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Abstract

This paper examines different multivariate models to evaluate what are the main
determinants when doing VaR forecasts for a portfolio of assets. To achieve this goal,
we unify past multivariate models by using a general copula framework and we propose
many new extensions. We differentiate the models according to the choice of the
marginals distribution, the specification of the conditional moments of the marginals,
the choice of the type of copula, the specification of the conditional copula parameters.
Besides, we consider also the effects of the degree of assets’ riskiness, the portfolio
dimensionality and the time sample used for VaR backtesting. The calculated VaR
values are then compared using three different testing procedures, including Kupiec’s
unconditional coverage test, Christoffersen’s conditional coverage test and a recent
bootstrap test of Superior Predicting Ability proposed by Hansen (2005) and Hansen
and Lunde (2005).
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1 Introduction

The goal of this paper is to examine and compare different multivariate models to forecast
the distribution of log returns and estimate the Value at Risk for a portfolio of assets. To
achieve this purpose, we make use of Copula theory to consider a wide range of multivariate
models. Using copulas allows us to separate the marginals from the dependence structure,
where the marginals need not be the same.
The main contribution of this work is to propose a unified framework that includes pre-
vious standard models like the CCC model by Bollerslev (1990) and the DCC model by
Engle (2002), but allows us to consider much more general cases than the multivariate nor-
mal distribution. For example, since the marginals distributions of asset returns are often
asymmetric and fat-tailed, we can use a Skew-T distribution with a threshold-GARCH
model for the conditional volatility to take the leverage effect into account. The con-
ditional third and fourth moments can be made time-varying, too. Moreover, we can
consider different kinds of dependence structure, ranging from the normal copula till more
sophisticated copulas like the Grouped-T or the Clayton copula, that are able to model also
dependence in the tails. Again, the vector of copula parameters can be made time-varying.
Copulae have been successively used for measuring portfolio Value at Risk by Bouye’,
Durrleman, Nikeghbali, Riboulet, and Roncalli (2001), Embrechts, Lindskog, and McNeil
(2003) and Cherubini, Vecchiato, and Luciano (2004). However, the applications made
so far dealt with unconditional distributions, only, and the portfolios included a small
number of assets in all cases. Furthermore, the effect of assets’ riskiness and of different
time samples for VaR backtesting were not considered at all.
Therefore, in order to evaluate what are the main determinants when doing VaR forecasts
for a portfolio of assets, we compare different distribution assumptions for the marginals,
as well as different dynamic specifications for their moments, to understand whether the
proper modelling of the latter is more important than the type of distribution. In a similar
fashion, we consider different type of copulas and different conditional specifications for
their parameters. Besides, we consider portfolios of different sizes, ranging from two assets
up to 100 assets, and of different riskiness, both investment grade and high-yield assets
with lower credit rating. Finally, we consider different time samples for VaR backtesting,
too.
The rest of the paper is organized as follows. Section 2 defines the Value at Risk and reviews
the main back-testing techniques proposed so far. In Section 3 we provide an outline of
multi- variate modelling, proposing a unified approach by means of copula theory. Section
4 describes the models used for the analysis and presents the main empirical results. We
conclude in Section 5.

2 VaR: Definition and Evaluation

2.1 VaR Definition

Banks and financial institution face the everyday problem of measuring the market risk
exposure of their assets: if we use a probabilistic framework and we suppose to be at time
t, we want to assess the risk of a financial position for the next l periods. The Value
at Risk is the most widely used measure of risk and it has become the benchmark risk
measure thanks to the Basel II agreements. VaR is simply defined as the worst expected
loss of a financial position over a target horizon with a given confidence level.
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Computing VaR requires the actual amount of money invested, a given holding period (one
day, one week, one month, etc.), the choice of the density probability for the returns and
the confidence level. Let ∆V (l) be the change in the value of the assets in the financial
position from t to t + l, while Fl (x) be the cumulative distribution function (c.d.f.) of
∆V (l). Formally,

Definition 2.1 (VaR for a Long Position) We define the VaR of a long position over
time horizon l with probability p as

p = Pr [∆V (l) ≤ VaR (p, l)] = Fl (VaR (p, l))

where VaR is defined as a negative value.

The holder of short position suffers a loss when the value of the asset increases [i.e.
∆V (l) > 0]. Hence,

Definition 2.2 (VaR for a Short Position) The VaR of a short position is defined as

p = Pr [∆V (l) ≥ VaR (p, l)] = 1− Pr [∆V (l) ≤ VaR (p, l)] = 1− Fl (VaR (p, l))

If the c.d.f. is known, then the VaR is simply a specified quantile of a portfolio’s potential
loss distribution over a given holding period. Particularly, the previous definitions show
that VaR is concerned with the tail behavior of the c.d.f., where for a long position the
left tail is important, yet a short position focuses on the right tail of the distribution.
We will propose and compare different models to forecast the multivariate distribution
of log-returns and so to calculate VaR. Given the widespread use of VaR by banks and
regulators, it is of sure interest to evaluate the accuracy of the different models used to
estimate VaR.

2.2 VaR Evaluation

We will assess the performance of the competing multivariate models using the following
back-testing techniques:

• Kupiec (1995) unconditional coverage test;

• Christoffersen (1998) conditional coverage test;

• Loss functions to evaluate VaR forecasts accuracy;

• Hansen and Lunde (2005) and Hansen’s (2005) Superior Predictive Ability (SPA)
test.

2.2.1 Unconditional Model Evaluation: Kupiec’s test

This test is based on binomial theory and tests the difference between the observed and
expected number of VaR exceedances of the effective portfolio losses. Since VaR is based on
a confidence level p, when we observe N losses in excess of VaR out of T observations, hence
we observe N/T proportion of excessive losses: the Kupiec’s test answers the question
whether N/T is statistically significantly different from p.
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Following binomial theory, the probability of observing N failures out of T observations is
(1−p)T−NpN , so that the test of the null hypothesis that the expected exception frequency
N/T = p is given by a likelihood ratio test statistic:

LRUC = −2 · ln[(1− p)T−NpN ] + 2 · ln[(1−N/T )T−N (N/T )N ] (2.1)

which is distributed as χ2 (1) under the H0 . This test can reject a model for both high
and low failures but, as stated in Kupiec (1995), its power is generally poor.

2.2.2 Conditional Model Evaluation: Christoffersen’s test

A more complete test was made by Christoffersen (1998), who developed a likelihood
ratio statistic to test the joint assumption of unconditional coverage and independence
of failures. Its main advantage over the previous statistic is that it takes account of any
conditionality in our forecast: for example, if volatilities are low in some period and high
in others, the VaR forecast should respond to this clustering event. The Christoffersen
procedure enables us to separate clustering effects from distributional assumption effects.
His statistic is computed as follows:

LRCC = −2 ln[(1− p)T−NpN ] + 2 ln[(1− π01)
n00πn01

01 (1− π11)
n10πn11

11 ] (2.2)

where nij is the number of observations with value i followed by j for i, j = 0, 1 and

πij =
nij

∑

j nij
(2.3)

are the corresponding probabilities. Under the H0, this test is distributed as a χ2(2).
If the sequence of N losses is independent, then the probabilities to observe or not observe
a VaR violation in the next period must be equal, which can be written more formally
as π01 = π11 = p. The main advantage of this test is that it can reject a VaR model
that generates either too many or too few clustered violations, although it needs several
hundred observations in order to be accurate.

2.2.3 Measures of Accuracy: Loss functions

The previous tests do not show any power in distinguishing among different, but close,
alternatives. Moreover, as noted by the Basle Committee on Banking Supervision (1996),
the magnitude as well as the number of exceptions are a matter of regulatory concern.
This concern can be readily incorporated into a so called ”loss function” by introducing a
magnitude term. This was first accomplished by Lopez (1998). The general form of these
loss functions is:

Ct+1 =

{

f (Lt+1, V aRt+1) if Lt+1 > V aRt+1

g (Lt+1, V aRt+1) if Lt+1 ≤ V aRt+1

where f(x, y) and g(x, y) are arbitrary functions such that f(x, y) ≥ g(x, y) for a given y,
while L is the portfolio loss. The numerical scores Ct+1 are constructed with a negative
orientation, that is, lower values of Ct+1 are preferred since exceptions are given higher
scores than non-exceptions. Numerical scores are generated for individual VAR estimates,
and the score for the complete sample is:
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C =
T ′
∑

i=1

Ct+i (2.4)

where T ′ is the number of observations used for VaR backtesting. Under very general
conditions, accurate VaR estimates will generate the lowest possible score.
Many loss functions can be constructed. Lopez (1998) has proposed the following quadratic
loss function:

Ct+1 =

{

1 + (Lt+1 − V aRt+1)
2 if Lt+1 > V aRt+1

0 if Lt+1 ≤ V aRt+1
(2.5)

Thus, as before, a score of one is imposed when an exception occurs, but now, an additional
term based on its magnitude is included. The numerical score increases with the magnitude
of the exception and can provide additional information on how the underlying VaR model
forecasts the lower tail of the underlying Lt+1 distribution.
Blanco and Ihle (1999) suggest an alternative way to deal with the size of exceptions by
focusing on the average size of the exceptions:

Ct+1 =

{

Lt+1−V aRt+1

V aRt+1
if Lt+1 > V aRt+1

0 if Lt+1 ≤ V aRt+1
(2.6)

2.2.4 A Test for Superior Predictive Ability

Hansen and Lunde (2005) and Hansen (2005) propose a test for Superior Predictive Ability
(SPA), which compares the performances of two or more forecasting models. The forecasts
are evaluated using a prespecified loss function, like the previous two by Lopez (1998) and
Blanco and Ihle (1999), and the best forecast model is the model that produces the smallest
expected loss. The SPA tests for the best standardized forecasting performance relative
to a benchmark model, and the null hypothesis is that none of the competing models is
better than the benchmark. However, testing multiple inequalities is more complicated
than testing equalities (or a single inequality) because the distribution is not unique under
the null hypothesis. Nevertheless, a consistent estimate of the p-value can be obtained by
using a bootstrap procedure, as well as an upper and a lower bound1.
A possible strategy that can be implemented with the previous approaches is the following:

1. Apply Kupiec’s and Christoffersen’s tests at a first stage to choose the best models;

2. Then use the loss functions and Hansen’s test to compare the costs of different
admissible choices and refine the selection, respectively.

