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ABSTRACT. This paper considers the dynamics for interest rate processes within a

multi-factor Heath, Jarrow and Morton (1992) specification. Despite the flexibility

of and the notable advances in theoretical research about the HJM model, the num-

ber of empirical studies is still inadequate. This paucity is principally because of the

difficulties in estimating models in this class, which are not only high-dimensional,

but also nonlinear and involve latent state variables. Thispaper treats the estimation

of a fairly broad class of HJM models as a nonlinear filtering problem, and adopts

the local linearization filter of Jimenez and Ozaki (2003), which is known to have

some desirable statistical and numerical features, to estimate the model via the max-

imum likelihood method. The estimator is then applied to theU.S., the U.K. and the

Australian markets. Different two- and there-factor models are are found to be the

best for each market, with the factors being the level, the slope and the “twist” effect.

The contribution of each factor towards overall variability of the interest rates and the

financial reward each factor claims are found to differ considerably from one market

to another.

Key words: Term structure; Heath-Jarrow-Morton; Multifactor; Filtering; Local

Linearization;
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1. INTRODUCTION

Management of interest rate risk is of crucial importance tofinancial institutions and

corporations. The volatility structure of this interest rate market plays a crucial role

in assessing and managing the value as well as the risk of bondand interest rate de-

rivative portfolios. Various interest rate models have been considered, amongst which

the Heath-Jarrow-Morton (1992) (hereafter HJM) frameworkprovides a very flexible

framework for interest rate modelling. Despite its nice theoretical flexibility, the appli-

cation of the HJM class of models to practical problems is hindered by the difficulty

of model estimation. This is principally due to the fact thatthe underlying state vari-

ables of the HJM model are un-observable quantities, and thedynamics are usually

non-Markovian and non-linear in their (latent) state variables.

Theoretical research on HJM models has shown that for a fairly broad family of

volatility functions, the underlying stochastic system can be Markovianized, thereby

easing the computational complexity involved. However, the problems of nonlinearity

and the existence of latent variables still exist, and the empirical analysis of HJM mod-

els has centered around certain volatility functions that lead to convenient properties

for the system, for example, the class of affine or square rootaffine volatilities.

It should also be noted that the estimation of stochastic models is already a chal-

lenging task for systems with affine or square root affine volatilities. The estimation

techniques rely on the three basic tools: maximum likelihood, the method of moments

and filtering techniques. The maximum likelihood estimator(MLE) is a method of

choice for models whose likelihood is tractable, and was first applied by Chen and

Scott (1993) and Pearson and Sun (1994). In many cases of interest the likelihood

function is not available, and various approximation techniques are used. These in-

clude the Hermite expansion technique by Aı̈t-Sahalia (1999, 2002, 2003), the simu-

lated maximum likelihood by Brandt and Santa-Clara (2002),Brandt and He (2002),

and the related Markov Chain Monte Carlo (MCMC) method by Jacquier et al. (1994),

Kim et al. (1998), Eraker (2001) and Elerian et al. (2001). Research that uses the

method of moments principle include the generalized methodof moments (GMM) by

Ho et al. (1996), the simulated method of moments (SMM) by Duffie and Singleton

(1993), the indirect inference by Broze et al. (1998), the efficient method of moments

(EMM) by Gallant and Tauchen (1996, 1997, 1998), the robust GMM by Dell’Aquila

et al. (2003), and the GMM based on conditional characteristics functions by Single-

ton (2001). Filtering techniques, such as the Kalman filter,have recently been applied

to estimate linear term structure models, such as in Jegadeesh and Pennacchi (1996),

Geyer and Pichler (1999) and Rossi (2004).
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Zhou (2001) study the finite sample properties of the maximumlikelihood and the

method of moments estimators for square-root interest ratediffusion models. The per-

formance of the EMM method is found to be mixed even under an univariate setting.

Under a multivariate setting, this performance can deteriorate. Recently Duffee and

Stanton (2004) also analyze the performance of different estimation methods for dy-

namic term structure models. They find that the standard MLE does a very poor job of

estimating the parameters that determine expected changesin interest rates. Further-

more they find that the EMM estimator is an unacceptable alternative, even where the

MLE performs well. They conclude that the Kalman filter is a reasonable choice, even

in the non-Gaussian setting where the filter is not exact. In that case, they advocate the

use of a variant of the Kalman filter, where the updating equation for the state variables

is a linearized version of the drift using its first derivative.

In light of the findings of Zhou (2001) and Duffee and Stanton (2004) this paper

pursues further the filtering approach. Even though the linear filtering and prediction

problem has well been understood after the important work ofKalman (1960) and

Kalman and Bucy (1961), nonlinear filtering is still an active research area. Various

approximation for nonlinear filters have been proposed, such as the Extended Kalman

filter, the Iterated Extended Kalman filter, the Modified Gaussian filter. As these filters

are quite computationally unstable, Ozaki (1993) introduced a Local Linearization fil-

ter, which was later developed further by Jimenez and Ozaki (2002, 2003) for systems

whose volatility structure is dependent on the state variables (i.e. systems with multi-

plicative noise). The main idea is to linearize the system dynamics according to the Itô

formula, utilizing both the drift and the diffusion terms, to better take into account the

stochastic behaviour of the system, and then to apply the (readily available) optimal

linear filter. We advocate the use of this filter as it has been shown by Shoji (1998) to

have good bias properties and by Jimenez et al. (1999) to havea number of computa-

tional advantages. The estimation method is able to exploitboth the time series and

cross sectional information of the yield curve.

We empirically investigate different multi-factor interest rate models and apply the

local linearization filter to analyze the volatility structure of the U.S., the U.K, and

the Australian markets. These markets have been chosen to represent different regions

in the world. The rest of the paper is organized as follows. Section 2 introduces

the model. The econometric implication of the model and the proposed estimation

method are discussed in Section 3. Empirical results are then presented in Section 4,

and Section 5 concludes the paper.
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2. MODEL FRAMEWORK

The general framework for the interest rate models considered in this paper is in-

troduced in Heath, Jarrow and Morton (1992), where the instantaneous forward rates

r(t, x) (the rate that can be contracted at timet for instantaneous borrowing/lending at

future timet+ x) are assumed to satisfy SDEs of the form1

r(t, x) = r(0, t+ x) +

∫ t

0
σ(s, t+ x)′ [σ̄(s, t+ x) − φ(s)] ds

+

∫ t

0
σ(s, t+ x)′dW (s),

(2.1)

where

σ̄(s, t+ x) =

∫ t+x

s

σ(s, u)du,

andσ(t, x), φ(t) areI-dimensional processes andW (t) is a standardI-dimensional

vector of independent Wiener processes under the market measureP, I ∈ N+ and the

superscript′ represents matrix transposition. The vectorφ(t) can be interpreted as the

market price of interest rate risk vector associated withdW (t). In general,σ andφ

may depend on a number of forward ratesr(t, x).2

The HJM model framework is chosen as it yields arbitrage-free models that fit the

initial yield curve by construction. The subclass of HJM models which are particularly

suited to practical implementation are those which can be Markovianized. Carver-

hill (1994), Ritchken and Sankarasubramanian (1995), Bharand Chiarella (1997a),

Inui and Kijima (1998), de Jong and Santa-Clara (1999) and Björk and Svensson

(2001) discuss various specifications of the forward rate volatilities σ(t, x) that lead

to Markovian representations of the forward rate dynamics.Chiarella and Kwon

(2001b, 2003) introduce a specification that leads to a fairly broad and convenient

class of models. The models in this class satisfy the assumption:

Assumption 2.1. (i) For each1 ≤ i ≤ I, there existsLi ∈ N such that the compo-

nents,σi(t, x), of the forward rate volatility process have the form

σi(t, x) =

Li∑

l=1

cil(t)σil(x) (2.2)

wherecil(t) are stochastic processes andσij(x) are deterministic functions.

