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Abstract

We derive a framework which allows the modelling of partial in-
formation in dynamic general equilibrium. We apply this framework
to a canonical real business cycle model and show that which vari-
ables are in households�information sets has a signi�cant e¤ect, both
qualitatively and quantitatively, on the dynamics of the model.

1 Introduction

Underlying most dynamic general equilibrium (DGE) modelling is the as-
sumption that agents can perfectly observe the state variables. In this paper
we investigate the consequences of relaxing this assumption. We present a
simple derivation, implemented as a software "toolkit" which augments the
standard solution of a DGE model and allows the modeler to specify which
variables are within households�information sets, and the degree to which
they are measured with error.

In the absence of perfect measures of the state variables, we assume
that agents use the Kalman �lter to estimate the states from observable
data. This requires us to extend the standard Kalman �lter to cases where
both the potentially unobservable state variables (e.g. capital) and observed
variables (e.g. output) may depend on the dynamic choice variables (typi-
cally consumption). Here we build on work by Pearlman (1986, 1992) and
Svennson and Woodford (2002, 2003, 2004) but our use of the method of
undetermined coe¢ cients makes our derivation more transparent.
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The "toolkit" we provide which implements this derivation can be ap-
plied to a wide range of DGE models. However we investigate the im-
plications of partial information by taking the stochastic growth model as
presented in Campbell (1995). We following Campbell�s approach of us-
ing a simple model to carefully clarifying the mechanisms underlying the
model�s dynamics. In Campbell�s model the two state variables are the
capital stock and technology. Our basic assumption is that both of these
are unobservable.

This is not a strong assumption. If the representative consumer really
did know the capital stock, it seems surprising that there is such extensive
debate on how it should be measured: capital stock estimates inferred from
�nancial data (Hall, (2000), Laitner and Stolyarov, (2004)) di¤ering from
published data by anything up to a factor of three. There is an even more
intense debate on the nature and size of technology shocks (see, for example,
Gali (1999)).

We compare Campbell�s model under full information (with technology
and capital perfectly observable) with various degrees of partial information.
Our main results are:

� Information on returns alone can replicate the full information case,
but the resulting solution displays knife-edge stability

� In general, with arbitrarily small measurement error in returns, there
is a stable limited information solution which di¤ers in signi�cant ways
from the full information solution e.g. consumption optimally falls in
response to a positive innovation to technology

� In contrast, data on output (or wages) brings the system arbitrarily
close to the full information solution as measurement error falls to zero,
so excessive noise in returns does not a¤ect the economy�s dynamics
as long as output data is available

� There is no upper bound on the variance contribution of noise. How-
ever poorly measured the observed variables are, the explosive root in
the capital stock means that it is always optimal for consumption to
respond to the best estimate of capital.

When we calibrate measurement error to investigate if these e¤ects are
quantitatively signi�cant and �nd that

� measurement error can account for around 10% of volatility in con-
sumption.

� if capital is measured using a permanent inventory approach, a rea-
sonable degree of measurement error in output can give su¢ ciently
high variance in measured capital to approach the non-observability
we assume
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In Campbell�s model there is a single exogenous process for technology.
However some recent DGE models often contain multiple shocks, Altig et
al (2003) containing no less than eight. We extend Campbell�s model to
include more shocks, and investigate the implications of agents being unable
to observe them directly. We �nd that while the Kalman �lter is very
e¢ cient at untangling the various shocks, measurement error can reduce
this e¢ ciency considerably and the combination can increase the volatility
of consumption by up to 20% over the full information case, and signi�cantly
change the form of the impulse response functions.

The existing literature has two strands. The largest relates to the prob-
lem of setting monetary policy under imperfect information. Most such
models (Svennson and Woodford (2002, 2004), Aoki (2003, 2006) look at
the problem of asymmetric information when the monetary policymaker has
partial information by the private sector is perfectly informed. Pearlman
(1992) and Svennson and Woodford (2003) look at the case of symmetric
partial information, where the private sector and the policymaker share the
same information set. Our work shares with these studies the concept
of "certainty equivalence": optimal consumption responds in the same way
to the best estimates of the state variables as it would to the true state
variables were there full information; and the autoregressive representation
of the estimated states is identical to that of the true states under full in-
formation.

The second strand in the literature in which we place this paper investi-
gates the implications of limited information not for a policy maker but for
households. Kydland and Prescott (1982) consider the case where tech-
nology has two components, but only the aggregate is observable, and this
is taken up by Bom�m (2003) who investigates the quantitative implica-
tions of this "permanent / transitory confusion". Both these models are
constructed so that as soon as consumption decisions have taken place, the
production process reveals the true value of the capital stock. Although
both of the papers use the Kalman �lter, since they are making inferences
only about exogenous processes, they avoid the dependence of the Kalman
�lter on endogenous variables. Keen (2004) investigates the consequences of
the private sector having partial information on the behaviour of the mon-
etary policymaker and �nds that this assumption can account for several
business cycle features better than the standard model.

2 Solving dynamic general equilibriummodels with
partial information

If agents cannot observe the state variables without error, we assume that
they apply the Kalman �lter to the information available to them in order
to derive e¢ cient estimates of the states. Since in a DGE model the states
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in general depend on a dynamic choice variable, we need to modify the
standard derivation.

2.1 A general system representation

Dynamic general equilibrium models can be written in the formWe therefore
write the system in a general form very close to that assumed in standard
derivations of the Kalman Filter:

�t+1 = F��t + Fcct + vt+1 (1)

yt = H 0
��t +Hcct + wt (2)

Et�ct+1 = EtDyyt+1 +Dcyt (3)

The �rst block of equations describes the evolution of the r state variables
�, which may or may not be observable; the second block describes the mea-
surement process for the n measured variables, y. The third block describes
the optimality conditions for c, the dynamic choice variables1 .The structural
innovations, v are assumed iid, with covariance matrix Q = E [vtv0t]

2.
For generality we can in principle allow the measurement errors w to be

serially dependent by representing them as a vector autoregression of the
form

wt+1 = �wt + !t+1 (4)

where ! is iid with covariance matrix R = E [!t!0t] : The two innovations !t
and vt may in principle be contemporaneously correlated but are assumed
uncorrelated at all other leads and lags.

