THE VOLATILITY STRUCTURE OF THE FIXED INCOME MARKET
UNDER THE HIM FRAMEWORK: A NONLINEAR FILTERING
APPROACH

CARL CHIARELLA*, HING HUNG', AND THUY-DUONG TO*

*+:¥School of Finance and Economics
University of Technology, Sydney
PO Box 123, Broadway NSW2007
Australia
Tcarl.chiarell a@ts. edu. au
*hi ng. hung@ts. edu. au

*School of Commerce
University of Adelaide
Adelaide, SA 5005
Australia
td.t o@del ai de. edu. au

ABSTRACT. This paper considers the dynamics for interest rate psesewithin a
multi-factor Heath, Jarrow and Morton (1992) specificati@espite the flexibility
of and the notable advances in theoretical research abediiM model, the num-
ber of empirical studies is still inadequate. This paudtpiincipally because of the
difficulties in estimating models in this class, which are aoly high-dimensional,
but also nonlinear and involve latent state variables. Phjger treats the estimation
of a fairly broad class of HIM models as a nonlinear filteringhbem, and adopts
the local linearization filter of Jimenez and Ozaki (2003ich is known to have
some desirable statistical and numerical features, tmagtithe model via the max-
imum likelihood method. The estimator is then applied tolths., the U.K. and the
Australian markets. Different two- and there-factor medale are found to be the
best for each market, with the factors being the level, tbpeshnd the “twist” effect.
The contribution of each factor towards overall variapibf the interest rates and the
financial reward each factor claims are found to differ cdesably from one market
to another.
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1. INTRODUCTION

Management of interest rate risk is of crucial importandén@ncial institutions and
corporations. The volatility structure of this interesteranarket plays a crucial role
in assessing and managing the value as well as the risk of &mdnterest rate de-
rivative portfolios. Various interest rate models haverbeensidered, amongst which
the Heath-Jarrow-Morton (1992) (hereafter HIM) framewandvides a very flexible
framework for interest rate modelling. Despite its niceoitetical flexibility, the appli-
cation of the HIM class of models to practical problems islbiad by the difficulty
of model estimation. This is principally due to the fact ttia underlying state vari-
ables of the HIM model are un-observable quantities, andiyhamics are usually
non-Markovian and non-linear in their (latent) state JVales.

Theoretical research on HIM models has shown that for g famdad family of
volatility functions, the underlying stochastic systenm dse Markovianized, thereby
easing the computational complexity involved. Howeveg, ghoblems of nonlinearity
and the existence of latent variables still exist, and thpigoal analysis of HIM mod-
els has centered around certain volatility functions teatlto convenient properties
for the system, for example, the class of affine or squareathoe volatilities.

It should also be noted that the estimation of stochasticatsod already a chal-
lenging task for systems with affine or square root affinetililas. The estimation
techniques rely on the three basic tools: maximum likelthdbe method of moments
and filtering techniques. The maximum likelihood estimgtdLE) is a method of
choice for models whose likelihood is tractable, and was &ipplied by Chen and
Scott (1993) and Pearson and Sun (1994). In many cases oéshtbe likelihood
function is not available, and various approximation téghes are used. These in-
clude the Hermite expansion technique by Ait-Sahalia 120902, 2003), the simu-
lated maximum likelihood by Brandt and Santa-Clara (20&2andt and He (2002),
and the related Markov Chain Monte Carlo (MCMC) method bygdi#r et al. (1994),
Kim et al. (1998), Eraker (2001) and Elerian et al. (2001).sé&ch that uses the
method of moments principle include the generalized metifadoments (GMM) by
Ho et al. (1996), the simulated method of moments (SMM) byfiewEnd Singleton
(1993), the indirect inference by Broze et al. (1998), thieieht method of moments
(EMM) by Gallant and Tauchen (1996, 1997, 1998), the robidMzy Dell’Aquila
et al. (2003), and the GMM based on conditional charactesistinctions by Single-
ton (2001). Filtering techniques, such as the Kalman fittave recently been applied
to estimate linear term structure models, such as in Jeghdeal Pennacchi (1996),
Geyer and Pichler (1999) and Rossi (2004).
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Zhou (2001) study the finite sample properties of the maxinikefihood and the
method of moments estimators for square-root interestlititesion models. The per-
formance of the EMM method is found to be mixed even under @atiate setting.
Under a multivariate setting, this performance can detatéo Recently Duffee and
Stanton (2004) also analyze the performance of differeimhaion methods for dy-
namic term structure models. They find that the standard MidSc very poor job of
estimating the parameters that determine expected chamg#srest rates. Further-
more they find that the EMM estimator is an unacceptableratere, even where the
MLE performs well. They conclude that the Kalman filter is agenable choice, even
in the non-Gaussian setting where the filter is not exactdhd¢ase, they advocate the
use of a variant of the Kalman filter, where the updating éqodor the state variables
is a linearized version of the drift using its first derivativ

In light of the findings of Zhou (2001) and Duffee and Stant@04) this paper
pursues further the filtering approach. Even though thatifitering and prediction
problem has well been understood after the important worKaliman (1960) and
Kalman and Bucy (1961), nonlinear filtering is still an aetresearch area. Various
approximation for nonlinear filters have been proposedy sische Extended Kalman
filter, the Iterated Extended Kalman filter, the Modified Gaas filter. As these filters
are quite computationally unstable, Ozaki (1993) intraala Local Linearization fil-
ter, which was later developed further by Jimenez and O24KZ, 2003) for systems
whose volatility structure is dependent on the state viasah.e. systems with multi-
plicative noise). The main idea is to linearize the systemagyics according to the 1td
formula, utilizing both the drift and the diffusion terms, better take into account the
stochastic behaviour of the system, and then to apply tleli{yeavailable) optimal
linear filter. We advocate the use of this filter as it has béenva by Shoji (1998) to
have good bias properties and by Jimenez et al. (1999) todhauenber of computa-
tional advantages. The estimation method is able to exbaih the time series and
cross sectional information of the yield curve.

We empirically investigate different multi-factor intsterate models and apply the
local linearization filter to analyze the volatility struce of the U.S., the U.K, and
the Australian markets. These markets have been chosepréseat different regions
in the world. The rest of the paper is organized as followsctiBe 2 introduces
the model. The econometric implication of the model and ttapgsed estimation
method are discussed in Section 3. Empirical results areghesented in Section 4,
and Section 5 concludes the paper.
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2. MODEL FRAMEWORK

The general framework for the interest rate models conster this paper is in-
troduced in Heath, Jarrow and Morton (1992), where the miateeous forward rates
r(t, x) (the rate that can be contracted at titrfer instantaneous borrowing/lending at
future timet + =) are assumed to satisfy SDEs of the form

r(t,z) =r(0,t+x)+ / o(s,t+z) [a(s,t+x)— P(s)] ds
. 0 (2.1)
—|—/O o(s,t+z)dW(s),

where
t+x
o(s,t+x) = / o(s,u)du,

ando(t,z), ¢(t) areI-dimensional processes ab¥l (¢) is a standard-dimensional
vector of independent Wiener processes under the marketuresd, I € N, and the
superscript represents matrix transposition. The veefdt) can be interpreted as the
market price of interest rate risk vector associated Wi# (¢). In general,oc and¢
may depend on a number of forward rat¢s ).