1We are in fact using the Brace et al. (1997) implementation ofthe HJM model. This is more appropriate
to capture the dynamics of LIBOR and various other market quoted rates.
2In this notation,r(t, 0) denotes the instantaneous rate of interest that we henceforth write asr(t).
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(ii) There existM ∈ N and a sequencex1 < · · · < xM ∈ R+ such that the processes

cil(t) have the form

cil(t) = ĉil(t, r(t, x1), . . . , r(t, xM )), (2.3)

whereĉ is deterministic in its arguments.

Chiarella and Kwon (2003) then prove that the forward curve can be expressed as

an affine function of a set ofN discrete tenor forward rates

r(t, τ1, . . . , τN ) = [r(t, τ1), . . . , r(t, τN )]′

(see Appendix A for a brief summary). This set of forward rates forms a Markov

process. In terms of the real world measure, whereφ ≡ (φ1, . . . , φI) is the vector of

market prices of risk associated with the Wiener processW , the system of stochastic

differential equations for the instantaneous forward rates becomes3

dr(t, x) =[p0(t, x, τ1, . . . , τN ) + p′
1(t, x, τ1, . . . , τN )r(t, τ1, . . . , τN )

− φ′σ(t, t+ x)]dt + σ(t, t+ x)′dW (t).
(2.4)

The yieldy(t, x) on the(t+ x)-maturity zero coupon bond can be calculated from

the instantaneous forward rates via

y(t, x) =
1

x

∫ x

0
r(t, u)du, (2.5)

and can also be expressed as an affine function of the forward rates, that we write in

the form

y(t, x) = q0(t, x, τ1, . . . , τN ) − q′(t, x, τ1, . . . , τN )r(t, τ1, . . . , τN ), (2.6)

where theqi(t, x, τ1, . . . , τN ) is a set of deterministic functions4. We therefore have an

affine term structure model. This model is not nested inside the popular affine model

class considered in Duffie and Kan (1996), even though there will be occasions when

the two classes overlap.

3. ESTIMATION FRAMEWORK

3.1. The model specification.

The empirical work of Litterman and Scheinkman (1991), Chenand Scott (1993),

Knez et al. (1994), Singh (1995), who use principal component analysis, suggests that

there are at most three factors affecting the volatility of interest rates. Guided by this

insight we propose to use a three-dimensional Wiener process in the specification (2.1).

3For definition of the coefficient functionsp0 andp, see Appendix A.
4Again see Appendix A for definitions of theqi.
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We shall specifically consider four volatility functions, namely

σ1(t, x) = γ1r
λ(t), (3.1)

σ2a(t, x) = γ2 e−κ2(x−t), (3.2)

σ2b(t, x) = γ2(r(t, τ) − r(t)), (3.3)

σ3(t, x) = γ3(x− t) e−κ3(x−t) . (3.4)

The first volatility functionσ1(t, x) reflects the level factor, where the volatility is

dependent on the level of the short rate. Ifλ = 0.5 we would obtain a Cox-Ingersoll-

Ross (1985a) type of volatility. The second volatility function can be called the slope

factor, which is modelled here in two different ways. The volatility can be dependent

on the actual slope, as modelled byσ2b, or the volatility can be thought of as a simple

decreasing function of maturity as modelled byσ2a(t, x) which allows the shock to

have much less impact on the yield curve as the yield maturityincreases. The function

σ3(t, x) creates a hump in the volatility function, which is a typicalpattern found in

swap markets. This can be thought of as a “twist” in the yield curve.

To model the market prices of riskφ1, φ2, φ3, the current literature has assumed

that they are dependent on the underlying interest rate. Since there is no guidance on

what the functional form for this dependence should be, modellers have chosen those

functional form that leads to nice model properties. As the underlying interest rate

follows an Itô process, if the market prices of risk are dependent on the interest rate,

they should also follow Itô processes. Instead of specifying a dependence structure

as in the literature, the market prices of risk here are assumed to follow a stochastic

differential equation

dφi = αi(φ̄i − φi)dt+ βi

√
φi(t)dWi(t). (3.5)

Intuitively, the specification suggests that the market prices of different interest rate

risks are always positive and tend to converge to their long run equilibria.

3.2. Econometric implication of the model.

Some similar and other specialized models of the HJM class considered here have

been empirically analyzed. Bliss and Ritchken (1996) consider the case where the

volatility function in (2.2) can be written as5

σ(t, x) = c(t) e−κx .

This specification covers our single-factor model, as each of our volatility functions

can be written in the above form. For example, withσ1(t, x) = γ1r
λ(t), the value ofκ

is zero andc(t) = γ1r
λ(t). The key idea of their approach is to exploit the relationship

5With this volatility function, the model can be Markovianized using two state variables.
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(2.6) for the yields, into which they introduce an error term, then estimate their model

via the Maximum Likelihood procedure6. The main drawback of this approach is that

the estimation procedure can only identifyκ, as the relationship (2.6) does not depend

on the parameters characterizing functionc(t) (γ1 andλ in our example). However,

all of the parameters in the models are important in practical work, such as the deter-

mination of the price of a derivative contract.

de Jong and Santa-Clara (1999) also empirically study two-state variable HJM mod-

els where the volatility function of the system is proportional to the square root of

the state variables. However, they overcome the disadvantages of Bliss and Ritchken

(1996) approach by using both the relationship (2.6) and theMarkovian system (2.4) in

their estimation procedure. They use the Kalman filtering method where (2.6) serves

as the observation equation and (2.4) is discretized into a state transition equation. In

a more general setting, it is not clear how to discretize the structural stochastic system,

and the behaviour of the estimator is clearly dependent on the method used in this dis-

cretization. In a more recent study, Rossi (2004) also uses the Kalman filter to estimate

a HJM model. However, the HJM model is Gaussian, and only a linear Kalman filter

is needed, therefore the issue of a discretization does not arise.

In this paper, we advocate the local linearization filter (hereafter the LL filter) of

Jimenez and Ozaki (2002, 2003). This approach is still basedon the Kalman filter for

a discrete linear system. However, Jimenez and Ozaki do not discretize the nonlinear

system directly, but rather approximate it by a system linear in both its drift and its

diffusion terms, for which a linear Kalman filter turns out tobe readily applicable.

The approximation is not based on the first order Taylor approximation used in the

standard extended Kalman filter framework, but is instead based on a second order

approximation using the Itô formula to better take into account the stochastic behaviour

of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the performance of the maximum

likelihood estimator based on the LL filter and the one based on the extended Kalman

filter for a system with additive noise (i.e. the volatility function is not dependent

on the state variables). Shoji used Monte Carlo simulation to show that the LL filter

provided estimates with smaller bias, particularly in estimation of the coefficient of

the drift term. Jimenez et al. (1999) compared the LL scheme with other linearization

schemes for systems with either additive or multiplicativenoise (the latter means that

the volatility function is dependent on the state variables). They also reported a number

6The relationship Bliss and Ritchken use is actually an expression of the whole yield curve as an affine
function of some particular yields rather than the forward rates. This can be derived very simply from the
model here.
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of numerical advantages of the LL filter, including numerical stability, better accuracy

and the order of strong convergence.