We write the system in this way to follow the standard derivation of the
Kalman �lter in Hamilton (1994) who writes the system as

�t+1 = F��t + vt+1 (5)

yt = H 0
��t + wt (6)

Comparing our system (1) to (3) with the standard Kalman �lter problem
shows the key di¤erence between it and our model is that both equations
depend on the dynamic choice variable, consumption.

The behaviour of consumption is crucial for the stability of the states.
In standard Kalman Filter problems the states are fully exogenous (Fc is
set to zero), and F� therefore represents the state autoregressive matrix,
which is usually assumed to have stable, or at worst borderline stable unit
eigenvalues. In DGE models, due to the dynamics of the capital stock, F�

1Although throughout we assume there is a single dynamic choice varialble, in principle
c could represent a vector of such variables.

2The standard form of a DGE model (eg in McCallum (1998)) allows more complex
dependencies such as the states depending on the true value of the measured variables
yt � wt. It is straightforward to accomodate such dependencies in our framework.
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will have a single explosive eigenvalue. The system can therefore only be
stabilized by the behaviour of consumption. Under full information this sta-
bilization follows directly from the standard rational expectations solution;
with partial information things are less straightforward.

2.2 Full information solution

The full information case is a special case of the system in (1) to (3) with
H� = Ir;Hc = 0; wt = 08t implying yt = �t: We follow Campbell in deriving
the full information solution by the method of undetermined coe¢ cients. We
conjecture a solution for optimal consumption

ct = �
0�t (7)

then substitute this into the state evolution equation (1) and the Euler
equation (3) to obtain�

�0 �D�
� �
F� + Fc�

0� �t = Dc�0�t (8)

which is a set of nonlinear equations for the elements of � that can be solved
either analytically or numerically.

The solution to (8) will typically be non-unique, but stability of the
rational expectations solution requires that, conditional upon the optimal
solution of �; the reduced form autoregressive matrix of the states

G = F� + Fc�
0 (9)

has eigenvalues less than or equal to unity (there is a single unit eigenvalue
if technology contains a random walk component).

2.3 Indirect observability

The full information solution can be replicated straightforwardly in the case
that H�; in the measurement equation, is a full rank r � r matrix, and
wt = 08t: In this case the state variables can be replaced in the state equation
by setting �t = H

�1
� yt�H�1

� Hcct and can therefore be treated as known. The
system can therefore be solved as in the previous section, with an implied
static consumption function in terms of observables:

2.4 Partial information solution

For the general case we need to apply the Kalman Filter, allowing for the
endogeneity of consumption to the �ltering process.

Following Pearlman (1986) and Svennson and Woodford (2004) we con-
jecture is that under partial information optimal consumption will be certainty-
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equivalent:
ct = �

0b�t (10)

where b�t = Et�t is the optimal estimate of the current state vector given
available information,3 and � is identical to the coe¢ cient vector derived for
the full information case in (8).

We show in the appendix that conditional upon this consumption func-
tion, there is a convergent Kalman Filter recursion that ultimately results
in the following autoregressive process for the estimated states:4

b�t+1 = Gb�t + �"t+1 (11)

where G is as de�ned in (9), and "t is the innovation to the measured vari-
ables, given by

"t+1 � yt+1 � Etyt+1 (12)

The matrix � is the solution to the following set of iterative matrix equations.
Just as in the derivation of the standard �lter, this iteration depends only
on population parameters and is not a function of the data.

�t = PtJt
�
J 0tPtJt

��1 (13)

J 0t = [In �Hc�0�t]�1H 0
� (14)

Pt+1 = F�MtF
0
� +Q (15)

Mt =
�
Ir � �tJ 0t

�
Pt (16)

where

� � is the "Kalman Gain" matrix that extracts updated information on
the unobservable states from observable innovations.5

� Jt captures the reduced- form dependence of observable innovations
on the (unobservable) one-step ahead state forecast errors

� Pt+1 = E
h�
�t+1 � Et�t+1

� �
�t+1 � Et�t+1

�0i is the covariance matrix
3Whenever we write the expectations operator Et we mean expectations taken at time

t given information available at time t. Where we write period t0s estimate of the states
at t we write b�t, the standard Kalman �lter literature uses b�tjt. For the forecast at time
t of the states at period t+ 1 we write Etb�t+1 instead of the standard b�t+1jt

4Note that we remove the measurement errors, wt from (2) by incorporating them into
the states (with an appropriate rede�nition of the matrices in both (2) and (1) with the
result that r; the dimension of the rede�ned states is given by the number of structural
states plus n: This alone ensures that r is always strictly greater than n (thus ruling out
indirect observability, as derived in the previous section, which requires r = n). This both
simpli�es the derivation, and easily accommodates both serial dependence of measurement
errors, as in (4) and in principle some correlation with the structural innovations.

5The alternative, more common de�nition, is the Kalman gain for updating one-step
ahead forecasts of the states, given by K = G�:
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of the one-step ahead state forecast errors

� Mt = E

��
�t � b�t���t � b�t�0� is the covariance matrix of current

�state�measurement errors (i.e., captures the uncertainty in current
state estimates).6

The process for the estimated states (11) can be used to give an ARDL
representation of the consumption function (10) in terms of the observables

ct = A (L) yt

where A is some polynomial in the lag operator L.

2.5 Outline derivation

The appendix gives a full description of the derivation, but we sketch the
main features here. The general approach is standard, but there are several
distinctive features of the solution that arise from the endogeneity of both
states and measured variables to consumption.

