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Abstract

This paper uses an unobserved component model to examine the relative importance of the struc-

tural and the persistence approach to unemployment. We derive the NAIRU from a standard

imperfect competition model. The price- and wage-setting schedules include a measure for un-

employment persistence. Short-run dynamics are introduced through a demand equation which

is linked to unemployment via Okun’s Law. This multivariate model is then estimated for the

US and the euro data using Bayesian techniques and the Kalman filter. The results show that

although cyclical shocks are very persistent, most of the increase in European unemployment is

driven by supply factors. The degree of persistence is somewhat lower in the US but demand

shocks seem to be more important in explaining variation of unemployment.
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1 Introduction

The high and persistent unemployment in Europe is one of the biggest challenges for policymakers

and labour economists in recent times. Starting at historically low levels in the post World War

II period, the rate of unemployment has increased from the mid 1970s to an average level of 9%

in both Europe and the US in the mid 1980s. In the aftermath, the labour markets on the two

sides of the Atlantic went into completely different directions. While the high level still persists

in Europe, the US managed to recover to a low level of unemployment. The persistence of high

unemployment in Europe is still puzzling many observers. Although there is no absolute consensus

about its potential causes, two lines of explanations have been developed.

First, according to the structural approach unemployment adjusts quickly to cyclical shocks.

As such, it is most of the time at, or close to, its natural level. The idea of a constant natural

rate of unemployment has been pioneered by Friedman (1968) and Phelps (1968) who claimed

that unemployment is at its natural level when neither inflationary nor deflationary pressure em-

anates from the labour market. This is called the non-accelerating-inflation-rate of unemployment

(NAIRU). The existence of a constant NAIRU has been questioned after the oil price shocks of

the 1970s as unemployment remained high in Europe even after inflation has stabilised. More

recently, the structuralist school considers the natural rate as a function of labour market insti-

tutions (Nickell et al., 2005), real macroeconomic variables such as real interest rates (Blanchard,

2003) and productivity growth (Pissarides, 1990) or interactions between macroeconomic shocks

and institutions (Blanchard and Wolfers, 2000).

Second, the persistence approach (see e.g. Blanchard and Summers, 1986, Karanassou and

Snower, 1998, Layard et al., 1991) focuses on the dynamic adjustment of unemployment towards

the natural rate after a temporary business cycle shock. Cyclical unemployment may translates

into medium-run unemployment or even becomes permanent due to labour market rigidities. As

such, unemployment can be far away from its equilibrium level for a long period of time. These

persistence effects can arise from insider-outsider effects in wage formation (see e.g. Blanchard and

Summers, 1986) and/or depreciation of skills and search ineffectiveness of the unemployed (see e.g.

Phelps, 1972). A situation where temporary shocks have a permanent impact on unemployment

is known as hysteresis.1

Understanding to what extent each approach contributes to the explanation of unemployment is

important from a policy point of view. If structural protagonists are right, unemployment can only

be reduced by changing labour market characteristics. An expansionary policy can only reduce

unemployment in the short-run, at the cost of rising inflation. However, in the medium-run there
1In the literature the terms hysteresis and persistence are sometimes synonymously used. Here we use term

hysteresis only when a transitory shock has a permanent impact on unemployment whereas persistence means that
unemployment is mean reverting, even when this takes a long time. For an introduction to the concept of hysteresis
in the labour market and its potential sources see Røed (1997).

2



is no effect since the natural rates underlying labour market characteristics remain unchanged.

If the persistence protagonists are right, expansionary policy can reduce unemployment in the

medium-run as the effect will last much longer. Even when inflation is brought back to its original

level unemployment is still lower due to the persistence of shocks in the labour market.2

Empirical studies of the structural approach can be divided into two groups. The first group

attempts to relate unemployment to various factors that are expected to represent labour market

characteristics. Nickell et al. (2005), for instance, consider the natural rate to be a function

of generous benefits, trade union power, taxes and wage inflexibility. This approach not only

aims at disentangling short-run from long-run unemployment but also at measuring the particular

impact of every institution under consideration. The main shortcoming of this approach, as

highlighted in Daveri (2001), is the omitted variable problem. Economic theory relates equilibrium

unemployment to a large variety of factors, some of them being difficult to measure or even

unobservable, e.g. the reservation wage which is a function of, among others, the value of leisure.

Regressions with missing variables suffer from an omitted variable bias or can even be spurious if

the variables under consideration are non-stationary.

The second group overcomes this problem by treating the NAIRU as an unobserved component

and using filter technique to estimate it. In this field the dominant approach nowadays is based on

the expectation-augmented Phillips-curve. The NAIRU is modelled as a non-stationary process

reflecting permanent changes in its underlying determinants. A number of studies (e.g Fabiani

and Mestre, 2001, Orlandi and Pichelmann, 2000) use a multivariate approach and include an

Okun’s-Law relation that links the output gap to cyclical unemployment. However, common to

the fast majority of time-varying NAIRU estimates is that they neglect elements of persistence.

As a consequence the NAIRU also captures, if present, persistence effects of demand shocks,

which makes it hard to conclude whether labour market institutions or persistence effects drive

the NAIRU.

Empirical studies of the persistence approach analyse the time series properties of unemploy-

ment using (univariate) autoregressive (AR) time series models. Persistence is measured as the

sum of the estimated AR coefficients. Most of the studies using this methodology are not able to

reject the hypothesis that this sum equals one, i.e. a unit root in unemployment. This suggests the

presence of hysteresis in unemployment. Elmeskov and Macfarlan (1993), for instance, show that

the hypothesis of a unit root cannot be rejected in any of the 23 OECD countries they consider.