The first step is required since the loss functions by Lopez (1998) and Blanco and Ihle
(1999) tend to favor more conservative models by construction: a model with no ex-
ceedances at all would be considered the best, but such a choice could be very expensive
for a financial institution.

1The authors would like to thank Peter Hansen for supplying the Ox code that calculates the SPA test
statistics and associated p-values.
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3 Multivariate Modelling

While univariate VaR estimation has been widely investigated, the multivariate case has
been dealt only by a smaller and more recent literature, regarding the forecasting of
correlations between assets, too: empirical works which deal with this issue are those of
Engle and Sheppard (2001), Giot and Laurent (2003) and Bauwens and Laurent (2004).
When we use parametric methods, VaR estimation for a portfolio of assets can become very
difficult due to the complexity of joint multivariate modelling. Moreover, computational
problems arise when increasing the number of assets2. As a consequence of these difficul-
ties, two models seem to have gained the major attention by practitioners and researchers
so far:

• The ”Constant Conditional Correlation” (CCC) model by Bollerslev (1990);

• The ”Dynamic Conditional Correlation” (DCC) model by Engle (2002);

In short, let Xt be a vector stochastic process of dimension n× 1 and θ a finite vector of
parameters, then the two models can be expressed as follows

Xt = E [Xt|Ft−1] + εt (3.1)

εt = H
1/2
t ηt, ηt ∼ i.i.d(0, In) (3.2)

where H
1/2
t is a n× n positive definite matrix, In is the identity matrix of order n, while

Ft is the information set available at time t. For both these two models Ht can generally
be written as

Ht = DtRtDt (3.3)

Dt = diag(h
1/2
11,t . . . h

1/2
nn,t) (3.4)

Rt = (ρij,t), with ρii,t = 1 (3.5)

where Rt is the n × n matrix of conditional correlations (constant or time-varying), and
hii,t is defined as a univariate GARCH model. Positivity of Ht follows from positivity of
Rt and of each hii,t.

The CCC model by Bollerslev (1990) is defined as:

Ht = DtRDt (3.6)

while hiit can be defined as any univariate GARCH model and Rt = R is a symmetric pos-
itive definite matrix with ρii = 1,∀i.Therefore, the conditional correlations are constant.
Hence,

hij,t = ρij

√

hii,thjj,t i 6= j (3.7)

and thus the dynamics of the covariance is determined only by the dynamics of the two
conditional variances.

2See the review of multivariate GARCH models by Bauwens, Laurent, and Rombouts (2006) for a
treatment of these issues.
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Alternatively, the DCC model by Engle (2002) (see also Engle and Sheppard (2001)) is
defined as:

Ht = DtRtDt (3.8)

where Dt is defined as in (3.4), hii,t can be defined again as any univariate GARCH model,
and

Rt = (diagQt)
−1/2Qt(diagQt)

−1/2 (3.9)

where the n× n symmetric positive definite matrix Qt is given by:

Qt =

(

1−
L
∑

l=1

αl −
S
∑

s=1

βs

)

Q̄ +
L
∑

l=1

αlηt−lη
′
t−l +

S
∑

s=1

βsQt−s (3.10)

where ηit = εit/
√

hii,t, Q̄ is the n × n unconditional variance matrix of ηt, αl (≥ 0) and

βs (≥ 0) are scalar parameters satisfying
∑L

l=1 αl +
∑S

s=1 βs < 1. These conditions are
needed to have Qt > 0 and Rt > 0. Qt is the covariance matrix of ηt , since qii,t is not
equal to 1 by construction. Then, it is transformed into a correlation matrix by (3.9). If
θ1 = θ2 = 0 and q̄ii = 1 the CCC model is obtained.

Since ηt is assumed to be i.i.d. N(0, In) and Ht = DtRtDt, after some algebraic manipu-
lation and neglecting the constant part, the sample log-likelihood becomes:

LT (θ) = −1

2

T
∑

t=1

(log |DtRtDt|+ u′
tR

−1
t ηt) (3.11)

= −1

2

T
∑

t=1

2 log |Dt|+ η′tηt ← L1T (θ∗1) (3.12)

−1

2

T
∑

t=1

(log |Rt|+ η′tR
−1
t ηt − η′tηt)← L2T (θ∗2|θ∗1) (3.13)

where θ∗1 are the parameters of the conditional variances Dt estimated with GARCH
models of different type in the first step, while θ∗2 are the parameters of the conditional
correlations Rt estimated in the second step: if the CCC model is involved, Rt = R is
simply the sample correlation matrix of the standardized residuals, while if the DCC is
involved the model is estimated by maximizing L2T with numerical methods.
We will show in the next two sections that these models can be presented as special cases
within a more general copula approach.

3.1 Copula Modelling

Copula theory provides an easy way to deal with (otherwise) complex multivariate model-
ing. The essential idea of the copula approach is that a joint distribution can be factored
into the marginals and a dependence function called a copula. The term copula comes
the Latin language and means link: the copula couples the marginal distributions together
to form a joint distribution. The dependence relationship is entirely determined by the
copula, while scaling and shape (mean, standard deviation, skewness, and kurtosis) are
entirely determined by the marginals.
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Copulas can be useful for combining risks when the marginal distributions are estimated
individually: marginals are initially estimated separately and can then be combined in a
joint density by a copula that preserves the characteristics of the marginals.
Copulas can also be used to obtain more realistic multivariate densities than the traditional
joint normal, which is simply the product of a normal copula and normal marginals (as
we will see in the next section 3.1.1: for example, the normal dependence relation can
be preserved using a normal copula, but marginals can be entirely general (for example,
a normal copula with one T-student marginal and one logistic marginal). In this case
we have the so-called meta joint distribution functions, whose theoretical background has
been studied recently by Embrechts (2001) and Fang and Fang (2002).

3.1.1 A Brief Review of Copula Theory

In what follows, the definition of a copula function and some of its basic properties are
given, while the reader interested in a more detailed treatment is referred to Nelsen (1999)
and Joe (1997).
An n-dimensional copula is a multivariate cumulative distribution function with uniform
distributed margins in [0,1]. We now recall its definition, following Joe(1997) and Nelsen
(1999).
Let consider X1, . . . Xn to be random variables, and H their joint distribution function,
then we have:

Definition 3.1 (Copula) A copula is a multivariate distribution function H of random
variables X1 . . . Xn with standard uniform marginal distributions F1, . . . , Fn, defined on
the unit n-cube [0,1]n, with the following properties:

1. The range of C (u1, u2, . . . , un) is the unit interval [0,1];

2. C (u1, u2, . . . , un) = 0 if any ui = 0, for i = 1, 2, . . . , n.

3. C(1, . . . , 1, ui, 1, . . . , 1) = ui , for all ui ∈ [0, 1]

The previous three conditions provides the lower bound on the distribution function and
ensures that the marginal distributions are uniform.
The Sklar’s theorem justifies the role of copulas as dependence functions.

Theorem 3.1 (Sklar’s theorem) Let H denote a n-dimensional distribution function
with margins F1. . .Fn . Then there exists a n-copula C such that for all real (x1,. . . , xn)

H(x1, . . . , xn) = C(F (x1), . . . , F (xn)) (3.14)

If all the margins are continuous, then the copula is unique; otherwise C is uniquely deter-
mined on RanF1×RanF2 . . . RanFn, where Ran is the range of the marginals. Conversely,
if C is a copula and F1, . . . Fn are distribution functions, then the function H defined in
(2.2) is a joint distribution function with margins F1, . . . Fn.

Proof: See Sklar (1959), Joe(1997) or Nelsen (1999). �

The last statement is the most interesting for multivariate density modelling, since it
implies that we may link together any n ≥ 2 univariate distributions, of any type (not
necessarily from the same family), with any copula in order to get a valid bivariate or
multivariate distribution.
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Corollary 3.1 Let F
(−1)
1 , . . . , F

(−1)
n denote the generalized inverses of the marginal

distribution functions, then for every (u1 , . . . , un) in the unit n-cube, exists a unique
copula C : [0,1] ×. . .× [0,1] → [0,1] such that

C(u1, . . . , un) = H(F
(−1)
1 (u1), . . . , F

(−1)
n (un)) (3.15)

Proof: See Nelsen (1999), Theorem 2.10.9 and the references given therein. �

From this corollary we know how to extract a copula out of a given joint distribution.
By applying Sklar’s theorem and the previous corollary, we can derive the multivariate
copula density c(F1(x1),, . . . , Fn(xn)), associated to a copula function C(F1(x1),, . . . ,
Fn(xn)):

f(x1, ..., xn) =
∂n [C(F1(x1), . . . , Fn(xn))]

∂F1(x1), . . . , ∂Fn(xn)
·

n
∏

i=1

fi(xi) = c(F1(x1), . . . , Fn(xn)) ·
n
∏

i=1

fi(xi)

and therefore we get

c(F1(x1), ..., Fn(xn)) =
f(x1, ..., xn)

n
∏

i=1
fi(xi)

· , (3.16)

3.1.2 Families of Copulas: Elliptical Copulas

The class of elliptical distributions provides useful examples of multivariate distributions
because they share many of the tractable properties of the multivariate normal distribution.
Furthermore, they allow to model multivariate extreme events and forms of non-normal
dependencies. Elliptical copulas are simply the copulas of elliptical distributions (see Fang,
Kotz, and Hg (1987) for a detailed treatment of Elliptical distributions).
We present two copulae belonging to the elliptical family and that will be later used in
empirical applications, the Gaussian and T-copula. By using the procedure outlined in
(3.16), we can derive their density functions.