Conditional upon initial estimates of the states in some period t� 1,7 a
forecast is made of measured variables in period t; using (2),

Et�1yt = H
0
�Et�1�t +Hc�

0Et�1b�t (17)

where the second term captures the dependence of measured variables on
consumption, after substituting from the consumption function, (10). After
making the same substitution the true states in turn depend both on their
own lagged value and on lagged estimates (using (1),

�t = F��t�1 + Fc�
0b�t�1 + vt (18)

It follows, by applying the law of iterated expectations that the predicted
values of measured variables in period t depend only on state estimates in
period t� 1 :

Et�1yt =
�
H 0
� +Hc�

0�Gb�t�1 (19)

where G is as de�ned in (9).
In period t the Kalman Filter updates the state estimates in response to

the one-step ahead prediction error in yt; given knowledge of the underlying
structural relations. At this stage in the recursion the �rst complication
enters compared to the standard Kalman Filter derivation. The prediction

6Pt+1 is often denoted Pt+1jt; and using the same terminology, Mt = Ptjt
7 In the appendix we discuss the issue of initial conditions, but for most cases we �nd

a unique stable steady state so initial conditions are not a major concern.

7



error will be given by

"t � yt � Et�1yt = H 0
�

�
�t�1 � Et�1�t

�
+Hc�

0
�b�t � Et�1b�t� (20)

The �rst element captures the (unobservable) impact of deviations of the
true states from their predicted values. The second element (which is absent
in the standard derivation) captures the response of consumption in period
t to the observable innovation to the estimated states . But this in turn will
depend on the innovation in yt:8 After allowing for this simultaneity,

"t � yt � Et�1yt = [In �Hc�0�t]�1H 0
� [�t � Et�1�t] = J 0t [�t � Et�1�t] (21)

giving the de�nition of Jt in (14). The left-hand side is a set of n � 1
innovations which are a linear combination of r�1 (with r > n) unobservable
state prediction errors. Thus the matrix J 0 and Pt; the current estimate
of the covariance matrix of one-step ahead prediction errors for the states
embody all that is known about the stochastic properties of the observable
innovations. The Kalman gain matrix �t can then be derived from (13)
conditional upon a given estimate of Pt9 and hence updated state estimates
can be derived, as in (11).

The �nal stage of the recursion derives an updated estimate of the one
step ahead prediction covariance matrix Pt+1 given by the recursive formula
in (15). The �rst term in this formula captures the impact of current state
measurement error persisting into the next period, the second the impact
of new structural shocks (thus even under perfect information Pt+1 is non-
zero).

Another distinctive feature of the endogenous Kalman �lter is that, while
forecasts of state variables allow for the impact of the consumption function
in determining the autoregressive matrix of the estimated states this does
not impact on one-step ahead uncertainty (since the marginal impact of
today�s consumption on tomorrow�s states is known today even if current
states are unknown). As a result the formula only allows for the direct
impact of today�s states on tomorrow�s states, via the matrix F�: As noted
above, in the stochastic growth model, with dynamic e¢ ciency, this matrix
has a single explosive eigenvalue. This feature might be expected to lead
to non-convergence of the Kalman recursion10 but we show in the appendix
that under the same very general conditions that admit a unique rational
expectations solution under full information, the recursion has a unique

8Via an equation of the form of (11), but with � replaced by �t
9 In principle this requires the solution of two simultaneous matrix equations, (13) and

(14) although in practice, in iterating towards steady-state values, the steady state can be
achieved by de�ning �t in terms of Jt�1 or vice versa.
10Hamilton�s (1994) proof of convergence relies on assumptions that would require F�

to have stable eigenvalues (ie, for the states to be stationary even if � = 0 or Hc = 0):
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solution, and �t; Jt; Pt and Mt converge to unique matrices �; J; P and M:

2.6 Discussion

If the Kalman Filter succeeds in replicating full information, M; the co-
variance matrix of state measurement errors estimates, de�ned in (16) is a
matrix of zeros11. In this case P; the matrix of one-step ahead state fore-
cast errors, is simply given by Q; the covariance matrix of the structural
innovations. There may also be cases (we examine one in particular below)
where P = Q; but P is not the stable steady state of the recursion for Pt+1:
In such cases the replication of full information is a knife-edge result, that
collapses with in�nitesimally small measurement errors in (2).

Forecasts of the estimated states, given by (11) have an identical autore-
gressive representation to forecasts of the true states under full information:
i.e., under both partial and complete information

Et�t+1 = Et
b�t+1 = Gb�t

where, trivially, under full information, b�t = �t: Since forecasts of neither
estimated nor actual states depend on �; the Kalman Gain matrix, incom-
plete observability has no impact on optimal forecasts, which depend only on
structural parameters. As a result the coe¢ cient vector � in the conjectured
consumption function under incomplete observability, (10) can be derived
under the assumption of full information. Thus optimal consumption is
certainty-equivalent, verifying our conjecture.

Despite this property of certainty equivalence, new dynamics arise for
two reasons. First the covariance structure of identi�ed innovations to the
estimated states may di¤er radically from that of the true underlying shocks;
and second, the identi�ed innovations themselves, while white noise condi-
tional upon the limited information set, are in reality complex lag polynomial
functions of the underlying shocks.

While the property of certainty-equivalence implies that the estimated
states follow an identical autoregressive process to that of the true states
under full information, this does not imply that the covariance properties of
the innovations to estimated states are identical to those of the structural
innovations. Thus certainty equivalence does not imply that observable
impulse responses will reveal true impulse responses (. We shall present
some examples where the resulting di¤erences are very signi�cant.

The e¢ ciency of the Kalman Filter ensures that "t; the observable in-
novations to measured variables, are white noise conditional upon t - dated
information. However in reality they are not white noise, but a complex
lag polynomial function of the true structural innovations (in which we now

11Which is, it should be stressed, quite distinct from the R; the covariance matrix of
measurement errors in (2).
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include any measurement error). Using (11), (12), (1) and (10) there is a
minimal structural autoregressive representation of the estimated and actual
states, given by�

I � �Hc�0 ��H 0
�

0 I

� � b�t+1
�t+1

�
=

�
[I � �J 0]G 0
Fc�

0 F�

� � b�t
�t

�
+

�
0
vt+1

�
(22)

so that that in underlying terms dynamic responses under incomplete ob-
servability are more complex than under full information, and all impulse
responses are driven by the structural innovations12. Note also that the dy-
namics of the true states are also more complex than under full information,
since they are a¤ected by the lagged responses of consumption to estimated
states.