However, this method of detecting persistence or hysteresis becomes invalid if it does not account

for structural breaks in the mean of unemployment, i.e. which is the case if the NAIRU is time-

varying. Even a single break in the mean can induce a unit root in an otherwise stationary process
2This further depends on the symmetry of persistence. However, even when the persistence after an adverse

shock is higher than after an positive shock, expansionary policy can still lower unemployment in the medium-run.
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(Perron, 1990). As shown in Bianchi and Zoega (1998) and in Papell, Murray and Ghiblawi (2000)

the degree of persistence in European unemployment is indeed substantially lower if one accounts

for a shift in the mean.

The aim of this paper is to combine the two approaches. First, in line with the structural

approach, we model the NAIRU as an unobserved non-stationary process reflecting permanent

changes in its underlying determinants, as derived from a standard imperfect competition model.

Second, we allow for slow adjustment towards this time-varying NAIRU by including elements

of persistence in the price- and wage-setting schedules. Furthermore the effects of demand on

unemployment are embedded into the model through a demand equation which is linked to unem-

ployment via Okun’s Law. This specification enables us to estimates a (long-run) NAIRU which is

not affected by persistence effects. The model is estimated using Bayesian technique and applied

to the euro area and the US and covers the period 1970Q1-2003Q4.

The paper is structured as follows. Section 2 presents the theoretical model. The estimation

methodology is presented in section 3. Section 4 presents the results. Section 5 concludes.

2 Theoretical background

The model outlined in this section is a standard imperfect competition model (see e.g. Layard et

al., 1991; Bean, 1994). Firms operate in markets with imperfect competition and set prices at

the beginning of the period on the basis of expectations of future demand and costs. Output,

employment and wages are set during the period. Output is determined by firms simply supplying

whatever is demanded at the predetermined prices. Employment is then set to produce output.

Wages are set in a non-competitive way, due to e.g. wage bargaining between firms and unions or

efficiency wages. The main point is that we consider wages to be influenced by firm specific factors,

such as productivity and insider behaviour, and outsider factors, such as wages paid elsewhere and

the general state of the labour market. We further assume exogenous determined demand, capital

stock and technology.

2.1 Static model

Price-setting

A profit maximising firm sets prices as a mark-up on expected wages. The aggregate price equation

can then be written as

pt − we
t = β0 + β1ut − β2 (pt − pe

t )− qt + zp, (1)

where pt is the price level at time t and we
t is the expected wage level. All variables are expressed

in logarithms. The price mark-up depends on unemployment ut, on price surprises (pt − pe
t ), on

trend labour productivity qt, and on other price push variables, zt, such as oil prices or import
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prices. The constant term in the price setting schedule β0, is a function of the market structure,

including the degree of product market competition and the price elasticity of demand. The effect

of demand on prices is proxied by the level of unemployment. Falling unemployment is associated

with rising demand which generates an upward pressure on prices. The price surprise term reflects

nominal inertia which may result from price-adjustment costs and staggered price setting.

Wage-setting

Aggregate wages are set as a mark-up on expected prices as

wt − pe
t = α0 − α1ut − α2 (wt − we

t ) + qt + zw, (2)

with the mark-up decreasing in unemployment, wage surprises (wt−we
t ), trend labour productivity

qt, and a wage pressure variable zw. As in the price-setting schedule the wage surprise term

captures potential nominal inertia effects in wage setting which may arise as the result of staggered

wage contracts. The wage pressure variable is a function of labour market institutions such as

union power or the generosity of unemployment benefits.

Equilibrium Rate of unemployment

The long-run equilibrium rate of unemployment u∗t , is defined as the situation where expectations

are fulfilled, i.e. wt = we
t and pt = pe

t . Combining equation (1) and (2) gives

u∗t =
β0 + α0 + zw + zp

β1 + α1
(3)

The equilibrium rate of unemployment is a function of the constant terms in the wage and price

equations, α0 and β0, wage and price push variables, zw and zp, and real wage and price flexibility,

α1 and β1.

The unemployment-inflation trade-off (Phillips curve) and the NAIRU

If actual wages wt and actual prices pt are not at their expected values we
t and pe

t , we have

ut = u∗t −
(1 + α2) (wt − we

t ) + (1 + β2) (pt − pe
t )

β1 + α1
(4)

Now assume that wage and price surprises are equal, i.e. (wt − we
t ) = (pt − pe

t ) and that inflation

4pt follows a random walk, i.e.3

4pt = 4pt−1 + υt,

where vt is a white noise process. Then the rational forecast of inflation is

Et−1 (4pt) = 4pt−1

3The assumption of a unit root in inflation is consistent with empirical studies and has become standard in the
literature (Staiger et al., 1997).
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Therefore

pe
t = pt−1 + ∆pt−1

and

pt − pe
t = ∆pt −∆pt−1 = ∆2pt (5)

Combining equations (4) and (5) yields

∆2pt = −θ1 (ut − u∗t ) , (6)

where θ1 = (β1 + α1) / (2 + β2 + α2) is a measure of real wage and price flexibility. This equation

represents the unemployment-inflation trade-off known as the Phillips-curve. When unemployment

is lower than u∗t , inflation is increasing, and vice versa. Thus u∗t can be thought of as the NAIRU.