The HIM model framework is chosen as it yields arbitrage-fridels that fit the
initial yield curve by construction. The subclass of HIM ralsdvhich are particularly
suited to practical implementation are those which can bekMganized. Carver-
hill (1994), Ritchken and Sankarasubramanian (1995), Binar Chiarella (1997a),
Inui and Kijima (1998), de Jong and Santa-Clara (1999) anitkBand Svensson
(2001) discuss various specifications of the forward ratatWities o (¢, =) that lead
to Markovian representations of the forward rate dynami&hiarella and Kwon
(2001b, 2003) introduce a specification that leads to ayf&irbad and convenient
class of models. The models in this class satisfy the assompt

Assumption 2.1. (i) For eachl < i < I, there existd,; € N such that the compo-
nents,o; (¢, z), of the forward rate volatility process have the form

L;
oi(t,x) = Zcil(t)ail(x) (2.2)
=1
wherec; (t) are stochastic processes ang (x) are deterministic functions.

Iwe are in fact using the Brace et al. (1997) implementaticth@HJM model. This is more appropriate
to capture the dynamics of LIBOR and various other marketeylicates.

2In this notationy (¢, 0) denotes the instantaneous rate of interest that we hettcefdte asr(¢).
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(i) There existM € N and asequence; < --- < xjr € Ry such that the processes
¢i1(t) have the form

ciu(t) =cu(t,r(t,xr),...,r(t,znr)), (2.3)

where¢ is deterministic in its arguments.

Chiarella and Kwon (2003) then prove that the forward curae loe expressed as
an affine function of a set dV discrete tenor forward rates

r(t,m1,...,7n) = [r(t,71),...,7(t,7n)]

(see Appendix A for a brief summary). This set of forward saterms a Markov
process. In terms of the real world measure, whre (¢1,. .., ¢r) is the vector of
market prices of risk associated with the Wiener proddssthe system of stochastic
differential equations for the instantaneous forwardséecomes

dr(t,z) =[po(t,x,71,...,75) + D1 (t, 2, 71, .., TN)P(t, 71, ..., TN)

(2.4)
—@'o(t,t+x)dt +o(t,t+x)dW(t).

The yieldy(t, ) on the(t + x)-maturity zero coupon bond can be calculated from
the instantaneous forward rates via

y(t,z) = e /Omr(t,u)du, (2.5)

X

and can also be expressed as an affine function of the fonased, that we write in
the form

y(t,z) = qot,z,71,...,78) — @ (t,z, 71, . .., TN)P(E, L, o TN, (2.6)

where they;(t, z, 71, ..., 7v) is a set of deterministic functiofisWe therefore have an
affine term structure model. This model is not nested indidepbpular affine model
class considered in Duffie and Kan (1996), even though thérdevoccasions when
the two classes overlap.

3. ESTIMATION FRAMEWORK

3.1. The model specification.

The empirical work of Litterman and Scheinkman (1991), Chad Scott (1993),
Knez et al. (1994), Singh (1995), who use principal compbaealysis, suggests that
there are at most three factors affecting the volatilityndérest rates. Guided by this
insight we propose to use athree-dimensional Wiener psdnéle specification (2.1).

3For definition of the coefficient functions andp, see Appendix A.
4Again see Appendix A for definitions of thg.
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We shall specifically consider four volatility functionsamely

a1(t, ) = nr(b), (3.1)
02a(t, 1) = ype 20, (3-2)
oo(t, ) = Yo (r(t, 7) — r(t)), (3.3)

o3(t, ) = y3(x — t) e @0 (3.4)

The first volatility functiono (¢, x) reflects the level factor, where the volatility is
dependent on the level of the short rate &= 0.5 we would obtain a Cox-Ingersoll-
Ross (1985a) type of volatility. The second volatility ftioa can be called the slope
factor, which is modelled here in two different ways. Theatiity can be dependent
on the actual slope, as modelled &y, or the volatility can be thought of as a simple
decreasing function of maturity as modelled &y, (¢, z) which allows the shock to
have much less impact on the yield curve as the yield matimityases. The function
os(t, ) creates a hump in the volatility function, which is a typigaittern found in
swap markets. This can be thought of as a “twist” in the yielve.

To model the market prices of risk;, ¢o, ¢3, the current literature has assumed
that they are dependent on the underlying interest rateeShere is no guidance on
what the functional form for this dependence should be, rihedehave chosen those
functional form that leads to nice model properties. As thdanlying interest rate
follows an I1td process, if the market prices of risk are dejmnt on the interest rate,
they should also follow Itd processes. Instead of spewifya dependence structure
as in the literature, the market prices of risk here are asduim follow a stochastic
differential equation

do; = ai(di — ¢;)dt + Bin/ ¢i(t)dW;(t). (3.9)
Intuitively, the specification suggests that the marketqwiof different interest rate
risks are always positive and tend to converge to their lamgequilibria.
3.2. Econometric implication of the model.

Some similar and other specialized models of the HIM classidered here have
been empirically analyzed. Bliss and Ritchken (1996) atersthe case where the
volatility function in (2.2) can be written as

o(t,x) =c(t)e .

This specification covers our single-factor model, as edabup volatility functions
can be written in the above form. For example, witfft, x) = ')/17“)‘(75), the value ofk
is zero and:(t) = v17(¢). The key idea of their approach is to exploit the relatiopshi

Swith this volatility function, the model can be Markoviaait using two state variables.
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(2.6) for the yields, into which they introduce an error tethen estimate their model
via the Maximum Likelihood procedufe The main drawback of this approach is that
the estimation procedure can only identifyas the relationship (2.6) does not depend
on the parameters characterizing functign) (y; and\ in our example). However,
all of the parameters in the models are important in practicek, such as the deter-
mination of the price of a derivative contract.

de Jong and Santa-Clara (1999) also empirically study tate-sariable HIM mod-
els where the volatility function of the system is propamtb to the square root of
the state variables. However, they overcome the disadyesitaf Bliss and Ritchken
(1996) approach by using both the relationship (2.6) and/fkovian system (2.4) in
their estimation procedure. They use the Kalman filteringhoe where (2.6) serves
as the observation equation and (2.4) is discretized intata gransition equation. In
a more general setting, it is not clear how to discretize thectiral stochastic system,
and the behaviour of the estimator is clearly dependent®@migthod used in this dis-
cretization. In a more recent study, Rossi (2004) also teeKalman filter to estimate
a HIM model. However, the HIM model is Gaussian, and onlyeatitKalman filter
is needed, therefore the issue of a discretization doesriset a

In this paper, we advocate the local linearization filtem¢laéter the LL filter) of
Jimenez and Ozaki (2002, 2003). This approach is still basdtie Kalman filter for
a discrete linear system. However, Jimenez and Ozaki doisotetize the nonlinear
system directly, but rather approximate it by a system linedoth its drift and its
diffusion terms, for which a linear Kalman filter turns outle readily applicable.
The approximation is not based on the first order Taylor appration used in the
standard extended Kalman filter framework, but is insteasbdbaon a second order
approximation using the I1td formula to better take intoaott the stochastic behaviour
of the underlying state variables.

In his comparative study, Shoji (1998) analyzed the peréoroe of the maximum
likelihood estimator based on the LL filter and the one basethe extended Kalman
filter for a system with additive noise (i.e. the volatiliturfction is not dependent
on the state variables). Shoji used Monte Carlo simulatioshow that the LL filter
provided estimates with smaller bias, particularly inrastion of the coefficient of
the drift term. Jimenez et al. (1999) compared the LL scheiitie ather linearization
schemes for systems with either additive or multiplicatieése (the latter means that
the volatility function is dependent on the state varidbl&bey also reported a number

5The relationship Bliss and Ritchken use is actually an esgiom of the whole yield curve as an affine
function of some particular yields rather than the forwants. This can be derived very simply from the
model here.
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of numerical advantages of the LL filter, including numeritability, better accuracy
and the order of strong convergence.