1. The copula of the multivariate Normal distribution is the Normal-copula, whose
probability density function is:

c(Φ(x1), . . . , Φ(xn)) =
fNormal(x1, . . . , xn)

n
∏

i=1

fNormal
i (xi)

=
1

|Σ|1/2
exp

(

−1

2
ζ ′(Σ−1 − I)ζ

)

(3.17)

where ζ = (Φ−1(u1), . . . ,Φ
−1(un))′ is the vector of univariate Normal inverse dis-

tribution functions, ui = Φ (xi), while Σ is the correlation matrix.

2. On the other hand, the copula of the multivariate Student’s T-distribution is the
Student’s T-copula, whose density function is:

c(tυ(x1), . . . , tυ(xn)) =
fStudent(x1, . . . , xn)

n
∏

i=1
fStudent

i (xi)

=

= |Σ|−1/2 Γ
(

υ+n
2

)

Γ
(

υ
2

)

[

Γ
(

υ
2

)

Γ
(

υ+1
2

)

]n
(

1 + ζ′Σ−1ζ
υ

)−υ+n

2

n
∏

i=1

(

1 +
ζ2
i

2

)−υ+1

2

(3.18)
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where ζ = (t−1
υ (u1), . . . , t

−1
υ (un))′ is the vector of univariate Student‘s T inverse

distribution functions, ν are the degrees of freedom, ui = tν(xi), while Σ is the
correlation matrix.

Both these copulae belong to the class of Elliptical copulae 3. An interesting extension
that we will consider in our empirical analysis is the Grouped-T copula introduced in Daul,
Giorgi, Lindskog, and McNeil (2003). The Grouped-T copula can be considered as a copula
imposed by a kind of multivariate-T distribution where m distinct groups of assets have
m different degrees of freedom. Like the previous two copulas, it can be easily applied to
high dimensional portfolios. See Daul, Giorgi, Lindskog, and McNeil (2003) and Demarta
and Mcneil (2005) for further details.

3.1.3 Families of copulas: Archimedean Copulas

An alternative to Elliptical copulae is given by Archimedean copulae: Archimedean copu-
lae provide analytical tractability and a large spectrum of different dependence measure.
These copulae can be used in a wide range of applications for the following reasons: a)
The ease with which they can be constructed; b) The many parametric families of cop-
ulas belonging to this class; c) The great variety of different dependence structures. An
Archimedean copula can be defined as follows:

Definition 3.2 (Archimedean copula) Let consider a function ϕ : [0; 1]→ [0;1] which
is continuous, strictly decreasing ϕ’(u) < 0, convex ϕ”(u) > 0, and for which ϕ (0) = ∞
and ϕ (1) = 0. We then define the pseudo inverse of ϕ[−1] : [0; ∞] → [0;1] such that :

ϕ[−1](t) =

{

ϕ−1(t) for 0 ≤ t ≤ ϕ(0)
0 for ϕ(0) ≤ t ≤ ∞

}

As ϕ is convex , the function C: [0; 1]2 → [0;1] defined as

C(u1, u2) = ϕ−1[ϕ(u1) + ϕ(u2)] (3.19)

is an Archimedean copula and ϕ is called the “generator” of the copula. Moreover, if ϕ (0)
= ∞ , the pseudo inverse describes an ordinary inverse function ( that is ϕ[−1] = ϕ(−1))
and we call ϕ and C, a strict generator and a strict Archimedean copula, respectively.

The multivariate extension can be found in Embrechts, Lindskog, and McNeil (2003) as
well as in Joe (1997): for all n ≥ 2, the function C: [0; 1]n → [0;1] defined as

C(u1, . . . , un) = ϕ−1[ϕ(u1) + . . . + ϕ(un)] (3.20)

is an n-dimensional Archimedean copula if and only if ϕ−1 is completely monotone on
[0,∞).
Among the different Archimedean copulas, we will make use of the Clayton (or Cook
Johnson) copula, which corresponds to copula B4 in Joe(1997). We do this choice for the
following reasons:

3See Cherubini et al. (2004) for more details
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• It possess positive lower ”tail dependence”. This is a measure of dependence between
random variables in the extreme lower joint tails. Informally, lower tail dependence
measure the probability of an extremely large negative return on one asset, given
that another asset has yielded an extremely large negative return4.

• The simulation algorithm can be easily implemented for high dimensional portfolios,
differently from all other Archimedean copulas5.

If we consider the generator ϕ(t) = (t−α − 1)/α , with α ∈ [−1,∞)\{0} and inverse
ϕ−1(t) = (1 + t)−1/α, by using (3.20) we get,

C(u1, . . . , un) = max











N
∑

j=1

u−α
j − n + 1





−1/α

, 0






(3.21)

However, if α > 0 then we have ϕ(0) =∞ , and the above expression becomes

C(u1, . . . , un) =





N
∑

j=1

u−α
j − n + 1





−1/α

(3.22)

3.2 A Unified Approach

3.2.1 The CCC and DCC models Restated

Our goal is to show that the CCC and DCC models can be easily represented as special
cases within a more general copula framework.
Particularly, the multivariate normal likelihood can be decomposed in the same way as
(3.12-3.13) by using the procedure outlined in (3.17), that is considering the joint normal
density function as the by product of a normal copula with correlation matrix Σ = Rt

together with normal marginals:

fNormal(x1, . . . , xn) = cNormal(FNormal
1 (x1), . . . , FNormal

n (xn); Rt) ·
n
∏

i=1

fNormal
i (xi)(3.23)

where FNormal
i is the normal cumulative density function. If we use the notation in (3.1-

3.2), the two models can be restated as follows:

Xt = E [Xt|Ft−1] + Dtηt (3.24)

ηt ∼ H(η1, . . . , ηn) ≡ CNormal(FNormal
1 (η1), . . . , F

Normal
n (ηn); Rt) (3.25)

where Dt = diag(h
1/2
11,t . . . h

1/2
nn,t) and we used Sklar’s Theorem.

Furthermore the two step DCC estimation procedure highlighted in (3.12-3.13), corre-
sponds exactly to the Inference for Margins (IFM) method first proposed by Joe and
Xu (1996) for copula estimation. According to the IFM method, the parameters of the
marginal distributions are estimated in a first stage, while the parameters of the copula

4The Students T copula generates symmetric tail dependence, i.e. both lower and upper tail dependence,
while the normal copula generates zero tail dependence, instead. See Joe (1997) and Cherubini, Vecchiato,
and Luciano (2004) for more details.

5See chapter 6 in Cherubini, Vecchiato, and Luciano (2004) for more details about copula simulation.
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are estimated separately in a second stage. Like the one-step ML estimator it verifies the
properties of asymptotic normality, but the covariance matrix must be modified (Joe and
Xu, 1996, Joe (1997)): √

T (θ̂IFM − θ0)→ N(0, V (θ0)) (3.26)

where θ0 is a vector of marginals and copula parameters, V (θ0) = D−1M (D−1)⊤ is the
so called ”Godambe” Information Matrix, where D = E[∂g(θ)⊤/∂ θ] , M = E [g(θ)⊤

g(θ)], and g(θ) is the score function. It is no surprise that this asymptotic result corre-
sponds to the one reported in Engle and Sheppard (2001) for the two step DCC estimation.

Therefore, if we consider the CCC model, this implies estimating n univariate GARCH
models of any type with a normal distribution at a first stage. The normal cumulative
distributions functions of the standardized residuals ui,t = Φ (ηi,t) are then used as argu-
ments within the normal copula density (3.17) with constant correlation matrix Rt = R.
However, since ζt = (Φ−1(u1,t), . . . ,Φ

−1(un,t))
′ in (3.17) is a vector of univariate normal

inverse distribution functions, the estimated constant correlation matrix corresponds to
the estimated correlation matrix of the standardized residuals of the CCC model.
In a similar fashion, if we consider a DCC model instead, the normal cumulative d.f.
and inverse functions cancel each other and the log-likelihood of the copula density is
maximized assuming a dynamic structure for the correlation matrix Rt given by (3.9-
3.10).

3.2.2 Some extensions: Skew-T Marginals and Dynamic Copulas

It is clear from the previous section that the copula approach enable us to consider far
more general cases than the normal CCC and DCC models.
Two well known deviations from normality are fat tails and asymmetry. One marginal
distribution that is used to allow for excess kurtosis is the Student’s T and it has been
generalized to allow for skewness by Hansen (1994). Despite other generalizations have
been proposed, we chose this one due to its simplicity and its past success in modelling
economic variables ( Patton (2004a) - Patton (2004b), Jondeau and Rockinger (2003)) .

Definition 3.3 (Skew-T distribution) Let yt be a random variable which follows a con-
ditional Skewed-T distribution with density function f(0, 1, νt, λt) with mean zero and
variance one by construction, in order to be a suitable model for the standardized residuals
of a conditional mean and variance model. The conditional parameters νt, λt control the
kurtosis and skewness of the variable, respectively, and can be made time-varying. The
density function is reported below (for more details, see Hansen 1994):

Skew − T f(yt; 0, 1, νt, λt) =



















bc

(

1 + 1
νt+2

(

byt+a
1−λt

)2
)−(νt+1)/2

for yt ≤ −a
b

bc

(

1 + 1
νt+2

(

byt+a
1+λt

)2
)−(νt+1)/2

for yt > −a
b

where,

c =
Γ( νt+1

2 )
Γ( νt

2 )
√

π(νt−2)

12



a = 4λtc
(

νt−2
νt−1

)

b =
√

1 + 3λ2
t − a2

This density is defined for 2< νt < ∞ and −1 < λt <+1. Moreover, this density encom-
passes a large set of conventional densities:

i.) if λt=0, the Skew-t reduces to the traditional Student-T distribution.

ii.) If νt=∞ we have the skew-normal density.

iii.) If λt=0 and νt=∞ we have the normal density.