Equation (13) shows that for an estimate of � to exist, the n�n matrix
J 0PJ must be invertible. If this is not the case, there is some redundancy in
the measurement equation. Given the de�nition of Jt in (14) the recursion
for Pt+1 in (15) (in which �new�error variance enters via Q; the covariance
matrix of the structural shocks) and given that Q = FuSF

0
u is of reduced

rank, we show in the appendix that the invertibility condition requires the
matrix H 0

�Fu to be of full row rank. Thus simply adding new measured
variables may provide no new information if the additional variables do not
respond di¤erentially to the structural shocks.

On the other hand, if the row rank condition on the matrix H 0
�Fu is sat-

is�ed, there are s structural innovations (including measurement errors) and
the number of measured variables, n = s; it may be possible for the Kalman
Filter to replicate full information, even when there are fewer measured vari-
ables than states. In contrast with the simpler case of indirect observability,
however, this result is conditional upon the Kalman Filter recursion having
converged (hence strictly speaking requires and in�nite history of past ob-
servations), and may not always be robust to arbitrarily small measurement
error. The resulting consumption function in terms of observables is not
static, as in the n = r case, but is a �nite order autoregressive distributed
lag function ct = '(L)yt:

While the explosive eigenvalue in the state dynamics does not prevent
the Kalman Filter from converging, in one key respect it does change the
nature of the resulting estimates. In the standard case, when the states are
independently stationary (i.e., if F� has stable eigenvalues) then the lower is
the quality of the �signal�provided by the measured variables, the closer �

12The structural innovations are in time series terms �non-fundamental�innovations, ie
we can write

"t = A(L)vt

but some of the roots of A(L) are within the unit circle, thus vt can only be recovered from
the future, rather than the history of "t:If these roots are replaced with their reciprocals
"t is white noise.
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gets to zero. In the limit if all diagonal elements of R go to in�nity, � goes
to zero and the optimal estimates of the state variables in this standard
case are simply their unconditional means. However, this result does not
hold when F� has explosive eigenvalues - instead � tends to a �nite non-zero
limiting value. In the speci�c context of the stochastic growth model, this
means that, however poor the information set, optimal consumption must
always respond to it. The intuition for this result is that without such a
response the capital stock will explode or contract without limit.

2.7 The nature of the impulse response functions

In what follows we examine the impulse response functions to structural
shocks. Such impulse responses would not be identi�able in real time, but
would become identi�able after a su¢ cient amount of time had elapsed, since
the Kalman Filter implies �backward-smoothed�estimates of state variables
that exploit future information (e¤ectively, these systematically exploit the
bene�ts of hindsight).

A structural innovation (which might could be measurement error) leads
to innovations in the observed variables. The matrix � translates these
innovations into changes in the estimates of the states, then the matrix
H 0
� +Hc� from the measurement equation (2) updates the estimates of the

measured variables conditional on optimal behaviour. The e¢ ciency of
the Kalman �lter ensures these are equal to the observed values, giving an
"adding up constraint" �

H 0
� +Hc�

�
�"0 = "0 (23)

Take the case where there is a unit innovation to a single observed vari-

able, and two state variables, then
�
H 0
� +Hc�

�
is 1x2 and � is 2x1 and we

can write, with

�
H1 H2

� � �1
�2

�
= 1 (24)

where the terms on the left-hand side are the e¤ect on the observed variable
of the change in the forecast of each state.

3 The stochastic growth model

Throughout the paper we use the canonical real business cycle model to
illustrate the implications of . In this section we present an outline of
this model, for full details see Campbell (1995). There is a representative

household which consumes, owns capital and supplies labour, and maximizes
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its expected utility

Et
X

�i

"
logCt+i + �

(1�Nt+i)1�
n
1� 
n

#
(25)

subject to a budget constraint

WtNt +RtKt = Ct + It (26)

where C is consumption, I investment, K capital, W the wage, R the return
to capital, and a law of motion for capital

Kt+1 = (1� �)Kt + It (27)

Firms minimize costs
WtNt +RtKt (28)

subject to a production function

Yt = A
�
t K

1��
t N�

t (29)

where A is total factor productivity, the law of motion for capital where I
is investment, and a resource constraint

Yt = Ct + It (30)

Campbell (1995) shows that when this system is detrended and linearized
it can be written as the four equations

kt+1 = �1kt + �2 (at + nt) + (1� �1 � �2) ct (31)

rt = �3 (at + nt � kt) (32)

Et�ct+1 = �3Etrt+1 (33)

nt = � [(1� �) kt + �at � ct] (34)

and a process for log technology

at = �at�1 + ut (35)

where u � N
�
0; �2u

�
The parameters �1; �2; �3 and � are functions of the un-

derlying parameters �; 
n; �; � and �: de�nitions can be found in Campbell
(1995).

In the context of the general representation, the state variables are the
capital stock, k and the technology process at, and the �rst block of equa-
tions (1) consists of the capital evolution equation (31) and the process for
technology (35). The measured variables y can be any of the variables in
the system, including the states. The third block (3) consists only of the
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Euler equation (33).

3.1 Partial information

Underlying our assumption of a representative agent are a large number of
households that trade securities to insure against any idiosyncratic shocks.
This trade means their consumption paths are perfectly correlated and we
can think of a representative consumer. We assume all the households have
the same information set. While households directly observe their own
variables they do not have full knowledge of the other households in the
economy so are, in general, unable to compute aggregate quantities and no
securities are traded which reveal this information. Thus households only
have knowledge of aggregate quantities only to the extent that we explicitly
put these variables in their information set.

4 A single technology shock

In this section we take the stochastic growth model with �xed labour supply
(� = 0 in (34) ) and assume that the two state variables, the capital stock k
and technology a are unobservable. Although our discussion in this section
is mainly qualitative, for the impulse response functions we use the same
calibration as in Campbell (1995)13.

