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Abstract

The estimation of the memory parameter in perturbed long memory series has re-
cently attracted attention motivated especially by the strong persistence of the volatility
in many financial and economic time series and the use of Long Memory in Stochastic
Volatility (LMSV) processes to model such a behaviour. This paper discusses frequency
domain semiparametric estimation of the memory parameter and proposes an extension
of the log periodogram regression which explicitly accounts for the added noise, compar-
ing it, asymptotically and in finite samples, with similar extant techniques. Contrary
to the non linear log periodogram regression of Sun and Phillips (2003), we do not use
a linear approximation of the logarithmic term which accounts for the added noise. A
reduction of the asymptotic bias is achieved in this way and makes possible a faster
convergence by permitting a larger bandwidth. Monte Carlo results confirm this bias
reduction in finite samples. An application to a series of returns of the Spanish Ibex35
stock index is finally included.
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1 Introduction

The estimation of the memory parameter in perturbed long memory processes has recently
received considerable attention motivated especially by the strong persistence found in the
volatility of many financial and economic time series. Alternatively to the different exten-
sions of ARCH and GARCH processes, the Long Memory in Stochastic Volatility (LMSV)
has proved an useful tool to model such a strong persistent volatility. A logarithmic trans-
formation of the squared series becomes a long memory process perturbed by an additive
noise where the long memory signal corresponds to the volatility of the original series. As
a result estimation of the memory parameter of the volatility component corresponds to a
problem of estimation in a long memory signal plus noise model. Other examples comprise
the measurement errors and the modelling of different factors affecting long run and short
run behaviour. Several estimation techniques have been proposed in this context (Har-
vey(1998), Breidt et al.(1998), Deo and Hurvich (2001), Sun and Phillips (2003), Arteche
(2004), Hurvich et al. (2005)).

The perturbed long memory series recently considered in the literature are of the form,
2=+ Yt ug (1)

where (1 is a finite constant, u; is a weakly dependent process with a spectral density f, ()
that is continuous on [—7, 7], bounded above and away from zero, and y; is a long memory

(LM) process characterized by a spectral density function satisfying
fy(N) =CA 201+ 0(0\)  asA—0 (2)

for a positive finite constant C, « € [1,2] and 0 < dy < 0.5. The LMSV model considers u,
a non normal white noise but in a more general signal plus noise u; can be a serially weakly
dependent process as in Sun and Phillips (2003) and Arteche (2004). The constant « is a
spectral smoothness parameter which determines the adequacy of the local specification of
the spectral density of y; at frequencies around the origin. The interval 1 < o < 2 covers
the most interesting situations. In parametric standard LM processes, such as the fractional
ARIMA, a = 2 and o = 1 in the seasonal or cyclical long memory processes described in
Arteche and Robinson (1999) if the long memory takes part at some frequency different

from 0. The condition of positive memory 0 < dg < 0.5 is usually imposed when dealing



with frequency domain estimation in perturbed long memory processes and guarantees the
asymptotic equivalence between spectral densities of y; and z;. Otherwise the memory of
z; corresponds to that of the noise (dy = 0). For us uncorrelated with y; for all s,t, the

spectral density of z; is

FAO) = 00 + 200 = OX (1.4 00) + £u(3) ~ -2 (14 20520 1 03

(3)
as A — 0 and z; inherits the memory properties of y; in the sense that both share the same
memory parameter dy. However the spectral smoothness changes and for z; is min{2dyp, a} =

2dp.

The semiparametric estimators considered in this paper are based on the minimization
of some function of the difference between the periodogram and the local specification of
the spectral density in (3). The periodogram of z; around the origin does not approximate
accurately CA~2% and this causes a bias which translates into the different estimators. This
is discussed in Section 2. As a result estimation techniques have been proposed that consider
explicitly the added noise in the local specification of the spectral density of z;. They are
described in Section 3. Section 4 proposes an estimator based on an extension of the log
periodogram regression and establishes its asymptotic properties. Section 5 compares the
“optimal” bandwidths defined as the minimizers of an asymptotic approximation of the
mean square error of the different semiparametric estimators considered. The performance
in finite sample perturbed LM series is discussed in Section 6 by means of Monte Carlo.
Section 7 shows an application to a series of returns of the Spanish Ibex35 stock index.

Finally section 8 concludes. Technical details are placed in the Appendix.