Similarly to Student’s T, given the restriction νt > 2, this distribution is well defined and
its second moment exists, while skewness exists if νt > 3 and kurtosis is defined if νt >
4. The parameter λt controls for skewness: If it is bigger than zero, we have positive
skewness, while if it is smaller than zero the distribution is negative skewed. The cumu-
lative distribution function (c.d.f.), the inverse-c.d.f. and relative proofs are reported in
Appendix A.

Therefore, a multivariate model that allows for marginal skewness, kurtosis and normal
dependence can be expressed as follows:

Xt = E [Xt|Ft−1] + Dtηt (3.27)

ηt ∼ H(η1, . . . , ηn) ≡ CNormal(FSkew−T
1 (η1), . . . , F

Skew−T
n (ηn); Rt) (3.28)

where FSkew−T
i is the cumulative distribution function of the marginal Skew-T, and Rt can

be made constant or time-varying, as in the standard CCC and DCC models, respectively.
If the financial assets present symmetric tail dependence, we can use a Student’s T copula,
instead,

Xt = E [Xt|Ft−1] + Dtηt (3.29)

ηt ∼ H(η1, . . . , ηn) ≡ CStudent′s T (FSkew−T
1 (η1), . . . , F

Skew−T
n (ηn); Rt, ν) (3.30)

where ν are the Student’s T copula degrees of freedom, while if the financial assets may
be separated in m distinct groups we can use a Grouped T copula:

Xt = E [Xt|Ft−1] + Dtηt (3.31)

ηt ∼ H(η1, . . . , ηn) ≡ CGrouped T (FSkew−T
1 (η1), . . . , F

Skew−T
n (ηn); Rt, ν1, . . . , νm)

(3.32)

Finally, if they show lower tail dependence only, we can use a Clayton copula, instead,

Xt = E [Xt|Ft−1] + Dtηt (3.33)

ηt ∼ H(η1, . . . , ηn) ≡ CClayton(FSkew−T
1 (η1), . . . , F

Skew−T
n (ηn); αt) (3.34)

where α is the Clayton dependence parameter, which can be made time varying.
Similar approaches are proposed in Patton (2004b), Rockinger and Jondeau (2005) and
Granger, Patton, and Terasvirta (2005). However, these papers focus on bivariate appli-
cations only, and no Value at Risk measurement is made.
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4 The Empirical analysis

4.1 Models Specification and Cases Examined

The goal of this work is to evaluate what are the main determinants when doing VaR
forecasts for a portfolio of assets. Based on our previous analysis, we consider seven
elements:

1. The choice of the marginals distribution: we compare the standard Normal and the
standardized Skew-T.

2. The specification of the conditional moments of the marginals, ranging from the mean
till the kurtosis. As for the mean we compare a simple constant mean specification
and an Auto-Regressive model of order one. As for the variance, a simple constant
variance specification and a Threshold-GARCH(1,1) model to take the leverage effect
into account, see Glosten, Jaganathan, and Runkle (1993). When working with the
Skew-T distribution, we can specify a dynamic model for the conditional skewness
parameter and/or the conditional degrees of freedom, as well. We propose here a
specification similar to Hansen(1994) and Rockinger and Joundeau (2005).

Therefore, a general AR(1)-Threshold GARCH(1,1) model with dynamic skewness
and kurtosis, for the continuously compounded returns yt = 100[log(Pt)− log(Pt−1)],
is given by:

yt = µ + φ1 yt−1 + εt (4.1)

εt = ηt

√

ht, ηt
i.i.d.∼ Skew − T(0, 1, νt, λt) (4.2)

ht = ω + αε2
t−1 + γε2

t−1Dt−1 + βht−1 (4.3)

λt = Λ (ζ + δ · εt−1) (4.4)

νt = Γ (θ + τ · εt−1) (4.5)

where Dt−1 = 1 if εt−1 < 0, and 0 otherwise, Λ(·) is a modified logistic transformation
designed to keep the conditional skewness parameter λt in (-1, 1) at all times, while
Γ(·) is a logistic transformation designed to keep the conditional degrees of freedom in
(2, 30) at all times (see Hansen 1994). We avoid an autoregressive specification, in so
far as it may lead to spuriously significant parameters (see Joundeau and Rockinger
2003, for a proof). Moreover, we tried different specifications, but with similar results
and increased computational time. This is why we resort to this simple modeling.

3. The choice of the type of copula: we compare the Normal copula, the T-copula,
the Grouped-T and the Clayton copula. As for the Grouped-T, we classify the as-
sets in 7 groups according to their credit rating: 1) AAA; 2) AA (AA+,AA,AA−);
3) A (A+,A,A−); 4) BBB (BBB+,BBB,BBB−); 5) BB (BB+,BB,BB−); 6) B
(B+,B,B−); 7) Not rated.

4. The specification of the conditional copula parameters: we consider a Normal copula
both with a constant correlation matrix R and a dynamic Rt, where in the latter
case we use a DCC(1,1) model as in (3.9-3.10). A T-copula with constant correlation
matrix R and degrees of freedom ν, as well as with a dynamic Rt and constant ν6. As

6We discarded a dynamic specification for ν since the numerical maximization of the log-likelihood
failed to converge most of the time or the dynamic coefficients were not significant.
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for the Grouped-T, we consider the constant case only, since a dynamic specification
has not been developed yet, and is a topic of current research. Finally, we consider
for the Clayton Copula a dynamic specification, where the parameter αt follows
something akin to a ARMA(1,1) process:

αt = e(κ+ρ·αt−1+ξ·εt−1) (4.6)

where e is the exponential function, used to keep α in (0, +∞) at all times.

Besides we consider the effects of these additional elements, too:

5. The degree of assets’ riskiness;

6. The portfolio dimensionality ;

7. The time sample used for VaR backtesting.

In order to evaluate how important the cited first four elements are, we generate 1-day
out-of-sample VaR forecasts by using the following conditional multivariate distributions:

i. Constant Normal copula + Normal marginals with Constant mean and Constant Vari-
ance;

ii. Constant Normal copula + Normal marginals with Constant mean and a T-GARCH(1,1)
for the Variance;

iii. Constant Normal copula + Normal marginals with an AR(1) specification for the
mean and a T-GARCH(1,1) for the Variance;

iv. DCC(1,1) Normal copula + Normal marginals with an AR(1) specification for the
mean and a T-GARCH(1,1) for the Variance;

v. Constant Normal copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Constant Skewness parameter, and Constant
Degrees of Freedom;

vi. Constant Normal copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Dynamic Skewness parameter, and Dynamic
Degrees of Freedom;

vii. DCC(1,1) Normal copula + Skew-T marginals with an AR(1) specification for the
mean and a T-GARCH(1,1) for the Variance, Dynamic Skewness parameter, and
Dynamic Degrees of Freedom;

viii. Constant T-copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Constant Skewness parameter, and Constant
Degrees of Freedom;

ix. Constant T-copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Dynamic Skewness parameter, and Dynamic
Degrees of Freedom;

x. DCC(1,1) T-copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Constant Skewness parameter, and Constant
Degrees of Freedom;
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xi. DCC(1,1) T-copula + Skew-T marginals with an AR(1) specification for the mean
and a T-GARCH(1,1) for the Variance, Dynamic Skewness parameter, and Dynamic
Degrees of Freedom;

xii. Constant Grouped T copula + Skew-T marginals with an AR(1) specification for the
mean and a T-GARCH(1,1) for the Variance, Constant Skewness parameter, and
Constant Degrees of Freedom7;

xiii. Dynamic Clayton copula + Skew-T marginals with an AR(1) specification for the
mean and a T-GARCH(1,1) for the Variance, Constant Skewness parameter, and
Constant Degrees of Freedom;

In order to evaluate the fifth element, i.e. the portfolio riskiness, we apply the previous
multivariate models to two different portfolios:

I. A risky portfolio composed of two assets rated BB by Standard and Poor’s during
the time sample when we computed the out-of-sample VaR forecasts;

II. A less risky portfolio composed of two assets rated AAA by Standard and Poor’s
during the time sample when we computed the out-of-sample VaR forecasts;

In order to evaluate the sixth element, i.e. the portfolio dimensionality, we examined also
two large portfolios:

a. A portfolio composed of thirty Dow-Jones stocks;

b. A portfolio composed of one hundred Nasdaq stocks8

Finally, in order to evaluate the seventh element, i.e. the time sample used for VaR
backtesting, we consider for the forth portfolio only, these two different cases:

Sample A: A time sample of 1000 observations ranging between 01/12/1999 and 21/11/20039;

Sample B: A time sample of 1000 observations ranging between 13/12/2001 and 01/12/2005,
that is after the burst of the high-tech bubble;

We expect a multivariate normal model to be sufficient for the second sample, while this
should not be the case for the first one, when financial markets were in turmoil.

Descriptive graphs (level of portfolio value, daily returns, density of the daily returns
vs. normal and QQ-plots against the normal distribution) for each portfolio are given in
Figures 1-4. We suppose to invest 1$ in every asset for sake of simplicity.
The density graphs and the QQ-plot against the normal distribution show that all returns
distributions exhibit asymmetric fat tails. Moreover, the returns graphs exhibit the usual
volatility clustering observed in financial markets.

7The Grouped-T copula coincides with the T-copula for bivariate portfolios.
8The complete list of stocks for all four portfolios is reported in Appendix B.
9This sample was used for all four portfolios.
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Figure 1: Portfolio value in level, daily returns, daily returns density (versus normal) and QQ-plot

against the normal distribution (18/11/1988-20/11/2003). Portfolio composed of two assets rated BB.

Figure 2: Portfolio value in level, daily returns, daily returns density (versus normal) and QQ-plot

against the normal distribution (18/11/1988-20/11/2003). Portfolio composed of two assets rated AAA.
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Figure 3: Portfolio value in level, daily returns, daily returns density (versus normal) and QQ-plot against

the normal distribution (18/11/1988-20/11/2003). Portfolio composed of thirty Dow-Jones stocks.