4.1 Information on returns only

4.1.1 No measurement error

If only returns are observable the measurement block (2) contains the single
equation (32). For the moment we shall assume that returns are measured
without error. We show in the appendix that, with only returns observable,
one solution to the equations for the Kalman �lter (2) to (3) replicates the
full information case with P = Q andM = 0. However this solution is knife-
edge stable in two senses. Firstly, the resulting consumption function only
gives a stable solution if the coe¢ cients are exactly correct. In numerical
terms, although the impulse response functions appear to be the same as in
the full information case, if we run the model out for many periods (a few
thousand is usually su¢ cient) consumption either explodes or collapses.

To understand this behaviour it is useful to consider the consumption
function directly. From (10) this is given in terms of the estimated states
as

ct = �kk̂t + �aât (36)

We show in the appendix that there is an equivalent ARDL representation
in terms of the observables
13� = 0:025;� = 0:667;� = 0:99;� = 0:9; g = 0:005
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ct = �1rt + �2rt�1 + �3ct�1 (37)

with, crucially �1 > 0 (in the full information case a positive innovation to
technology increases consumption, and from (32) it must increase returns).
The instability in the numerical solution arises as follows. Assume that,
for whatever reason, �cr is slightly above its true value. The household will
consume slightly more than is optimal. This will mean that in the next
period the capital stock is less than had the household behaved optimally,
and the returns higher. So again the household will consume more than
is optimal, further depressing the capital stock and so on. Because of the
explosive eigenvalue, even the error in the calculation of the �0s resulting
from machine precision lead to such instability.

The second form of knife-edge stability arises if we introduce arbitrarily
small measurement error. Now, as long as the variance of the innovation to
measurement error is non-zero, there is a �nite probability that an observed
innovation in the interest rate is due to measurement error. Given the
full-information consumption function, the optimal response to an observed
increase in the interest rate will be to increase consumption. However,
if the observed innovation is in fact due to measurement error (remember,
on impact the source of the true innovation cannot be identi�ed) this will
depress the capital stock and further raise the interest rate, resulting in
higher consumption in the next period and a still higher interest rate. So the
full-information solution will be unstable even if we allow the measurement
error to become arbitrarily small14.

4.1.2 Arbitrarily small measurement error

With arbitrarily small measurement error, the Kalman �lter converges to
a solution which has the characteristic that capital is not perfectly known
and the forecast variance of technology is greater than the variance of the
innovation to technology. A positive innovation to returns, in a partial
information world, could be due to two things

1. A positive innovation in technology in this period

2. A negative innovation to technology in the previous period (we explain
this below)

3. The previous period�s estimate of capital being too high

Note that the certainty-equivalent response to the �rst of these is to in-
crease consumption, and to the second and third is to reduce consumption.
14This instability is manifested in the Kalman �lter iteration. We can show that the

full information case P = Q solves the Kalman equatioins (xx) to (xx). But the iteration
will not converge to this value.
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The response of consumption in the partial information case is therefore am-
biguous. The Kalman �lter works by using the unconditional properties of
the shocks to optimally attribute weights to the three possibilities given the
observed innovation to returns. These are translated into revised estimates
for the states, and these in turn allow the household to form expectations
over the future path of returns and make its optimal consumption decision.

Figure 1a show shows the response of consumption to a unit innovation
to the true process for technology. First note that it di¤ers dramatically
from the full-information case: consumption responds negatively on impact.
This might seem surprising, but this is the only way to ensure stability of
the system. Agents cannot, at least on impact, distinguish whether an
increase in the interest rate is due to measurement error or an innovation
in technology. If they respond by increasing consumption, the system will
be unstable as described above. Figure 1b shows the e¤ect of the shock on
the estimates of the states. Note that on impact the household increases
its forecast of technology (a combination of e¤ects 1 and 2) and lowers its
estimate of capital (e¤ect 3).

Given a shock at time t = 0, The household uses these estimates to form
a forecast of period 1�s interest rate

Etr̂1 = �3Et

�
â1 � k̂1

�
= �3

�
�â0 � �1k̂0 � �2â0 � (1� �1 � �2) c0

�
(38)

In period 1, given that no further shocks happen, the observed interest rate
will be

r1 = �3Et (a1 � k1) = �3 (�a0 � �1k0 � �2a0 � (1� �1 � �2) c0) (39)

so, remembering that true capital is pre-determined, k0 = 0 the observed
innovation is

"1 = r1 � Etr̂1 = �3
h
(�� �2) (a0 � â0) + �1k̂0

i
(40)

and using the adding up constraint (23).

at � kt = ât � k̂t (41)

we can write

"1 = ��3
h
(�� �2 � �1) k̂0

i
(42)

Since a positive observed innovation to returns always means capital has
been underestimated, k̂0 < k0 and since dynamic e¢ ciency means that
�1 + �2 > 1 so, given a true innovation to technology, the forecast is above
the actual level of the interest rate in the next period Etr̂1 > r1 so when the
next period comes, the observed innovation is negative "1 < 0. Given this,
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the household uses the Kalman �lter to update its forecasts, reducing the
estimate of technology and increasing the estimate of capital according to
(41). This process continues in each subsequent period: the household uses
its current estimates to form forecasts of the interest rate in the next period.
The actual interest rate di¤ering from this forecast brings new information.
The system converges asymptotically back to the steady state.

The observed innovation is positive in the period of the structural in-
novation and negative thereafter. So an observed positive innovation in
returns today could be the result of a negative shock to technology yester-
day and means that today�s estimate of technology should be reduced. The
assumption of our impulse response functions is that all variable, states,
estimated states and forecasts, start from the steady state. An innovation
to returns is a sign that this initial estimate of technology might have been
incorrect. This explains why the second e¤ect listed above exists. The
response of estimated technology is a weighted average of e¤ects (1) and (2).

How does this behaviour change with the persistence of the technol-
ogy shock? We can show there is a critical value �� = 1

�1+�2
such that

E ("t; at) = 0 so the innovation in the interest rate brings no instantaneous
information about the level of technology: positive technology shocks are
always interpreted as negative capital stock shocks.