2 Periodogram and local specification of the spectral density

Define

n 2

Z 2z exp(—iA;t)

t=1

1
Izj = Iz@\j) = 2

the periodogram of the series z, t = 1,...,n, at Fourier frequency \; = 27j/n. The prop-
erties of semiparametric frequency domain estimators of dy depend on the adequacy of the
approximation of the periodogram to the local specification of the spectral density. Hurvich

and Beltrao (1993), Robinson (1995a) and Arteche and Velasco (2005) in an asymmetric long



memory context, observed that the asymptotic relative bias of the periodogram produces

the bias typically encountered in semiparametric estimates of the memory parameters.

Deo and Hurvich (2001), Crato and Ray (2002) and Arteche (2004) detected that the
bias is quite severe in perturbed long memory series if the added noise is not explicitly
considered in the estimation. It is then relevant to analyze the asymptotic bias of I.; as
an approximation of the local specification of the spectral density when the added noise is

ignored.
Consider the following assumptions:

A.1: z in (1) is a long memory signal plus noise process with y; an LM process with
spectral density function in (2) with dy < 0.5 and w; is stationary with positive and bounded

continuous spectral density function fi, ().

A.2: y; and u, are uncorrelated for any ¢, s.

Theorem 1 Let z; satisfy assumptions A.1 and A.2 and define

IL; ]
—2d, :
O

Then, considering j fired:

Ly (j) = A1n(j) + Aza(j) + o(n™2®)

where
—2dg
nh_)rglo Ain(j / (P 27rj dA
and
2d fu(0)
Jim i) = [
where
2 sin?2

2

¥i(A) = w @) =N

Remark 1: The influence of the added noise turns up in Ay, (j) and is thus asymptotically
negligible if dy > 0. However for finite n Ag,(j) can be quite large if dy is low and/or the long

run noise to signal ratio (nsr) f,(0)/C is large. This produces the high bias of traditional



semiparametric estimators which ignore the added noise in perturbed LM series and justify

the modifications recently proposed and described in the next section.

Remark 2: In the LMSV case f,(0) = ag /27. The influence of the noise is clear here,

the larger the variance of the noise the higher the relative bias of the periodogram.

Remark 3: When dy < 0 the bias diverges as n increases. This result was expected since
the memory of z; corresponds in this case to the memory of the noise. Then L, (j) diverges
because we normalize the periodogram by a quantity that goes to zero as n — oo. As a
result the estimation of a negative memory parameter of z; is not straightforward as noted

by Deo and Hurvich (2001) and Arteche (2004).

Remark 4: When j = j(n) is a sequence of positive integers such that j/n — 0 as
n — o0, a straightforward extension of Theorem 2 in Robinson (1995a) shows that under

assumptions A.1 and A.2

1 A min
Lu(j)=1+0 ( Off + ] (“’2d°)>

noting that
F2(N) = OX%% = f£,(0) + fu(Nj) — CA;>®

and by assumption A.1,

fZ(A]) . min(a,2dp)
CAf2d0_1+0(Aj )
J

3 Semiparametric estimation of the memory parameter

Let dy be the true unknown memory parameter and d any admissible value and consider
hereafter the same notation for the rest of parameters to be estimated. The version of
Robinson (1995a) of the log periodogram regression estimator (LPE), drpE, is based on the

least squares regression

logl.; =a+d(—2log\;) +v;, j=1,...,m,

L' — 0 as n — oo. The original

where m is the bandwidth such that at least m™! + mn~
regressor proposed by Geweke and Porter-Hudak was —2log(2 sin %) instead of —2log \;
but both are asymptotically equivalent and using one or another makes minimal differences.

The motivation of this estimator is the log linearization in (3) such that
log Ij = a+ do(—2log \j) + Uz; + O(X3%),  j=1,2,...,m, (4)
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where a = logC' — ¢, ¢ = 0.577216... is Euler’s constant and U,; = log(IL,; f; *(\j)) + c.
The bias of the least squares estimate of dp is dominated by the O(/\jde) term which is not
explicitly considered in the regression such that a negative bias of order O(A\2%) arises which
can be quite severe if dy is low. Deo and Hurvich (2001) also show that \/m(ci LpE — do) 4,
N(0,7%/24) as long as m = kn® for ¢ < 4dy/(4dp + 1) and & is hereafter a generic positive

constant which can be different in every case.

The main rival semiparametric estimator of the LPE is the local Whittle or Gaussian
semiparametric estimator (GSE), dgsg, proposed by Robinson (1995b) and defined as the

minimizer of
s 2d - 1 &
R(d) =logC(d) =~ loghj, C(d) = — XL, (5)
j=1 J=1

over a compact set. This estimator has the computational disadvantage of requiring non-
linear optimization but it is more efficient than the log periodogram regression. However
both share important affinities as described in Robinson and Henry (2003). Again the bias
can be approximated by a term of order O(\2%) which is caused by the added noise, and
Vm(dase — do) A N(0,1/4) as long as m = kn® for ¢ < 4dy/(4dy + 1) (Arteche, 2004). As
in the LPE, this bandwidth restriction limits quite seriously the rate of convergence of the

estimators, especially if dg is low.