3.3. The local linearization filter and the maximum likelihood estimator.

Consider the state space model defined by the continuous state equation

dx(t) = f(t,x(t))dt +

m∑

i=1

gi(t,x(t))dWi(t), (3.6)

and the discrete observation equation7

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (3.7)

wheref andgi are nonlinear functions,x(t) ∈ R
d is the state vector at the instant

of time t, ztj ∈ R
r is the observation vector at the instant of timetj, W is anm-

dimensional Wiener process, and{etj : etj ∼ N (0,Π), j = 0, . . . , J} is a sequence

of i.i.d. random vectors.

The system functionsf andgi can be linearly approximated. Jimenez and Ozaki

(2003) proposed to approximate them via a truncated Ito-Taylor expansion, for exam-

ple, the approximation forf is

f(t,x(t)) ≈f(s,u) +


∂f(s,u)

∂s
+

1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l ∂
2f(s,u)

∂uk∂ul


 (t− s)

+ Jf (s,u)(x(t) − u),

(3.8)

where(s,u) ∈ R × R
d, Jf (s,u) is the Jacobian off evaluated at the point(s,u) and

G(s,u) is thed × m matrix defined byG(s,u) ≡ (g1, . . . ,gm). The presence of

the volatility functiongi in the linearization of both the drift and the diffusion terms

differentiates this linearization scheme from the simple second order Euler/Taylor ex-

pansion. It is because the underlying state system is stochastic, and follows an Itô

calculus, expansion according to Itô-Taylor formula willbetter take into account their

stochastic nature.

Using such approximations forf andgi, the solution of the nonlinear state equation

(3.6) can be approximated by the solution of the piecewise linear stochastic differential

7A full (nonlinear) specification of the observation equation would be

ztj
= h(tj , x(tj)) +

n
X

i=1

pi(tj ,x(tj))ξ
i
tj

+ etj
, for j = 0, 1, . . . , J,

whereh and pi are nonlinear functions,{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j =

0, . . . , J} is a sequence of random vector i.i.d., andξi
tj

andetj
are uncorrelated for alli andj. However,

in most finance applications, including ours, a linear specification forh is all that is required and there is
no need to include the extra noise termξ.



VOLATILITY STRUCTURE 9

equation8

dy(t) =
(
A(tj, ŷtj |tj )y(t) + a(t, tj, ŷtj |tj)

)
dt

+
m∑

i=1

(
Bi(tj, ŷtj |tj )y(t) + bi(t, tj , ŷtj |tj )

)
dWi(t)

(3.9)

for all t ∈ [tj , tj+1), starting aty(t0) = ŷt0|t0 = x̂t0|t0 . The various quantities

appearing in (3.9) are defined as

x̂t|ρ = E (x(t)|Zρ) , Zρ = {ztj : tj ≤ ρ},

ŷt|ρ = E (y(t)|Zρ) ,

A(s,u) = Jf (s,u),

Bi(s,u) = Jgi
(s,u),

a(t, s,u) = f(s,u) − Jf (s,u)u +
∂f(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l∂
2f(s,u)

∂uk∂ul
(t− s),

bi(t, s,u) = gi(s,u) − Jgi
(s,u)u +

∂gi(s,u)

∂s
(t− s)

+
1

2

d∑

k,l=1

[G(s,u)G′(s,u)]k,l∂
2gi(s,u)

∂uk∂ul
(t− s).

The approximate stochastic differential equation (3.9) and the corresponding obser-

vation equation (see (3.7))

ztj = C(tj)y(tj) + etj , for j = 0, 1, . . . , J, (3.10)

form a linear state space system. The optimal linear filter proposed by Jimenez and

Ozaki (2002) can be applied (see Appendix B for its definition) to determine the con-

ditional mean̂yt|ρ and conditional covariance matrixPt|ρ = E((y(t) − ŷt|ρ)(y(t) −

ŷt|ρ)
′|Zρ) for all ρ ≤ t. The difference with the standard Kalman filter is that the

volatility function here is also dependent of the state variables, albeit only via a linear

function.

Due to the assumption of multivariate normality of the disturbancesetj (and if the

initial state vector also has a proper multivariate normal distribution), the distribution

of ztj+1
conditional onZtj is itself normal (see (3.10)). The mean and covariance

matrix of this conditional distribution are given directlyby the local linearization filter

8We usey(t) to denote the solution to the approximate system to distinguish it fromx(t) the solution to
the true system.
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above. Therefore, a maximum likelihood estimator for the model parameters can be

easily derived.

Let θ be the vector of parameters of interest, which include all parameters speci-

fying the state space model (3.9) and (3.10), plus the initial state values of̂xt0|t0 and

Pt0|t0. The log likelihood function forZ is

LZ(θ) = −
rJ

2
ln(2π) −

1

2

J∑

j=1

ln |Σtj | −
1

2

J∑

j=1

ν ′
tj
Σ−1

tj
νtj (3.11)

where the innovation equations are

νtj = ztj − C(tj)ŷtj |tj−1
, (3.12)

Σtj = C(tj)Ptj |tj−1
C′(tj) + Π. (3.13)

The maximum likelihood estimator ofθ is then

θ̂ = max
θ

LZ(θ). (3.14)

3.4. Econometric implementation.

We now view our model as a continuous-discrete nonlinear state space system,

where (2.4) and (3.5) serve as the nonlinear state equations, and (2.6) serves as the

linear (affine) observation equation. Similar to the standard practice in the literature,

we introduce into the observation equation a measurement error, which reflects the fact

that the model cannot fit all observed yields simultaneously. This measurement error

is assumed to follow a multivariate normal distribution. The local linearization filter

can be readily applied to yield the maximum likelihood estimator ofθ, the vector of

parameters of interest, which includes all of the parameters of the volatility functions

(4.1) - (4.4), of the market price of risk specification (3.5)and the initial conditional

mean vector̂xt0|t0 and conditional variance matrixPt0|t0 .

The numerical difficulties associated with any estimation procedures for stochastic

systems are well-known. Amongst them, system stability, matrix inversion to calculate

the likelihood function, convergence of the optimization routine and significance of the

estimates are the main problems. To partly overcome these problems, we maximize the

likelihood function using a genetic algorithm (Holland (1975), Mitchell (1996), Vose

(1999), Michalewicz (1999)). Genetic algorithms use the evolutionary principle to

solve difficult problems with objective functions that do not possess “nice” properties

such as continuity and differentiability. The algorithms search the solution space of a

function, and implement a “survival of the fittest” strategyto improve the solutions.
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4. EMPIRICAL ANALYSIS

4.1. The Data.

We estimate the model using the zero yield data in the U.S, U.Kand Australian

markets downloaded from Datastreamr. The data consists of weekly observations for

contracts with maturity of 2, 3, 4, 5, 7, 10 and 12 years, spanning 5 years from 7th July

1999 to 30th June 2004.

Figure 1 shows the 2-year zero rates for the different markets. Evolutions for rates

at other maturities have similar shapes, though at different levels. Over the 5-year

FIGURE 1. Zero yield curve, 2-year time to maturity

29/21/99 27/12/00 26/12/01 25/12/02 31/12/03 30/6/04

1%

3%

5%

7%

U.S.

U.K.