If � < ��(as it is in our calibration) a positive innovation to the inter-
est rate means households increase their estimate of technology (the case
described above), but if � > �� a positive technology shock leads to a reduc-
tion in household�s estimate of technology. (42) shows that as � increases
so too, over things being equal, does the magnitude of the innovation in the
period after the shock. So as � increases, it becomes more likely that an
observed innovation in returns today was due to a negative technology shock
yesterday. When � is above the critical value, e¤ect (2) (which leads to a
reduction in the estimate of technology) starts to dominate e¤ect (1) and
the estimate of technology falls in response to a positive innovation today.

4.2 Information on output only

4.2.1 No measurement error

If aggregate output is measured without error, it can be combined with
knowledge of aggregate consumption and the resource constraint to deduce
investment and hence, given the history of output, the capital stock. In
this case

P = Q =

�
0 0
0 �2u

�
(43)

and
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� = QH�
�
H 0
�QH�

��1
=

�
0
1
�

�
(44)

then since the observed innovation "t = �ut then �"t is the true innova-
tion and the process for the observed states (11) in the same as with full
information.

4.2.2 Measurement error

What if output is now measured with error? The observed innovation in y
is given from (12) by

"t+1 = � (yt+1 � Etbyt+1) = �t+1 � Etb�t+1 (45)

where the state vector is in this case � =
�
k a !

�0
with ! being the

process for the measurement error.
With measurement error, a positive innovation in output could be due

to:

1. A positive innovation in technology in this period

2. The previous period�s estimate of technology being too low

3. The previous period�s estimate of capital being too low

4. A positive innovation to the measurement error

The certainty-equivalent response to the �rst three of these is to in-
crease consumption, and to the last is to keep consumption constant. So
the response to an innovation in output will be unambiguously to increase
consumption, but to increase it be less than in the full information case.

Figure 2a shows the response of consumption to a unit innovation to
technology which is observed by agents as an innovation in output. Con-
sumption initially responds by less than in the full information case since
there is a possibility the innovation was due to measurement error to which
the optimal response would be zero. This can be understood by looking at
the estimated states on �gure 2b. The observed innovation is apportioned
between an increase in the estimate of technology (a combination of e¤ects
1 and 2); an increase in the estimate of the capital stock (e¤ect 3) and an
increase in the estimate of the measurement error (e¤ect 4). Note that the
change in the estimate of the capital stock is relatively small, with output
data there is much higher uncertainty about technology than capital.

The forecast value of output for the next period takes into account the
possibility that the original innovation was due to measurement error. Given
that the innovation was to technology, actual output will be above this
forecast so the observed innovation will again be positive (note the contrast
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with the returns-only case). Again this innovation could be due to the
four e¤ects listed, and the Kalman �lter updates the estimates of the states
accordingly. While consumption under-responded on impact, later there is
a prolonged over-response which brings the capital stock back to the steady
state.

Two limiting cases are particularly interesting. Firstly, as the vari-
ance of the innovation to measurement error tends to zero, the solution
approaches asymptotically that in the full-information case, in contrast to
the returns-only case. Secondly, as the relative variance of the innovation
to measurement error increases, so too does the unconditional variance of
the measurement error and the Kalman �lter assigns a higher weight on the
observed innovation�s resulting from measurement error.

One might expect that as the variance became very large, the optimal
response of consumption would tend to zero as, in the limit, there is no
useful information in output. However this is not the case. If the innova-
tion to technology has a non-zero variance, there is always some probability
that the observed innovation is due to an innovation in technology. Were
consumption not to respond to such an innovation, the system would be
unstable since the capital stock would then explode. So given a positive
observed innovation, consumption must always increase however noisy is
output. But since the impact e¤ect of an observed innovation must be the
same whatever its source, this means that as the variance of the measure-
ment error increases, it accounts for more and more of the variance in the
states. Table 1 shows this e¤ect

Table 1: Variance contributions with only output data as noise in
output increases

Variance contributions
�2!
�2u

�2c
�2c (full inf)

Technology Meas error

1 1.02 98.9% 1.4%
10 1.11 89.1% 9.9%
50 1.36 69.4% 30.6%
100 1.61 55.9% 44.1%
1000 5.11 15.3% 84.7%
1 1 0% 100%

.

This behaviour arises from the explosive root in the equation for capital
(56) and to understand this it is useful to look at an even simpler case.
Instead of a persistent technology shock with optimal choice of consumption
feeding back on the level of the capital stock, think of the case where capital
is perturbed by a white noise shock, and it is measured with error

kt+1 = �kt + vt+1 (46)

yt = kt + wt (47)
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where v � N (0; Q) and w � N (0; R). The updating equation for the
forecast of capital is then

bktjt = bktjt�1 + � �yt � bytjt�1� (48)

with, �, a scalar given by

� =
Et�1Pt

Et�1Pt +R
(49)

We show in the appendix that

lim
R!1

P

R
= 0; � � 1

= �2 � 1; � > 1 (50)

As the variance of the measurement error becomes large, the signal to
noise ratio QR tends to zero. If the process for capital is non-explosive (� � 1)
it is optimal for the forecast of capital not to respond to the observation,
� ! 0. However if the process for capital is explosive, not responding to the
signal leads to a much worse estimate for the capital stock since var(y) = R

but var
�
k̂
�
=
�
�2 � 1

�
R and, for � close to 1, 0 < �2 � 1 < 1. If the

forecast didn�t respond, it would inherit the explosive nature of the capital
process and its variance would tend quickly to in�nity. By responding this
explosive behaviour is avoided.

4.3 Information on output and returns

4.3.1 No measurement error

If households can perfectly observe the returns r and output y the measure-
ment equation is �

y
r

�
= H�� =

�
1� � �
��3 �3

� �
k
a

�
(51)

and as long as the matrix on the right-hand side is invertible (which will be
the case as long as � 6= 0:5) households indirectly observe k and a through
our observations of y and r. This is the benchmark case in, for example,
Mehra and Prescott (1982) when, even if capital and technology are not
directly observable, they can be recovered.

