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1 Introduction

It is now recognized that many economic series display nonstationarities and

nonlinearities. Empirical researchers often find standard linear models, i.e.

with iid (independent and identically distributed) innovations, inappropriate

for differenced series. For this reason, recent papers dealing with unit roots

have been concerned with modeling the error term of the linear dynamics

as a non-iid process. Results on estimating and testing unit roots with non-

iid errors can be found in Phillips (1987), Kim and Schmidt (1993), Seo

(1999), Ling and Li (2003), Ling (2004), Rodrigues and Rubia (2005) and

the references therein.

Charemza, Lifshits and Makarova (2005) showed that unit-roots models

with bilinear errors have interesting economic interpretations, and are em-

pirically relevant. Following this paper, we also consider a unit-root model

with bilinear errors, but our specification is different. Our model allows for

stationary increments, contrary to the model by Charemza et al (2005). Fur-

ther differences will be discussed below. It will be seen that our model is

closely connected to the class of GARCH processes. Indeed, the solution

of this model displays conditional heteroskedasticity, including the so-called

leverage effect. Contrary to the standard GARCH, however, our specifica-

tion does not constrain the coefficients to be positive, which is convenient for

statistical purposes. Interestingly, the volatility is not bounded away from 0,

and is minimum for non zero innovations.

A natural practice, followed by Charemza et al (2005), is to test for the

presence of unit roots in a first step, and then to perform specifications tests

on the noise dynamics in a second step. Caution is needed, however, in
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the blind application of standard unit root tests in the framework of non-iid

errors. Rodrigues and Rubia (2005) present numerical experiments showing

that non-iid errors may cause severe distortions in conventional unit-root

tests. Ling (2004) provided an example of a unit-root model with non-iid

errors, namely the so-called double-autoregressive model, in which the LS

estimator of the AR coefficient does not converge in law to the standard

Dickey-Fuller (DF) distribution. For such models, the most commonly used

unit-root tests, i.e. the Phillips-Perron and augmented DF tests, may not

have the correct asymptotic size.

An important issue for linear models with non-iid errors thus concerns

the validity of those unit-root tests. Phillips (1987) and Phillips and Per-

ron (1988) showed that, under moment and mixing conditions on the noise

process, the unit-root hypothesis can be tested using the standard DF asymp-

totic distribution. The main goal of this paper is to establish the validity

of those standard unit-root tests for the bilinear model under consideration.

This requires analyzing in detail the probability structure of the model, in

particular its mixing properties.1 Apart from the unit-root testing problem,

these properties have of course independent interest.

The rest of the paper is organized as follows. The general model is pre-

sented in Section 2 and interpretations are given. In Section 3 we study

the existence of strictly stationary and second-order stationary solutions.

Under a mild additional assumption on the distribution of the iid process,

the strictly stationary solution is shown to be strongly mixing in Section

1Mixing, which will be defined precisely below, is one way to characterize the decrease

of dependence when the variables become sufficiently far apart (see e.g. Davidson, 1994).
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4. Section 5 is devoted to examining the validity of the Phillips-Perron and

augmented DF unit-root tests in our framework. Monte Carlo experiments

are presented in Section 6. Concluding remarks are given in Section 7.

2 First-order models

For ease of presentation we only discuss, in this section, a simple sub-class

of a more general model considered further. To motivate our specification,

we first discuss the properties of a unit-root model with bilinear innovations,

which was recently introduced in the literature.

2.1 The model of Charemza et al

Charemza, Lifshits and Makarova (2005) used a bilinear process of the form

∆yt := yt − yt−1 = φyt−1 + ut, t = 1, 2, . . . , (1)

where

ut = εt + bεt−1yt−1, εt iid (0, σ2
ε ), y0 = ε0 = 0. (2)

This model has received an economic interpretation as being derived from a

model of speculative behavior. In their paper Charemza et al (2005) were

mostly concerned by testing the assumption that b = 0, giving rise to the so-

called “b-test”. When b = 0 the model has the form of an AR(1), which may

(φ = 0) or may not (φ 6= 0) contain a unit-root. When b 6= 0 the error term

is not stochastically stable (in particular, as demonstrated by the authors,

the variance of ut tends to infinity). Therefore the specification (1)-(2) is not
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suitable for the so-called integrated of order one I(1) series, which may be

found undesirable for many economic series.

Model (1)-(2) can be seen as an element of the class of the so-called

stochastic unit-root processes, defined by

yt = ρtyt−1 + vt, t = 1, 2, . . . , (3)

where Eρt = 1 (or more generally Eϕ(ρt) = ϕ(1) for some non-trivial func-

tion ϕ). Taking ρt = 1+φ+bεt−1 and vt = εt yields the model (1)-(2). When

φ = 0, the random variable ρt has unit expectation justifying the name of

stochastic unit-root. Other specifications have been suggested, e.g. by tak-

ing ρt = eαt where E(αt) = 0 as in Granger and Swanson (1997). See also

Leybourne, McCabe and Tremayne (1996).

2.2 An alternative

Unfortunately, the moment conditions required to apply Phillips and Perron

(1988)’s result are not satisfied in the specification (2) because the variance

of ut increases to infinity with t. Instead, a model for (ut) of the form

ut = εt + bεtut−1, εt iid (0, σ2
ε ), y0 = ε0 = 0 (4)

will be shown to satisfy the conditions of the Phillips-Perron theorem. Model

(4) is the first-order version of the class of this paper. When b = 0 (but |b|
not too large) the model coincide with the one of the previous section. When

b 6= 0 the error term (ut) will be shown to be stochastically stable (contrary

to the one of the previous section).

It is worth noting that (4) is a bilinear extension of the strong white noise

model, obtained for b = 0. Bilinear models have been studied by Granger
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and Andersen (1978), who introduced them in the time series literature, by

Subba Rao and Gabr (1984) and by many others. Among the nonlinear

models, the bilinear class is one of the most attractive in terms of generality.

Model (1)–(4) can be interpreted as a stochastic unit-root model when

φ = 0. Indeed, the representation (3) holds, in which ρt = 1 + φ + bεt has

mean 1 when φ = 0, and vt = {1 − b(1 − φ)yt−2}εt is an error term which is

uncorrelated with the yt−i for i > 0.

Another interesting feature of Model (4) is its ARCH-type interpretation.

The first two conditional moments of ut are given by

E(ut | ut−1, . . .) = 0, Var(ut | ut−1, . . .) = (1 + but−1)
2σ2

ε .

This form of conditional variance is a particular case of the quadratic ARCH

model introduced by Sentana (1995). It is seen that the conditional variance

is asymmetric: for instance when b < 0, a negative shock ut−1 increases the

conditional variance by a larger amount than a positive shock of the same

magnitude. This so-called leverage-effect property is often described as one

of the main stylized facts of financial time series (see e.g. Nelson (1991),

Zakoïan (1994)). It can be visualized in the so-called news impact curve

displayed in Figure 1. Another interesting feature of the model, which is

transparent on this figure, is that the volatility is not minimal at zero. In

other word, an increase of small positive returns may lower volatility. One

can imagine that the volatility is minimal when the returns correspond to

the free-risk return (−1/b on the figure). This interpretation, as well as the

leverage effect, of course requires b < 0. Finally, the volatility is not bounded

away from 0, as in the case in the other GARCH models.

In the sequel we consider models of the form (1), and their augmented
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versions, with bilinear noise specifications including the model in (4).

Var(ut | ut−1)
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Figure 1: News impact curve of Model (4) with b = −0.2 and σε = 1 (full line)

compared with the news impact curve of the ARCH(1) model ut =
√

1 + b2u2
t−1εt

(dotted line).

3 A more general specification

We consider the following model


















∆yt = φyt−1 + ψ1∆yt−1 + · · · + ψp∆yt−p + ut,

ut = (1 + b1ut−1 + · · · + bqut−q)εt, εt iid (0, σ2
ε )

(5)

where φ, ψ1, . . . , ψp, b1, . . . , bq are real coefficients and σ2
ε > 0. The adjunction

of higher-order autoregressive terms in the equation of ∆yt can be motivated

by the necessity to control for serial correlation, as in the augmented DF

test. Similarly, the introduction of several coefficients bi allows for more

persistence in the conditional variance.
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As already noted in the case q = 1, the process (ut) is bilinear in the sense

it involves products of the variable εt and ut past values. However, (ut) does

not strictly speaking belong to the general bilinear class extensively studied

in the literature, e.g. by Granger and Andersen (1978).2 Thus we cannot rely

on general results on bilinear processes to study the stationary properties of

our class.