Figure 4: Portfolio value in level, daily returns, daily returns density (versus normal) and QQ-plot against

the normal distribution (18/12/1997-30/11/2005). Portfolio composed of one hundred Nasdaq stocks.
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4.2 VaR Estimation

We generate portfolio VaR forecasts at the 1 % - 5 % probability levels, that is VaR levels
for long positions, and at the 95 % - 99 % probability levels, that is for short positions,
too. The predicted one-step-ahead VaR forecasts are then compared with the observed
portfolio losses and both results are recorded for later assessment.
A general algorithm for estimating the 1%, 5%, 95%, and 99% VaR over a one-day holding
period for a portfolio P of n assets with invested positions equal to Mi, i = 1, . . . , n, is the
following:

1. Simulate j = 100,000 scenarios for each asset log-returns, {y1,t, . . . , yn,t}, over the
time horizon [t−1, t], using a general multivariate distribution like in (3.14), by using
this procedure:

(a) First, generate a n random variate (u1,t, . . . , un,t) from the copula Ĉt forecasted
at time t, which can be Normal, Student’s T, Clayton, or Grouped-T. For
a detailed review of copula simulation see Cherubini, Vecchiato, and Luciano
(2004), while for the Grouped-T see Daul, Giorgi, Lindskog, and McNeil (2003).

(b) Second, get a vector n× 1 Qt of standardized asset log-returns ηi,t by using the
inverse functions of the forecasted marginals at time t, which can be Normal,
or Skew-T :

Qt = (η1,t, . . . , ηn,t) =
(

F−1
1 (u1,t; α̂1), . . . , F

−1
n (un,t; α̂n)

)

(c) Third, rescale the standardized assets log-returns by using the forecasted means
and variances, estimated with AR-GARCH models:

{y1,t, . . . , yn,t} =

(

µ̂1,t + η1,t ·
√

ĥ1,t, . . . , µ̂nt
+ ηn,t ·

√

ĥn,t

)

(4.7)

(d) Finally, repeat this procedure for j = 100, 000 times.

2. By using these 100,000 scenarios, the portfolio P is being revaluated at time t, that
is:

P j
t = M1,t−1 · exp(y1,t) + . . . + Mn,t−1 · exp(yn,t), j = 1...100, 000 (4.8)

3. Portfolio Losses in each scenario j are then computed10:

Lossj = Pt−1 − P j
t , j = 1, . . . , 100, 000 (4.9)

4. The calculus of the 1%, 5%, 95%, 99% VaR is now straightforward:

a) We order the 100,000 Lossj in increasing order ;

b) 1% VaR is the 99000th ordered scenario;

c) 5% VaR is the 95000th ordered scenario.

b) 95% VaR is the 5000th ordered scenario (i.e. the 5% VaR for short positions);

c) 99% VaR is the 1000th ordered scenario (i.e. the 1% VaR for short positions).

10Possible profits are considered as negative losses.
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Finally, we compared the performance of the competing models over 1000 observations
using the previously discussed back-testing techniques:

• Kupiec’s unconditional coverage test;

• Christoffersen’s conditional coverage test;

• Hansen’s SPA test.

• Loss functions to evaluate VaR forecasts accuracy.

4.3 VaR Results

Tables 1-4 reports the real VaR exceedances N/T , the p-values pUC of Kupiec’s Uncondi-
tional Coverage test, and the p-values pCC of Christoffersen’s Conditional Coverage test,
for the VaR forecasts at 1% - 5% - 95% - 99% probability levels, relative to the four
considered portfolios:

1. A bivariate portfolio composed of two assets rated BB by S&P;

2. A bivariate portfolio composed of two assets rated AAA by S&P;

3. A portfolio composed of thirty Dow-Jones stocks;

4. A portfolio composed of one hundred Nasdaq stocks;

over a time sample of 1000 observations ranging between 01/12/1999 and 21/11/2003.
Table 5 reports the same tests for the portfolio composed of one hundred Nasdaq stocks,
but over a time sample of 1000 observations ranging between 13/12/2001 and 01/12/2005,
instead.
Tables 6-10 in the appendix reports the two loss functions discussed in Section 2.2. Finally,
tables 11-15 provides Hansen’s SPA test consistent p-value as well as a lower (upper) bound
for the true p-value. A low p-value (less that .05.10) is informative that the benchmark
model is inferior to one or more of the competing models11.

Long position Short position
Models 1% 5% 1% 5%

N/T pUC pCC N/T pUC pCC N/T pUC pCC N/T pUC pCC

Model i. 4.20% 0.000 0.000 8.90% 0.000 0.000 3.50% 0.000 0.000 7.90% 0.000 0.000
Model ii. 3.00% 0.000 0.000 6.80% 0.013 0.026 1.60% 0.079 0.166 5.10% 0.885 0.911
Model iii. 3.00% 0.000 0.000 6.80% 0.013 0.026 1.60% 0.079 0.166 5.10% 0.885 0.911
Model iv. 2.80% 0.000 0.000 6.70% 0.019 0.033 1.50% 0.139 0.266 4.90% 0.884 0.952
Model v. 2.50% 0.000 0.000 8.10% 0.000 0.000 1.00% 1.000 0.904 5.50% 0.475 0.419
Model vi. 2.70% 0.000 0.000 7.90% 0.000 0.000 0.90% 0.746 0.875 5.60% 0.393 0.406
Model vii. 2.40% 0.000 0.001 7.70% 0.000 0.001 1.00% 1.000 0.904 5.30% 0.666 0.708
Model viii. 2.50% 0.000 0.000 8.10% 0.000 0.000 0.90% 0.746 0.875 5.50% 0.475 0.419
Model ix. 2.60% 0.000 0.000 8.00% 0.000 0.000 0.90% 0.746 0.875 5.60% 0.393 0.406
Model x. 2.30% 0.000 0.002 7.50% 0.001 0.003 0.90% 0.746 0.875 5.30% 0.666 0.708
Model xi. 2.40% 0.000 0.001 7.50% 0.001 0.002 1.00% 1.000 0.904 5.20% 0.773 0.707
Model xiii. 2.40% 0.000 0.001 7.90% 0.000 0.000 1.40% 0.231 0.400 6.60% 0.027 0.062

Table 1: Kupiec’s and Christoffersen’s tests for the portfolio rated BB by S&P.

11We do not report the parameter estimates for the AR, T-GARCH, or DCC models estimated as these
are not of direct interest. The complete set of results is available from the authors upon request.
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Long position Short position
Models 1% 5% 1% 5%

N/T pUC pCC N/T pUC pCC N/T pUC pCC N/T pUC pCC

Model i. 3.30% 0.000 0.000 8.30% 0.000 0.000 2.70% 0.000 0.000 7.20% 0.003 0.005
Model ii. 1.70% 0.043 0.096 5.50% 0.475 0.775 1.90% 0.011 0.027 5.00% 1.000 0.959
Model iii. 1.80% 0.022 0.053 5.50% 0.475 0.775 1.80% 0.022 0.047 4.90% 0.884 0.928
Model iv. 1.70% 0.043 0.096 5.40% 0.566 0.847 1.70% 0.043 0.077 4.70% 0.660 0.490
Model v. 1.50% 0.139 0.266 6.30% 0.069 0.166 1.40% 0.231 0.216 5.20% 0.773 0.948
Model vi. 1.60% 0.079 0.166 6.60% 0.027 0.084 1.20% 0.538 0.283 5.10% 0.885 0.966
Model vii. 1.50% 0.139 0.266 6.20% 0.093 0.243 1.30% 0.362 0.259 5.00% 1.000 0.673
Model viii. 1.50% 0.139 0.266 6.60% 0.027 0.065 1.40% 0.231 0.216 5.10% 0.885 0.966
Model ix. 1.50% 0.139 0.266 6.60% 0.027 0.084 1.30% 0.362 0.259 5.20% 0.773 0.948
Model x. 1.50% 0.139 0.266 6.20% 0.093 0.217 1.30% 0.362 0.259 5.00% 1.000 0.673
Model xi. 1.40% 0.231 0.400 6.20% 0.093 0.243 1.20% 0.538 0.283 4.90% 0.884 0.622
Model xiii. 1.40% 0.231 0.400 6.40% 0.051 0.149 1.50% 0.139 0.165 6.00% 0.159 0.364

Table 2: Kupiec’s and Christoffersen’s tests for the portfolio rated AAA by S&P.