Australia

period, interest rates have changed significantly. The rates increased in all markets by

around 1.5% from July 1999 to June 2000. The rates then decreased but with different

paces across the markets. In the U.S., the rates dived sharply from 7.5% to 1% in the

next 3 years, then started to pick up again in the second half of 2003, moved slightly

around the 2% level, then rose to 3% by June 2004. The U.K market also experienced

a period of decreasing rates during the 3-year period of June2000 - June 2003, but to

a much lesser extent than the U.S. market. Then the rates picked up again as part of

a global trend. The Australian market had a much more stable interest rate movement

compared to the other two, around 6% in 1999 and 2000, and around 5% for the rest
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of the sample data. All of the rates display a high level of autocorrelation, as can be

seen in Table 1.

TABLE 1. Summary statistics for the zero yield curve

U.S. Australia U.K.
2-yr 5-yr 12-yr 2-yr 5-yr 12-yr 2-yr 5-yr 12-yr

Mean 4.21% 5.15% 6.06% 5.58% 6.01% 6.29% 5.36% 5.63% 5.61%
Stdev 2.07% 1.49% 0.99% 0.69% 0.65% 0.56% 1.02% 0.87% 0.56%
AC(1) 0.995 0.992 0.985 0.977 0.966 0.957 0.992 0.990 0.983

We also analyzed the principal components of the zero yield curve. In all of the

markets, three components are able to explain nearly 100% ofthe variation in the

yields. The last component plays a negligible role, only explaining 0.06% of the total

variation in the U.S market, and less than 0.2% of the total variation in the U.K and

the Australian markets, as reported in Table 2.

TABLE 2. Principal component analysis of zero yield curves

% variation explained U.S. Australia U.K.

Principal component 1 99.21 97.56 99.14
Principal component 2 0.73 2.18 0.72
Principal component 3 0.06 0.17 0.13

Total of the 3 components 100 99.91 99.99

4.2. Empirical Results.

We separately ran the estimation for different combinations of the 4 volatility func-

tions

σ1(t, x) = γ1r
λ(t), (4.1)

σ2a(t, x) = γ2 e−κ2(x−t), (4.2)

σ2b(t, x) = γ2(r(t, τ) − r(t)), (4.3)

σ3(t, x) = γ3(x− t) e−κ3(x−t) . (4.4)

The models considered and their code can be found in Table 3.
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TABLE 3. Models considered

This table reports different models considered in the empirical analysis by
combining various volatility functions.

Model Code σ1(t, x) = σ2a(t, x) = σ2b(t, x) = σ3(t, x) =

γ1r
λ(t) γ2 e−κ2(x−t) γ2(r(t, τ) − r(t)) γ3(x− t) e−κ3(x−t)

Model 1 X

Model 2 X X

Model 2B X X

Model 3 X X X

Model 3B X X X

Model 3C X X X

4.2.1. The U.S. market.

Among the six models estimated for the U.S. market, we find that model 3 is the

best one. Except for model 3B, where we failed to find a combination of parame-

ters that resulted in positive interest rates, we were able to maximize the likelihood

functions for all of the other model specifications. Table 4 reports the likelihood val-

ues and various information criteria for each estimated model. Model 3 has a lower

information criterion calculated based on different schemes, namely the Akaike, the

Schwarz-Bayesian and the Hannan-Quinn, and therefore is the preferred model.

TABLE 4. U.S market. Information criteria.

Model 1 Model 2 Model 2B Model 3 Model 3C

Log likelihood 14647.68 22680.14 15780.21 23227.7 23112.27
Number of parameters 5 11 9 16 15

Akaike (AIC) -8.016 -12.408 -8.632 -12.705 -12.642
Schwarz-Baysian (BIC) -8.007 -12.391 -8.619 -12.681 -12.620
Hannan-Quinn (HIC) -8.012 -12.402 -8.627 -12.696 -12.634

The estimated parameters for model 3 can be found in Table 5. The 3 volatility

functions and the corresponding market prices of risk evolutions are

σ1(t, x) = 0.0457r(t)0.5624

σ2(t, x) = 0.0240 e−0.0155(x−t)

σ3(t, x) = 0.0012(x − t) e−1.0446(x−t)

dφ1 = 40.4048(1.4393 − φ̄1)dt+ 0.2928
√
φ1dW1(t)

dφ2 = 49.9942(0.0133 − φ̄2)dt+ 0.0506
√
φ2dW2(t)

dφ3 = 22.2553(39.780 − φ̄3)dt+ 9.9216
√
φ3dW3(t)
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TABLE 5. U.S. market. Estimated parameters for model 3

This table reports the parameter estimates for model 3, the preferred model
among those estimated. Their corresponding standard errors are reported in
square parenthesis. The notationxe-y stands forx× 10−y.

Par Est Par Est Par Est

γ1 0.0457 γ2 0.0240 γ3 0.0012
[3.3e-9] [2.3e-8] [1.1e-9]

λ 0.5624 κ2 0.1155 κ3 1.0446
[1.6e-7] [1.2e-8] [1.4e-7]

α1 40.4048 α2 49.9942 α3 22.2553
[2.5e-5] [5.0e-5] [4.6e-4]

φ̄1 1.4393 φ̄2 0.0133 φ̄3 39.780
[1.6e-6] [2.7e-7] [9.2e-4]

β1 0.2928 β2 0.0506 β3 9.9216
[4.7e-7] [0.0796] [1.1176]

The first volatility factor depends on the level of interest rate via the functional form

γ1r
λ. The estimated value ofλ is 0.56, which is quite close to the square root volatility

specification usually used in empirical work. This value is much lower than the value

1.5 found by Chan et al. (1992), but is within the range of 0.5 to 1.5 reported in Pagan

et al. (1996) (dependent on the interest rate series used). The second volatility factor

allows a shock in the market to impact on the short end of the curve more than to yields

at longer maturities. The value ofκ2 implies that it requires the two yield maturities to

be 6 years apart for the impact of the same shock to halve. The third volatility factor

creates a hump in the volatility curve, which occurs at around 1 year to maturity (as

implied by the value ofκ3).

The combination between these three volatility factors forms the instantaneous volatil-

ity for the forward rates. This overall volatility changes over time as the yield curve

moves. The volatility evolutions for the spot rate, the 6-year forward rate and the 12-

year forward rate are displayed in Figure 2. The total variation for the forward rates

decreases as the time to maturity increases. Moreover, the short maturity forward rates

have much less variation over time than the longer maturity ones.

Each volatility factor contributes differently towards the total variation of the for-

ward rates. The third volatility factor contributes very slightly, almost to a negligible

extent (less than half a percentage point). The contribution of the other two factors

vary according to the yield maturity and to the passage of time. Figure 3 shows the

contribution of the first factor (the level factor), the contribution of the second factor is

just a mirror image. The level effect is more dominant for theforward rate with longer

time to maturity than the shorter ones, averaging at 54% for the 12-year forward rate,
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FIGURE 2. The U.S. market. The instantaneous volatility of forward
rates
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25% for the 6-year forward rate and only 8.5% for the short rate. The dominance of

the level effect on the overall forward rates volatility increased during the first year of

the sample period, then declined steadily for the next 3 years, and finally levelled off

at a slightly higher value in the last year.

FIGURE 3. U.S. market. The contribution of the level effect to the
total forward rate variation
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Given the fact that the third volatility factor plays a very negligible role in determin-

ing the overall forward rate variation, one would ask the question whether it should be

included in the model specification. The answer is yes. Even though magnitude of

this volatility factor is small, each unit of this volatility risk commands much higher

financial reward than one unit of the other volatility risks.The long run unit pricēφ

for the third volatility factor is 39.8, compared to the values 1.45 and 0.01 for the other

two volatility factors. In addition, the speed of mean reversion of the price for the third
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volatility risk is only half those of the other two volatility factors risk. On the way

towards the long-run value, it takes 1.6 weeks for the level of the price of the third

volatility risk to halve, whereas it takes only 0.9 and 0.7 weeks for the prices of the

other two risk to halve. The intensity of this third unit price movement is also much

higher, measured by a value of 9.9 forβ3, compared to 0.3 forβ1 and 0.05 forβ2.