In order to reduce the bias of the GSE, Hurvich et al. (2005), noting (3), suggested to
incorporate explicitly in the estimation procedure a ﬁ)\?d term which accounts for the effect
of the added noise and proposed a modified Gaussian semiparametric estimator (MGSE)
defined as

(dyvase, Buase) = arg IAnXig R(d, 3) (6)

where © =[0,01], 0 < O; <00, A =[A1,As], 0 < A} < Ay < 1/2,

1 “ )\Z‘dlzj
R(d,B) =log [ — > -
14 82

m 4
Jj=1

1 —2d 2d
+— Z;log{)\j (14 BA3)}
]:

When v, is #d(0,02) then f,(\) = 02(27)~! and By = 02(27C)~!. The explicit con-
sideration of the noise in the estimation relaxes the upper bound of the bandwidth such
that /m(dyase — do) < N(0,Cy,/4) for Cqy, = 1+ (1 + 4dy) /4d3 as long as m = kn® for
¢ < 2a/(2a+ 1) which permits a larger m. When «a = 2, as is typical in standard LM para-

metric models, dy;ase achieves a rate of convergence arbitrarily close to n?/5 which is the



upper bound of the rate of convergence of dcsp in the absence of additive noise. However
with an additive noise the best possible rate of convergence achieved by cZGs g is n2do/(4do+1)
Regarding the bias of dysgse, it can be approximated by a term of order O(A%) instead of

O(A\2%) which is the order of the bias of dggg in the presence of an additive noise.

Sun and Phillips (2003) extended the log periodogram regression in a similar manner.

From (3)
logl.; = logC —c+do(—2logA;)+ log (1 + )\2d° + O()\“)) Us;

= logC —c+do(—2log ;) +1og | 1 + A2d°> +O(A}) + Uy (7)

= logC —c+do(—2log\;) + fu(o))\do O()\"‘)—}-Uzj (8)

where o = min(4dp, o). Noting (8) Sun and Phillips (2003) proposed the following non
linear regression

logI.; = a+d(—2log \;) + ﬁ)\?d +U;; 9)

for By = fu(0)/C, such that the non linear log periodogram regression estimator (NLPE) is
defined as

(dnipe, BnLpE) = arg min D (log" Ij + d(2log ;)" — B(A3)*)? (10)
=1

where for a general & we use the notation & = & — & where £ = > & /n. The bias of dNLPE
is of order O(\2,") which is largely produced by the O()\‘?‘*) omitted in the regression in (9).
Correspondingly v/m/(dyzpg—do) <, N(0, 57 Cdo) as long as m = kn® for ¢ < 2a*/(2a*+1).
Sun and Phillips (2003) consider the case a = 2 so that o* = 4dy and the behaviour of m
is restricted to be O(n8d/Bdo+1) with a bias of dypg of order O(X*%). The upper bound
of m in the NLPE is higher than in the standard LPE but lower than in the MGSE when
a > 4dy. This is caused by the approximation of the logarithmic expression in (7). This
approach has been used by Andrews and Guggenberger (2003) in their bias reduced log
periodogram regression in order to get a linear regression model. However, the regression
model of Sun and Phillips (2003), although linear in (3, is still non linear in d and the linear
approximation of the logarithmic expression does not imply a significant computational

advantage. Instead, noting (7) we propose the following non linear regression model

log I; = a+ d(—2log \;) + log(1 + BAZ) + U, (11)



which only leaves an O()\{') term out of explicit consideration. We call the estimator based
on a nonlinear least squares regression of (11) the augmented log periodogram regression

estimator (ALPE).

4 Augmented log periodogram regression

The augmented log periodogram regression estimator (ALPE) is defined as
(daLpe. BaLpE) = arg min Q(d, 5) (12)

under the constraint § > 0, where

Qd,p) = Z(log* L+ d(2log \j)* —log*(1 + /6)\%1))2

Jj=1

Consider the following assumptions:
B.1: y; and u; are independent covariance stationary Gaussian processes.

B.2: When var(ut) > 0, f, () is continuous on [—m, 7], bounded above and away from

zero with bounded first derivative in a neighbourhood of zero.

B.3: The spectral density of y; satisfies
fy(A) = CAT20 (1 + GA* + O(\*1))

for some ¢ > 0, finite positive C, finite G, 0 < dg < 0.5 and « € (4do, 2] ([1,2].