The process (ut) also belongs to the class of Linear ARCH (LARCH),

introduced by Robinson (1991) and recently studied by Giraitis, Robinson

and Surgailis (2000), Giraitis and Surgailis (2002). The main interest of this

class, in which an infinite sequence of coefficients bj is considered, is to allow

for long-memory properties.

3.1 Strict stationarity

We first give a condition for the existence of a strictly stationary white noise

solution (ut). For the reason just mentioned we cannot directly use existing

results, e.g. those established by Liu and Brockwell (1988). Moreover, using

the approach of Bougerol and Picard (1992a, 1992b), as will be done, gives

sharper results.

Let ut = (ut, . . . , ut−q+1)
′ ∈ R

q and ct = (εt, 0, . . . , 0)′ ∈ R
q. Then, the

second equation in (5) is equivalently written as

ut = ct + Atut−1 :=





εt

0q−1



+





b1:q−1εt bqεt

Iq−1 0q−1



 ut−1, (6)

where b1:q−1 = (b1, . . . , bq−1) and Ik is the k× k identity matrix. Notice that

(ct, At) is an iid sequence of matrices. Let ‖A‖ =
∑ |aij| for any matrix

2Standard bilinear models only allow terms of the form εt−iut−j with i, j > 0.
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A = (aij). Since E(log+ |εt|) ≤ E|εt| < ∞ we have E(log+ ‖At‖) < ∞,

and thus we can define the top-Lyapunov exponent γ(A) of the sequence

A = (At):

γ(A) := inf
t∈N∗

1

t
E(log ‖AtAt−1 . . . A1‖) = lim

t→∞
a.s.

1

t
log ‖AtAt−1 . . . A1‖.

(7)

If γ(A) < 0, the unique strictly stationary solution to (6), in view of Bougerol

and Picard (1992a, Theorem 1.1), is

ut = ct +

∞
∑

k=1

AtAt−1 . . . At−k+1ct−k. (8)

It is straightforward that the strict stationarity of (ut) is equivalent to the

strict stationarity of (ut). It is also seen that the strictly stationary solution

is nonanticipative (i.e. with ut function of the εt−i, i ≥ 0) and ergodic,

as a function of the iid process (εt). By Lemma 2 given in the appendix,

and Theorem 2.5 in Bougerol and Picard (1992a), the sufficient condition

γ(A) < 0 is also necessary for the existence of a nonanticipative strictly

stationary solution.

When q = 1 we have γ(A) = E log |bεt|, and the strict stationarity con-

dition takes the simpler form:

|b| < e−E log |εt|. (9)

Note that, applying the same method of proof as in Quinn (1982, Theorems

1 and 2), one could show, without using the general results of Bougerol and

Picard, that (9) is necessary and sufficient for the strict stationarity in the

case q = 1 and E (log |εt|)2 < ∞. In particular when εt is Gaussian, the

necessary and sufficient condition is |b|σε < 1.88736.
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When q > 1, the strict stationarity region can not be given explicitly.

In Figure 2, the strict stationarity region has been evaluated using (7) and

simulations of the sequence (At) in the case q = 2 and εt ∼ N (0, 1). The strict

stationarity curve passes at the points (b1, b2) =
(

±e−E log |εt|, 0
)

, as can be

seen from (9), and at the points (b1, b2) =
(

0,±e−E log |εt|
)

, as can be shown by

algebraic computations. It is interesting to note that the stationarity region

is not symmetric with respect to the diagonal b1 = b2.

3.2 Second-order stationarity

Results concerning the existence of second-order stationary solutions of bi-

linear models are well-known, and they can be straightforwardly extended to

our model. Let (ut) be a solution to the 2nd equation in (5). Then it is easily

seen that E(ut) = 0 and E(utut−h) = E(εt)E(1+b1ut−1+· · ·+bqut−q)ut−h = 0

for any h > 0. Moreover, we have

(

1 −
q
∑

i=1

b2iσ
2
ε

)

Eu2
t = σ2

ε > 0.

It follows that
q
∑

i=1

b2iσ
2
ε < 1 (10)

is a necessary condition for second-order stationarity. Conversely, suppose

that this condition holds true. We will show that ut defined in (8) is the limit

in L2 of the Cauchy sequence (utN )N defined by

utN = ct +
N
∑

k=1

AtAt−1 . . . At−k+1ct−k.
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Let ‖X‖2
2 = E‖X‖2 where ‖·‖ denotes the Euclidian matrix norm. We have,

with N ′ > N ,

‖utN ′ − utN‖2 ≤
N ′

∑

k=N+1

∥

∥AtAt−1 . . . At−k+1ct−k
∥

∥

2

=

N ′

∑

k=N+1

√

Ec′t ⊗ c′t (EA
′
t ⊗ A′

t)
k vecIq2 , (11)

where the inequality follows from the Minkowski inequality, and the equal-

ity follows from independence and elementary properties of the Kronecker

product ⊗ of matrices and the vec operator (see e.g. Harville (1997) for

details about these matrix operators). Denote by ρ(A) the spectral radius

of a square matrix A. Using ρ(A) = limk→∞ ‖Ak‖1/k, it can be shown that

the right-hand side of (11) tends to 0 as N → ∞ if ρ {E (At ⊗ At)} < 1. We

have

E (At ⊗ At) = σ2
εB ⊗ B + J ⊗ J,

where

B =





b1:q−1 bq

0q−1×q−1 0q−1



 , J =





0′q−1 0

Iq−1 0q−1



 .

By induction, it can be shown that

det
(

σ2
εB ⊗ B + J ⊗ J − λIq2

)

= (−λ)q
2B
(

1

λ

)

,

where B(z) = 1−∑q
i=1 b

2
iσ

2
ε z

i. It is well-known that the roots of the polyno-

mial B(z) are outside the unit disk if and only if (10) holds (see e.g. Francq

and Zakoïan (2004), Proposition 1). Thus (10) entails that the spectral ra-

dius of EAt⊗At is strictly less than 1, which allows to conclude that (utN )N

is a Cauchy sequence in L2. Therefore ut is in L2.
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As in GARCH models, strict stationarity is weaker than second-order

stationarity (i.e. γ(A) < 0 does not imply Eu2
t <∞), but it will be seen in

the proof of Theorem 4.2 below that γ(A) < 0 implies E|ut|s for some s > 0

(see the remark in Section 4.3).

Note that Giraitis and Surgailis (2002) give sufficient conditions for strict

stationarity of a class of infinite-order ARCH-type bilinear models encom-

passing (5). However, when applied to our model, their conditions turn out

to be more restrictive than ours, which are both necessary and sufficient in

our framework. Whether necessary and sufficient conditions can be obtained

for infinite-order models is an open issue, to our knowledge.

The results of this section are summarized in the next theorem.

Theorem 3.1 The second equation of (5) admits a strictly stationary so-

lution (ut) if and only if γ(A) < 0, where A = (At) is defined in (6).

Under this condition, the strictly stationary solution is unique, nonantici-

pative and ergodic. This solution admits a second order moment if and only

if
∑q

i=1 b
2
iσ

2
ε < 1. In this case, the solution is a conditionally heteroskedastic

white noise.

As illustrated in Figure 2, the second order stationarity region is generally

much more restrictive than the strict stationarity region.

4 Mixing properties

We now turn to the most technical part. For the rest of the paper, the only

result of interest in this section is Theorem 4.2 below. This theorem con-

cerns mixing properties of the process (ut), which will be crucial for applying
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Figure 2: Strict and second-order stationarity regions of the bilinear model

ut = (1 + b1ut−1 + b2ut−2)εt, εt iid N (0, 1)

A: second order stationarity, A ∪ B: strict stationarity, and C: non stationary.

unit-root tests to Model (5). Markov chain techniques have been widely used

in recent years to derive such mixing results. General conditions for ergod-

icity and mixing of Markov chains are provided in the book by Meyn and

Tweedie (1993). References dealing with mixing properties of various classes

of processes can be found in Francq and Zakoïan (2005).

4.1 Elements of Markov chain theory

Equation (6) ensures that the process (ut) is a time homogeneous Markov

chain with state space R
q. Recall that a Markov chain (Xt) with state space

E ⊂ R
d is said to be µ− irreducible for some measure µ on (E, E) (where E
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is the Borel σ-field on E), if for all x ∈ E, for all B ∈ E such that µ(B) > 0,

there exists t > 0 such that P t(x,B) > 0.

Here P t(x,B) denotes the t−step transition probability of moving from x to

the set B in t steps. The measure µ is a maximal irreducibility measure if

any other irreducibility measure is absolutely continuous with respect to µ.