This unit price, when scaled by the volatility, will determine the overall compen-

sation for investors for bearing volatility risk. It is reflected on a discount to the drift

of the forward curve, and consequently a premium to the driftof the bond equation.

The discounts to compensate for bearing each volatility factor risk (called the market

price of risk) are additive. Figure 4 graphs the contribution of each market price of risk

into the total compensation investors require to bear the volatility risk. As can be seen

from the graph, even though the third volatility factor is very small in magnitude, the

corresponding market price of this risk plays a very significant role in the total com-

pensation, especially for yields with short and medium maturities. The market price

of the first volatility factor risk is the dominant one overall, but that role is somewhat

diminished for yields from 1-3 year maturity.

FIGURE 4. The U.S. market. The contribution of each market price
of risk to the total risk compensation
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Table 6, Panel A reports the prediction errors obtained by the model. The average

absolute prediction error for zero yield series is 14 basis points, whereas the mean

of the prediction error is 3 basis points, which indicate a good in-sample prediction

power.

In order to check the power of our model and the estimation, weused the parameter

values to calculate the implied LIBOR rates, then compared these implied values with

the market values. It should be noted that the LIBOR rates were not used in our
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TABLE 6. U.S. market. Prediction errors.

Panel A. Prediction of the zero yields
This panel reports the prediction errors for all of the yieldseries used in the
estimation. All values are reported as basis points.

Maturity (in years) 2 3 4 5 7 10 12 All

Mean error 2.16 5.34 2.21 2.53 2.48 1.89 3.292.84
Standard deviation error20.4 19.5 18.3 18.7 18.0 16.7 16.618.3
Mean absolute error 13.7 14.7 13.5 14.3 13.8 12.8 13.013.7
Stdev absolute error 15.2 13.8 12.5 12.3 11.7 10.8 10.912.5

Panel B. Prediction of LIBOR rates
Parameters estimated from zero yield data are used to predict the actual LI-
BOR rates. All values in the table are in basis points. “Stdev” stands for
standard deviation, “Correl” stands for correlation, “pred.” stands for predic-
tion, and “Abs. Err.” stands for absolute error.

Maturity Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor pred. Error Error Abs. Err. Abs. Err.

1 month 0.9110 217.18 268.06 -5.61 113.78 89.62 70.11
2 months 0.9376 218.55 262.89 -8.96 95.62 77.67 56.28
3 months 0.9466 220.76 261.20 -9.72 88.27 72.66 50.86
4 months 0.9548 221.48 259.74 -11.30 81.63 67.52 47.06
5 months 0.9614 222.06 258.42 -13.04 75.87 62.87 44.27
6 months 0.9683 222.08 257.18 -15.23 69.64 58.69 40.32
7 months 0.9742 222.02 255.95 -16.71 63.93 54.57 37.13
8 months 0.9788 221.88 254.71 -18.21 58.92 50.92 34.66
9 months 0.9825 221.73 253.43 -19.66 54.54 47.75 32.76

10 months 0.9852 221.34 252.09 -20.40 50.94 44.92 31.42
11 months 0.9874 220.91 250.69 -21.07 47.82 42.45 30.39
12 months 0.9891 220.37 249.23 -21.65 45.11 40.18 29.75

estimation at all, and the maturities of the zero yield rate used in the estimation are from

2-12 years, whereas the maturities for the LIBOR rates are only less than 1 year. As can

be seen from Panel B of Table 6, there is a very high correlation between the predicted

LIBOR and the actual LIBOR rates, though the predicted series have somewhat higher

variation than the actual series. Understandably the lowest correlation of 91.1% is for

the 1 month rate LIBOR, as it is much outside the maturity range used in the estimation.

The correlation increases as the time-to-maturity comes closer to the maturity range

used in the estimation. The correlation between the predicted and the actual 1 year

LIBOR rate is 98.9%. Across all LIBOR maturities, the average prediction error is

from 5-22 basis points, whereas the absolute errors lie in the range of 40-90 basis
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point. In a different study, Jegadeesh and Pennacchi (1996)used the Kalman filter

to estimate a linear 2-factor model with constant volatilities using futures data (with

3-month LIBOR as the underlying rate) and used the parameters to predict the actual

LIBOR. They reported mean errors (not mean absolute error) in the range of 23-48

basis points for different maturities.

Figure 5 illustrates the predictive power of the model. The model gives excellent

prediction for zero yield series which were used in the estimation. For the LIBOR

series, whose values as well as maturity range were not used in the estimation, the

predicted series matches the actual series well in the trend, whereas the value deviation

is small.

FIGURE 5. The U.S. market. Actual and predicted interest rates.
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At this point one would question whether the model predictive power is better than

a simple random walk approach. However, it should be kept in mind that practition-

ers regularly need to price over-the-counter instruments whose underlying interest rate

is not traded in the market, or to price illiquid instrumentswhose underlying inter-

est rate’s quote is not always available. Under such circumstances, the random walk

prediction method is not feasible, and the ability of the model to predict accurately a

totally different interest rate series in a totally different maturity range is very impor-

tant. One of the reasons the implied volatility approach is popular among practitioners

is that a less actively traded security can be priced consistently with other more liquid

securities. Nevertheless, this implied volatility approach implies a continual change

of parameter values, which is not desirable. Using our estimation procedure, consis-

tency of security prices remains while parameters are kept constant and there is a clear

indication of the confidence interval for the parameter values.
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4.2.2. The Australian market.

Unlike the U.S. market, we find that model 2B is the preferred model based on

various information criteria, as shown in Table 7. It shouldbe noted that even though

in theory some models encompass others (e.g. model 1 is nested inside model 2), in

practice the likelihood value of the more general model might not be higher than that

of the restricted one, as the restricting parameters have tobe kept different from zero

for computational purposes. The estimated parameters can be found in Table 8. The

volatility functions for the estimated model and the corresponding market prices of

risk are

σ1(t, x) = 0.9166r(t)1.7080

σ2(t, x) = 0.0824(r(t, τ) − r(t))

dφ1 = 48.0407(18.7346 − φ̄1)dt+ 5.3123
√
φ1dW1(t)

dφ2 = 49.2477(15.1458 − φ̄2)dt+ 8.4740
√
φ2dW2(t).

TABLE 7. Australian market. Information criteria.

Model 1 Model 2 Model 2B Model 3 Model 3C

Log likelihood 74609.74 23351.56 90387.4 23354.29 23317.48
Number of parameters 5 11 9 16 15

Akaike (AIC) -40.835 -12.775 -49.279 -12.774 -12.755
Schwarz-Baysian (BIC) -40.827 -12.759 -49.266 -12.750 -12.732
Hannan-Quinn (HIC) -40.832 -12.769 -49.274 -12.765 -12.746

Under this model specification, the volatility of differentforward rates does not de-

pend on the maturity of the rates, but rather depends explicitly on the level of the short

rate and the slope of the yield curve. The estimated value forλ in the first volatility

function is 1.7. A direct comparison with other studies is not available, as previous

studies only focus on the U.S. market. For the U.S. market, Bhar et al. (2005) have

employed a Bayesian updating algorithm to estimate the distribution for the parameter

λ in a one factor HJM model implied by LIBOR rates of various maturities. They find

that the distribution lies in the interval [0.5,4]. In lightof this finding a value of 1.7 for

the Australian market seems plausible.