2.2 Medium-run unemployment dynamics

In order to analyse the potential role of persistence or hysteresis effects we consider dynamic

versions of the price and wage setting equations (1) and (2). The particular choice of functional

forms is similar to the approach used by the OECD (OECD, 1999). The dynamic price-setting

schedule is

pt − we
t = β0 + β1ut + β11∆ut − β2 (pt − pe

t )− qt + zp. (7)

Unemployment now also enters the price equation in its first difference to capture labour adjust-

ment costs. If these costs delay employment adjustment, and hence unemployment adjustment,

marginal costs are higher in the short-run than in the long-run (where employment is at its opti-

mal level). Thus the effect of prices arising from changes in demand are greater in the short-run,

(β1 + β11), than in the long-run, (β1). The dynamic wage-setting schedule is

wt − pe
t = α0 − α1ut − α11∆ut − α2 (wt − we

t ) + qt + zw. (8)

Unemployment now also enters the wage equation in its first difference. This should capture

hysteresis effects, caused by insider-outsider behaviour and/or duration composition effects. In

the former, a transitory shock reduces the number of insiders and thus puts upward pressure on

wages. This results in a positive effect of lagged unemployment which together with the standard

negative effect of contemporaneous unemployment gives the change term of unemployment. In the

latter, the duration of unemployment matters for aggregate wages as long-term unemployed are less

strong competitors for jobs and therefore put less pressure on wages than short-run unemployed.

The change term ∆ut now captures the idea that wage pressure is lower when unemployment has

recently risen (∆ut > 0) as people that became recently unemployed are stronger competitors for

jobs. The Phillips-curve is now

∆2pt = −θ1 (ut − u∗t )− θ11∆ut, (9)
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where θ11 = (β11 + γ11) / (2 + β2 + α2) . The impact of persistence and hysteresis effects in wage

and price setting becomes more clear if we rewrite equation (9) as

ut =
θ1

θ1 + θ11
u∗t +

θ11
θ1 + θ11

ut−1 −
1

θ1 + θ11
∆2pt.

Unemployment is affected by its long-run equilibrium level, its own past, and by short-run cycli-

cal unemployment captured by ∆2pt. This specification shows that even when inflation is stable

unemployment can be far away from its natural rate due to persistence effects. The higher θ11 rel-

ative to θ1the more persistent unemployment is. The unemployment rate which stabilises inflation

un
t is given by

un
t = κu∗t + (1− κ)ut−1,

where κ = θ1/(θ1 + θ11). Layard et al. (1991) refer to this as the short-run NAIRU. It is a

weighted average of u∗t and ut−1. We can distinguish three cases of interest: (i) κ = 0 means that

cyclical shocks have a permanent impact on unemployment. The long-run NAIRU u∗t is not an

attractor anymore since unemployment is only affected by its own history with no tendency to

revert to an equilibrium. This is known as hysteresis; (ii) if κ = 1 unemployment is not affected by

persistence effects, i.e. the short-run NAIRU un
t equals the long-run NAIRU u∗t ; (iii) if 0 < κ < 1

unemployment converges to u∗t after a business cycle shock. However, the speed of adjustment

depends on κ. In terms of policy, persistence means that, once unemployment has risen, it cannot

be brought back at once without a permanent increase in inflation. But it can be reduced gradually

without inflation rising.

2.3 Short-run unemployment fluctuations

In the long-run unemployment is determined by long-run supply factors and equals u∗t . In the

short-run unemployment is determined by the interaction of aggregate supply, given by the Phillips

curve in equation (9), and aggregate demand yd
t given by

yd
t =

1
λ1

(mt − pt) +
1
λ2
xt, (10)

where mt is the nominal money stock and xt captures all exogenous real factors driving demand,

e.g. fiscal policy. This equation is simply the reduced form of an IS-LM system. The link between

aggregate demand and unemployment is given by Okun’s Law4

yd
t − yt = −ω(ut − u∗t ), (11)

where yt is potential output. Taking (10) and (11) together it follows

ut − u∗t = − 1
λ1ω

(mt − pt)−
1
λ2ω

xt +
1
ω
yt (12)

4This relation can be derived from a production function as shown in Appendix 1.
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Combining this equation with the short-run aggregate supply equation, the Phillips curve, we have

ut = ρu∗t + (1− ρ)ut−1 +
ρωλ1

θ1
∆u∗t −

ρ

θ1

(
∆σd

t − λ1∆yt −∆pt−1

)
(13)

where ρ = θ1
θ1+θ11+ωλ1

and σd
t = mt + λ1

λ2
xt.

Equation (13) explains unemployment by supply (u∗t ) and demand (σd
t relative to yt and pt−1)

factors. If ρ = 0 (the hysteresis case), both supply and demand shocks have a permanent impact

on ut. If ρ > 0 the long-run level of ut is entirely determined by supply-side factors, i.e. ut is

attracted by u∗t . In the short-run, demand shocks push unemployment away from its long-run

value. An expansionary fiscal or monetary policy for instance will reduce unemployment. The

fall in unemployment is only temporary as rising inflation will drive unemployment back to its

equilibrium level. The speed at which unemployment adjusts depends on the size of persistence

effects. If there are no persistence effects (ρ = 1), the speed of adjustment depends on real

wage and price flexibility, as captured by θ1, only. In this case, unemployment is at its long-run

equilibrium level u∗t when inflation has stabilised, i.e. the short-run NAIRU un
t equals the long-run

NAIRU u∗t . Note that inflation is stable when ∆pt−1 = ∆σd
t − λ1∆yt. So ∆σd

t − λ1∆yt is the

long-run equilibrium level of inflation. If there are persistence effects (0 < ρ < 1), unemployment

converges to the long-run NAIRU at a speed given by ρ. As such, ut deviates from u∗t even when

inflation has stabilised.