Throughout we assume the chain is µ-irreducible with µ maximal, and we

denote by E+ the set of sets B such that µ(B) > 0. If for each bounded and

continuous function g on E, the function of x given by E(g(Xt)|Xt−1 = x) is

continuous, the chain is said to be a Feller chain. The Markov chain (Xt) is

said to be geometrically ergodic if there exists ρ ∈ (0, 1) such that

ρ−t‖P t(x, ·) − π(·)‖TV −→ 0, as t→ ∞,

for each x ∈ E, where π denotes the invariant measure of the Markov chain,

i.e. a probability measure π such that π(B) =
∫

E
π(dx)P (x,B) for all B ∈ E ,

and ‖·‖TV is the total variation norm. A consequence of geometric ergodicity

is strong mixing with geometric rate. A strictly stationary Markov chain (Xt)

is said to be strongly mixing with geometric rate if there exists constants

K > 0 and ρ ∈ (0, 1) such that

sup
f,g

|Cov(f(X0), g(Xt))| ≤ Kρt, for all t > 0,

where the sup is taken over all functions f and g such that |f | ≤ 1, |g| ≤ 1.

A set C ∈ E is called νm-small if there exists m > 0 and a non-

trivial measure νm on E such that: Pm(x,B) ≥ νm(B), for all x ∈
C,B ∈ E . Let C be a νM -small set, where the measure νM is such that

νM(C) > 0. Such a measure exists whenever C ∈ E+, see Meyn and Tweedie
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(1993, Proposition 5.2.4). Let EC = {m ≥ 1| C is νm-small, with νm =

δmνM , for a positive constant δm}. Then, if (Xt) is a µ-irreducible Markov

chain, and if C ∈ E+, the greatest common divisor d of the set EC does not

depend on C and is called period of the Markov chain. If d = 1, (Xt) is said

to be aperiodic.

4.2 A general criterion for geometric ergocity

The following criterion for geometric ergocity is obtained from a straightfor-

ward adaptation of Meyn and Tweedie (1993, Theorem 19.1.3). It has the

particularity of being based on m-step transitions, instead of 1-step transi-

tions as is usually the case.

Theorem 4.1 Assume that

(i) (Xt) is a µ-irreducible Feller chain, for some measure µ on (E, E)

whose support has non-empty interior,

(ii) (Xt) is an aperiodic chain,

(iii) there exists a compact set C ⊂ E, an integer m ≥ 1, and a nonneg-

ative continuous function (test function) g : E → [0,+∞) such that

E[g(Xt+m)|Xt = x] ≤ (1 − β)g(x) − β, x ∈ Cc,

E[g(Xt+m)|Xt = x] ≤ b, x ∈ C,

for some strictly positive constants β and b. Then (Xt) is geometrically

ergodic.

4.3 Application to our bilinear model

Now we are in a position to state the main result of this section.
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Theorem 4.2 Let f be the density of εt and assume that f > 0. If γ(A) < 0,

where A = (At) is defined in (6), then the strictly stationary solution process

(ut) is strongly mixing with geometric rate.

The proof of is given in the appendix, and uses the following lemma.

Lemma 1 Let X be an almost surely positive random variable. If EX r <∞
for some r > 0 and if E logX < 0, then there exists s > 0 such that EX s < 1.

Under a slightly different form, this result is contained in the proof of Lemma

2.3 by Berkes, Horváth and Kokoszka (2003). For the convenience of the

reader, a complete proof of the lemma is given in the appendix.

Remark: The proof of Theorem 4.2 allows to show that the strictly station-

ary solution verifies

E|ut|s <∞ for some s > 0.

Indeed we have

E|ut|s ≤ E‖ut‖s ≤ E‖c1‖s
{

1 +

∞
∑

k=0

ρk
k0
∑

i=1

(E‖A1‖s)i
}

<∞

for s satisfying (25) in the Appendix. We also used the elementary inequality

(
∑

i ai)
s ≤∑i a

s
i for any sequence of positive numbers ai.

5 Unit-root testing

For processes whose differences may exhibit serial correlation, the Phillips-

Perron and augmented DF tests are arguably the most popular unit-root

tests. Both of them have been derived under precise assumptions, the validity

of which is questionable in the model of this paper. We start by considering

the Phillips-Perron test.
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5.1 Phillips-Perron tests

In his seminal paper, Phillips (1987) studied the random walk

xt = axt−1 + vt, a = 1, t = 1, 2, . . . ,

where the initial value x0 may be any random variable whose distribution is

fixed. He showed that the standard least squares estimator

ân :=

∑n
t=2 xtxt−1
∑n

t=2 x
2
t−1

consistently estimates a = 1, under very general assumptions on the error

terms vt. More precisely, denoting by αv(k) the strong mixing coefficients of

the process (vt), Phillips found that under the assumptions

i) Evt = 0 for all t,

ii)
∑∞

k=1 {αv(k)}
ν

2+ν <∞, for some ν > 0,

iii) suptE |vt|2+ν <∞,

iv) ϑ2
v := limn→∞ Var

{

n−1/2
∑n

t=1 vt
}

exists and ϑ2
v > 0,

the standardized least squares estimator satisfies

Zφ := n (ân − 1) − n2σ̂2
ân

2ŝ2
v

(

ϑ̂2
v − ŝ2

v

)

⇒ (1/2) {W 2(1) − 1}
∫ 1

0
W 2(t)dt

, (12)

where {W (t), t ∈ [0, 1]} denotes a standard Brownian motion, ϑ̂2
v is a weakly

consistent estimator of ϑ2
v defined in iv) above, σ̂2

ân
= ŝ2

v/
∑n

t=2 x
2
t−1, and

ŝ2
v =

1

n− 1

n
∑

t=1

(xt − ânxt−1)
2 (13)
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is a weakly consistent estimator of s2
v := Ev2

t . Note that ân, σ̂
2
ân

and ŝ2
v are

available in any standard regression software. For the estimation of ϑ2
v, a

HAC-type estimator can be used, as proposed by Phillips (1987). Phillips

also found the asymptotic distribution of the associated regression t statistics:

Zt :=
ŝv

nϑ̂vσ̂ân

Zφ ⇒ (1/2) {W 2(1) − 1}
{

∫ 1

0
W 2(t)dt

}1/2
. (14)

5.2 Validity of the Phillips-Perron test for the bilinear

process

We are interested in testing the unit-root assumption

H0 : φ = 0

in Model (5). We keep the notation of the previous section, with xt replaced

by yt (and thus vt = yt − yt−1). The next theorem states that (12) and

(14) hold under H0. A drift term and/or a deterministic time trend could be

added to our model, leading to the limiting distributions obtained by Phillips

and Perron (1988). The stochastic unit-root hypothesis can then be tested

by the standard Phillips-Perron tests, in exactly the same way as when the

unit root is not stochastic.

Theorem 5.1 Assume that in Model (5), the zeroes of the polynomial ψ(z)

:= 1 −∑p
i=1 ψiz

i are outside the unit disk, that the stationary solution of the

second equation in (5) satisfies E|ut|2+ν < ∞ for some ν > 0, and that the

assumptions of Theorem 4.2 are satisfied. Under H0 the weak convergences

(12) and (14) hold.
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The proof is given in the appendix. The estimator ŝ2
v can be replaced by the

simpler estimator n−1
∑n

t=1(xt − xt−1)
2. Phillips (1987, Theorem 4.2) shows

that there exists a consistent HAC estimator ϑ̂2
v under the addition moment

assumption E|ut|4+ν <∞. As stated in Theorem 5.1, other estimators than

the HAC may be employed. The choice of the estimators of s2
v and ϑ2

v may

however be important for the behavior of the statistics Zφ and Zt in finite

samples and/or under the alternative φ 6= 0.

For α ∈ (0, 1), let dfφ(α) and dft(α) be the α-quantiles of the distributions

defined in the right-hand sides of (12) and (14). These quantiles are given

in Fuller (1976, p. 371). In particular dfφ(5%) = −8.1 and dft(5%) = −1.95.

The alternative we consider is

H1 : (1 − z)ψ(z) − φz 6= 0 when |z| ≤ 1.

Under H1 we assume that (yt) is the nonanticipative stationary solution of

(5). The following result shows, as an immediate consequence of Theorem

5.1, that the asymptotic level of the standard Phillips-Perron test remains

valid in our framework. The consistency is less trivial, and is shown in the

appendix.