The changes of the two volatility factors over time are illustrated in Figure 6. The

overall variation of interest rates follows a declining trend. It can be seen that the first

volatility factor plays a dominant role in determining the variation of interest rates.

The contribution of the second volatility factor increaseswith time as the yield curve

becomes more and more steep. On average for the whole sample period, the level



VOLATILITY STRUCTURE 20

TABLE 8. Australian market. Estimated parameters for model 2B

This table reports the parameter estimates for model 2B, thepreferred model
among those estimated for the Australian market. Their corresponding stan-
dard errors are reported in square parenthesis. The notation xe-y stands for
x× 10−y.

Par. γ1 λ α1 φ̄1 β1

Est. 0.9166 1.7080 48.041 18.735 5.312
Stderr. [4.8e-7] [1.6e-9] [0.0052] [0.0040] [0.0004]

Par. γ2 α2 φ̄2 β2

Est. 0.0824 49.248 15.146 8.474
Stderr. [4.0e-6] [0.0010] [0.0107] [0.0005]

factor explains 96% of the variation in the yield curve and the slope factor explains the

other 4%.

FIGURE 6. The instantaneous volatility of forward rates
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The unit prices for bearing these two different volatility risk are similar, with an

estimate of 18.7 for̄φ1 and 15.1 forφ̄2. Both of them have quite high rate of mean

reversion, i.e. it takes only 0.75 weeks for the level of the price of the volatility risk

to halve. Due to the similarity in the unit prices of the two different risk, and the

domination of the first factor risk, 89% of the overall risk compensation is contributed

by the first factor risk, and only 11% is contributed by the second factor risk. Figure 7

graphs the changes of this contribution overtime. The ability of the second factor to

command financial reward increases in the second half of the sample period due to the

steeper yield curve.
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FIGURE 7. Australian market. The contribution of each market price
of risk to the total risk compensation
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The in-sample predictive power of this model for the Australian market is not as

good as the model for the U.S market. There is one instance where the filter behaves

really poorly. It is at the last observation of 1999, when thewhole yield curve suddenly

shifted up after a trend of downward movements. The filter didnot predict this change,

which resulted in a large under-prediction for the level of the rates. However, after this

large error, the filter adapted to the new information and subsequently did reasonably

well. Panel A of Table 9 reports the summary statistics for the prediction error. Without

the large error, the overall absolute prediction error is 14.5 basis points. There is no

clear pattern of prediction errors across different maturities.

Panel B of Table 9 reports the power of the model in predictingthe LIBOR rates,

which have a different maturity range and were not used in theestimation task. The

average prediction error lies in the range of 37-46 basis points, whereas the mean

absolute error lies in the range of 38-56 basis points. The correlation of the predicted

series and the actual series increases steadily as the maturity of the LIBOR rates gets

closer to the zero yield maturity range used in the estimation. The correlation is at a

high level of 89.2% for the LIBOR rate of 1 year maturity, which is still 1 year lower

than the lowest maturity yield used in the estimation. It is reasonable to expect that the

model will predict well those interest rates with maturity lying within the estimation

range.
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TABLE 9. Australian market. Prediction errors.

Panel A. Prediction of the zero yields
This table reports the prediction errors for all of the Australian yield series
used in the estimation. All values are reported as basis points.

Maturity (in years) 2 3 4 5 7 10 12 All

Mean error -19.8 -8.1 1.7 5.8 6.4 0.9 -6.0 -2.8
Stdev. error 165.5 163.8 162.5 161.5 159.5 156.7 154.9160.6

Mean absolute error 28.2 20.5 22.4 25.8 25.9 22.5 22.824.0
Stdev absolute error164.3 162.7 161.0 159.5 157.5 155.0 153.3159.0

Without the large error at the last observation in 1999

Mean error -9.7 1.9 11.6 15.7 16.2 10.2 3.4 7.1
Stdev. error 29.5 26.9 26.0 25.5 24.0 23.9 25.125.9

Mean absolute error 18.1 10.5 12.6 16.0 16.3 13.0 13.414.3
Stdev absolute error 25.3 24.8 25.6 25.4 24.0 22.5 21.524.2

Panel B. Prediction of LIBOR rates
Parameters estimated from zero yield data are used to predict the actual LI-
BOR rates. All values in the table are in basis points. “Stdev” stands for
standard deviation, “Correl” stands for correlation, “pred.” stands for predic-
tion, and “Abs. Err.” stands for absolute error.

Maturity Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor pred. Error Error Abs. Err. Abs. Err.

1 month 0.5974 58.00 62.35 -46.45 54.13 55.30 45.01
2 months 0.6508 59.32 62.54 -45.81 51.00 53.22 43.18
3 months 0.7003 61.07 62.78 -44.86 47.97 51.06 41.27
4 months 0.7391 62.29 63.02 -44.39 45.27 49.42 39.69
5 months 0.7728 63.65 63.26 -43.88 42.78 47.81 38.32
6 months 0.7983 65.05 63.51 -43.47 40.85 46.42 37.45
7 months 0.8189 66.29 63.75 -42.68 39.20 45.14 36.33
8 months 0.8373 67.59 64.00 -41.81 37.69 43.92 35.20
9 months 0.8535 68.99 64.25 -40.75 36.35 42.61 34.14

10 months 0.8674 69.82 64.50 -39.73 34.97 41.45 32.91
11 months 0.8796 70.61 64.76 -38.67 33.69 40.27 31.74
12 months 0.8915 71.47 65.01 -37.35 32.41 38.90 30.52
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4.2.3. The U.K. market.

Similar to the Australian market, the model 2B is found to be the preferred model

for the U.K. market according to various information criteria reported in Table 10.

The preferred model has two different volatility sources, their specification and their

corresponding market prices of risk evolution are

σ1(t, x) = 0.07155r(t)0.7263

σ2(t, x) = 5.4235(r(t, τ) − r(t))

dφ1 = 15.7712(17.9088 − φ̄1)dt + 1.8736
√
φ1dW1(t)

dφ2 = 42.9665(6.4041 − φ̄2)dt + 2.6493
√
φ2dW2(t).

TABLE 10. The U.K. market. Information criteria.

Model 1 Model 2 Model 2B Model 3 Model 3C

Log likelihood 64139.58 23445.61 88576.99 23553.42 23446.83
Number of parameters 5 11 9 16 15

Akaike (AIC) -35.104 -12.827 -48.477 -12.883 -12.825
Schwarz-Baysian (BIC) -35.096 -12.810 -48.464 -12.859 -12.803
Hannan-Quinn (HIC) -35.101 -12.821 -48.472 -12.874 -12.817

Even though the yield curve variation in the U.K. market is also determined by the

factor and the slope effects as in the Australian market, theslope effect plays a much

more significant role in the U.K. market. Figure 8 shows the changes over time of this

slope effect contribution to the overall variation of the U.K yield curve. The erratic

behaviour comes from the special feature of the U.K. interest rate market. At the be-

ginning of the sample period (i.e. June 1999), the U.K. yieldcurve had a humped shape

with the long maturity yields much smaller than the short maturity yields. The short

maturity yield then gradually declined whereas the long maturity yields increased, re-

ducing the the negative spread. The hump feature was still observed for the next two

years, until March 2001. The trend of declining short rates and increasing long rates

continued until the end of the sample period (June 2004), which resulted in an in-

creasing trend for the spread and the new normal yield curve.The larger the absolute

value of the spread, the higher the contribution of the slopefactor towards the overall

variation of the yield curve.