3.3. The local linearization filter and the maximum likelihood egimator.

Consider the state space model defined by the continuoesestaation
dx(t) = £(t,x(t))dt + ) g;(t,x())dWi(t), (3.6)
=1

and the discrete observation equafion
Zi; = C(tj)X(tj) + €}, forj=0,1,...,J, (3.7)

wheref andg, are nonlinear functionsx(t) € R? is the state vector at the instant
of time ¢, zt;, € R" is the observation vector at the instant of time W is anm-
dimensional Wiener process, afé;, : e;;, ~ N'(0,1I),j = 0,...,J} is a sequence
of i.i.d. random vectors.

The system function§ andg; can be linearly approximated. Jimenez and Ozaki
(2003) proposed to approximate them via a truncated Itdefaxpansion, for exam-
ple, the approximation fof is

5u < 2f(s,u
£t x(8)) ~f (s, u) + | W) k0%t (s, )

1 /
s + 3 kg:l[G(s,u)G (s,u)] Soaul (t— )
+ Je(s,u)(x(t) —u),
(3.8)

where(s,u) € R x R, J¢(s, u) is the Jacobian of evaluated at the poirft, u) and
G(s,u) is thed x m matrix defined byG(s,u) = (g;,...,8,,). The presence of
the volatility functiong; in the linearization of both the drift and the diffusion tesm
differentiates this linearization scheme from the simgleond order Euler/Taylor ex-
pansion. It is because the underlying state system is stichand follows an Itd
calculus, expansion according to Itd-Taylor formula Witter take into account their
stochastic nature.

Using such approximations férandg;, the solution of the nonlinear state equation
(3.6) can be approximated by the solution of the piecewissali stochastic differential

“Afull (nonlinear) specification of the observation equatieould be

n
20, = h(t;, x(t;)) + Y p;(t; x(t;)&l, +er,, forj =0,1,....J,
=1
whereh and p, are nonlinear functions{&tj D&y, N(O,A),A = diag((A1,...,\n)),J =
0,...,J}is asequence of random vector i.i.d., aftﬁgandetj are uncorrelated for allandj. However,
in most finance applications, including ours, a linear djeation forh is all that is required and there is
no need to include the extra noise tegm
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equatiofd

dy(t) = <A(tj,§/t]_‘t_)y(t) + a(t,tj,ytj|tj)> dt
(3.9)
+Z( ]’yt \t ( )+bl(tat]ayt]‘t])> dVVZ(t)

for all t € [tj,t;41), starting aty(to) = Vi, = Xeolto- T1he various quantities
appearing in (3.9) are defined as
x()Z,),  Zp={m, : t; < p},
Vi =E(y(t)]Z,),
A(s,u) = J¢(s,u),
Bi(s,u) = Iy, (s, ),

Xt|p =E

(
(

a(t,s,u) =f(s,u) — Je(s,u)u+ 8fgs’; w) (t—s)

d
l / k,l an(S, u) _
+ 2 kgl[G(Sv u)G (87 u)] aukaul (t 8)7

b;(t,s,u) = g;(s,u) — Jg.(s,u)u+ W(t —3)
S

1 d G G/ k,l 82gi(87 u)
t3 k;l[ (s,u)G'(s,u)] W(t —s).

The approximate stochastic differential equation (3.9) thie corresponding obser-
vation equation (see (3.7))

zy;, = C(tj)y(tj) +ey, forj=0,1,...,J, (3.10)

form a linear state space system. The optimal linear filtepgsed by Jimenez and
Ozaki (2002) can be applied (see Appendix B for its definjtimndetermine the con-
ditional meany,, and conditional covariance matrB;, = E((y(t) — ¥,)(y(t) —
Yup)'|Z,) forall p < t. The difference with the standard Kalman filter is that the
volatility function here is also dependent of the statealalds, albeit only via a linear
function.

Due to the assumption of multivariate normality of the disancese,; (and if the
initial state vector also has a proper multivariate nornistrithution), the distribution
of z;,,, conditional onZ,, is itself normal (see (3.10)). The mean and covariance
matrix of this conditional distribution are given directly the local linearization filter

Swe usey (¢) to denote the solution to the approximate system to disisigtifrom x(¢) the solution to
the true system.
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above. Therefore, a maximum likelihood estimator for thedeigparameters can be
easily derived.

Let 8 be the vector of parameters of interest, which include alhipeters speci-
fying the state space model (3.9) and (3.10), plus the rsta&te values ok, ;, and
Py, 1,- The log likelihood function foZ is

J J
rJ 1 1 _
Lz(0) = ——-In(27) — 5 > |zl - 5 > v T vy (3.11)
j=1 j=1
where the innovation equations are
Vi, = 2Zy; — C(tj)f’tﬂtj,la (3.12)
th = C(tj)Ptj\tj,lc/(tj) + H (313)

The maximum likelihood estimator éfis then

A~

0 = max Lz(0). (3.14)

3.4. Econometric implementation.

We now view our model as a continuous-discrete nonlineae space system,
where (2.4) and (3.5) serve as the nonlinear state equatimls(2.6) serves as the
linear (affine) observation equation. Similar to the staddaactice in the literature,
we introduce into the observation equation a measurement atich reflects the fact
that the model cannot fit all observed yields simultaneouEhis measurement error
is assumed to follow a multivariate normal distribution. eTlbcal linearization filter
can be readily applied to yield the maximum likelihood estian of 8, the vector of
parameters of interest, which includes all of the pararsetéthe volatility functions
(4.1) - (4.4), of the market price of risk specification (3ab)d the initial conditional
mean vectok,,, and conditional variance matri; ;-

The numerical difficulties associated with any estimatiomcpdures for stochastic
systems are well-known. Amongst them, system stabilityrimeversion to calculate
the likelihood function, convergence of the optimizationtine and significance of the
estimates are the main problems. To partly overcome thekdgons, we maximize the
likelihood function using a genetic algorithm (Holland 78, Mitchell (1996), Vose
(1999), Michalewicz (1999)). Genetic algorithms use thel@ionary principle to
solve difficult problems with objective functions that dat pessess “nice” properties
such as continuity and differentiability. The algorithnemech the solution space of a
function, and implement a “survival of the fittest” strateg@yimprove the solutions.
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4. EMPIRICAL ANALYSIS

4.1. The Data.

We estimate the model using the zero yield data in the U.S, ah& Australian
markets downloaded from DatastreBniThe data consists of weekly observations for

contracts with maturity of 2, 3, 4, 5, 7, 10 and 12 years, spanb years from 7th July
1999 to 30th June 2004.

Figure 1 shows the 2-year zero rates for the different marketolutions for rates
at other maturities have similar shapes, though at diffelerels. Over the 5-year

FIGURE 1. Zero yield curve, 2-year time to maturity

%

Australia

5%

3%

u.s.