3 Estimation methodology

3.1 State space representation of the model

In this section we cast the model outlined in the previous section into a state space representation.5

In a state space model, the development over time of the system under study is determined by

an unobserved series of vectors α1, . . . , αn, which are associated with a series of observed vectors

y1, . . . , yn. A general linear Gaussian state space model can be written in the following form

yt = Zαt +Axt + εt, εt ∼ N(0,H), (14)

αt+1 = Tαt +Rηt, ηt ∼ N(0, Q), t = 1, . . . , n, (15)

where yt is a p× 1 vector of observed endogenous variables, modelled in the observation equation

(14), xt is a k × 1 vector of observed exogenous or predetermined variables and αt is a m × 1

vector of unobserved states, modelled in the state equation (15). The disturbances εt and ηt are

assumed to be independent sequences of independent normal vectors. The matrices Z, A, T , R,

H, and Q are parameter matrices.

The model outlined in the previous section includes the observed endogenous variables yt, ut

and pt and the unobserved states yt, u∗t and σd
t . Writing this model in the general state space

5See e.g. Durbin and Koopman (2001) for an extensive overview of state space models.
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representation in equations (14)-(15) requires two steps.6 First, to derive the reduced form for

the observed endogenous variables as a function of the unobserved states and the lagged (i.e.

predetermined) observed endogenous variables by solving equations (9), (10) and (11) for yt, ut,

and pt as

yd
t = yt +

ω

θ1
ρ

(
σd

t − λ1yt − 2pt−1 + pt−2

)
+
ωθ11
θ1

ρ (u∗t − ut−1) + ε1t (16)

ut = u∗t −
ρ

θ1

(
σd

t − λ1yt − 2pt−1 + pt−2

)
− θ11ρ

θ1
(u∗t − ut−1) + ε2t (17)

pt = σd
t − λ1yt −

λ1ω

θ1
ρ

(
σd

t − λ1yt − 2pt−1 + pt−2

)
− λ1ωθ11

θ1
ρ(u∗t − ut−1) + ε3t (18)

Second, the dynamics of the unobserved states are assumed to be given by

yt+1 = yt + ψt + η1t − ωη3t (19)

ψt+1 = ψt + η2t (20)

u∗t+1 = (1 + δ)u∗t − δu∗t−1 + η3t (21)

σd
t+1 = φt + η4t (22)

φt+1 = φt + τt + η5t (23)

τt+1 = τt + η6t, (24)

where the error terms εit with i = 1, ..., 3 and ηit with i = 1, ..., 6 are mutually independent

zero mean white noise processes. The ε’s are interpreted as measurement errors whereas the η’s

represent structural shocks.

Following Harvey (1985) and Stock and Watson (1998), among others, equations (19)-(20)

model potential output as a random walk with drift, with the drift term ψt varying over time ac-

cording to a random walk process. The time-variation in ψt allows for the possibility of permanent

changes in the trend growth of real output, e.g. the productivity slowdown of the early 1970s.7

Potential output is further affected by u∗t through the term −ωη3t. This negative relationship

between the equilibrium levels of output and unemployment is intuitively clear and can be seen

in the derivation of Okun’s Law in Appendix 1.

Equation (21) specifies the long-run NAIRU u∗t as a non-stationary process, i.e. shifts in its

underlying determinants are assumed to be permanent. As a pure random walk process would

result in a non-smooth series that is hard to reconcile with the expected smooth evolution of the

structural characteristics driving the long-run NAIRU, the AR(2) specification in equation (21)
6The exact specification of the vectors yt, xt and αt and the matrices Z, A, T , R, H and Q which cast the model

in equations (16)-(24) in the general state space representation in equations (14)-(15) is provided in Appendix 2.
7Note that the random walk in equation (20) implies that yt, and therefore also yt, is an I(2) process. This seems

inconsistent with the empirical evidence from Dickey-Fuller (DF) unit root tests that real output is I(1). Stock
and Watson (1998) argue, though, that when the variance of η2t is small relative to the variance of η1t, ∆yt has a
moving average (MA) root close to unity. Schwert (1989) and Pantula (1991) show that the size of the standard
DF unit root test is severely upward biased in the presence of a large MA root. In this case, the standard DF unit
root test is inappropriate to pick up a possible I(2) component in real output.

9



allows for a smooth evolution of u∗t over time, i.e. the closer δ is to one the smoother u∗t is. If

δ = 0, u∗t is a pure random walk process. Note that in order to induce this smoothness, the NAIRU

is nowadays often modelled as an I(2) series, i.e. δ is set to one (see e.g. Orlandi and Pichelmann

2000), in particular when euro area NAIRU’s are estimated. We do not restrict δ to be equal to

one in equation (21) as in this case u∗t exhibits a (time-varying) drift, which would be hard to

justify from an economic perspective.

Equations (22)-(24) model the demand factor σd
t as the sum of three components: (i) an erratic

component driven by η4t, (ii) a level component driven by η5t, and (iii) a drift component driven

by η6t. The erratic component is included to capture temporary shifts in demand, like e.g. a

temporary increase in government spending, while the level component captures permanent shifts

in demand. The drift component captures permanent changes in monetary policy, i.e. a permanent

change in the growth rate of the money stock mt which induces a permanent change in the level

of inflation ∆pt.

3.2 Identification of the unobserved states

Assuming that Z, A, T, R, H, and Q are known, the purpose of state space analysis is to infer the

relevant properties of the αt’s from the observations y1, . . . , yn and x1, . . . , xn.

Intuitively, potential output yt is identified as the equilibrium level of output as shown in

equation (16) of the reduced form. Deviation of output from its potential level, i.e. the output gap,

result from demand and/or persistence effects captured by the last term of this equation. Similarly,

the long-run NAIRU u∗t is the long-run level of unemployment after filtering out demand and

persistence effects from the unemployment rate. The permanent component φt in σd
t is identified

through inflation since it is the moving average of the inflation rate.