Unlike the Australian market, where the two volatility factors claim similar financial

reward for investors, the level factor in the U.K. market claims an almost 3 times higher

financial reward per unit of risk than the slope factor. In addition, the price of the level

factor risk has much lower mean reversion rate than that of the slope factor. It takes
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FIGURE 8. U.K. market. The contribution of the slope effect to the
total forward rate variation
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3.3 weeks for the price of the level factor to revert to the mean, compared to only 1.2

weeks for the price of the slope factor.

The in-sample predictive power of this model is similar to that of the Australian mar-

ket. There is also one particular point of time (the two last observations in 2002) where

the filter significantly underestimates the downward movement of the yield curve. On

that particular week the yield curve shift down by more than 15 basis points (from

15-19 basis points, depending on maturities), whereas the usual movement of the yield

curve is only of few basis points. It can be seen from Panel A, Table 11 that excluding

this particular instance reduces the standard deviation ofthe prediction errors signifi-

cantly. The mean of the absolute errors then varies between 11-20 basis points, which

is reasonable.

Re the ability to predict totally different interest rate series (LIBOR v.s. zero yield

rate) with a totally different maturity range, the model does a very good job in pre-

dicting the trend, as evidenced by the correlation level of up to 96.6%. However, the

value prediction is not good, with mean absolute error lyingin the range of 60-80 basis

points. In this U.K. market, the zero yield series used in theestimation only have a

standard deviation of 18-100 basis points, whereas the short term LIBOR rates have

a much higher standard deviation of 93-104 basis points. Therefore, the prediction

of LIBOR rates implied by the parameter values estimated from zero yield rates un-

derestimates the variation of the actual LIBOR rates, whichleads to the not so small

errors.
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TABLE 11. U.K. market. Prediction errors.

Panel A. Prediction of the zero yields
This table reports the prediction errors for all of the U.K. yield series used in
the estimation. All values are reported as basis points.

Maturity (in years) 2 3 4 5 7 10 12 All

Mean error -25.0 -9.2 -2.7 -0.3 0.6 -2.1 -4.6 -6.2
Stdev. error 176.8 176.5 176.2 176.1 176.2 176.9 177.5176.6
Mean absolute error 31.1 24.4 22.7 21.7 23.1 29.2 33.126.5
Stdev absolute error175.8 175.0 174.7 174.8 174.7 174.5 174.4174.8

Without the large error at the last observation in 2002

Mean error -15.2 0.7 7.1 9.6 10.5 7.8 5.2 3.7
Stdev. error 20.1 17.1 13.7 11.5 12.5 21.3 26.017.5
Mean absolute error 19.5 12.6 11.0 10.0 11.4 17.5 21.414.8
Stdev absolute error 15.9 11.6 10.9 11.1 11.8 14.4 15.613.0

Panel B. Prediction of LIBOR rates
Parameters estimated from zero yield data are used to predict the actual LI-
BOR rates. All values in the table are in basis points. “Stdev” stands for
standard deviation, “Correl” stands for correlation, “pred.” stands for predic-
tion, and “Abs. Err.” stands for absolute error.

Maturity Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor pred. Error Error Abs. Err. Abs. Err.

1 month 0.8803 92.52 93.43 -79.76 45.50 80.79 43.65
2 months 0.9003 94.85 93.60 -76.46 42.09 77.01 41.08
3 months 0.9157 96.66 93.90 -73.82 39.22 74.02 38.83
4 months 0.9281 97.93 94.19 -72.23 36.60 72.25 36.55
5 months 0.9375 98.95 94.49 -70.81 34.47 70.81 34.47
6 months 0.9436 99.80 94.79 -69.44 33.05 69.45 33.05
7 months 0.9484 100.45 95.10 -67.88 31.85 67.94 31.72
8 months 0.9528 101.23 95.40 -66.20 30.74 66.32 30.49
9 months 0.9563 101.98 95.70 -64.56 29.89 64.73 29.52

10 months 0.9600 102.62 96.01 -62.65 28.84 62.86 28.37
11 months 0.9632 103.30 96.31 -60.69 27.94 60.95 27.37
12 months 0.9658 104.00 96.62 -58.70 27.25 59.00 26.59



VOLATILITY STRUCTURE 26

5. CONCLUSION

The HJM framework provides a very flexible tool for interest rate modelling. Even

though theoretical research has advanced quickly, the advantages of HJM models have

not been fully realized in practical applications due to thelack of empirical work. More

research needs to be done on the challenging task of HJM modelestimation in order

to obtain a better understanding of interest rate volatility that is much needed in the

process of assessing and managing risk as well as pricing derivative securities. This

paper has attempted to contribute to the empirical literature by proposing an estimation

framework that can be applied to a broad class of nonlinear HJM models.

The paper uses the local linearization filter to build up a maximum likelihood esti-

mator which is able to identify all parameters of the model, and to exploit both time

series and cross-sectional data. The local linearization scheme is based on an Itô-

Taylor expansion of the nonlinear drift and diffusion termsof the driving dynamics

to better take into account the stochastic behaviour of the interest rate system, and an

optimal linear filter is subsequently applied. This filter has been chosen because of

its advantages over other filters as shown by Shoji (1998) andits better numerical and

stability properties as demonstrated by Jimenez et al. (1999).

The estimator is then used to estimate the interest rate volatility structure in the

U.S, the U.K. and the Australian markets, using zero coupon bond yields. A range

of models was proposed and various information criteria were used to select the best

model. In the U.S. market, a 3-factor model is found to be the best, whereas a 2-factor

model is the preferred one in the Australian and the U.K. markets. The two factors

driving the yield curve evolution in the U.K. and the Australian markets are the level

and the slope factors. In the U.S. market, apart from the level factor and the slope

factor (which is modelled slightly different than in the other two markets), there is a

third significant factor that creates the hump feature on theyield curve.

Unlike previous research, we find that the level factor is a clearly dominant factor

in determining the overall yield curve variation only in theAustralian market. In the

U.K. market, the slope factor is much more important for morethan half of the sample

period. In the U.S. market, the level factor is not as important as the slope factor

for yields with short maturities. The role of the level factor increases as the yield to

maturity lengthens.

From an investor point of view, a financial reward is requiredto bear volatility risk.

In the U.S. and the U.K. market, the unit price of the volatility risk coming from the

level factor is higher than that of the risk coming from the slope factor, whereas the

two types of risk are priced similarly in the Australian market. In all of the markets, the

level factor contributes mostly toward the overall risk compensation. This contribution
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is homogeneous across maturities in the Australian and the U.K. markets. In the U.S.

market, the contribution from the level factor diminishes at medium-short maturity of

1-3 years, where the contribution of the third volatility factor is highest. This third

volatility factor is the one that creates the hump feature for the U.S. yield curve. A

knowledge of how each factor contributes to the overall volatility and the rewards for

bearing the risk will help investors manage the risk of interest rate portfolios.

The filter adopted here is certainly not the only nonlinear filter available to mod-

ellers. It is left for future research to explore other filters, so as to find a good trade-off

between reduction in computational requirements, increase in accuracy and better sta-

tistical reliability, all of which are crucial if financial managers are to re-assess their

models frequently.