Long position Short position
Models 1% 5% 1% 5%

N/T pUC pCC N/T pUC pCC N/T pUC pCC N/T pUC pCC

Model i. 4.10% 0.000 0.000 9.70% 0.000 0.000 3.40% 0.000 0.000 9.30% 0.000 0.000
Model ii. 2.40% 0.000 0.001 6.30% 0.069 0.192 1.50% 0.139 0.165 5.80% 0.257 0.499
Model iii. 2.40% 0.000 0.001 6.20% 0.093 0.243 1.50% 0.139 0.165 5.80% 0.257 0.210
Model iv. 2.20% 0.001 0.004 5.80% 0.257 0.514 1.20% 0.538 0.706 5.00% 1.000 0.959
Model v. 2.10% 0.002 0.007 6.70% 0.019 0.061 1.10% 0.754 0.833 5.30% 0.666 0.202
Model vi. 2.20% 0.001 0.004 6.80% 0.013 0.044 1.20% 0.538 0.283 5.30% 0.666 0.908
Model vii. 1.80% 0.022 0.046 6.10% 0.122 0.300 1.00% 1.000 0.895 4.50% 0.461 0.621
Model viii. 1.90% 0.011 0.026 6.70% 0.019 0.061 1.00% 1.000 0.895 5.30% 0.666 0.776
Model ix. 1.90% 0.011 0.026 6.80% 0.013 0.044 1.00% 1.000 0.895 5.80% 0.257 0.365
Model x. 1.80% 0.022 0.046 6.20% 0.093 0.243 0.90% 0.746 0.867 4.90% 0.884 0.928
Model xi. 1.90% 0.011 0.026 6.30% 0.069 0.192 1.00% 1.000 0.895 5.10% 0.885 0.966
Model xii. 2.40% 0.000 0.001 7.10% 0.004 0.014 1.30% 0.362 0.549 5.50% 0.475 0.774
Model xiii. 2.70% 0.000 0.000 9.00% 0.000 0.000 7.00% 0.000 0.000 13.70% 0.000 0.000

Table 3: Kupiec’s and Christoffersen’s tests for the portfolio composed of thirty Dow Jones stocks

Long position Short position
Models 1% 5% 1% 5%

N/T pUC pCC N/T pUC pCC N/T pUC pCC N/T pUC pCC

Model i. 3.20% 0.000 0.000 7.30% 0.002 0.002 1.00% 1.000 0.913 4.60% 0.557 0.735
Model ii. 2.50% 0.000 0.000 7.80% 0.000 0.000 0.50% 0.079 0.209 4.20% 0.233 0.416
Model iii. 2.50% 0.000 0.000 8.00% 0.000 0.000 0.50% 0.079 0.209 4.10% 0.178 0.355
Model iv. 2.60% 0.000 0.000 8.10% 0.000 0.000 0.40% 0.030 0.094 4.10% 0.178 0.073
Model v. 2.30% 0.000 0.001 8.10% 0.000 0.000 0.40% 0.030 0.094 4.10% 0.178 0.355
Model vi. 2.00% 0.005 0.014 7.60% 0.000 0.001 0.30% 0.009 0.033 3.20% 0.005 0.007
Model vii. 1.90% 0.011 0.028 8.00% 0.000 0.000 0.20% 0.002 0.008 3.60% 0.033 0.102
Model viii. 2.00% 0.005 0.014 8.10% 0.000 0.000 0.40% 0.030 0.094 3.80% 0.070 0.045
Model ix. 1.80% 0.022 0.054 7.80% 0.000 0.000 0.30% 0.009 0.033 3.30% 0.009 0.011
Model x. 1.90% 0.011 0.028 7.90% 0.000 0.000 0.20% 0.002 0.008 3.50% 0.022 0.073
Model xi. 1.90% 0.011 0.028 7.60% 0.000 0.001 0.20% 0.002 0.008 3.40% 0.014 0.050
Model xii. 2.10% 0.002 0.006 7.90% 0.000 0.000 0.20% 0.002 0.008 3.10% 0.003 0.005
Model xiii. 11.20% 0.000 0.000 22.30% 0.000 0.000 14.10% 0.000 0.000 21.30% 0.000 0.000

Table 4: Kupiec’s and Christoffersen’s tests for the portfolio composed of one hundred Nasdaq stocks, using
for VaR backtesting the time sample 01/12/1999-21/11/2003
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Long position Short position
Models 1% 5% 1% 5%

N/T pUC pCC N/T pUC pCC N/T pUC pCC N/T pUC pCC

Model i. 0.70% 0.314 0.573 2.40% 0.000 0.000 0.00% 0.000 0.000 1.00% 0.000 0.000
Model ii. 1.20% 0.538 0.715 4.60% 0.557 0.702 0.10% 0.000 0.001 2.60% 0.000 0.000
Model iii. 1.10% 0.754 0.843 5.00% 1.000 0.949 0.10% 0.000 0.001 2.90% 0.001 0.002
Model iv. 1.20% 0.538 0.715 5.00% 1.000 0.949 0.10% 0.000 0.001 2.70% 0.000 0.001
Model v. 0.80% 0.510 0.755 5.10% 0.885 0.687 0.00% 0.000 0.000 2.60% 0.000 0.000
Model vi. 0.60% 0.170 0.376 4.00% 0.133 0.189 0.00% 0.000 0.000 1.70% 0.000 0.000
Model vii. 0.60% 0.170 0.376 5.20% 0.773 0.707 0.00% 0.000 0.000 2.60% 0.000 0.000
Model viii. 0.60% 0.170 0.376 5.10% 0.885 0.958 0.00% 0.000 0.000 2.70% 0.000 0.001
Model ix. 0.50% 0.079 0.208 4.10% 0.178 0.254 0.00% 0.000 0.000 1.70% 0.000 0.000
Model x. 0.70% 0.314 0.573 4.90% 0.884 0.916 0.00% 0.000 0.000 2.40% 0.000 0.000
Model xi. 0.60% 0.170 0.376 4.80% 0.770 0.861 0.00% 0.000 0.000 2.30% 0.000 0.000
Model xii. 0.60% 0.170 0.376 4.60% 0.557 0.702 0.00% 0.000 0.000 1.80% 0.000 0.000
Model xiii. 8.90% 0.000 0.000 19.10% 0.000 0.000 13.10% 0.000 0.000 19.90% 0.000 0.000

Table 5: Kupiec’s and Christoffersen’s tests for the portfolio composed of one hundred Nasdaq stocks using
for VaR backtesting the time sample 13/12/2001-01/12/2005

The previous tables highlight elements of sure interests. If we consider the seven determi-
nants discussed in section 4.1 the major insights can be summarized as follows:

1. Choice of the marginals distribution:

(a) The multivariate normal with no dynamics at all is the worst model for almost
all quantiles and portfolios, being either too aggressive or too conservative.

(b) The Skew-T distribution usually presents the most precise VaR forecasts, ac-
cording to the tests and Loss functions used. However, the normal distribution
with a T-GARCH specification is sufficient to model all the quantiles for a in-
vestment grade portfolio, as well as the 1% and 5% quantiles for short positions
for all the considered portfolios. This result is confirmed both by Kupiec’s and
Christoffersen’s tests, and Hansen’s SPA test.

2. Specification of the conditional moments of the marginals

(a) The AR specification of the mean is not relevant in all cases;

(b) The GARCH specification for the variance is absolutely fundamental to have
good VaR forecasts, whatever the marginal distribution is;

(c) Allowing for dynamics in the skewness and degrees of freedom parameters of
the Skew-T produces more conservative VaR forecasts in almost all cases;

3. Choice of the type of copula:

(a) The T-copula usually produces better results than the Normal copula according
to loss functions. However, once Skew-T marginals and a T-GARCH specifica-
tion are considered, these differences are no more statistically significant at the 5
% level by using the SPA test, and at the 10 % level or higher if a dynamic spec-
ification for the Normal copula is used. This evidence differs slightly from what
reported in Chen, Fan, and Patton (2004), who developed two goodness-of-fit
tests to compare alternative models of dependence and found strong evidence
against the normal copula when the number of assets increases, but little ev-
idence against the T copula. Two possible reasons may be that they filtered
the raw returns using a simple GARCH(1,1) model without a leverage effect,
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together with a Normal distribution for the marginals. Our analysis high-
lighted that Skew-T modelling is a better choice when risky assets and volatile
markets are considered. Moreover, Newey and Steigerwald (1997) showed that
Quasi-ML estimators can give not consistent estimates under certain conditions,
particularly when the true distribution is not symmetric.

(b) The Grouped-T compared slightly worse to the T-copula. This result may be
due either to the lack of dynamic modelling or to the wrong choice of the criteria
used to separate the assets in different groups, or both. We used the credit
rating for its ease of use, but more refined methods like the cluster analysis can
be considered. However, we left it as a topic of future research.

(c) The Clayton copula performed quite well with bivariate portfolios in the left
tail of the distribution, as expected. When the number of assets increases is no
more a viable choice.

4. Specification of the conditional copula parameters

(a) Dynamic specification always provides better results, where the major gains are
achieved when moving from a constant normal copula to a dynamic DCC(1,1)
Normal copula, rather than when a T-copula is involved. This result together
with the previous 3a) highlights that a T-copula is no more distinguishable from
a Normal copula when dynamic Skew-T marginals and dynamic dependence is
considered.

5. Degree of assets’ riskiness;

(a) The T-GARCH specification is sufficient to model most of the leptokurtosis in
the data when dealing with investment grade assets. This is not the case for
riskier assets and a Skew-T distribution is a better choice.

(b) However, none of the considered models were able to pass Kupiec’s and Christof-
fersen’s tests for the 1% and 5% VaR (long positions), when the bivariate risky
BB portfolio was examined.

6. Portfolio dimensionality ;

(a) When the number of assets increases, the use of a dynamic Skew-T marginal
is required if the 1% and 5% VaR for long positions are of concern. Dynamic
normal marginals are sufficient for short positions, instead.

(b) A dynamic Normal copula is sufficient for long positions quantiles, while a
simple constant normal copula can do the job when dealing with short positions.

7. Time sample used for VaR backtesting.

(a) As for long positions, when the first sample 01/12/1999-21/11/2003 with high
volatility was considered, the only models able to pass the Kupiec’s and Christof-
fersen’s test for the 1% VaR at the 1% level, were the ones with dynamic
Skew-T marginals together with dynamic Normal copula or constant/dynamic
T-copula. However, none of them passed the tests for the 5% VaR instead. On
the other hand, multivariate Normal models proved to be sufficient when the
second sample 13/12/2001-01/12/2005 with low volatility was examined.
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(b) As for short positions, multivariate normal models proved to be sufficient when
the first sample was considered, while almost all models (except the Clayton
model) were too conservative for the second sample.

These results seem to point out that a Skew-T distribution with a T-GARCH(1,1) spec-
ification, constant skewness and constant degrees of freedom parameters, together with a
dynamic DCC(1,1) Normal copula, should be a good compromise for precise VaR estimates
when dealing with long positions. A multivariate normal model with dynamic marginals
and a constant copula may be a better choice if short positions are of concern.