4.3.2 Measurement error in returns only

Since we have shown above that output data alone is su¢ cient to replicate
the full-information case, measurement error in returns has no e¤ect as long
as perfect output data is available.
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4.3.3 Measurement error in output only

The response of consumption when output is measured with error is shown
in �gure 3a. The technology shock is now observed by the household as a
positive innovation to output and returns. Compared with the case of only
output data discussed in the previous section, information on returns allows
the household to better distinguish between a measurement error and a
technology innovation. This means that the response of consumption tends
to be closer to the full information case. Figure 3b shows the response of
the estimated states, and clearly the estimated measurement error is much
smaller than in the output only case. Also note that the estimated capital
stock falls very slightly on impact. This is because there is the possibility
that the innovation in output was due to measurement error, and that in
returns was due to a negative technology shock in the past.

As the variance of the measurement error increases relative to the tech-
nology shock, the response of consumption approaches the case when only
returns are observable. Table 2 shows the unconditional variance of con-
sumption as the variance of the measurement error increases.

Table 2: Variance contributions with output and returns
observable as noise in output increases

Variance contributions
�2!
�2u

�2c
�2c (full inf)

Technology Noise

1 1.01 98.5% 1.5%
10 1.11 89.0% 11.0%
50 1.39 79.8% 20.2%
100 1.55 81.6% 18.4%
1000 1.89 96.0% 4.0%
1 1.96 100% 0%

.

Even very noisy output data can bring the response of consumption much
closer to the full-information case than were there none. For example, if
the variance of the measurement error in output is 100 times the standard
deviation of the technology shock, the variance of consumption increases by
half as much as it would were this data not available. In contrast to the case
described in table 1, as the variance of output increases above a limit, the
cost of responding to it is higher than the value of the information it brings,
so the variance contribution falls and as measurement error becomes very
large, the response of consumption tends to that if there were no output
data at all.

So although section (xx) suggested that returns data could lead to op-
timal consumption behaving very di¤erently from the full-information case,
in fact even very noisy output data is used to mitigate this e¤ect. The
corollary to this is, if returns are very noisy but output data is available,
the noise in returns does not a¤ect optimal consumption very much.
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4.4 Calibrating measurement error

Prescott (1986) asserts that a real business cycle model of the type we have
described can match selected moments of the data closely if it is driven by an
Solow residual with autoregressive parameter of 0.9 and innovation standard
deviation of 0.7%.

Maintaining our assumption that the true states, capital and the tech-
nology process, are unobservable, we need to calibrate noise in the other
variables of the model - output, returns, labour and the wage. Orphanides
(2003) measures the variation between real time and �nal estimates of the
output gap, and estimates that the error follows a �rst-order autoregressive
process with persistence parameter 0.91 with the standard deviation of the
shock equal to 0.93% per quarter. In earlier work, Orphanides (2002) using
a wider sample period �nds similar autoregressive parameters and, depend-
ing on the detrending method used, standard deviations from 1.4 to 2.8.
Note the magnitude of these estimates - they are roughly the same as the
standard deviations of the output gap itself.

The autoregressive nature of the process corresponds to subsequent re-
visions of the data improving on the initial estimate, until a �nal estimate is
reached. although we don�t model this process explicitly, the Kalman �lter
could be used to calculate improved estimates of past data based on later
realizations of the observed variables.

Orphanides (1999) emphasizes that his estimates do not capture might
be called fundamental measurement error, that �nal estimates of the output
gap may be incorrect. So the values we should be understood be lower
bounds on the actual, unobservable measurement error. In what follows we
look at two cases, a low noise case with 0.9 and a high noise case of 2.2 (the
approximate average of Orphanides�estimates).

The volatility of the stock market is however around 20% per annum
(Campbell, Lo and McKinley (1992)) so a natural way to calibrate noise
would be such that the total volatility of returns is close to this. However,
as Campbell (1995) mentions, in the real business cycle model technology
shocks have relatively little e¤ect on returns, so to achieve this level of
volatility requires a very large amount on measurement error and we show
below that this means returns contain very little useful information.

4.5 Results

Table 3 shows standard deviations of consumption given various assumptions
about information and the above calibration. The baseline case is the full
information for which the standard deviation of consumption is 1.16% per
quarter.

Table 3: standard deviations of consumption with measurement
error
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Information Low error calibration High error calibration
�c Increase over full inf �c Increase over full inf

Full 1.16 - 1.16 -
r only 2.27 95.8% 2.27 95.8%
y only 1.20 3.5% 1.33 14.4%
r,y 1.20 3.5% 1.32 14.4%
r,y,k 1.20 3.45% 1.32 13.6%

If the only information available to the household is the stock market, the
volatility of consumption almost doubles compared with the full information
case. As shown in above, information on output allows the agent to get
much closer the full information case. With the "low error" calibration,
only observing output increases the volatility of consumption by 3.52% over
the basecase, and in the "high error "calibration by 14.4%. Adding noisy
information on returns gives almost no useful information over that already
available in output.

4.6 The unobservability of the capital stock

Assuming capital is measured using an inventory approach, measurement
errors cumulate up through the capital accumulation equation (27). If at
time t = 0 we know the capital stock K0 without error, we can solve this
equation backwards to give

~Kt =

t�1X
j=0

(1� �)j ~Ij +K0 (52)

If measured investment is It = ~It+ut where u � N
�
0; �2u

�
then the variance

of capital around the true value,

var
�
K � ~K

�
= �2K = �

2
I

t�1X
j=0

(1� �)2j (53)

As t becomes large this will tend to the limit

�k = �i

s
1

� (2� �) (54)

which for our calibration gives the standard deviation in the capital stock to
be approximately 5 times larger than the measurement error in investment.

To assess our assumption of the "non-observability" of the capital stock,
we add capital to the agents information set, and calibrate its measurement
error according to the calculation above (converting into logs). In the case
where agents also have noisy information on output and returns (line 3) of
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the table, adding capital reduces the increase in the standard deviation of
consumption above the full information case from 3.52% to 3.45% with the
"low error" calibration, and from 13.9% to 13.6%. This shows that the
assumption of non-observability does not have any signi�cant e¤ect on our
conclusions.