Formally, the unobserved states are identified through the subsequent use of two recursions, i.e.

the Kalman filter and the Kalman smoother. The objective of filtering is to obtain the distribution

of αt, for t = 1, . . . , n, conditional on Yt and Xt, where Yt = {y1, . . . , yt} and Xt = {x1, . . . , xt} .

In a linear Gaussian state space model, the distribution of αt is entirely determined by the filtered

state vector at = E (αt | Yt, Xt) and the filtered state variance matrix Pt = V ar (αt | Yt, Xt) . The

(contemporaneous) Kalman filter algorithm (see e.g. Hamilton, 1994, or Durbin and Koopman,

2001) estimates at and Pt by updating, at time t, at−1 and Pt−1 using the new information

contained in yt and xt. The Kalman filter recursion can be initialised by the assumption that

α1 ∼ N(a1, P1). In practice, a1 and P1 are generally not known though. Therefore, we assume

that the distribution of the initial state vector α1 is

α1 = V Γ +R0η0, η0 ∼ N (0, Q0) , Γ ∼ N (0, κIr) , (25)

where the m × r matrix V and the m × (m− r) matrix R0 are selection matrices composed of
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columns of the identity matrix Im. They are defined so that, when taken together, their columns

constitute all the columns of Im and V ′R0 = 0. The matrix Q0 is assumed to be positive definite

and known. The r×1 vector Γ is a vector of unknown random quantities, referred to as the diffuse

vector as we let κ→∞. This leads to

α1 ∼ N(0, P1), P1 = κP∞ + P∗, (26)

where P∞ = V V ′ and P∗ = R0Q0R
′
0. The Kalman filter is modified to account for this diffuse

initialisation implied by letting κ → ∞ by using the exact initial Kalman filter introduced by

Ansley and Kohn (1985) and further developed by Koopman (1997) and Koopman and Durbin

(2003).

Subsequently, the Kalman smoother algorithm is used to estimate the distribution of αt, for

t = 1, . . . , n, conditional on Yn and Xn, where Yn = {y1, . . . , yn} and Xn = {x1, . . . , xn}. Thus,

the smoothed state vector ât = E (αt | Yn, Xn) and the smoothed state variance matrix P̂t =

V ar (αt | Yn, Xn) are estimated using all the observations for t = 1, . . . , n. In order to account for

the diffuse initialisation of α1, we use the exact initial state smoothing algorithm suggested by

Koopman and Durbin (2003).

3.3 Parameter estimation

Bayesian analysis

The filtering and smoothing algorithms both require that Z, A, T , R, H, and Q are known. In

practice these matrices generally depend on elements of an unknown parameter vector ψ. One

possible approach is to derive, from the exact Kalman filter, the diffuse loglikelihood function for

the model under study (see e.g. de Jong 1991, Koopman and Durbin 2000, Durbin and Koopman

2001) and replace the unknown parameter vector ψ by its maximum likelihood (ML) estimate. This

is not the approach pursued in this paper. Given the fairly large number of unknown parameters

(and unobserved states) the numerical optimisation of the sample loglikelihood function is quite

tedious. Therefore, we analyse the state space model from a Bayesian point of view, i.e. we

use prior information to down-weight the likelihood function in regions of the parameter space

that are inconsistent with out-of-sample information and/or in which the structural model is not

interpretable (Schorfheide, 2006). As such, the Bayesian approach is based on the same likelihood

function as classical ML estimation but adds information that may help to discriminate between

alternative parameterisations of the model. More formally, we treat ψ as a random parameter

vector with a known prior density p(ψ) and estimate the posterior densities p(ψ | y, x) for the

parameter vector ψ and p (α̂t | y, x) for the smoothed state vector α̂t, where y and x denote the

stacked vectors (y′1, . . . , y
′
n)′ and (x′1, . . . , x

′
n)′ respectively, by combining information contained in
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p (ψ) and the sample data. This boils down to calculating the posterior mean g

g = E [g (ψ) | y, x] =
∫
g (ψ) p (ψ | y, x) dψ (27)

where g is a function which expresses the moments of the posterior densities p (ψ | y, x) and

p (α̂t | y, x) in terms of the parameter vector ψ.

Importance sampling

In principle, the integral in equation (27) can be evaluated numerically by drawing a sample of

n random draws of ψ, denoted ψ(i) with i = 1, . . . , n, from p (ψ | y, x) and then estimating g by

the sample mean of g (ψ). As p (ψ | y, x) is not a density with known analytical properties, such

a direct sampling method is not feasible, though. Therefore, we switch to importance sampling.

The idea is to use an importance density g (ψ | y, x) as a proxy for p (ψ | y, x), where g (ψ | y, x)

should be chosen as a distribution that can be simulated directly and is as close to p (ψ | y, x) as

possible. By Bayes’ theorem and after some manipulations, equation (27) can be rewritten as

g =
∫
g (ψ) zg (ψ, y, x) g (ψ | y, x) dψ∫
zg (ψ, y, x) g (ψ | y, x) dψ

(28)

with

zg (ψ, y, x) =
p (ψ) p (y | ψ)
g (ψ | y, x)

(29)

Using a sample of n random draws ψ(i) from g (ψ | y, x) , an estimate gn of g can then be obtained

as

ḡn =

n∑
i=1

g
(
ψ(i)

)
zg

(
ψ(i), y, x

)
n∑

i=1

zg
(
ψ(i), y, x

) =
n∑

i=1

wig
(
ψ(i)

)
(30)

with wi

wi =
zg

(
ψ(i), y, x

)
n∑

i=1

zg
(
ψ(i), y, x

) (31)

The weighting function wi reflects the importance of the sampled value ψ(i) relative to other

sampled values.