1%

29/21/99 27/12/00 26/12/01 25/12/02 31/12/03 30/6/04

period, interest rates have changed significantly. The iataeased in all markets by
around 1.5% from July 1999 to June 2000. The rates then desstdmt with different
paces across the markets. In the U.S., the rates dived gliarpl 7.5% to 1% in the
next 3 years, then started to pick up again in the second hal@s, moved slightly
around the 2% level, then rose to 3% by June 2004. The U.K mal$® experienced
a period of decreasing rates during the 3-year period of 2066 - June 2003, but to
a much lesser extent than the U.S. market. Then the ratesdbigk again as part of
a global trend. The Australian market had a much more statdedst rate movement
compared to the other two, around 6% in 1999 and 2000, anchars¥ for the rest
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of the sample data. All of the rates display a high level obaatrelation, as can be
seen in Table 1.

TABLE 1. Summary statistics for the zero yield curve

uU.S. Australia U.K.
2-yr 5-yr  12-yr| 2-yr 5-yr  12-yr | 2-yr 5-yr  12-yr
Mean | 4.21% 5.15% 6.06%5.58% 6.01% 6.299%5.36% 5.63% 5.61%

Stdev | 2.07% 1.49% 0.99%0.69% 0.65% 0.56% 1.02% 0.87% 0.56%
AC(1) | 0.995 0.992 0.985 0.977 0.966 0.957 0.992 0.990 0.983

We also analyzed the principal components of the zero yiefdec In all of the
markets, three components are able to explain nearly 100%eo¥ariation in the
yields. The last component plays a negligible role, onlyl@ximng 0.06% of the total
variation in the U.S market, and less than 0.2% of the totahtran in the U.K and

the Australian markets, as reported in Table 2.

TABLE 2. Principal component analysis of zero yield curves

% variation explained | U.S. Australia U.K.

Principal component 1 | 99.21 97.56 99.14
Principal component 2 | 0.73 2.18 0.72
Principal component 3 | 0.06 0.17 0.13
Total of the 3 components 100 99.91 99.99

4.2. Empirical Results.

We separately ran the estimation for different combinatiofithe 4 volatility func-
tions

o1(t,z) = nr(t), (4.1)
024(t, ) = e*’”(x 9, 4.2)
ow(t, ) = 72(r(t,7) — r(t)), (4.3)

o3(t,z) = y3(x — t)e Y. (4.4)

The models considered and their code can be found in Table 3.
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TABLE 3. Models considered

This table reports different models considered in the eicgdianalysis by
combining various volatility functions.

Model Code al(t,w) = Jga(t,x) = Ugb(t,w) = Jg(t,%‘) =
nrr () | e yo(r(t, 7) — (1) | ys(e —t) e
Model 1 v
Model 2 v v
Model 2B v v
Model 3 v v v
Model 3B v v v
Model 3C v v v

4.2.1. The U.S. market.

Among the six models estimated for the U.S. market, we fintdiadel 3 is the
best one. Except for model 3B, where we failed to find a contlwnaof parame-
ters that resulted in positive interest rates, we were ablmaximize the likelihood
functions for all of the other model specifications. Tableegarts the likelihood val-
ues and various information criteria for each estimated ehoiflodel 3 has a lower
information criterion calculated based on different scheymamely the Akaike, the
Schwarz-Bayesian and the Hannan-Quinn, and therefore jgréferred model.

TABLE 4. U.S market. Information criteria.

Model1 Model2 Model2B Model3 Model 3C

Log likelihood 14647.68 22680.14 15780.21 23227.7 23112.27
Number of parameters 5 11 9 16 15
Akaike (AIC) -8.016 -12.408 -8.632 -12.705 -12.64
Schwarz-Baysian (BIC) -8.007 -12.391 -8.619 -12.681 -12.62
Hannan-Quinn (HIC) | -8.012 -12.402 -8.627 -12.696  -12.63

O

=

The estimated parameters for model 3 can be found in Tableh& 3Tvolatility
functions and the corresponding market prices of risk diaig are

o1(t, z) = 0.0457r(t)5524

oo(t, ) = 0.0240 e ~0-0195(@—1)

o3(t,z) = 0.0012(z — t) e~ 1-0446(—1)
dey = 40.4048(1.4393 — ¢1)dt + 0.2928+/d1dW1 (t)
depy = 49.9942(0.0133 — $2)dt + 0.0506+/ dodWa(t)
ds = 22.2553(39.780 — @3)dt + 9.92161/dsdWs(t)
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TABLE 5. U.S. market. Estimated parameters for model 3

This table reports the parameter estimates for model 3, réfenped model
among those estimated. Their corresponding standardsaaremreported in
square parenthesis. The notatigay stands forr x 107V,

Par Est | Par Est | Par Est
v 0.0457 | v 0.0240 | v3 0.0012
[3.3e-9] [2.3e-8] [1.1e-9]
A 05624 | ko 0.1155 | k3 1.0446
[1.6e-7] [1.2e-8] [1.4e-7]
o1 40.4048| oy 49.9942| o3 22.2553
[2.5e-5] [5.0e-5] [4.6e-4]
¢1 1.4393| ¢» 0.0133| ¢3 39.780
[1.6e-6] [2.7e-7] [9.2e-4]
/1 0.2928| 5, 0.0506 | B3 9.9216
[4.7e-7] [0.0796] [1.1176]

The first volatility factor depends on the level of intereservia the functional form
v, The estimated value ofis 0.56, which is quite close to the square root volatility
specification usually used in empirical work. This value iscmlower than the value
1.5 found by Chan et al. (1992), but is within the range of 6.5.6 reported in Pagan
et al. (1996) (dependent on the interest rate series uséd)sdcond volatility factor
allows a shock in the market to impact on the short end of thesomore than to yields
at longer maturities. The value gf implies that it requires the two yield maturities to
be 6 years apart for the impact of the same shock to halve. Hiiltevolatility factor
creates a hump in the volatility curve, which occurs at adoliryear to maturity (as
implied by the value ofs3).

The combination between these three volatility factorsmfothe instantaneous volatil-
ity for the forward rates. This overall volatility changegeo time as the yield curve
moves. The volatility evolutions for the spot rate, the @uytforward rate and the 12-
year forward rate are displayed in Figure 2. The total vimator the forward rates
decreases as the time to maturity increases. Moreovehtneraaturity forward rates
have much less variation over time than the longer maturigso

Each volatility factor contributes differently towardsetkotal variation of the for-
ward rates. The third volatility factor contributes verightly, almost to a negligible
extent (less than half a percentage point). The contributibthe other two factors
vary according to the yield maturity and to the passage oé tifigure 3 shows the
contribution of the first factor (the level factor), the cdntition of the second factor is
just a mirror image. The level effect is more dominant forfitrevard rate with longer
time to maturity than the shorter ones, averaging at 54%hre-year forward rate,
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FIGURE 2. The U.S. market. The instantaneous volatility of forward
rates
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25% for the 6-year forward rate and only 8.5% for the shoe.rdthe dominance of
the level effect on the overall forward rates volatility imased during the first year of
the sample period, then declined steadily for the next 3syeard finally levelled off
at a slightly higher value in the last year.

FIGURE 3. U.S. market. The contribution of the level effect to the
total forward rate variation

100%

12-year forward rate

80%

60%
6-year forward rate

short rate

5/1/00  3/1/01  2/1/02 2/11/03 7/1/04 30/6/04

Given the fact that the third volatility factor plays a vemgtigible role in determin-
ing the overall forward rate variation, one would ask thestjoa whether it should be
included in the model specification. The answer is yes. Ekengh magnitude of
this volatility factor is small, each unit of this volatifitisk commands much higher
financial reward than one unit of the other volatility riskEhe long run unit prices
for the third volatility factor is 39.8, compared to the vedul .45 and 0.01 for the other
two volatility factors. In addition, the speed of mean rei@n of the price for the third
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volatility risk is only half those of the other two volatyitfactors risk. On the way
towards the long-run value, it takes 1.6 weeks for the le¥ahe price of the third
volatility risk to halve, whereas it takes only 0.9 and 0.7ek& for the prices of the
other two risk to halve. The intensity of this third unit gricmovement is also much
higher, measured by a value of 9.9 fay, compared to 0.3 fof; and 0.05 for3s.