5 Conclusions

The goal of this paper has been that of comparing different approaches to model multivari-
ate log-returns to find out what are the main determinants when doing VaR forecasts for
a portfolio of assets. To achieve this goal, we introduced a general multivariate framework
by means of copulas to unify past approaches and propose new extensions.
We found out that univariate skewness and kurtosis modelling play a crucial role when
portfolio dimensionality and riskiness increase, and long positions are of concern. However,
we showed that once a dynamic Skew-T model is taken into account, a dynamic Normal
copula provides VaR estimates that are not statistically different from a constant or dy-
namic T-copula. Multivariate Normal models proved to be sufficient when short positions
were of interest, instead.
Furthermore, we pointed out that none of the models was able to pass the tests for long
positions VaR quantiles when risky portfolios were considered, both low and high dimen-
sional ones: therefore, more flexible models are required. A possible venue for future
research is to consider Levy processes for both marginal and copula modelling.
A second extension that can be made is to use more sophisticated methods to separate
the assets into homogenous groups for a Grouped-T copula. Besides, a possible dynamic
specification could be considered, too.
Finally, an alternative to DCC modelling for high-dimensional portfolios could be that
of decomposing the joint distribution into many conditional bivariate distributions, and
estimating them separately to improve computational tractability.

Note: This article is the result of the joint work of the three authors. However, Section 1 was written

by Carta, De Giuli and Fantazzini jointly, Section 2 by DeGiuli and Fantazzini, Section 3 by Fantazzini,

Section 4 by Fantazzini and Carta, while Section 5 by Fantazzini.
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Appendix

A Loss functions tables
Long position Short position

1% 5% 1% 5%
Models Lopez(98) Blanco-

Ihle(99)
Lopez(98) Blanco-

Ihle(99)
Lopez(98) Blanco-

Ihle(99)
Lopez(98) Blanco-

Ihle(99)
Model i. 42.04 15.44 89.10 47.88 79.20 47.73 35.13 18.82
Model ii. 30.02 8.46 68.06 30.72 51.16 30.06 16.11 12.25
Model iii. 30.02 8.49 68.06 30.63 51.16 30.09 16.11 12.36
Model iv. 28.02 7.71 67.06 28.85 49.16 28.74 15.11 11.69
Model v. 25.02 7.24 81.07 37.51 55.17 31.39 10.10 9.39
Model vi. 27.02 7.55 79.07 37.64 56.17 32.13 9.10 9.56
Model vii. 24.01 6.81 77.07 35.47 53.17 30.65 10.10 9.29
Model viii. 25.01 6.73 81.08 37.97 55.17 32.00 9.10 9.00
Model ix. 26.02 7.05 80.08 38.44 56.17 32.66 9.10 9.31
Model x. 23.01 5.86 75.07 35.48 53.17 30.27 9.09 8.66
Model xi. 24.01 6.40 75.07 35.65 52.17 31.07 10.09 8.82
Model xiii. 24.01 6.55 79.07 37.62 66.18 36.53 14.11 11.13

Table 6: Loss Functions for the portfolio rated BB by S&P.

Long position Short position
1% 5% 1% 5%

Models Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Model i. 33.05 14.29 83.10 42.38 72.08 33.20 27.04 11.17
Model ii. 17.02 5.31 55.05 21.00 50.05 18.24 19.01 4.74
Model iii. 18.02 5.53 55.06 21.72 49.04 17.95 18.01 4.43
Model iv. 17.02 5.18 54.05 20.05 47.04 17.11 17.01 4.23
Model v. 15.02 4.96 63.06 25.33 52.05 18.15 14.01 2.90
Model vi. 16.02 5.50 66.06 26.97 51.05 18.16 12.01 2.84
Model vii. 15.02 4.54 62.06 23.22 50.04 17.19 13.01 2.66
Model viii. 15.02 4.61 66.06 25.67 51.05 18.54 14.01 2.66
Model ix. 15.02 4.68 66.06 25.52 52.05 18.42 13.01 2.72
Model x. 15.02 4.28 62.06 23.43 50.04 17.46 13.01 2.47
Model xi. 14.02 4.30 62.06 23.45 49.04 17.29 12.01 2.59
Model xiii. 14.02 3.94 64.06 23.96 60.05 20.84 15.01 3.73

Table 7: Loss Functions for the portfolio rated AAA by S&P.

Long position Short position
1% 5% 1% 5%

Models Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Model i. 49.42 20.69 113.66 57.68 107.28 45.78 41.42 14.86
Model ii. 26.50 6.69 71.58 27.33 66.40 19.96 19.10 5.55
Model iii. 26.54 6.73 70.57 27.21 66.43 20.13 19.13 5.66
Model iv. 24.22 6.11 65.99 24.85 58.29 19.39 16.13 5.41
Model v. 23.41 6.46 76.37 30.50 61.20 19.29 14.59 4.42
Model vi. 24.30 6.35 77.08 29.87 61.40 19.74 15.69 4.62
Model vii. 19.78 5.18 69.07 25.57 53.03 17.91 13.53 4.25
Model viii. 20.91 5.37 76.40 31.12 61.50 20.27 13.30 3.85
Model ix. 20.92 5.39 77.32 30.92 66.55 20.35 13.42 4.04
Model x. 19.49 4.45 70.34 26.72 57.08 18.25 12.20 3.62
Model xi. 20.39 4.21 70.97 25.06 59.47 19.99 13.30 3.81
Model xii. 26.42 6.79 80.45 31.60 63.53 20.54 16.75 4.71
Model xiii. 29.79 7.12 103.19 47.80 153.83 70.57 79.89 27.61

Table 8: Loss Functions for the portfolio composed of thirty Dow Jones stocks
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Long position Short position
1% 5% 1% 5%

Models Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Model i. 136.91 9.60 359.00 35.99 40.82 2.37 139.22 12.40
Model ii. 81.65 5.26 289.61 28.79 23.43 1.34 106.29 8.99
Model iii. 82.70 5.28 290.96 28.48 24.89 1.48 109.61 9.32
Model iv. 78.86 4.72 285.18 28.03 18.50 1.09 103.48 8.87
Model v. 73.39 4.47 294.75 29.22 14.20 0.86 97.77 8.00
Model vi. 68.78 4.07 283.58 27.55 12.98 0.71 85.83 6.43
Model vii. 67.57 4.34 285.10 27.82 7.11 0.50 81.47 6.87
Model viii. 63.87 3.90 291.15 29.29 12.78 0.75 96.28 8.26
Model ix. 58.27 3.34 284.11 27.55 11.27 0.77 86.87 6.95
Model x. 60.26 3.73 276.24 27.12 8.75 0.59 83.21 7.07
Model xi. 59.61 3.67 270.78 26.66 8.64 0.58 81.75 6.97
Model xii. 67.75 3.96 289.19 27.51 9.33 0.60 82.51 6.73
Model xiii. 444.90 52.64 994.14 184.70 384.82 62.50 697.32 146.10

Table 9: Loss Functions for the portfolio composed of one hundred Nasdaq stocks using for VaR backtesting
the time sample 01/12/1999-21/11/2003

Long position Short position
1% 5% 1% 5%

Models Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Lopez(98) Blanco-
Ihle(99)

Model i. 15.52 1.39 70.36 7.92 0.00 0.00 13.99 1.48
Model ii. 23.03 1.67 102.75 13.23 1.01 0.02 33.86 3.78
Model iii. 22.89 1.81 108.71 13.81 1.00 0.02 37.12 4.05
Model iv. 23.68 1.75 108.61 13.79 1.02 0.04 35.55 4.22
Model v. 18.10 1.42 109.38 14.00 0.00 0.00 33.03 3.59
Model vi. 12.95 0.93 89.55 10.94 0.00 0.00 20.77 1.83
Model vii. 16.48 1.42 110.29 13.93 0.00 0.00 33.02 3.60
Model viii. 15.36 1.27 110.58 14.35 0.00 0.00 34.16 3.66
Model ix. 11.37 0.86 90.72 10.97 0.00 0.00 21.10 2.01
Model x. 16.79 1.34 107.44 13.81 0.00 0.00 31.01 3.55
Model xi. 15.65 1.31 105.46 13.52 0.00 0.00 29.82 3.46
Model xii. 14.37 1.15 98.90 11.88 0.00 0.00 22.99 2.45
Model xiii. 207.14 32.25 512.84 139.07 237.49 53.25 424.96 126.16

Table 10: Loss Functions for the portfolio composed of one hundred Nasdaq stocks using for VaR backtesting
the time sample 13/12/2001-01/12/2005

Long position Short position
Benchmark 1% 5% 1% 5%

Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

Model i. 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model ii. 0.050 0.050 0.052 0.224 0.224 0.533 0.050 0.052 0.054 0.155 0.236 0.333
Model iii. 0.043 0.045 0.046 0.109 0.223 0.534 0.037 0.037 0.038 0.100 0.218 0.304
Model iv. 0.051 0.051 0.055 0.577 0.920 0.997 0.038 0.038 0.040 0.716 0.989 0.998
Model v. 0.007 0.008 0.008 0.001 0.001 0.001 0.157 0.157 0.406 0.028 0.028 0.032
Model vi. 0.104 0.108 0.117 0.002 0.002 0.002 0.053 0.053 0.070 0.035 0.035 0.039
Model vii. 0.092 0.104 0.113 0.009 0.010 0.011 0.043 0.043 0.055 0.074 0.074 0.098
Model viii. 0.130 0.194 0.313 0.002 0.003 0.003 0.157 0.673 0.753 0.044 0.044 0.047
Model ix. 0.152 0.231 0.266 0.006 0.006 0.006 0.071 0.072 0.124 0.042 0.042 0.044
Model x. 0.602 0.894 0.961 0.016 0.020 0.023 0.818 0.991 0.998 0.062 0.077 0.104
Model xi. 0.467 0.727 0.854 0.020 0.021 0.024 0.194 0.194 0.534 0.106 0.145 0.302
Model xiii. 0.426 0.667 0.721 0.004 0.005 0.005 0.032 0.032 0.036 0.000 0.000 0.000