Geweke (1989) shows that if g (ψ | y, x) is proportional to p (ψ | y, x) , and under a number of

weak regularity conditions, gn will be a consistent estimate of g for n→∞.

Computational aspects of importance sampling

As a first step importance density g (ψ | y, x), we take a large sample normal approximation to

p (ψ | y, x), i.e.

g (ψ | y, x) = N
(
ψ̂, Ω̂

)
, (32)
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where ψ̂ is the mode of p (ψ | y, x) obtained from maximising

log p (ψ | y, x) = log p (y | ψ) + log p (ψ)− log p (y) (33)

with respect to ψ̂ and where Ω̂ denotes the covariance matrix of ψ̂. Note that p (y | ψ) is given by

the likelihood function derived from the exact Kalman filter and we do not need to calculate p (y)

as it does not depend on ψ. In drawing from g (ψ | y, x) , efficiency was improved by the use of

antithetic variables, i.e. for each ψ(i) we take another value ψ̃(i) = 2ψ̂−ψ(i), which is equiprobable

with ψ(i). This results in a simulation sample that is balanced for location (Durbin and Koopman

2001).

As any numerical integration method delivers only an approximation to the integrals in equa-

tion (28), we monitor the quality of the approximation by estimating the probabilistic error bound

for the importance sampling estimator gn (Bauwens, Lubrano and Richard 1999, chap. 3, eq.

3.34). This error bound represents a 95% confidence interval for the percentage deviation of gn

from g. It should not exceed 10%. In practice this can be achieved by increasing n, except when

the coefficient of variation of the weights wi is unstable as n increases. An unstable coefficient of

variation of wi signals poor quality of the importance density.

Note that the normal approximation in equation (32) selects g (ψ | y, x) in order to match

the location and covariance structure of p (ψ | y, x) as good as possible. One problem is that the

normality assumption might imply that g (ψ | y, x) does not match the tail behaviour of p (ψ | y, x).

If p (ψ | y, x) has thicker tails than g (ψ | y, x), a draw ψ(i) from the tails of g (ψ | y, x) can imply an

explosion of zg
(
ψ(i), y, x

)
. This is due to a very small value for g (ψ | y, x) being associated with

a relatively large value for p (ψ) p (y | ψ), as the latter is proportional to p (ψ | y, x). Importance

sampling is inaccurate in this case as this would lead to a weight wi close to one, i.e. gn is

determined by a single draw ψ(i). This is signalled by instability of the weights and a probabilistic

error bound that does not decrease in n. In order to help prevent explosion of the weights, we

change the construction of the importance density in two respects (Bauwens et al. 1999, chap.

3). First, we inflate the approximate covariance matrix Ω̂ a little. This reduces the probability

that p (ψ | y, x) has thicker tails than g (ψ | y, x). Second, we use a sequential updating algorithm

for the importance density. This algorithm starts from the importance density defined by (32),

with inflation of Ω̂, estimates posterior moments for p (ψ | y, x) and then defines a new importance

density from these estimated moments. This improves the estimates for ψ̂ and Ω̂. We continue

updating the importance density until the weights stabilise. The number of importance samples n

was chosen to make sure that the probabilistic error bound for the importance sampling estimator

gn does not exceed 10%.
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4 Estimation Results8

4.1 Data

We use quarterly data for the US and the euro area from 1970Q1 to 2003Q4. US data are taken

from the OECD Economic Outlook. Euro area data, which are aggregate series for 12 countries9,

are taken from the area-wide model (AWM) of Fagan et al. (2005). The unemployment rate, ut,

is the quarterly unemployment rate. For prices, Pt, we use the seasonally adjusted quarterly GDP

deflator. Output, yd
t , is the log of seasonally adjusted quarterly GDP in constant prices.

4.2 Prior distribution of the parameters

Prior information on the unknown parameter vector ψ is included in the analysis through the

prior density p(ψ). Detailed information on p(ψ) can be found in Table 1. As stated above, the

main motivation for setting these priors is to down-weight the likelihood function in regions of

the parameter space that are inconsistent with out-of-sample information and/or in which the

structural model is not interpretable. Previous estimates as well as economic theory give us an

idea about the approximate values of ω. This parameter is known as Okun’s Law coefficient and

measures the percentage rise of the output gap when the unemployment gap falls by one percent.

Okun stated that this relation is linear and ω is roughly three (Okun, 1970). Here we set ω to 2.5

since more recent empirical studies found Okun’s Law coefficient somewhat lower than 3 (see e.g

Orlandi and Pichelmann, 2000). λ−1
1 measures the impact of real balances on aggregate demand.

The prior mean and variance for λ1 are chosen so that its 95% confidence interval ranges from

0.82 to 0.98, implying a roughly unit impact of real balances on aggregate demand. Setting priors

on θ1 and θ11 is more difficult as the fast majority of Phillips-curve estimates does not include a

persistence measure such as θ11 and thus cannot be used here. Moreover, we do not want to make

these priors too informative since measuring the degree of persistence is of particular interest in our

analysis. Therefore we leave a considerable amount of uncertainty around these two parameters

by choosing a high prior variance. The same argument is true for δ which is only included to allow

for smoothness in u∗t . As we do not want to be too informative in this direction, we have chosen

a flat prior for δ.