5 An example with two technology shocks

The simplest case of a model with multiple shocks is where the process for
aggregate technology a is made up of two separate components

at = a1t + a
2
t

a1t = �1a1t�1 + u
1
t

a2t = �2a2t�1 + u
2
t

where u1 and u2 are white noise errors independent of each other. Since the
two components of technology have identical e¤ects on the model economy,
unless an agent can observe them directly it is not possible to distinguish
them. This leads to so called "permanent - transitory confusion" which
has been extensively discussed in the consumption literature, for example
Quah (1990). We model this more complex process for technology using
Campbell�s model as before ,but now we allow labour supply to vary, taking
� = 2.

Figure 4 shows the response of consumption to innovations in the two
technology processes (with �1 = 0:9 and �2 = 0:6) given that output and
returns are observable without error. On impact the response to the two
shocks is the same; over time the agent learns to distinguish which one
has actually occurred. If we now introduce noise in the measurement of
output and returns, the agent responds less to the signal on impact. Table
4 shows the e¤ects in terms of standard deviations of these two sorts of
non-observability.

Table 4: Standard deviations of consumption with two tech
shocks
�c Increase over full inf

Full information 1.50
y,r - no error 1.51 1.2%
y,r - low error 1.56 4.0%
y,r - high error 1.69 13.3%

Bom�m (2001) presents a model similar to this. His agents observe cap-
ital without error, aggregate technology with error but not the individual
components of technology. His striking headline result is that, under the
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baselines calibration, the presence of measurement error in aggregate tech-
nology, reduces the volatility of output "by around 13%". He explains this
by noting "when the indicator, aggregate technology, is noisy, agents e¤ec-
tively discount all preliminary announcements by always attributing some
fraction of each new reading to measurement error" (Bom�m 2001).

Looking just at the impact e¤ects, this result does not seem implausi-
ble, however the unconditional variances are clearly higher with noise than
without. Also, Bom�m has the second technology process as white noise.
Given his calibration, 98.6% of the unconditional variance of consumption
comes from the persistent technology shock so it is hard to understand how
noise can result in a 14% change in the volatility of consumption, whatever
the sign.

However Bom�m�s model includes a strategic complementaries in output.
Even if the strange result can be accounted for by this, it is important to
note that it does not generalize and, in general, increased measurement error
leads to increased volatility.

6 An example with multiple shocks

The DGE literature has considered a wide range of potential shocks. Altig
et al (2003) present a model containing no less than eight di¤erent types
of shocks. But the widespread assumption is that agents can observe the
shocks directly. Although it is far beyond the scope of this paper to under-
take a full comparison between Altig et al�s model under full information
under and under partial information (though the model could be solved using
our toolkit), we investigate the realism of this assumption by adding some
more shocks to Campbell�s model and seeing how partial information a¤ects
the response of consumption. We follow Altig et al (2003) in modelling
two technology shocks of di¤erence persistence, a shock to the productivity
of investment, a preference shock which a¤ects the marginal substitutability
between consumption and leisure and a shock to government spending.

The equations of the model with variable labour supply are modi�ed to
be

Et
X

�i

"
�t log ct+i + �

(1�Nt+i)1�
n
1� 
n

#
(55)

where � is the preference shock and

Kt+1 = (1� �)Kt + �tIt (56)

where � is the shock to the e¢ ciency of investment.
Government spending modi�es the resource constraint

Yt = Ct +Gt + It (57)
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where Gt is a stochastic process.
These shocks are assumed to follow �rst-order autoregressive processes

in logs, with persistence ��; �� and �G and innovation standard deviation
��; �� and �G respectively. We calibrate the standard deviations of the �ve
shocks so that in the full-information case the contributions to the uncondi-
tional variance of consumption are approximately 40% from the persistent
technology shock (�z1 = 0:9); 20% from the transitory technology shock
(�z2 = 0:3); 10% from government spending shocks; 10% from preference
shocks and 10% from shocks to the e¢ ciency of investment.

Table 5: Standard deviations of consumption with multiple
shocks
�c Increase over full inf

Full information 2.08
y,r - no error 2.17 4.3%
y,r - low error 2.27 9.1%
y,r - high error 2.44 17.1%

Again, we can split the e¤ect of these changes into that resulting from
being unable to observe the shocks directly, and that resulting from noise.
The requirement that agents infer what shocks have occurred from the ob-
servable variables increases the standard deviation of consumption by just
4% compared with the full information case. With noise calibrated at the
"low" rate, this increases to 9% and with noise at the high rate this increases
to 17%.

So in terms of unconditional standard deviations we �nd that, as with
the simpler case of two technology shocks, partial information resulting in
confusion of shocks seems less important than measurement error. This is
a measure of the e¢ ciency of the Kalman �lter in distinguishing between
di¤erent shocks.

However in terms of the true impulse response functions, as observed by
the econometrician after the shock, there are more signi�cant di¤erences.
Figure 5 shows the response of consumption to a true 1% innovation to
technology under the "low error" calibration. Let�s assume that this is what
the econometrician observes in the data, but the modeler ignores partial
information and uses some technique to estimate a full information model
to best �t this response. Estimating preference parameters to minimize the
deviation of the model�s impulse response function from that observed gives

c = 2:7 and 
n = 9:2 as opposed to the values of unity in the true model.

7 Conclusion
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Figure 1: Only returns observable: arbitrarily small 
measurement error 

 
 

1a: Response of consumption to technology shock 
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1b: Response of state estimates to technology shock 
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Figure 2: Only output observable, with error 
 

 
2a: Response of consumption to technology shock 
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2b: Response of state estimates to technology shock 
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Figure 3: Output and returns observable, measurement  
error in output only 

 
3a: Response of consumption to technology shock 
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3b: Response of state estimates to technology shock 
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3c: Sensitivity of consumption response to variance of measurement 

error  
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Figure 4: Response of consumption to innovation in 
persistent component of technology in model with two 

technology shocks 
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Figure 5: Response of consumption innovation in persistent 
component of technology in model with multiple shocks 
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