Corollary 5.1 We suppose that the assumptions of Theorem 5.1 are satis-

fied. Under the unit-root assumption H0,

lim
n→∞

P
{

Zφ ≤ dfφ(α)
}

= α and lim
n→∞

P {Zt ≤ dft(α)} = α

and under the stationarity assumption H1,

lim
n→∞

P
{

Zφ ≤ dfφ(α)
}

= 1 and lim
n→∞

P {Zt ≤ dft(α)} = 1.
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The last limit is obtained with the restrictions lim supn→∞ ϑ̂2
v < ∞ a.s and

ϑ̂2
v > 0 a.s for all n. The consistency of the Zφ-based test is obtain whatever

the nonnegative estimator ϑ̂2
v.

5.3 Augmented DF tests

The approach followed by Dickey and Fuller (1979) is based on the pth-order

autoregression defined by the first equation of (5):

∆yt = (φ,ψ′)Xt + ut, where Xt = (yt−1, V
′
t )

′,

Vt = (∆yt−1, . . .∆yt−p)
′ and ψ = (ψ1, . . . , ψp)

′. The least-squares estimator

of (φ,ψ′)′ is defined by

(φ̂, ψ̂
′
)′ =

(

n
∑

t=1

XtX
′
t

)−1 n
∑

t=1

∆ytXt, ψ̂ = (ψ̂1, . . . , ψ̂p)
′.

The following theorem is similar to Theorem 5.1-Corollary 5.1. For the sake of

conciseness we only consider the test based on φ̂, and we omit the studentized

version.

Theorem 5.2 Assume Model (5) satisfies the assumptions of Theorem 5.1.

Under H0

DFφ := n
φ̂

1 − ψ̂1 − · · · − ψ̂p
⇒ (1/2) {W 2(1) − 1}

∫ 1

0
W 2(t)dt

(15)

and, under the additional moment assumption Eu4
t <∞,

√
n
(

ψ̂ −ψ
)

⇒ N
{

0,Σψ := (EVtV
′
t )

−1 (
Eu2

tVtV
′
t

)

(EVtV
′
t )

−1
}

. (16)

We have limn→∞ P
{

DFφ ≤ dfφ(α)
}

= α under the unit-root assumption H0,

and limn→∞ P
{

DFφ ≤ dfφ(α)
}

= 1 under the stationarity assumption H1.
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As in the case of an independent noise, the asymptotic null-distribution of
√
n
(

ψ̂ −ψ
)

is the same whether the variable yt−1 is included or not in

the regression (of course only in the case φ = 0). However, the asymptotic

variance Σψ depends on the noise distribution through the bi coefficients and

the moments of ε (see the example below). This is not surprising because

the asymptotic variance of the LS estimator in stationary ARMA models

is modified when, in the noise assumptions, independence is replaced by

uncorrelatedness (see Francq and Zakoïan, 1998). Interestingly, this is not

the case for the distribution of φ̂ which turns out to be the same as for an

independent noise.

In the simple case p = 1 with φ = ψ1 = 0, b41 < 1/3 and εt ∼ N (0, 1),

straightforward computations show that

Σψ =
(1 − b21)(1 + 3b21 + 12b41)

1 − 3b41
.

It is seen that this asymptotic variance can be arbitrarily bigger (for b1 close

to 1/3) than for an iid noise.

6 Small sample properties of the standard unit-

root tests

We have seen in the previous section that the standard Phillips-Perron and

augmented DF tests are asymptotically valid for testing the stochastic unit-

root hypothesis in Model (5). In other words the asymptotic behaviour of

the tests is not affected by the presence of bilinear terms. In this section we

investigate the finite-sample properties of the tests. The results of Monte-
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Carlo experiments are presented in Tables 1-7 below. We start by analyzing

the properties of the tests under H0.

6.1 Size analysis

In this section, the data generating process (DGP) is (5) with p = 0, q = 1,

φ = 0 and εt ∼ N (0, 1). Five values of b (ranging from 0 to 0.99) and six

sample sizes (ranging from 100 to 3,000) are considered. To save space only

partial results are reported in the tables 1-7, but complementary results are

available from the authors. For each experiment, the number of replications is

N = 10, 000. To estimate the long-run variance ϑ2
v with HAC-type estimators,

the following kernels are used :

QS Andrews Quadratic-Spectral kernel

Parzen Parzen kernel

Fejer Fejer, Bartlett kernel

Tuk-Han Turkey-Hanning kernel

Triang Triangular kernel

See Newey and West (1987) and Andrews (1991) for definitions. To flatten

the spectrum of the residuals and to make the estimation of the asymptotic

variance ϑ2
v simpler, the AR-filtering can be used (see Lee and Philipps, 1993).

In this section, and in the next Section 6.2, the results are obtained without

AR smoothing. The influence of AR-smoothing on the size and power of the

test is considered in Section 6.3 below. To gauge if, over the N replications,

the difference between the relative frequency of rejection, denoted α̂, and the
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nominal level α is significant or not, we compute the statistic

z =
α̂− α

√

α(1 − α)/N
. (17)

SinceN is large, this statistic roughly follows a standard gaussian distribution

when α is the actual size of the test. In Tables 1-7 below, the value of z are

displayed into parenthesis. Table 1 displays finite sample results for the Zφ

test. Results for the Zt test are given in Table 2. The output concerning

the DF test based on the studentized statistics DFt is presented in Table 3

(without constant in the model) and in Table 4 (with a constant).

Analysing Tables 1-4 the following commentaries can be made:

1. For small values of b (corresponding to models with high-order moments

for ut), the observed frequencies of rejection are generally very close to

the nominal levels, even for small sample sizes. This is true for both

tests, although the Zφ test performs slightly better that the Zt test.

2. For values of b that are close to unity (that is close to violation of the

second-order stationarity condition), the size distortion of both tests

is higher than for small b. As expected, the size distortion decreases

when n increases.

3. For small b the results for all five kernels are nearly identical, but for

large b the Turkey-Hanning and the triangular kernels perform better

than the other three kernels.

4. Comparing the results for the Phillips-Perron test in Table 2 with those

of the DF test in Tables 3 and 4, we may notice that for b close to unity
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the size distortion of the DF test is higher, so that the Phillips-Perron

test looks preferable.

Table 5 summarizes results of Monte Carlo experiments for a large sample

size of n = 10, 000. We observe a very small, but still significant, deviation

between the distribution of Zφ and Zt and their asymptotic distribution.

6.2 Power analysis

We turn to the properties of the tests under the stationarity assumption

H1. The DGP is now (5) with p = 0, q = 1, εt ∼ N (0, 1) and φ = −0.1

or φ = −0.01. This corresponds to an AR(1) coefficient a = φ + 1 = 0.9

or a = 0.99. Table 6 gives the relative frequencies of rejection of H0 for

the Philipps-Perron and for the DFt statistics. The results of the Zt-test

are nearly identical for the different kernels, so that only the results for the

triangular kernel (as it performs slightly better at the previous experiments)

are given. From Table 6 we may notice that:

1. For n = 100 the power of both tests increases when b increases.

2. The powers of the two tests are very close to each other.

3. As expected, the powers of the tests are decreasing when the autore-

gressive coefficient is approaching unity, and are getting close to unity

rapidly when the sample size is increasing.
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6.3 Influence of AR-filtering

This section proposes a Monte Carlo analysis of the properties of the Phillips-

Perron Zt test when the long-run asymptotic variance ϑ2
v is estimated using

AR-filtering.

We first investigate the possible size distortion of the test. The Monte

Carlo experiment is conducted as in Section 6.1, with the only difference

that the parameter p in (5) takes the values 0, 1 and 2. For the estima-

tion of the asymptotic long-run variance ϑ2
v, the AR-filtering is used. This

transformation flattens the spectrum at the frequency zero and facilitates the

estimation. The computations are based on

ϑ2
v

2π
= fv(0) =

fw(0)

Φ2(0)
, Φ(B)wt = vt,

where B is the backshift operator, Φ is an AR polynomial of order g, and

f(0) denotes the spectrum at frequency zero for the corresponding process.

The results from the series of experiments, with different combinations of

parameters p and g, are summarized in Table 7. It can be seen that:

1. For g < p, the size distortion of the test is highly significant, and the

situation does not much improve when the sample size increases.

2. For g > p, the distortion of the test is slightly more important than for

g = p, but diminishes when the sample size n or/and the parameter

b increase. For small n, the relative frequency of rejection is often

significantly less than the nominal level (especially for the higher values

of p). Nevertheless the case g > p looks preferable to the case g < p.
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3. For g = p the results are similar for those in Table 2 and are more

precise than for g 6= p.

So, in practical situation where p in (5) is unknown, underparametrization

is more risky than overparametrization (especially when the sample size n is

larger than 500).