Priors on state variances are found by filtering out the unobserved states using the parameter’s

prior mean instead of their posterior values. The state variances are then set so that the resulting

output gap matches with the commonly accepted timing of the business cycle with respect to

shape and frequency of the output gap. Again, we leave a considerable amount of uncertainty

around these prior variances. The output gap’s obtained from this exercise are shown in Figure 3
8The GAUSS code to obtain the results presented in this section is available from the authors on request.
9Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, and

Spain.
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and 4 in the Appendix.

Table 1: Prior distribution
Euro Area US

Parameter 5 p.c. Mean 95 p.c. 5 p.c. Mean 95 p.c.
θ1 0.13 0.65 1.17 0.13 0.65 0.17
θ11 -0.31 0.35 1.01 -0.31 0.35 1.01
ω 2.13 2.50 2.87 2.13 2.50 2.87
λ1 0.82 0.90 0.98 0.82 0.90 0.98
δ -0.69 0.95 2.59 -0.69 0.95 2.59
σ2

ε1
0.03 0.04 0.06 0.02 0.03 0.04

σ2
ε2

0.03 0.04 0.06 0.02 0.03 0.04
σ2

ε3
0.03 0.04 0.06 0.02 0.03 0.04

σ2
η1

4.92∗10−4 8.00∗10−4 1.17∗10−3 3.10∗10−3 5.00∗10−3 7.28∗10−3

σ2
η2

6.23∗10−6 1.00∗10−5 1.47∗10−5 3.07∗10−5 5.00∗10−5 7.29∗10−5

σ2
η3

3.10∗10−6 5.00∗10−6 7.34∗10−6 3.12∗10−5 5.00∗10−5 7.30∗10−5

σ2
η4

0.09 0.15 0.21 0.03 0.05 0.07
σ2

η5
0.05 0.08 0.11 4.60∗10−3 0.08 0.01

σ2
η6

0.02 0.03 0.04 1.55∗10−3 0.03 3.67∗10−3

The prior distribution is assumed to be Gaussian for all elements in ψ, except for the variance
parameters which are assumed to be gamma distributed.

4.3 Posterior distribution

In this section we present estimates of the posterior mean ψ = E [ψ | y, x] of the parameter vector

ψ and the posterior mean αt = E [α̂t | y, x] of the smoothed state vector α̂t. An estimate ψ̃ of

ψ is obtained by setting g
(
ψ(i)

)
= ψ(i) in equation (30) and taking ψ̃ = gn. An estimate α̃t of

αt is obtained by setting g
(
ψ(i)

)
= α̂

(i)
t in equation (30) and taking α̃t = gn, where α̂(i)

t is the

smoothed state vector obtained from the Kalman smoother using the parameter vector ψ(i).

We also present the 5th and 95th percentiles of the posterior densities p (ψ | y, x) and p (α̂t, x).

Let F (ψj | y, x) = Pr
(
ψ

(i)
j ≤ ψj

)
with ψj denoting the j-th element in ψ. An estimate F̃ (ψj | y, x)

of F (ψj | y, x) is obtained by setting g
(
ψ(i)

)
= Ij

(
ψ

(i)
j

)
in equation (30) and taking F̃ (ψj | y, x) =

gn, where Ij
(
ψ

(i)
j

)
is an indicator function which equals one if ψ(i)

j ≤ ψj and zero otherwise.

An estimate ψ̃5%
j of the 5th percentile of the posterior density p (ψ | y, x) is chosen such that

F̃
(
ψ5%

j | y, x
)

= 0.05. An estimate α̃5%
j,t of the 5th percentile of the jth element of the poste-

rior density p (α̂t | y, x) is obtained by setting g
(
ψ(i)

)
= α̂

(i)
j,t − 1.645

√
P̂

(i)
j,t in equation (30) and

taking α̃5%
j,t = gn, where α̂(i)

j,t denotes the j-th element in α̂
(i)
t and P̂

(i)
j,t is the (j, j)th element

of the smoothed state variance matrix P̂
(i)
t obtained using the parameter vector ψ(i). The 95th

percentiles are constructed in a similar way.

Posterior distribution of the parameters

Table 2 presents the posterior mean and the 5% and 95% percentile of the posterior distribution

for the euro area and the US estimates. The hypothesis of hysteresis in unemployment must
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be rejected for the US and for the euro area. However the degree of unemployment persistence

is fairly high in Europe. As explained earlier the quotient κ = θ1
θ1+θ11

determines the speed at

which the equilibrium rate u∗t , adjusts to the short-run NAIRU un
t . In the euro area we find that

κ = 0.08, implying that this adjustment is rather slow and thus unemployment is very persistent.

The results for the US show that κ = 0.36 and therefore US unemployment is adjusting somewhat

faster.10

Table 2: Posterior distribution
Euro Area US

Parameter 5 p.c. Mean 95 p.c. 5 p.c. Mean 95 p.c.
θ1 0.09 0.16 0.23 0.07 0.08 0.1
θ11 1.42 1.77 2.15 0.04 0.14 0.1
ω 2.15 2.30 2.45 2.16 2.29 2.45
λ1 0.88 0.96 1.04 0.82 0.89 0.94
δ 0.97 0.98 0.98 0.92 0.97 0.99
σ2

ε1
0.12 0.15 0.17 0.07 0.08 0.1

σ2
ε2

0.02 0.03 0.04 0.05 0.05 0.06
σ2

ε3
0.08 0.09 0.11 0.06 0.07 0.8

σ2
η1

5.24∗10−4 8.62∗10−4 1.32∗10−3 5.40∗10−3 7.21∗10−3 9.89∗10−3

σ2
η2

9.95∗10−6 1.58∗10−5 2.36∗10−5 3.07∗10−5 5.11∗10−5 7.77∗10−5

σ2
η3

7.76∗10−6 1.13∗10−5 1.54∗10−5 5.55∗10−5 7.46∗10−5 1.01∗10−4

σ2
η4

0.04 0.06 0.10 0.07 0.10 0.12
σ2

η5
0.04 0.07 0.10 5.80∗10−3 7.78∗10−3 0.01

σ2
η6

0.02 0.03 0.04 0.05 0.06 0.07
Note that the approximate covariance matrix Ω̂ is inflated with a factor 1.5. The coefficient of
variation of the weights stabilised after 5 updates of the importance function for both the euro area
and the United States. With n = 10000, the probabilistic error bound for the importance sampling
estimator gn is well below 10 % for all coefficients.