This unit price, when scaled by the volatility, will detemmi the overall compen-
sation for investors for bearing volatility risk. It is refled on a discount to the drift
of the forward curve, and consequently a premium to the dfithe bond equation.
The discounts to compensate for bearing each volatilitjofaisk (called the market
price of risk) are additive. Figure 4 graphs the contributidd each market price of risk
into the total compensation investors require to bear thegility risk. As can be seen
from the graph, even though the third volatility factor isywemall in magnitude, the
corresponding market price of this risk plays a very sigaificrole in the total com-
pensation, especially for yields with short and medium mitis. The market price
of the first volatility factor risk is the dominant one overdlut that role is somewhat
diminished for yields from 1-3 year maturity.

FIGURE 4. The U.S. market. The contribution of each market price
of risk to the total risk compensation
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80% 1
60% 1
40% 1

20% 1

TS, + Forward rate maturity
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Table 6, Panel A reports the prediction errors obtained byntlodel. The average
absolute prediction error for zero yield series is 14 basistp, whereas the mean
of the prediction error is 3 basis points, which indicate adyin-sample prediction
power.

In order to check the power of our model and the estimation,)seel the parameter
values to calculate the implied LIBOR rates, then compahnedd implied values with
the market values. It should be noted that the LIBOR ratesewet used in our
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TABLE 6. U.S. market. Prediction errors.

Panel A. Prediction of the zero yields

This panel reports the prediction errors for all of the yisddies used in the
estimation. All values are reported as basis points.

Maturity (in years) 2 3 4 5 7 10 12| All

Mean error 2.16 534 221 253 248 189 3.22.84
Standard deviation errgr20.4 19.5 18.3 18.7 18.0 16.7 16.48.3
Mean absolute error 13.7 14.7 135 143 13.8 12.8 13.03.7
Stdev absolute error 15.2 13.8 125 12.3 11.7 10.8 10.92.5

Panel B. Prediction of LIBOR rates
Parameters estimated from zero yield data are used to ptkdiactual LI-
BOR rates. All values in the table are in basis points. “Std#gands for
standard deviation, “Correl” stands for correlation, ‘@hfestands for predic-
tion, and “Abs. Err.” stands for absolute error.

Maturity Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor  pred. Error Error Abs. Err. Abs. Efr.

1 month| 0.9110 217.18 268.06 -5.61 113.78 89.62 70.

2 months| 0.9376 218.55 262.89 -8.96 95.62 77.67 56.
3 months| 0.9466 220.76 261.20 -9.72 88.27 72.66 50.
4 months|  0.9548 221.48 259.74 -11.30 81.63 67.52 47.
5 months| 0.9614 222.06 258.42 -13.04 75.87 62.87 44,
6 months| 0.9683 222.08 257.18 -15.23 69.64 58.69 40.
7 months| 0.9742 222.02 25595 -16.71 63.93 54.57 37.
8 months| 0.9788 221.88 254.71 -18.21 58.92 50.92 34.
9 months| 0.9825 221.73 253.43 -19.66 54.54 47.75 32.
10 months  0.9852 221.34 252.09 -20.40 50.94 44.92 31.
11 months  0.9874 220.91 250.69 -21.07 47.82 42.45 30.
12 months  0.9891 220.37 249.23 -21.65 45.11 40.18 29.

OONOOOOWNNO O ™

estimation at all, and the maturities of the zero yield ratedlin the estimation are from
2-12 years, whereas the maturities for the LIBOR rates dyd@ss than 1 year. As can
be seen from Panel B of Table 6, there is a very high correldteween the predicted
LIBOR and the actual LIBOR rates, though the predicted sdré&’e somewhat higher
variation than the actual series. Understandably the loeaselation of 91.1% is for

the 1 month rate LIBOR, as it is much outside the maturity eaunged in the estimation.
The correlation increases as the time-to-maturity comeseclto the maturity range
used in the estimation. The correlation between the predliand the actual 1 year
LIBOR rate is 98.9%. Across all LIBOR maturities, the averggediction error is

from 5-22 basis points, whereas the absolute errors lieenréinge of 40-90 basis
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point. In a different study, Jegadeesh and Pennacchi (198§]) the Kalman filter
to estimate a linear 2-factor model with constant volé#itusing futures data (with
3-month LIBOR as the underlying rate) and used the parasmé&guredict the actual
LIBOR. They reported mean errors (not mean absolute emotfié range of 23-48
basis points for different maturities.

Figure 5 illustrates the predictive power of the model. Thadei gives excellent
prediction for zero yield series which were used in the eiiom. For the LIBOR
series, whose values as well as maturity range were not usttb iestimation, the
predicted series matches the actual series well in the, tvéimelreas the value deviation
is small.

FIGURE 5. The U.S. market. Actual and predicted interest rates.
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At this point one would question whether the model predicpower is better than
a simple random walk approach. However, it should be keptiimdrthat practition-
ers regularly need to price over-the-counter instrumeiisse underlying interest rate
is not traded in the market, or to price illiquid instrumemtBose underlying inter-
est rate’s quote is not always available. Under such cirtamess, the random walk
prediction method is not feasible, and the ability of the mldd predict accurately a
totally different interest rate series in a totally diffetenaturity range is very impor-
tant. One of the reasons the implied volatility approachoigytar among practitioners
is that a less actively traded security can be priced camglgtwith other more liquid
securities. Nevertheless, this implied volatility approamplies a continual change
of parameter values, which is not desirable. Using our edton procedure, consis-
tency of security prices remains while parameters are lamtant and there is a clear
indication of the confidence interval for the parameter &alu
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4.2.2. The Australian market.

Unlike the U.S. market, we find that model 2B is the preferremtiel based on
various information criteria, as shown in Table 7. It sholddnoted that even though
in theory some models encompass others (e.g. model 1 ignieside model 2), in
practice the likelihood value of the more general model migit be higher than that
of the restricted one, as the restricting parameters halie t@pt different from zero
for computational purposes. The estimated parameterseéoubd in Table 8. The
volatility functions for the estimated model and the copmsling market prices of
risk are

o1(t, x) = 0.9166r(t)" 7080

o9(t,x) = 0.0824(r(t,7) — r(t))
dgpy = 48.0407(18.7346 — ¢y )dt + 5.3123+/d1dW1(2)
depy = 49.2477(15.1458 — ¢o)dt + 8.4740+/ dodWs(t).

TABLE 7. Australian market. Information criteria.