The sensitivity of the power of the Zt test to AR-filtering was also con-

sidered, using a DGP of the form (5) with q = 1, p = 1, and φ = −0.5

or ψ1 = 0.3 (the inverted roots of (1 − z)ψ(z) − φz are 0.4 ± 0.3742i, so

that the process is stationary). Monte Carlo experiments not reported here

reveal that the power of the test is not sensitive to the way of estimating the

spectrum at the frequency zero, and is getting close to unity very fast, even

for small sample sizes and for b close to one.

7 Conclusion

In this paper we considered a class of AR models with bilinear innovations,

in the spirit of Charemza et al (2005) but suitable for I(1) series. This

specification can be seen as a stochastic unit-root model. From another

viewpoint this model is also of the GARCH type and displays asymmetries.

By comparison with the standard GARCH, the news impact curve is shifted

both horizontally, and vertically towards zero. We established necessary

and sufficient strict and second-order stationarity conditions. We showed

that the strict stationary solution is geometrically ergodic. Testing for unit

roots in the presence of conditional heteroscedasticity is clearly important

in financial applications, in particular to know if the economic shocks are
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persistent or not. The ergodicity results were used to demonstrate that the

standard Phillips-Perron and augmented DF tests are asymptotically valid in

this framework, which is not the case for other stochastic unit-roots models

recently considered in the literature. Of course other statistical problems are

of interest for the model of this paper. Estimation and testing issues are the

object of a companion paper which is available from the authors.

The output of our Monte Carlo experiments can be summarized as follows.

The presence of bilinear terms is sensible in finite samples, however the size

distortion is tiny for moderate and large sample sizes. Another teaching

from our experiments is that the Phillips-Perron test performs slightly better

than the augmented DF test. From these numerical experiments and the

asymptotic study, we draw the conclusion that the range of application of the

conventional unit-root tests is broader than the sole detection of deterministic

unit-roots.
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APPENDIX

We first establish a lemma, which allows to apply Theorem 2.5 in Bougerol

and Picard (1992a). An affine subspace H of R
q is said to be invariant under

(6) if it satisfies

∀x ∈ H, A1x + c1 ∈ H a.s. (18)

Model (6) is said to be irreducible if R
q is the unique invariant affine sub-

space. Note that this notion of irreducibility is different from the one used

in Section 4.

Lemma 2 Model (6) is irreducible.

Proof. For simplicity, we only give the proof for q = 2. The arguments are

the same for q > 2, but the proof requires tedious notations in the general

case. Let H be an affine subspace of R
2 satisfying (18). By stationarity, we

have, ∀x = (x1, x2)
′ ∈ H,

A2(A1x+ c1) + c2 =





ε2(b
2
1x1ε1 + b1b2x2ε1 + b2x1 + b1ε1 + 1)

ε1(b1x1 + b2x2 + 1)



 ∈ H a.s.

(19)

Taking the expectation of the vector defined in (19), we obtain 0 ∈ H. Taking

x = 0 in (18) and (19), we obtain




0

0



 ∈ H,





ε1

0



 ∈ H a.s.,





ε2(ε1b1 + 1)

ε1



 ∈ H a.s. (20)

Since σε > 0, ε1 is not almost surely equal to 0. Thus (20) entails that the

linear subspace H = R
2.

2
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Proof of Lemma 1. The moment generating function of Y = logX is given

by M(u) = EeuY = EXu. The function M is continuously differentiable over

[0, r] and we have, for u > 0

M(u) −M(0)

u
=

∫

euy − 1

u
dPY (y). (21)

We begin to show that

for all τ > 0, and for all u ∈]0, τ ],

∣

∣

∣

∣

euy − 1

u

∣

∣

∣

∣

≤ eτ |y|

τ
. (22)

This result is obtained, for instance, by considering the function defined by

g(v) = evy−1
v

for v 6= 0 and g(0) = y. The function g being increasing on R,

we have for y ≥ 0,
euy − 1

u
≤ eτy − 1

τ
≤ eτy

τ
,

and for y < 0
1 − euy

u
≤ −y ≤ e−τy

τ

which establishes (22). Now note that

∫

eτ |y|

τ
dPY (y) =

Eeτ logX + 1

τ
≤ EXr + 1

τ
<∞

when τ ∈]0, r]. By the Lebesgue theorem, it follows that the right-derivative

of M at 0 is, in view of (21)

∫

ydPY (y) = E(logX) < 0.

Since M(0) = 1, there exists s > 0 such that M(s) = EX s < 1.

2
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Proof of Theorem 4.2. To establish the geometric ergodicity of (ut) defined

by (8) we verify the three conditions of Theorem 4.1.

Let for x = (x1, . . . , xq)
′ ∈ R

q, ψ(x) = 1 +
∑q

i=1 bixi. We have

ut = ψ(ut−1)εt.

Let λ denote the Lebesgue measure on R. For any bounded continuous

function h,

E(h(ut)|ut−1 = x) =

∫

h(ψ(x)ε, x1, . . . , xq−1)f(ε)λ(dε)

is a continuous function of x = (x1, . . . , xq), by continuity of ψ and h and by

application of the Lebesgue theorem. It follows that (ut) is a Feller chain.

Now we will check that (ut) is λq-irreducible, where λq is the Lebesgue

measure on (Rq,B(Rq)). To avoid cumbersome notations we will only es-

tablish this result when q = 2, the extension to higher dimensions being

straightforward. For B ∈ B(R2) and x = (x1, x2) ∈ R
2 we have

P 2(x,B) = P {(u2, u1) ∈ B} , where u1 = ε1ψ(x), u2 = ε2ψ(u1, x1). (23)

First consider x such that ψ(x) 6= 0. Let Tx : (ε1, ε2) 7→ (u1, u2). Let ε01

be the point such that ψ(u0
1, x1) = 0 where u0

1 = ψ(x)ε01. The mapping Tx

is one-to-one from (R \ {ε01}) × R to (R \ {u0
1}) × R, and admits continuous

derivatives. Since (ε1, ε2) admits a density, the change-of-variables theorem

shows that (u1, u2) also admits a density. In view of (23), it follows that

P 2(x,B) > 0 whenever λ2(B) > 0.

Now consider x such that ψ(x) = 0. The previous argument fails because

the distribution of (u1, u2) = (0, u2) has no density with respect to λ2. The

problem is easily solved by considering three-steps transition probabilities,
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and by showing that (u2, u3) has a density whenever ψ(0, x1) 6= 0. When

ψ(x) = ψ(0, x1) = 0, four-steps transition probabilities allow to conclude

that (u3, u4) has a density. Hence for all x, if λ2(B) > 0 then P t(x,B) > 0

for some t ∈ {2, 3, 4}. This completes the proof of (i).

To prove (ii) we will still limit ourselves to the case q = 2. Let C be a

compact subset of R
2 such that λ2(C) > 0 and ψ(x) 6= 0 for any x ∈ C.

We have just seen that, for any x ∈ C, P 2(x,B) > 0 whenever λ2(B) > 0.

Moreover, by continuity of the function x → P 2(x,B), the compactness of

C entails that infx∈C P
2(x,B) = P 2(x∗, B) > 0, for some x∗ ∈ C. Setting

ν2(B) = P 2(x∗, B), we define a non-trivial measure on B(R2). It follows that

C is a ν2-small set. Now, consider the five-step transitions. We have

P 5(x,B) ≥
∫

C

P 3(x, dy)P 2(y, B)

≥ P 2(x∗, B) inf
x∈C

P 3(x, C) = P 2(x∗, B)P 3(x∗∗, C),

for some x∗∗ ∈ C. By arguments similar to those used in the proof of step (i),

we show that P 3(x, C) > 0 for all x ∈ C, and thus we have P 3(x∗∗, C) > 0.

Hence C is also ν5-small, with ν5 = P 3(x∗∗, C)ν2. We can conclude that

m = 2 and m = 5 belong to the set EC defined in Section 4.1. Hence d = 1

and the aperiodicity of (ut) is established.

Finally, we will verify condition (iii). Since γ(A) < 0, there exists an

integer k > 0 such that E(log ‖AtAt−1 . . . At−k‖) < 0 (see the first definition

of γ(A) given in (7) and use the strict stationarity of the sequence (At)). On

the other hand, we have

E(‖AtAt−1 . . . At−k‖) ≤ E‖At‖E‖At−1‖ . . . E‖At−k‖

≤ (E‖At‖)k+1 <∞ (24)
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using the facts that the norm is multiplicative and that the matrices At are

iid. Lemma 1 entails the existence of some s ∈]0, 1[ such that

ρ := E(‖AtAt−1 . . . At−k‖s) < 1. (25)

By a recursive expansion of the first equality in (6) we get

ut = ct + Atct−1 + · · · + At . . . At−k+1ct−k + At . . . At−kut−k−1

and thus, the norm being multiplicative,

‖ut‖ ≤
k
∑

i=0

‖At . . . At−i+1‖‖ct−i‖ + ‖At . . . At−k‖‖ut−k−1‖,

the first term in the sum, for i = 0, being equal to ‖ct‖ by convention.