APPENDIX A. M ARKOVIANIZATION OF THE INTEREST RATE DYNAMICS

Assuming that the forward rater(t, x) defined in (2.1) has a volatility function

σ(t, x) that satisfies Assumption 2.1. Proposition 3.4 in Chiarellaand Kwon (2003)

states that the forward rate curve can be expressed as an affine function of some state

variables, i.e.

r(t, x) = r(0, t+ x) +
I∑

i=1

Li∑

l=1

σil(t+ x)ψi
l (t)

+

I∑

i=1

Li∑

l,l∗=1
l≤l∗

[σil(t+ x)σ̄il∗(t+ x) + ǫll∗σil∗(t+ x)σ̄il(t+ x)]ϕi
ll∗(t),

(A.1)

where

σ̄il(x) =

∫ x

0
σil(s) ds,

ϕi
ll∗(t) =

∫ t

0
cil(s)cil∗(s) ds,

ψi
l (t) =

∫ t

0
cil(s) dW̃i(s) −

di∑

l∗=1

∫ t

0
cil(s)cil∗(s)σ̄il∗(s) ds,

ǫll∗ =





1, if l 6= l∗,

0, if l = l∗.

andW̃i, (i = 1, . . . , I) are standard Wiener processes under the equivalent measure

P̃ .

Under this setting, the economic meaning of the state variablesϕ andψ is not clear.

The next step is to use the forward rates themselves as the state variables.
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Let S = {ψi
l (t), ϕ

i
lk(t)}. DefineN = |S |, choose an ordering forS and write

χn(t) for the elements ofS so thatS = {χ1(t), . . . , χN (t)}. Then (A.1) can be

written

r(t, x) = a0(t, x) +

N∑

n=1

an(t, x)χn(t), (A.2)

for suitable deterministic functionsa0(t, x) andan(t, x).

Corollary A.1. Suppose that the conditions of Assumption 2.1 are satisfied.If there

existτ1, τ2, . . . , τN ∈ R+ such that the matrix

A(t, τ1, . . . , τN ) =




a1(t, τ1) a2(t, τ1) · · · aN (t, τ1)

a1(t, τ2) a2(t, τ2) · · · aN (t, τ2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1(t, τN ) a2(t, τN ) · · · aN (t, τN )


 (A.3)

is invertible for allt ∈ R+, then the variablesχn(t) can be expressed in the form

χ(t) = A(t, τ1, . . . , τN )−1 [a0(t, τ1, . . . , τN ) − r(t, τ1, . . . , τN )] , (A.4)

where

χ(t) = [χ1(t), . . . , χN (t)]′,

a0(t, τ1, . . . , τN ) = [a0(t, τ1), . . . , a0(t, τN )]′,

r(t, τ1, . . . , τN ) = [r(t, τ1), . . . , r(t, τN )]′.

The whole forward curve then can be written in terms of these new economically

meaningful state variables

r(t, x) = a0(t, x) − a(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ a(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),
(A.5)

where

a(t, x) = [a1(t, x), . . . , aN (t, x)]′.

Therefore, the HJM models admits a N-dimensional affine realization in terms of the

set of discrete tenor forward ratesr(t, τ1, . . . , τN ). This set of forward rates forms a
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Markov process, and under̃P each forward rater(t, x) satisfies the stochastic differ-

ential equation

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

]
dt

+ σ(t, t+ x)′dW̃ (t).

In terms of the real world measure, whereφ ≡ (φ1, . . . , φI) is the vector of market

prices of risk associating with the Wiener processW , the system becomes

dr(t, x) =

[
∂a0(t, x)

∂x
−
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+
∂a(t, x)′

∂x
A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ) + σ(t, t+ x)′σ̄(t, t+ x)

− φ′σ(t, t+ x)
]
dt+ σ(t, t+ x)′dW (t),

which is (2.4) in the main text.

The yieldy(t, x) can also be expressed as an affine function of forward rates

y(t, x) =b0(t, x) − b(t, x)′A(t, τ1, . . . , τN )−1a0(t, τ1, . . . , τN )

+ b(t, x)′A(t, τ1, . . . , τN )−1r(t, τ1, . . . , τN ),

where

b0(t, x) =
1

x

∫ x

0
a0(t, u)du,

b(t, x) =
1

x

∫ x

0
a(t, u)du.

This affine yield expression is equation (2.6) in the main text.

APPENDIX B. LOCAL L INEARIZATION FILTER FOR L INEAR

CONTINUOUS-DISCRETE STATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space modeldefined by the con-

tinuous state equation

dx(t) = (A(t)x(t) + a(t)) dt +
m∑

i=1

(Bi(t)x(t) + bi(t)) dWi(t), (B.1)
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and the discrete observation equation9

ztj = C(tj)x(tj) + etj , for j = 0, 1, . . . , J, (B.2)

wherex(t) ∈ R
d is the state vector at the instant of timet, ztj ∈ R

r is the observation

vector at the instant of timetj, W is am-dimensional vector of independent Wiener

processes, and{etj : etj ∼ N (0,Π), j = 0, . . . , J} is a sequence of random vector

i.i.d.

Define x̂t|ρ = E (x(t)|Zρ) andPt|ρ = E((x(t) − x̂t|ρ)(x(t) − x̂t|ρ)
′|Zρ) for all

ρ ≤ t, whereZρ = {ztj : tj ≤ ρ}.

Suppose thatE (W(t)W′(t)) = I, x̂t0|t0 <∞ andPt0|t0 <∞.

Theorem B.1. (Jimenez and Ozaki (2002)) The optimal (minimum variance) linear

filter for the linear model (B.1)- (B.2) consists of equations of evolution for the condi-

tional meanx̂t|t and the covariance matrixPt|t. Between observations, these satisfy

the ordinary differential equation

dx̂t|t =
(
A(t)x̂t|t + a(t)

)
dt, (B.3)

dPt|t =

(
A(t)Pt|t + Pt|tA

′(t) +
m∑

i=1

Bi(t)
(
Pt|t + x̂t|tx̂

′
t|t

)
B′

i(t)

+
m∑

i=1

(
Bi(t)x̂t|tb

′
i(t) + bi(t)x̂

′
t|tB

′
i(t) + bi(t)b

′
i(t)
))

dt,

(B.4)

for all t ∈ [tj , tj+1). At an observation attj, they satisfy the difference equation

x̂tj+1|tj+1
= x̂tj+1|tj + Ktj+1

(
ztj+1

− C(tj+1)x̂tj+1|tj

)
, (B.5)

Ptj+1|tj+1
= Ptj+1|tj − Ktj+1

C(tj+1)Ptj+1|tj , (B.6)

where

Ktj+1
= Ptj+1|tjC

′(tj+1)
(
C(tj+1)Ptj+1|tjC

′(tj+1) + Π
)−1

(B.7)

is the filter gain. The prediction̂xt|ρ and Pt|ρ are accomplished, respectively, via

expressions (B.3) and (B.4) with initial conditionsx̂t0|t0 andPt0|t0 andρ < t.

9Their original specification is

ztj
= C(tj)x(tj) +

n
X

i=1

Di(tj)x(tj)ξ
i

tj
+ etj

, for j = 0, 1, . . . , J,

where{ξtj
: ξtj

∼ N (0,Λ),Λ = diag((λ1, . . . , λn)), j = 0, . . . , J} is a sequence of random vector

i.i.d., andE(ξi
tj

, etj
) = ϑi(tj). However, in most finance applications, the noise termξ is not required.
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The analytical solution for this system of equations can be easily found, for details

see Jimenez and Ozaki (2003). They also provide some equivalent expressions that are

easier to implement via computer programs.
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