L)

Model1 Model2 Model2B Model3 Model 3(

Log likelihood 74609.74 23351.56 90387.4 23354.29 23317.48
Number of parameters 5 11 9 16 15
Akaike (AIC) -40.835  -12.775 -49.279 -12.774 -12.755
Schwarz-Baysian (BIC) -40.827 -12.759  -49.266  -12.750 -12.732
Hannan-Quinn (HIC) | -40.832 -12.769  -49.274 -12.765 -12.746

Under this model specification, the volatility of differeiotward rates does not de-
pend on the maturity of the rates, but rather depends ettplani the level of the short
rate and the slope of the yield curve. The estimated value farthe first volatility
function is 1.7. A direct comparison with other studies i$ aeailable, as previous
studies only focus on the U.S. market. For the U.S. markear@hal. (2005) have
employed a Bayesian updating algorithm to estimate thelalision for the parameter
A in a one factor HIM model implied by LIBOR rates of various uamgiies. They find
that the distribution lies in the interval [0.5,4]. In ligbt this finding a value of 1.7 for
the Australian market seems plausible.

The changes of the two volatility factors over time are iflated in Figure 6. The
overall variation of interest rates follows a decliningngle It can be seen that the first
volatility factor plays a dominant role in determining thariation of interest rates.
The contribution of the second volatility factor increaséth time as the yield curve
becomes more and more steep. On average for the whole saemmé,pthe level
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TABLE 8. Australian market. Estimated parameters for model 2B

This table reports the parameter estimates for model 2Byrésferred model
among those estimated for the Australian market. Theirsponding stan-
dard errors are reported in square parenthesis. The notetig stands for
x x 107Y.

Par. " A aq $1 b1
Est. | 0.9166 1.7080 48.041 18.735 5.31P
Stderr.| [4.8e-7] [1.6e-9] [0.0052] [0.0040] [0.0004]

Par. V2 Qg P2 B2
Est. 0.0824 49.248 15.146 8.474
Stderr. | [4.0e-6] [0.0010] [0.0107] [0.0005]

factor explains 96% of the variation in the yield curve anglglope factor explains the
other 4%.

FIGURE 6. The instantaneous volatility of forward rates
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The unit prices for bearing these two different volatilifgkr are similar, with an
estimate of 18.7 fory; and 15.1 forp,. Both of them have quite high rate of mean
reversion, i.e. it takes only 0.75 weeks for the level of thiegof the volatility risk
to halve. Due to the similarity in the unit prices of the twdfelient risk, and the
domination of the first factor risk, 89% of the overall riskngpensation is contributed
by the first factor risk, and only 11% is contributed by theogetfactor risk. Figure 7
graphs the changes of this contribution overtime. Thetshili the second factor to
command financial reward increases in the second half ofatimpke period due to the
steeper yield curve.
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FIGURE 7. Australian market. The contribution of each market price
of risk to the total risk compensation

100%
80%;
3 mprl - level factor
50°/c;
30°/c; mpr2 - slope factor
10°/c;

5/1/00 _ 3/tjol . 2/102 2/1/03 771104 30/6/04

The in-sample predictive power of this model for the Ausaralmarket is not as
good as the model for the U.S market. There is one instanceewhe filter behaves
really poorly. Itis at the last observation of 1999, whenwhwmle yield curve suddenly
shifted up after a trend of downward movements. The filtendidbredict this change,
which resulted in a large under-prediction for the levelh®f tates. However, after this
large error, the filter adapted to the new information andeqghbently did reasonably
well. Panel A of Table 9 reports the summary statistics ferqtrediction error. Without
the large error, the overall absolute prediction error i bhsis points. There is no
clear pattern of prediction errors across different mtasi

Panel B of Table 9 reports the power of the model in predictirgLIBOR rates,
which have a different maturity range and were not used iretitenation task. The
average prediction error lies in the range of 37-46 basiatppowhereas the mean
absolute error lies in the range of 38-56 basis points. Theladion of the predicted
series and the actual series increases steadily as theitjnafuhe LIBOR rates gets
closer to the zero yield maturity range used in the estimatithe correlation is at a
high level of 89.2% for the LIBOR rate of 1 year maturity, wihiis still 1 year lower
than the lowest maturity yield used in the estimation. leisonable to expect that the
model will predict well those interest rates with maturigynig within the estimation
range.
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TABLE 9. Australian market. Prediction errors.

Panel A. Prediction of the zero yields

This table reports the prediction errors for all of the Aakém yield series
used in the estimation. All values are reported as basidgoin

22

Maturity (in years) | 2 3 4 5 7 10 12 | Al
Mean error -19.8 -8.1 1.7 5.8 6.4 0.9 -6.0 -2.8
Stdev. error 165.5 163.8 162.5 161.5 159.5 156.7 1541%60.6

Mean absolute error 28.2 20.5 224 258 259 225 22/824.0

Stdev absolute errgqr164.3 162.7 161.0 159.5 157.5 155.0 15B81%9.0

Without the large error at the last observation in 1999
Mean error -9.7 19 116 157 162 102 34 71
Stdev. error 295 269 26.0 255 240 239 25/1259
Mean absolute error 18.1 105 126 16.0 16.3 13.0 13/414.3
Stdev absolute errgr 25.3 24.8 256 254 240 225 21|524.2
Panel B. Prediction of LIBOR rates
Parameters estimated from zero yield data are used to ptkdiactual LI-
BOR rates. All values in the table are in basis points. “Std#gands for
standard deviation, “Correl” stands for correlation, ‘ghfestands for predic-
tion, and “Abs. Err.” stands for absolute error.
Maturity Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor pred. Error Error Abs. Err. Abs. Eir.
1 month| 0.5974 58.00 62.35 -46.45 54.13 55.30 45.01
2 months| 0.6508 59.32 6254 -4581 51.00 53.22 43.18
3 months| 0.7003 61.07 62.78 -44.86 47.97 51.06 41.27
4 months| 0.7391 62.29 63.02 -44.39 45.27 49.42 39.69
5 months| 0.7728 63.65 63.26 -43.88 42.78 47.81 38.32
6 months| 0.7983 65.05 63.51 -43.47 40.85 46.42 37.45
7 months| 0.8189 66.29 63.75 -42.68 39.20 45.14 36.33
8 months| 0.8373 67.59 64.00 -41.81 37.69 43.92 35.20
9 months| 0.8535 68.99 64.25 -40.75 36.35 4261 34.14

10 months  0.8674 69.82 64.50 -39.73 34.97 41.45 32.91

11 months  0.8796 70.61 64.76 -38.67 33.69 40.27 31.74

12 months  0.8915 7147 65.01 -37.35 3241 38.90 30.52
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4.2.3. The U.K. market.

Similar to the Australian market, the model 2B is found to e preferred model
for the U.K. market according to various information cridereported in Table 10.
The preferred model has two different volatility sourcémitt specification and their
corresponding market prices of risk evolution are

o1(t, z) = 0.07155r(t)7263

oo(t,x) = 5.4235(r(t, 7) — r(t))
dey = 15.7712(17.9088 — $1)dt + 1.8736+/p1dWr (1)
dpy = 42.9665(6.4041 — ¢y)dt + 2.6493+/ dodWy(t).

TABLE 10. The U.K. market. Information criteria.

Model1 Model2 Model2B Model3 Model 3(

Log likelihood 64139.58 23445.61 88576.99 23553.42 23446.83
Number of parameters 5 11 9 16 15
Akaike (AIC) -35.104  -12.827 -48.477 -12.883 -12.825
Schwarz-Baysian (BIC) -35.096 -12.810 -48.464 -12.859 -12.803
Hannan-Quinn (HIC) | -35.101 -12.821 -48.472 -12.874 -12.817

)

Even though the yield curve variation in the U.K. market soadletermined by the
factor and the slope effects as in the Australian marketshbge effect plays a much
more significant role in the U.K. market. Figure 8 shows thenges over time of this
slope effect contribution to the overall variation of theKUield curve. The erratic
behaviour comes from the special feature of the U.K. intawte market. At the be-
ginning of the sample period (i.e. June 1999), the U.K. yieid/e had a humped shape
with the long maturity yields much smaller than the shorturigt yields. The short
maturity yield then gradually declined whereas the longumit yields increased, re-
ducing the the negative spread. The hump feature was stitrabd for the next two
years, until March 2001. The trend of declining short rated imcreasing long rates
continued until the end of the sample period (June 2004)chvhésulted in an in-
creasing trend for the spread and the new normal yield curkie.larger the absolute
value of the spread, the higher the contribution of the sfaptor towards the overall
variation of the yield curve.