Because s ∈ [0, 1), it follows from the elementary inequality (a+b)s ≤ as+bs,

for a ≥ 0 and b ≥ 0, that

‖ut‖s ≤
k
∑

i=0

‖At . . . At−i+1‖s‖ct−i‖s + ‖At . . . At−k‖s‖ut−k−1‖s.

Taking the expectations in both sides, conditionally on ut−k−1 = x, yields

E(‖ut‖s | ut−k−1 = x) ≤
k
∑

i=0

E‖At . . . At−i+1‖sE‖ct−i‖s + ρ‖x‖s

≤ K + ρ‖x‖s. (26)

The first inequality uses the independence between the At−j and ct−i for i > j,

and the independence between these matrices and ut−k−1 for k ≥ i. The

latter independence is a consequence of the fact that the stationary solution

is nonanticipative. The second inequality in (26) follows from arguments

similar to those used to show (24). Let β > 0 such that 1 − β > ρ and let C

the subset of [0,+∞)q defined by

C = {x | (1 − β − ρ)‖x‖s ≤ K + β}.
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Clearly C 6= ∅ since K+β > 0. Moreover C is compact because 1−β−ρ > 0.

Thus the right-hand side of (26) is bounded by a constant over C, and it is

bounded by (1 − β)‖x‖s − β over the complement of C. It follows that

condition (iii) in Theorem 4.1 is verified, with g(x) = ‖x‖s, m = k + 1, and

β and C chosen as indicated above.

2

Proof of Theorem 5.1. Note that the existence of E|ut|2+ν entails (10).

First consider the case p = 0. Then vt = ut, and i)–iv) are straightforwardly

satisfied with ϑ2
v = s2

v = σ2
ε/(1 −∑q

i=1 b
2
iσ

2
ε ). Thus, when the DGP does not

contain augmented variables, the result directly follows from Phillips (1987).

In the case p > 0, it is not obvious to know whether vt = ψ−1(B)ut :=
∑∞

i=0 ciut−i inherits the mixing property of (ut) or not. Fortunately, condi-

tions i)-iv) are not necessary for (12) and (14). Conditions i)-iv) are those

given by Herrndorf (1984) to establish the functional central limit theorem

(FCLT) for (vt). Other conditions ensuring the FCLT rely on the concept

of near-epoch dependence (NED), see Davidson (1994). The process (vt) is

geometrically L2-NED on the process (ut) because the sequence

‖vt − E (vt|ut−m, . . . , ut+m)‖2 =

∞
∑

i=m+1

|ci| ‖ut−i − E (ut−i|ut−m, . . . , ut+m)‖2

≤ 2‖ut‖2

∞
∑

i=m+1

|ci|

tends to zero at an exponential rate as m→ ∞. In view of this property, the

exponential decrease of the α-mixing coefficients of (ut), and the fact that

iv) holds with

ϑ2
v =

σ2
ε

(1 −∑p
i=1 b

2
iσ

2
ε )ψ

2(1)
> 0,
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we can conclude from Corollary 29.7 in Davidson (1994), that

(

1√
nϑv

S[nt]

)

t∈[0,1]

⇒ (W (t))t∈[0,1] , (27)

where Sk = v1 + . . . + vk and [·] denotes the integer part. As shown by

Phillips (1987), (12) and (14) are direct consequences of the FCLT (27) and

of the continuous mapping theorem, which completes the proof.

2

Proof of Corollary 5.1. Under H1 we have

yt = yt−1 + φyt−1 +

p
∑

i=1

ψi∆yt−i + ut = ψ∗−1(B)ut =
∑

i≥0

πiut−i,

where ψ∗(z) = (1− z)ψ(z)− φz. The process (yt) is then stationary, ergodic

and centered. Thus with probability one, we have

ân → a∗ :=
Eytyt−1

Ey2
t

< 1,

where the inequality follows from the Cauchy-Schwarz inequality and the fact

that the innovations of (yt) are non degenerated. Let v̂∗t = yt − ânyt−1 and

v∗t = yt − a∗yt−1. The ergodic theorem also shows that

ŝ2
v =

1

n− 1

n
∑

t=1

v∗2t =
1

n− 1

n
∑

t=1

y2
t −

2ân
n− 1

n
∑

t=1

ytyt−1 +
â2
n

n− 1

n
∑

t=1

y2
t−1

→ s2
v∗ = Ev∗2t = (1 − a∗2)Ey2

t .

Therefore we have almost surely

lim sup
n→∞

Zφ/n = lim sup
n→∞

{

ân − 1 − 1
2
n

∑n
t=1 y

2
t

(ϑ̂2
v − ŝ2

v)

}

≤ a∗ − 1 +
s2
v∗

2Ey2
t

= −(1 − a∗)

(

1 − 1 + a∗

2

)

< 0,
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which shows the consistency of the Zφ-based test. The consistency of the

Zt-based test comes from

lim sup
n→∞

Zt/
√
n ≤

√

Ey2
t

lim supn→∞ ϑ̂v
(a∗ − 1)

(

1 − 1 + a∗

2

)

< 0.

2

Proof of Theorem 5.2. We have

Λ





φ̂

ψ̂ − ψ



 =

(

Λ−1

n
∑

t=1

XtX
′
tΛ

−1

)−1

Λ−1

n
∑

t=1

utXt (28)

where Λ = Diag(n,
√
n, . . . ,

√
n). We have seen that the functional CLT

(27) applies to vt := ∆yt = ψ−1(B)ut. Therefore the analogue of the results

(a) and (b) of Theorem 3.1 in Phillips (1987) holds. Using also the ergodic

theorem, we deduce

Λ−1

n
∑

t=1

XtX
′
tΛ

−1 ⇒





Eu2
t

ψ2(1)

∫ 1

0
W 2(t)dt 0′p

0p EVtV
′
t



 .

Using Proposition 17.2 in Hamilton (1994) and the functional CLT applied

to (ut),

1

n

n
∑

t=1

utyt−1 =
1

n

n
∑

t=1

ut(y0 + v1 + · · · + vt−1)

=
1

nψ(1)

n
∑

t=1

ut(u1 + · · ·+ ut−1) + oP (1)

⇒ Eu2
t

2ψ(1)

{

W 2(1) − 1
}

.

Moreover it is easy to show that ψ̂(1) = 1 − ψ̂1 − · · · − ψ̂p → ψ(1) almost

surely. The convergence (15) follows. The convergence (16) comes from the
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CLT applied to square integrable stationary martingale difference (utVt):

1√
n

n
∑

t=1

utVt ⇒ N
(

0, Eu2
tVtV

′
t

)

.

2
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 = 0.01  = 0.05  = 0.10 

n kernel b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99

QS 0.010 
(0.101) 

0.026 
(16.081) 

0.054 
(1.652) 

0.075 
(11.333) 

0.105 
(1.6667) 

0.129 
(9.500) 

Parzen 0.011 
(0.603) 

0.025 
(15.277)

0.053 
(1.468)

0.072 
(10.140) 

0.104 
(1.433) 

0.126 
(8.733) 

Fejer 0.010 
(0.201) 

0.028 
(17.789)

0.052 
(0.918)

0.076 
(11.930) 

0.103 
(1.067) 

0.129 
(9.700) 

Tuk-Han 0.012 
(1.809) 

0.024 
(14.473)

0.052 
(1.055)

0.065 
(6.791) 

0.103 
(0.933) 

0.113 
(4.167) 

100

Triang 0.011 
(1.407) 

0.025 
(14.597)

0.052 
(0.872)

0.069 
(8.534) 

0.103 
(0.967) 

0.119 
(6.300) 

QS 0.010 
(0.201) 

0.020 
(10.452) 

0.050 
(0.138) 

0.065 
(6.974) 

0.100 
(0.000) 

0.113 
(4.200) 

Parzen 0.010 
(-0.201) 

0.020 
(9.849) 

0.050 
(-0.046)

0.064 
(6.470) 

0.100 
(-0.033) 

0.110 
(3.467) 

Fejer 0.010 
(-0.201) 

0.021 
(11.055) 

0.050 
(-0.138)

0.066 
(7.433) 

0.100 
(0.067) 

0.114 
(4.667) 