Posterior distribution of the states

The posterior distribution of u∗t are shown in Figures 1 and 2. The estimated equilibrium rates of

unemployment are both very smooth and do not follow the data closely. The reason for this might

be that we have controlled for persistence.11 This allows us to interpret the graph as long-run

equilibrium determined entirely by supply side factors. The graph for the euro area shows a clear

upward trend form the beginning of the 1970s up to the middle of the 1990s while from that time

on its downward sloping. The equilibrium rate of the US seems to be rather stable throughout

the sample period with a decrease of 2% in the 1980s. The demand variable σd was decomposed

into a permanent and a transitory component. Figure 5 and 6 show the permanent component

of σd (adjusted for real trend growth) as the long-run trend of inflation. Demand effects explain

most of unemployment variation in the US whereas the upward drift in euro area unemployment

is supply side driven.
10Worth mentioning is that the estimates of θ1 and θ11 are for both data sets robust in the sense that changing

priors does not affect the outcome of these two parameters much.
11The resulting inflation stabilising rate of unemployment, un

t follows the actual rate of unemployment rather
close.
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Figure 1: Equilibrium unemployment in the euro area
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Figure 2: Equilibrium unemployment in the US
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5 Conclusion

This paper examines the relative importance of the structural and the persistence approach to

unemployment. It estimates a time-varying equilibrium rate of unemployment as a measure of

the structural component of unemployment. Particular attention is paid to unemployment per-

sistence, i.e. the slow response of unemployment after business cycle shocks. In the literature

unemployment persistence is often found to behave like a random walk, implying that any shock

has a permanent impact on unemployment. It is measured as the sum of its AR components,

neglecting the possibility of structural breaks. Studies that allow for a moving natural rate of

unemployment usually reject the hysteresis hypothesis. They, however, estimate a rather short-

run NAIRU instead of a long-run equilibrium rate since elements of persistence are usually not

considered. This study differs from existing measures of time-varying equilibrium rates in two

points: (i) we measure the persistence of shocks and (ii) we derive the equilibrium rate from a

theoretical model which explains unemployment dynamics by demand and supply factors as well

as by persistence mechanism. Persistence effects are introduced into wage and price setting. The

effect of demand on unemployment is not imposed but embedded in the model. The multivariate

model is then estimated using the Kalman filter and Bayesian econometrics. Our results show

that the hysteresis hypothesis must be rejected for both data sets. We found a fairly high degree

of persistence in Europe while unemployment is much less persistent in the US. Nevertheless, the

increase of euro area unemployment until the late 80s is driven by supply side factors. In contrast

most of unemployment variation in the US since the beginning of the 70ies is driven by demand

shocks. Given these results we conclude that both, the structural and the persistence approach,

are needed to explain variation in unemployment.
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Appendix 1: Okun’s Law

Assume firms (i) supply whatever is demanded and (ii) have a constant-returns technology of the

form

y − k = ω(n− k)

where k is capital stock and n is employment. Now, we define the potential output y as the level

of output that corresponds to equilibrium level of unemployment:

y − k = ω(l − k − u∗)

where l is the labour force. Taking these two equations together and using the definition u = l−n

it follows

y − y = −ω(u− u∗) + ε

The link between y and u∗ is given by

∂ȳ

∂u∗
= −ω
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Appendix 2: General State Space representation

yt =
[
yt ut pt

]′; xt =
[
pt−1 pt−2 ut−1

]′;
αt =

[
yt ψt u∗t σd

t φt τt u∗t−1

]′;
A =

 −2ωρ
θ1

ωρ
θ1

−ωθ11ρ
θ1

2 ρ
θ1

− ρ
θ1

θ11ρ
θ1

2λ1ωρ
θ1

−λ1ωρ
θ1

λ1ρωθ11
θ1

;

z =


(
1− λ1ωρ

θ1

)
0 ωθ11ρ

θ1

ωρ
θ1

0 0 0
λ1ρ
θ1

0
(
1− ρθ11

θ1

)
− ρ

θ1
0 0 0

−λ1

(
1− λ1ωρ

θ1

)
0 −λ1ωθ11

θ1

(
1− λ1ωρ

θ1

)
0 0 0

;

T =



1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 (1 + δ) 0 0 0 −δ
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0


; R =


1 0 ω 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



εt =
[
ε1t ε2t ε3t

]′ ; ηt =
[
η1t η2t η3t η4t η5t η6t

]′ ;

Ht =

 σ2
ε1

0 0
0 σ2

ε2
0

0 0 σ2
ε3

; Qt =



σ2
η1

0 0 0 0 0
0 σ2

η2
0 0 0 0

0 0 σ2
η3

0 0 0
0 0 0 σ2

η4
0 0

0 0 0 0 σ2
η5

0
0 0 0 0 0 σ2

η6


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Figure 3: Simulated Output Gap in the euro area
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Figure 4: Simulated Output Gap in the US
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Figure 5: Inflation and Demand in the euro area
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Figure 6: Inflation and Demand in the US
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