Unlike the Australian market, where the two volatility facs claim similar financial
reward for investors, the level factor in the U.K. marketrolgan almost 3 times higher
financial reward per unit of risk than the slope factor. Iniidd, the price of the level
factor risk has much lower mean reversion rate than thatettbpe factor. It takes
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FIGURE 8. U.K. market. The contribution of the slope effect to the
total forward rate variation
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3.3 weeks for the price of the level factor to revert to the meampared to only 1.2
weeks for the price of the slope factor.

The in-sample predictive power of this model is similar tattbf the Australian mar-
ket. There is also one particular point of time (the two ldseayvations in 2002) where
the filter significantly underestimates the downward movetoéthe yield curve. On
that particular week the yield curve shift down by more th&nbasis points (from
15-19 basis points, depending on maturities), whereassih&l movement of the yield
curve is only of few basis points. It can be seen from Panelab)d 11 that excluding
this particular instance reduces the standard deviatigheoprediction errors signifi-
cantly. The mean of the absolute errors then varies betwk&® basis points, which
is reasonable.

Re the ability to predict totally different interest ratgies (LIBOR v.s. zero yield
rate) with a totally different maturity range, the model sl@every good job in pre-
dicting the trend, as evidenced by the correlation levelp{ai96.6%. However, the
value prediction is not good, with mean absolute error lyintpe range of 60-80 basis
points. In this U.K. market, the zero yield series used indbiéimation only have a
standard deviation of 18-100 basis points, whereas the stron LIBOR rates have
a much higher standard deviation of 93-104 basis points.reftue, the prediction
of LIBOR rates implied by the parameter values estimatethfeero yield rates un-
derestimates the variation of the actual LIBOR rates, wheéeldls to the not so small
errors.
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TABLE 11. U.K. market. Prediction errors.

Panel A. Prediction of the zero yields

25

This table reports the prediction errors for all of the U.kelg series used in
the estimation. All values are reported as basis points.

Maturity (in years) 2 3 4 5 7 10 12 | All
Mean error -25.0 -9.2 2.7 -0.3 0.6 -2.1 -4.6 -6.2
Stdev. error 176.8 176.5 176.2 176.1 176.2 176.9 17/¥6.6
Mean absolute erraor 31.1 24.4 227 21.7 23.1 29.2 33/126.5
Stdev absolute errgrl75.8 175.0 174.7 174.8 174.7 1745 1744/4.8
Without the large error at the last observation in 2002

Mean error -15.2 0.7 7.1 9.6 10.5 7.8 5.2 3.7
Stdev. error 20.1 171 13.7 115 125 21.3 26/0175
Mean absolute error 19.5 126 11.0 100 114 175 21/414.8
Stdev absolute errgr 159 116 109 111 11.8 14.4 15/613.0

Panel B. Prediction of LIBOR rates

Parameters estimated from zero yield data are used to ptkdiactual LI-
BOR rates. All values in the table are in basis points. “Std#gands for
standard deviation, “Correl” stands for correlation, ‘ghfestands for predic-
tion, and “Abs. Err.” stands for absolute error.

Maturity |  Correl. Stdev. Stdev. Mean Stdev. Mean Stdev.
(libor,pred.) libor pred. Error Error Abs. Err. Abs. Eir.

1 month| 0.8803 9252 9343 -79.76 4550 80.79 43.65
2 months| 0.9003 94.85 93.60 -76.46 42.09 77.01 41.08
3 months| 0.9157 96.66 93.90 -73.82 39.22 74.02 38.83
4 months| 0.9281 97.93 94.19 -72.23 36.60 72.25 36.55
5months| 0.9375 98.95 9449 -70.81 34.47 70.81 34.47
6 months| 0.9436 99.80 94.79 -69.44 33.05 69.45 33.05
7 months| 0.9484 100.45 95.10 -67.88 31.85 67.94 31.712
8 months|  0.9528 101.23 95.40 -66.20 30.74 66.32 30.49
9 months| 0.9563 101.98 95.70 -64.56 29.89 64.73 29.52
10 months  0.9600 102.62 96.01 -62.65 28.84 62.86 28.37
11 months  0.9632 103.30 96.31 -60.69 27.94 60.95 27.37
12 months  0.9658 104.00 96.62 -58.70 27.25 59.00 26.59
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5. CONCLUSION

The HIM framework provides a very flexible tool for interestermodelling. Even
though theoretical research has advanced quickly, thengalyas of HIM models have
not been fully realized in practical applications due tolgek of empirical work. More
research needs to be done on the challenging task of HIM reetigiation in order
to obtain a better understanding of interest rate vobatitiiat is much needed in the
process of assessing and managing risk as well as pricingptiee securities. This
paper has attempted to contribute to the empirical liteegby proposing an estimation
framework that can be applied to a broad class of nonline imadels.

The paper uses the local linearization filter to build up aimamn likelihood esti-
mator which is able to identify all parameters of the modat] o exploit both time
series and cross-sectional data. The local linearizatibverae is based on an Ito-
Taylor expansion of the nonlinear drift and diffusion terofghe driving dynamics
to better take into account the stochastic behaviour ofritereést rate system, and an
optimal linear filter is subsequently applied. This filtesHzeen chosen because of
its advantages over other filters as shown by Shoji (1998)tarmbtter numerical and
stability properties as demonstrated by Jimenez et al 9199

The estimator is then used to estimate the interest ratdilitglatructure in the
U.S, the U.K. and the Australian markets, using zero coupmdlyields. A range
of models was proposed and various information criterisevwesed to select the best
model. In the U.S. market, a 3-factor model is found to be #wst,lwhereas a 2-factor
model is the preferred one in the Australian and the U.K. miark The two factors
driving the yield curve evolution in the U.K. and the Ausiaal markets are the level
and the slope factors. In the U.S. market, apart from the faator and the slope
factor (which is modelled slightly different than in the ethtwo markets), there is a
third significant factor that creates the hump feature oryiblel curve.

Unlike previous research, we find that the level factor isemdy dominant factor
in determining the overall yield curve variation only in tAestralian market. In the
U.K. market, the slope factor is much more important for mbean half of the sample
period. In the U.S. market, the level factor is not as impurtas the slope factor
for yields with short maturities. The role of the level facincreases as the yield to
maturity lengthens.

From an investor point of view, a financial reward is requitetbear volatility risk.
In the U.S. and the U.K. market, the unit price of the volgtitisk coming from the
level factor is higher than that of the risk coming from theps factor, whereas the
two types of risk are priced similarly in the Australian metrkin all of the markets, the
level factor contributes mostly toward the overall risk ge@msation. This contribution
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is homogeneous across maturities in the Australian and tKerbarkets. In the U.S.
market, the contribution from the level factor diminishésreedium-short maturity of
1-3 years, where the contribution of the third volatilityctar is highest. This third
volatility factor is the one that creates the hump featuretlie U.S. yield curve. A
knowledge of how each factor contributes to the overalltidlaand the rewards for
bearing the risk will help investors manage the risk of ies¢rate portfolios.