Tuk-Han 0.010 
(0.201) 

0.015 
(4.824) 

0.050 
(-0.046)

0.055 
(2.157) 

0.100 
(0.200) 

0.098 
(-0.537) 

500

Triang 0.010 
(-0.201) 

0.016 
(6.432) 

0.050 
(-0.092)

0.058 
(3.671) 

0.100 
(0.233) 

0.102 
(0.700) 

QS 0.012 
(2.412) 

0.019 
(8.945) 

0.050 
(-0.184) 

0.062 
(5.644) 

0.099 
(-0.500) 

0.115 
(4.900) 

Parzen 0.012 
(2.312)

0.018 
(8.241) 

0.050 
(-0.046)

0.060 
(4.726) 

0.098 
(-0.533) 

0.113 
(4.367) 

Fejer 0.012 
(2.312)

0.019 
(9.045) 

0.050 
(-0.046)

0.061 
(5.231) 

0.098 
(-0.533) 

0.115 
(4.900) 

Tuk-Han 0.013 
(2.613)

0.015 
(5.025) 

0.049 
(-0.275)

0.053 
(1.193) 

0.098 
(-0.800) 

0.105 
(1.500) 

1000

Triang 0.013 
(2.714)

0.016 
(5.528) 

0.049 
(-0.413)

0.055 
(2.065) 

0.098 
(-0.733) 

0.106 
(2.067) 

QS 0.010 
(-0.402) 

0.017
(7.437) 

0.048 
(-1.285) 

0.060
(4.726) 

0.101 
(0.200) 

0.109
(3.133) 

Parzen 0.010 
(-0.402) 

0.016
(6.131) 

0.048 
(-1.101) 

0.059
(3.992) 

0.101 
(0.200) 

0.109
(2.833) 

Fejer 0.009 
(-0.804) 

0.016
(6.030) 

0.048 
(-1.101) 

0.059
(4.221) 

0.101 
(0.367) 

0.109
(2.933) 

Tuk-Han 0.009 
(-0.804) 

0.013
(3.417) 

0.049 
(-0.872) 

0.054
(1.927) 

0.100 
(0.067) 

0.104
(1.233) 

2000

Triang 0.010 
(-0.704) 

0.014
(3.618) 

0.049 
(-0.734) 

0.055
(2.202) 

0.100 
(0.100) 

0.104
(1.333) 

QS 0.012 
(1.809) 

0.018
(7.538) 

0.052 
(0.964) 

0.062
(5.598) 

0.103 
(1.000) 

0.114
(4.700) 

Parzen 0.012 
(1.809) 

0.017
(6.633) 

0.052 
(1.009) 

0.061
(5.047) 

0.103 
(0.967) 

0.113
(4.200) 

Fejer 0.012 
(1.508) 

0.016
(6.231) 

0.052 
(1.055) 

0.061
(5.047) 

0.103 
(1.000) 

0.112
(4.033) 

Tuk-Han 0.012 
(2.010) 

0.014
(3.819) 

0.053 
(1.285) 

0.055
(2.157) 

0.103 
(1.000) 

0.106
(2.100) 

3000

Triang 0.013 
(2.513) 

0.013
(3.417) 

0.053 
(1.468) 

0.056
(2.569) 

0.103 
(1.000) 

0.106
(1.967) 

Table 1: Rejection relative frequencies of the unit-root hypothesis with the Zφ

Phillips-Perron test, where the DGP is a unit-root process with bilinear distur-

bances (Model (5) with p = 0, φ = 0 and q = 1). The values of the z statistic are

given into parenthesis (z ∼ N (0, 1) if the nominal level is correct).
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 = 0.01  = 0.05  = 0.10 

n kernel b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99

QS 0.011 
(1.006) 

0.028 
(17.890) 

0.055 
(2.157) 

0.077 
(12.297) 

0.109 
(2.900) 

0.131 
(10.467) 

Parzen 0.011 
(0.905) 

0.027 
(17.287) 

0.055 
(2.065) 

0.075 
(11.287) 

0.109 
(3.100) 

0.129 
(9.767) 

Fejer 0.011 
(0.603) 

0.029 
(19.096) 

0.054 
(1.744) 

0.079 
(13.214) 

0.108 
(2.567) 

0.132 
(10.500) 

Tuk-Han 0.013 
(2.513) 

0.026 
(15.980) 

0.053 
(1.376) 

0.069 
(8.626) 

0.109 
(2.900) 

0.116 
(5.400) 

100

Triang 0.012 
(1.508) 

0.026 
(15.880) 

0.053 
(1.514) 

0.072 
(10.048) 

0.106 
(1.933) 

0.122 
(7.233) 

QS 0.010 
(-0.201) 

0.021 
(10.854) 

0.050 
(-0.138) 

0.064 
(6.240) 

0.102 
(0.533) 

0.111 
(3.733) 

Parzen 0.010 
(-0.402) 

0.020 
(10.452) 

0.050 
(-0.138) 

0.062 
(5.506) 

0.102 
(0.533) 

0.110 
(3.267) 

Fejer 0.010 
(-0.302) 

0.021 
(11.156) 

0.049 
(-0.505) 

0.064 
(6.424) 

0.102 
(0.500) 

0.112 
(4.133) 

Tuk-Han 0.010 
(0.402) 

0.016 
(5.930) 

0.051 
(0.275) 

0.054 
(2.019) 

0.100 
(0.000) 

0.098 
(-0.833) 

500

Triang 0.010 
(0.302) 

0.017 
(7.337) 

0.050 
(-0.092) 

0.057 
(3.349) 

0.100 
(-0.100) 

0.102 
(0.500) 

QS 0.013 
(2.915) 

0.020 
(9.849) 

0.051 
(0.229) 

0.062 
(5.598) 

0.097 
(-0.933) 

0.112 
(4.100) 

Parzen 0.013 
(2.915) 

0.018 
(8.241) 

0.051 
(0.321) 

0.061 
(4.864) 

0.097 
(-1.033) 

0.111 
(3.667) 

Fejer 0.013 
(2.814) 

0.019 
(8.945) 

0.051 
(0.275) 

0.062 
(5.322) 

0.097 
(-1.000) 

0.112 
(4.133) 

Tuk-Han 0.013 
(2.915) 

0.015 
(4.523) 

0.051 
(0.505) 

0.052 
(0.918) 

0.098 
(-0.733) 

0.101 
(0.300) 

1000

Triang 0.013 
(2.814) 

0.015 
(5.226) 

0.051 
(0.367) 

0.053 
(1.606) 

0.098 
(-0.800) 

0.105 
(1.633) 

QS 0.010 
(-0.302) 

0.018
(8.040) 

0.048 
(-0.734) 

0.060
(4.451) 

0.101 
(0.167) 

0.109
(2.900) 

Parzen 0.010 
(-0.302) 

0.016
(6.432) 

0.048 
(-0.872) 

0.059
(3.946) 

0.101 
(0.200) 

0.107
(2.300) 

Fejer 0.010 
(0.000) 

0.016
(6.432) 

0.048 
(-0.826) 

0.060
(4.451) 

0.101 
(0.267) 

0.108
(2.500) 

Tuk-Han 0.010 
(-0.503) 

0.014
(3.819) 

0.049 
(-0.688) 

0.054
(1.789) 

0.100 
(-0.033) 

0.102
(0.833) 

2000

Triang 0.010 
(-0.302) 

0.014
(3.618) 

0.049 
(-0.505) 

0.055
(2.111) 

0.100 
(-0.100) 

0.103
(0.900) 

QS 0.012 
(2.312) 

0.018
(8.241) 

0.052 
(0.964) 

0.062
(5.368) 

0.103 
(1.000) 

0.111
(3.567) 

Parzen 0.012 
(2.412) 

0.017
(7.236) 

0.052 
(1.009) 

0.060
(4.588) 

0.103 
(0.967) 

0.109
(3.033) 

Fejer 0.012 
(2.111) 

0.017
(6.834) 

0.053 
(1.193) 

0.060
(4.726) 

0.103 
(1.000) 

0.108
(2.533) 

Tuk-Han 0.013 
(2.714) 

0.014
(4.020) 

0.053 
(1.285) 

0.054
(1.927) 

0.104 
(1.200) 

0.103
(0.900) 

3000

Triang 0.012 
(2.412) 

0.014
(3.920) 

0.053 
(1.331) 

0.054
(1.881) 

0.104 
(1.300) 

0.102
(0.633) 

Table 2: As Table 1, but with the Zt Phillips-Perron test.
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 = 0.01  = 0.05  = 0.10 

n b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99

100 0.010
(0.402) 

0.034
(23.618) 

0.053
(1.193) 

0.086
(16.656) 

0.104
(1.433) 

0.142
(13.933) 

500 0.010
(-0.101) 

0.028
(18.292) 

0.049
(-0.551) 

0.075
(11.700) 

0.101
(0.333) 

0.126
(8.667) 

1000 0.013
(2.513) 

0.028
(17.990) 

0.051
(0.275) 

0.077
(12.388) 

0.097
(-0.967) 

0.126
(8.733) 

Table 3: As Table 1, but with the unit-root DFt-statistics (without constant in

the model).