Table 11: Hansen’s SPA test for the portfolio rated BB by S&P.
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Long position Short position
Benchmark 1% 5% 1% 5%

Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

Model i. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000
Model ii. 0.129 0.129 0.156 0.499 0.615 0.808 0.034 0.034 0.036 0.358 0.430 0.516
Model iii. 0.104 0.104 0.118 0.419 0.419 0.745 0.044 0.044 0.048 0.329 0.727 0.766
Model iv. 0.147 0.147 0.173 0.604 0.767 0.955 0.047 0.047 0.054 0.752 0.986 0.994
Model v. 0.301 0.489 0.546 0.015 0.017 0.019 0.208 0.208 0.233 0.238 0.238 0.279
Model vi. 0.186 0.207 0.250 0.013 0.013 0.013 0.566 0.758 0.869 0.215 0.215 0.282
Model vii. 0.303 0.410 0.484 0.010 0.011 0.012 0.212 0.212 0.326 0.190 0.208 0.248
Model viii. 0.314 0.539 0.590 0.007 0.007 0.007 0.249 0.290 0.396 0.241 0.261 0.319
Model ix. 0.331 0.378 0.463 0.010 0.010 0.010 0.352 0.548 0.634 0.183 0.183 0.234
Model x. 0.343 0.487 0.545 0.011 0.013 0.016 0.358 0.605 0.717 0.131 0.163 0.193
Model xi. 0.374 0.859 0.890 0.018 0.020 0.020 0.685 0.892 0.946 0.251 0.366 0.475
Model xiii. 0.564 0.989 0.990 0.007 0.007 0.009 0.137 0.158 0.186 0.003 0.003 0.003

Table 12: Hansen’s SPA test for the portfolio rated AAA by S&P.

Long position Short position
Benchmark 1% 5% 1% 5%

Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

Model i. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model ii. 0.025 0.025 0.026 0.104 0.116 0.160 0.026 0.028 0.031 0.005 0.005 0.005
Model iii. 0.037 0.038 0.039 0.126 0.130 0.293 0.027 0.027 0.028 0.009 0.009 0.009
Model iv. 0.046 0.048 0.055 0.672 0.964 0.998 0.054 0.063 0.074 0.044 0.087 0.121
Model v. 0.046 0.050 0.060 0.004 0.004 0.004 0.099 0.099 0.172 0.063 0.075 0.105
Model vi. 0.052 0.052 0.059 0.006 0.007 0.007 0.086 0.094 0.126 0.053 0.063 0.082
Model vii. 0.020 0.020 0.026 0.071 0.168 0.284 0.043 0.043 0.050 0.810 0.810 1.000
Model viii. 0.185 0.289 0.384 0.007 0.008 0.008 0.216 0.451 0.587 0.040 0.046 0.055
Model ix. 0.180 0.271 0.364 0.006 0.006 0.007 0.180 0.251 0.317 0.008 0.008 0.008
Model x. 0.725 0.952 0.998 0.046 0.052 0.085 0.669 0.943 0.995 0.032 0.078 0.118
Model xi. 0.258 0.266 0.632 0.062 0.073 0.098 0.186 0.438 0.633 0.025 0.033 0.040
Model xii. 0.026 0.028 0.028 0.004 0.004 0.004 0.059 0.059 0.072 0.016 0.017 0.018
Model xiii. 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 13: Hansen’s SPA test for the portfolio composed of thirty Dow Jones stocks

Long position Short position
Benchmark 1% 5% 1% 5%

Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

Model i. 0.002 0.002 0.002 0.004 0.004 0.004 0.075 0.075 0.107 0.007 0.007 0.007
Model ii. 0.004 0.004 0.004 0.016 0.018 0.020 0.096 0.115 0.143 0.006 0.006 0.006
Model iii. 0.009 0.009 0.009 0.014 0.015 0.015 0.091 0.093 0.116 0.007 0.007 0.007
Model iv. 0.024 0.026 0.027 0.044 0.065 0.081 0.099 0.099 0.128 0.001 0.001 0.001
Model v. 0.028 0.030 0.032 0.007 0.007 0.007 0.109 0.115 0.129 0.000 0.000 0.000
Model vi. 0.060 0.066 0.101 0.089 0.174 0.229 0.207 0.375 0.417 0.386 0.446 0.772
Model vii. 0.079 0.085 0.112 0.011 0.015 0.015 0.536 0.840 0.901 0.646 0.748 0.839
Model viii. 0.114 0.162 0.219 0.001 0.001 0.001 0.104 0.115 0.130 0.001 0.001 0.001
Model ix. 0.503 0.749 0.953 0.101 0.159 0.203 0.240 0.492 0.522 0.315 0.315 0.520
Model x. 0.023 0.029 0.032 0.004 0.005 0.007 0.223 0.482 0.529 0.211 0.244 0.356
Model xi. 0.377 0.671 0.779 0.649 0.974 0.998 0.313 0.793 0.808 0.778 0.916 0.958
Model xii. 0.060 0.066 0.095 0.063 0.077 0.087 0.252 0.760 0.793 0.660 0.889 0.972
Model xiii. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 14: Hansen’s SPA test for the portfolio composed of one hundred Nasdaq stocks using for VaR
backtesting the time sample 01/12/1999-21/11/2003
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Long position Short position
Benchmark 1% 5% 1% 5%

Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper Lower Cons. Upper

Model i. 0.179 0.235 0.320 0.508 0.508 1.000 0.357 0.727 0.944 0.552 0.971 0.998
Model ii. 0.022 0.022 0.022 0.002 0.002 0.002 0.074 0.074 0.231 0.001 0.001 0.001
Model iii. 0.021 0.021 0.023 0.000 0.000 0.000 0.082 0.082 0.252 0.001 0.001 0.001
Model iv. 0.039 0.039 0.039 0.000 0.000 0.000 0.082 0.082 0.235 0.003 0.003 0.003
Model v. 0.077 0.077 0.084 0.000 0.000 0.000 0.375 0.726 0.943 0.003 0.003 0.003
Model vi. 0.096 0.242 0.310 0.005 0.006 0.014 0.376 0.743 0.944 0.071 0.078 0.164
Model vii. 0.106 0.108 0.156 0.001 0.001 0.001 0.360 0.707 0.928 0.003 0.003 0.003
Model viii. 0.086 0.093 0.144 0.000 0.000 0.000 0.356 0.721 0.934 0.004 0.004 0.004
Model ix. 0.795 0.997 0.997 0.017 0.017 0.023 0.359 0.707 0.939 0.078 0.078 0.174
Model x. 0.102 0.102 0.121 0.000 0.000 0.000 0.394 0.746 0.950 0.005 0.005 0.005
Model xi. 0.123 0.123 0.170 0.000 0.000 0.000 0.370 0.730 0.927 0.004 0.004 0.004
Model xii. 0.078 0.118 0.164 0.003 0.003 0.003 0.329 0.729 0.921 0.065 0.065 0.092
Model xiii. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 15: Hansen’s SPA test for the portfolio composed of one hundred Nasdaq stocks using for VaR
backtesting the time sample 13/12/2001-01/12/2005

B List of Analyzed Stocks

- Bivariate portfolio rated BB : Eastman Kodak - General Motors.

- Bivariate portfolio rated AAA: Exxon Mobil - Microsoft.

- Multivariate portfolio composed of 30 Dow Jones stocks:

3M At&.T Alcoa & Altria Gp. American Express
Boeing Caterpillar Citigroup Coca Cola Du Pont
Eastman Kodak Exxon Mobil General Electric General Motors Hewlett - Packard
Home Depot Honeywell Intl. Intel Intl.Bus.Mach. Intl.Paper
Jp Morgan Chase Johnson & Johnson Mcdonalds Merck Microsoft
Procter & Gamble Sbc Communications United Technologies Wal Mart Stores Walt Disney

- Multivariate portfolio composed of 100 Nasdaq stocks:

Apple Computer Adobe Systems Inc Autodesk Inc Altera Cp Applied Materials
Amgen Amazon.Com Inc Amer. Power Apollo Gp Inc Ace Comm Corp
Bed Bath & Beyond Bea Systems Inc Biogen Idec Inc Biomet Inc Actel Cp
Cdw Corp Acxiom Celgene Chiron Check Point Software
C.H. Robinson Comcast Cp Comverse Tech Inc Costco Wholesale Cisco Sys Inc
Cintas Authentidate Hldg Citrix Systems Dell Inc Echostar Commun
Dollar Tree Store Ade Corp Lm Ericsson Adr Electronic Arts Express Scripts
Expeditors Intl Fastenal Co Fiserv Inc Flextronics Intl Genzyme
Gilead Sciences Bell Microproduct Iac-Interactive Intel Cp Intuit Inc
Inter Tel Inc Wegener Jds Uniphase Captaris Inc Kl A-Tencor
Lamar Advertis Adc Telecommunicat Linear Technology Lincare Hldgs Inc Lam Research
Adtran Inc Microchip Tech Applied Innovation Medimmune Inc Mercury Interact
Millennium Pharm Molex Inc Cobra Electronics Microsoft Maxim Integrated
Network Appliance Audiovox Novellus Systems Oracle Corp Paychex Inc
Paccar Inc Patterson Companies Pet Smart Inc Pixar Qualcomm Inc
Qlogic Colt Telecom Ross Stores Inc Sanmina-Sci Corp Starbucks
Siebel Systems Amer Cap Strategie D&E Communication Sigma Aldrich Assoc Banc Cp
Alabama Natl Bncp Alfa Staples Inc Smurfit-Stone Cont Sun Microsys Inc
Amcore Financial Teva Pharm Inds Tellabs Inc Ameritrade Hldg Whole Foods
Eci Telecom Ltd Xilinx Inc Amer Natl Ins Dentsply Intl Inc Yahoo Inc
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