.2 74.9 62.7
V � 30.4 20.5 45.4 33.6 61.6 49.0 75.5 64.8 30.4 20.5 45.4 33.6 61.6 49.0 75.5 64.8
VGP 31.7 22.0 47.1 36.1 63.7 52.1 77.3 67.8 31.7 22.0 47.1 36.1 63.7 52.1 77.3 67.8eVAIC 34.7 23.8 51.6 39.2 68.1 56.5 81.1 72.0 34.7 23.8 51.6 39.2 68.1 56.5 81.1 72.0eVSC 33.8 23.1 50.3 37.8 66.5 54.8 79.9 70.3 33.8 23.1 50.3 37.8 66.5 54.8 79.9 70.3

Nonlinear Moving Average
Vid 17.1 9.1 23.6 13.5 32.1 19.4 41.8 26.6 17.1 9.1 23.6 13.5 32.1 19.4 41.8 26.6
V � 21.7 13.7 31.3 21.5 41.9 31.1 52.8 41.5 21.7 13.7 31.3 21.5 41.9 31.1 52.8 41.5
VGP 23.6 15.4 33.9 24.2 45.3 34.7 56.6 46.2 23.6 15.4 33.9 24.2 45.3 34.7 56.6 46.2eVAIC 24.2 15.5 34.8 24.6 46.5 35.3 58.1 46.4 24.2 15.5 34.8 24.6 46.5 35.3 58.1 46.4eVSC 24.3 15.4 34.9 24.4 46.6 35.0 58.0 46.4 24.3 15.4 34.9 24.4 46.6 35.0 58.0 46.4

Notes: The number of replications is 25,000 and and T=1024. The critical values are
adjusted so that empirical rejection probabilities of the tests under the null are exactly 0.1

and 0.05 for two-sided tests. The empirical powers are given in percentages.
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