 = 0.01  = 0.05  = 0.10 

n b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99

100 0.011
(1.106) 

0.042
(32.262) 

0.056
(2.799) 

0.101
(23.446) 

0.107
(2.267) 

0.157
(19.000) 

500 0.011
(0.603) 

0.043
(32.764) 

0.048
(-0.964) 

0.103
(24.135) 

0.098
(-0.767) 

0.156
(18.700) 

1000 0.011
(1.307) 

0.042
(32.262) 

0.052
(0.873) 

0.104
(24.869) 

0.102
(0.667) 

0.155
(18.400) 

Table 4: As Table 3, but a constant is included in the model
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 = 0.01  = 0.05  = 0.10 

statistics kernel b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99

QS 0.008 
(-1.910) 

0.014 
(4.121) 

0.048 
(-0.918) 

0.056 
(2.524) 

0.101 
(0.267) 

0.106 
(2.133) 

Parzen 0.008 
(-2.111 

0.014 
(4.322) 

0.048 
(-1.009) 

0.055 
(2.294) 

0.101 
(0.267) 

0.105 
(1.667) 

Fejer 0.008 
(-2.111) 

0.014 
(4.121) 

0.048 
(-0.918) 

0.055 
(2.111) 

0.101 
(0.333) 

0.104 
(1.433) 

Tuk-Han 0.008 
(-1.910) 

0.013 
(2.714) 

0.048 
(-1.055) 

0.052 
(1.147) 

0.101 
(0.100) 

0.102 
(0.567) 

Z

Triang 0.008 
(-1.709) 

0.012 
(1.608) 

0.048 
(-0.780) 

0.050 
(0.092) 

0.101 
(0.067) 

0.099 
(-0.300) 

QS 0.008 
(-1.608) 

0.014 
(4.020) 

0.048 
(-0.380) 

0.055 
(1.020) 

0.101 
(0.367) 

0.105 
(1.533) 

Parzen 0.008 
(-1.608) 

0.013 
(3.317) 

0.048 
(-0.380) 

0.054 
(0.800) 

0.101 
(0.300) 

0.103 
(1.133) 

Fejer 0.008 
(-1.608) 

0.014 
(4.422) 

0.048 
(-0.360) 

0.053 
(0.600) 

0.101 
(0.400) 

0.102 
(0.833) 

Tuk-Han 0.008 
(-1.809) 

0.012 
(2.211) 

0.048 
(-0.460) 

0.052 
(0.320) 

0.101 
(0.333) 

0.099 
(-0.233) 

tZ

Triang 0.008 
(-1.709) 

0.012 
(1.910) 

0.048 
(-0.370) 

0.049 
(-0.160) 

0.101 
(0.200) 

0.096 
(-1.200) 

Table 5: As Tables 1 and 2, but for n = 10, 000.
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 = 0.01  = 0.05  = 0.10 

a = 0.90 a = 0.99 a = 0.90 a = 0.99 a  = 0.90 a = 0.99 n b

tZ DFt tZ DFt tZ DFt tZ DFt tZ DFt tZ DFt

0.00 0.328 0.325 0.018 0.017 0.756 0.766 0.083 0.081 0.915 0.924 0.167 0.160

0.25 0.327 0.334 0.019 0.018 0.744 0.772 0.082 0.081 0.910 0.924 0.165 0.161

0.50 0.356 0.365 0.019 0.021 0.771 0.774 0.085 0.086 0.918 0.918 0.164 0.167

0.75 0.381 0.402 0.021 0.028 0.775 0.775 0.090 0.103 0.919 0.909 0.162 0.182

100

0.99 0.417 0.438 0.038 0.050 0.773 0.752 0.107 0.129 0.918 0.889 0.187 0.214

0.00 0.984 0.990 0.034 0.032 1.000 1.000 0.149 0.146 1.000 1.000 0.280 0.280

0.25 0.984 0.985 0.034 0.033 1.000 1.000 0.148 0.147 1.000 1.000 0.275 0.274

0.50 0.983 0.976 0.033 0.035 0.999 0.998 0.144 0.152 1.000 0.999 0.277 0.285

0.75 0.980 0.959 0.041 0.049 0.998 0.995 0.156 0.172 0.999 0.998 0.282 0.299

250

0.99 0.973 0.927 0.056 0.079 0.996 0.987 0.167 0.205 0.997 0.995 0.286 0.327

0.00 1.000 1.000 0.082 0.078 1.000 1.000 0.317 0.315 1.000 1.000 0.525 0.523

0.25 1.000 1.000 0.079 0.079 1.000 1.000 0.315 0.317 1.000 1.000 0.521 0.523

0.50 1.000 1.000 0.080 0.085 1.000 1.000 0.307 0.317 1.000 1.000 0.523 0.524

0.75 1.000 0.999 0.085 0.103 1.000 1.000 0.316 0.332 1.000 1.000 0.524 0.540

500

0.99 1.000 0.995 0.114 0.156 1.000 0.999 0.329 0.379 1.000 0.999 0.536 0.559

0.00 1.000 1.000 0.312 0.307 1.000 1.000 0.750 0.754 1.000 1.000 0.916 0.920

0.25 1.000 1.000 0.305 0.307 1.000 1.000 0.753 0.755 1.000 1.000 0.916 0.922

0.50 1.000 1.000 0.306 0.310 1.000 1.000 0.756 0.760 1.000 1.000 0.921 0.925

0.75 1.000 1.000 0.312 0.336 1.000 1.000 0.756 0.756 1.000 1.000 0.924 0.916

1000

0.99 1.000 0.998 0.346 0.401 1.000 0.999 0.772 0.743 1.000 0.999 0.931 0.888

Table 6: As Tables 1 and 3, but the DGP is a stationary AR(1) process with an

autoregressive coefficient a and a bilinear noise with coefficient b
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p

g

p = 0

t ty u

p = 1

10.5t t ty u 1 20.6 0.08

p = 2

y t t t ty y y u

b = 0.25 b = 0.99 b = 0.25 b = 0.99 

n = 100 0.014 

(-16.564)

0.018 

(-14.774) 

n = 100 0.016 

(-15.554)

0.020 

(-13.903) 

g = 0

no  

AR-

filtering 

see Table 2 

n = 1000 0.028 

(-10.232) 

0.028 

(-10.003) 

n = 1000 0.030 

(-9.268)

0.030 

(-9.039) 

b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99 

n  = 100 0.055 

(1.000)

0.076 

(5.120) 

n = 100 0.051 

(0.367)

0.060 

(4.680) 

n = 100 0.071 

(9.590)

0.081 

(14.361) 

g = 1

n  = 1000 0.051 

(0.180) 

0.054 

(0.760) 

n = 1000 0.050 

(0.184) 

0.052 

(0.964) 

n = 1000 0.062 

(5.644)

0.064 

(5.561) 

b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99 

n  = 100 0.057 

(1.460)

0.070 

(3.920) 

n = 100 0.045 

(-2.294)

0.043 

(-3.120) 

n  = 100 0.043 

(-3.028)

0.042 

(-3.625) 

g = 2

n  = 1000 0.051 

(0.280) 

0.053 

(0.520) 

n  = 1000 0.051 

(0.413) 

0.048 

(-1.009) 

n  = 1000 0.051 

(0.367) 

0.047 

(-1.468) 

b = 0.25 b = 0.99 b = 0.25 b = 0.99 b = 0.25 b = 0.99 

n  = 100 0.065 

(2.920)

0.079 

(5.700) 

n  = 100 0.029 

(-9.498)

0.032 

(-8.351) 

n  = 100 0.029 

(-9.773)

0.030 

(-9.993) 

g = 5

n  = 1000 0.052 

(0.420) 

0.051 

(0.140) 

n = 1000 0.048 

(-0.918) 

0.043 

(-3.166) 

   n = 1000 0.048 

(-0.964) 

0.043 

(-3.395) 

Table 7: Rejection relative frequencies of the unit-root hypothesis H0 for the

Phillips-Perron Zt test with AR-filtering of order g. The nominal significance level

is 5%
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