The filter adopted here is certainly not the only nonlinedeffiavailable to mod-
ellers. Itis left for future research to explore other fi#teso as to find a good trade-off
between reduction in computational requirements, ineré@aaccuracy and better sta-
tistical reliability, all of which are crucial if financial enagers are to re-assess their
models frequently.

APPENDIXA. MARKOVIANIZATION OF THE INTEREST RATE DYNAMICS

Assuming that the forward rate(¢, =) defined in (2.1) has a volatility function
o(t, ) that satisfies Assumption 2.1. Proposition 3.4 in Chiaraild Kwon (2003)
states that the forward rate curve can be expressed as amfaffiction of some state
variables, i.e.

I L
r(t,x) = (0t +2)+ Y Y oalt +x)yi(t)
i=1 I=1
I L; ' (Al)
+ Z Z [ (t + )T+ (t + ) + o= (t + )T (t + )]y (L),
i=1 l7ll§l:*1
where
ou(z) = / ou(s) ds,
0
' t
i (6) = [ eale-(5)ds,
0
' t N d; t
Pi(t) = / ci(s) dWi(s) — Z / cit(s)cix (8)ay«(s) ds,
0 =1 /o
1, ifl#1%,
€r =

0, ifl=1"

are standard Wiener processes under the equivalent measure

~— A\

andWi,(i =1,...,1
P.

Under this setting, the economic meaning of the state asabandq is not clear.
The next step is to use the forward rates themselves as teevatéables.
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Let. = {4i(t), ¢l (t)}. DefineN = ||, choose an ordering fo#” and write
xn(t) for the elements of” so that.” = {xi(¢),...,xn(¢)}. Then (A.1) can be
written

N
r(t, ) = ao(t,x) + Y an(t, z) xn(t), (A2)

n=1

for suitable deterministic functions (¢, ) anday,(t, ).

Corollary A.1. Suppose that the conditions of Assumption 2.1 are satisfi¢dere

existry, 7o, ..., 7n € Ry such that the matrix
ay(t,m) aq(t,m) -+ an(t,m)
Alt,m,... o) = | A6 axtr) e an(t) (A.3)
a(t,7n) ag(t,7n) -+ an(t,7N)

is invertible for allt € R, then the variablesg,, (¢) can be expressed in the form
x(t) = A(t,71,...,78) Haot, i, N) — T T )] (A.4)

where

(), xn ()],

[ao(t, 1), ao(t, ™)),

[r(t,71),....r(t, )]

x(t)

ao(t,Tl,...,TN)

T(t,Tl,...,TN)

The whole forward curve then can be written in terms of themsg economically

meaningful state variables

r(t,x) = ao(t,z) — a(t,z) A(t,m,. .. ,TN)*lao(t,Tl, .oy TN)
A.5
+a(t,x)'A(t,7'1,...,TN)_lr(t,Tl,...,TN), (A-5)

where

a(t,r) = [ai(t,x),...,an(t,2)].

Therefore, the HIM models admits a N-dimensional affindzatdn in terms of the
set of discrete tenor forward rate¢t, 1,...,7y5). This set of forward rates forms a
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Markov process, and und@r each forward rate(t, z) satisfies the stochastic differ-
ential equation

Oag(t,z) Oa(t,z)
dr(t, ) = 06(30 - f?x :

da(t,z)
+ ox
ot t+z)dW(t).

A(t,’i‘l,...,TN)_lao(t,Tl,... ,TN)

A(t, 1, ..., ) et T, . TN) F ot t 4 x) et t+2)| dt

In terms of the real world measure, whebe= (¢1,...,¢r) is the vector of market
prices of risk associating with the Wiener proc&s the system becomes

/
dr(t,z) = 3"’06(;’”5) _ 3‘15;;6””) At 11, n) Lao(t, T, T
da(t,z)
+ oz
— @'o(t,t+a)|dt+o(t,t +z)dW(t),

which is (2.4) in the main text.

Alt, 1, ..., 7)Yt 1o, .. ) ot t +2) et t+ )

The yieldy(t, z) can also be expressed as an affine function of forward rates
y(t,z) =bo(t,z) — b(t,z) A(t,1,...,75) Lag(t,11,...,7n)
+b(t,x) At 11, ..., TN) (T, TN,

where

1 T
b()(t,fL') = _/ a’O(tvu)duv
0

T

b(t,z) = 1 /Ox a(t,u)du.

X

This affine yield expression is equation (2.6) in the main.tex

APPENDIXB. LOCAL LINEARIZATION FILTER FORLINEAR
CONTINUOUS-DISCRETE STATE SPACE MODELS

Jimenez and Ozaki (2002) analyzed a linear state space mefiedd by the con-
tinuous state equation

dx(t) = (ADx(t) +a(t)) dt + 3 (Bi(t)x(t) + bi(t) dW,(1), (B.1)
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and the discrete observation equation
Zi; = C(tj)X(tj) + e, forj=0,1,...,J, (B.2)

wherex(t) € R? is the state vector at the instant of time,;; € R" is the observation
vector at the instant of timg;, W is am-dimensional vector of independent Wiener
processes, anfe;; : e;; ~ N(0,II),5 = 0,...,.J} is a sequence of random vector
i.i.d.

Definex,, = E(x(t)|Z,) andPy, = E((x(t) — Xy,)(x(t) — %X4,)'|Z,) for all
p < t,whereZ, = {z; : t; < p}.

Suppose thak (W (t)W'(t)) = I, Xy, < 00 andPy),, < oc.

Theorem B.1. (Jimenez and Ozaki (2002)) The optimal (minimum variancealr
filter for the linear model (B.1)- (B.2) consists of equatiaf evolution for the condi-
tional meanx,, and the covariance matri¥, ;. Between observations, these satisfy
the ordinary differential equation

dxye = (A% + a(t)) dt, (B.3)
dPy, = (A(t)Ptt + Py Al(t) + Z B;(t) <Pt\t + f<t|tf<£|t> Bj(t)
i=1
(B.4)

- Z (Bi()%yBi(1) + Bi(D)x} B (1) + bi<t>b;<t>)> dt,
forall ¢ € [t;,t;41). At an observation at;, they satisfy the difference equation

Xijpaltyen = Xty aft; + Keyi (Zt.7'+1 - C(tj+1)§(tj+1|tj> ’ (B.5)
Pt = Pray, — KthC(th)Pth‘tj, (B.6)
where
-1
Kt]'+1 = Ptj+1|tjcl(tj+1)<C(tj+1)Ptj+1‘tjC ( ]+1) + H) (B7)

is the filter gain. The predictio,, and P;, are accomplished, respectively, via
expressions (B.3) and (B.4) with initial conditiorg ;, andP,,;, andp < t.

Their original specification is
zi, = C(t;)x(t;) +ZD (t;)x st +e,, forj=0,1,...,J

where{gtj D&y, N(O,A),A = dlag(()\l, ..,An)),7 =0,...,J}is asequence of random vector
i.i.d., and]E(gij ,er;) = 9%(t;). However, in most finance applications, the noise t&risinot required.
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The analytical solution for this system of equations candsly found, for details
see Jimenez and Ozaki (2003). They also provide some egnivatpressions that are
easier to implement via computer programs.
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