Assumption B.1 excludes LMSV models where u; is not Gaussian but a log chi-square.
We impose B.1 for simplicity and to directly compare our results with those in Sun and
Phillips (2003). Considering recent results, Guassianity of signal and noise could be relaxed.
The hypothesis of Gaussianity of y; could be weakened as in Velasco (2000) and LMSV could
also be allowed as in Deo and Hurvich (2001). Assumption B.2 restricts the behaviour of
ug as in Assumption 1 in Sun and Phillips (2003). Assumption B.3 imposes a particular
spectral behaviour of y; around zero relaxing Assumption 2 in Sun and Phillips (2003). As
in Henry and Robinson (1996) this local specification permits to obtain the leading part of
the asymptotic bias of d ArpE in terms of G. We restrict our analysis to the case a > 4d
where the ALPE achieves a lower bias and higher asymptotic efficiency than the NLPE by

permitting a larger m. When a < 4dy the ALPE and the NLPE share the same asymptotic



distribution with the same upper bound of m. In the standard fractional ARIMA process
considered in Sun and Phillips (2003) o = 2 > 4dp.

Theorem 2 Under assumptions B.1-B.3, asn — oo darpr—dy = op(1) if 1/m+m/n — 0,
and CZALPE o dO — Op((m/n)QdO), BALPE _ /60 — Op(l) Zf m/n + n4d0(1+5)/m4d0(1+5)+1 =0

for some arbitrary small 6 > 0.

This is the same result as the consistency of the NLPE in Theorem 2 in Sun and Phillips

(2003) and can be proved similarly noting that
1 LS g o e a2
—Q(d,B) = —> {U5+ V] +0())}
j=1

for V" = Vj*(d, B) = V;(d, 8) -V (d,B), V;(d, B) = 2(d — dp) log \; +log(1 —I—ﬂo)\§d°) —log(1+
ﬁA?d) and that log(1 + ﬁ)\?d) = ﬂ)\?d + O(A?d) for (d,3) € A x ©.

The main difference of the ALPE with respect to the NLPE lies in the asymptotic
distribution, particularly in the term responsible of the asymptotic bias. The first order

conditions of the minimization problem are

S(d,8) = (0,A)
AB=0

where A is the Lagrange multiplier pertaining to the constraints S > 0 and

_ = IET](d,/B) *
S(d,3) = ; < v (d. ) > W;(d,3)

with
pA
r15(d,B) = 2|1- W log A;j ,
2d
N
14 Az’
W;i(d,8) = logl;+d(2log\;) —log(1 + BA3%)

r2;(d, B) =



The Hessian matrix H(d, 3) has elements

m (og)\ )2)\2d
Hy(d = 1) —4 1L gn2d\2
n(d,8) ]Zl(xu) ﬁjzl (1+BA2)2

mo m (log A;) A2
Hi(d,B) = leag% EW 1+5/\2d)
m m A4d

22 le 2] Z 1+ﬁ)\2d)

Define D,, = diag(y/m, \2%,/m) and the matrix

4 4dg
0= ( (2d0+1) )
- _ 4dg 4d0 ’
(2do+1)?  (4do+1)(2do+1)?

and consider the following assumptions

B.4: dj is an interior point of A and 0 < Gy < 4.

B.5: As n — oo,
ma+0.5

nOé

for some positive constant K.

The structure of the series, if perturbed or not, is not known beforehand. It is then
interesting to consider not only the case var(u¢) > 0 but also the no added noise case,

var(u;) = 0, and analyze the behaviour of the ALPE in both situations.

Theorem 3 Let z; in (1) satisfy assumptions B.1-B.4 and m satisfy B.5. Then as n — oo

a) If var(ug) > 0
d —d 2
D, < LALPE 0 ) A N <Q_1b, Q—1>
Barpe — Bo 6

b) If var(u)) =0

Vm(darpe — do) L

(Quim + Qu2m2){Qu2m + Qaoma < 0} — Q' m {Quamt + Qoomp > 0}
A d ~ ~ ~ ~
VMmN (Barpr — Bo) = —(Qiam + Q22m2) {Q1am1 + Qaama < 0}

where Q = () = Q7, n = (n1,m2) ~ N(—b,72Q/6) and

b= (27)°K2 < - (tay? ) G.
(2do+a+1)(2do+1)(1+«)
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Sun and Phillips (2003) consider y; = (1 — L)~%w; with a weak dependent w; such
that f.(\) = (2sin3)72(f,(A) + (2sin3)?% f,(\)) and then a = 2, C = f,(0), By =
fu(0)/fu(0) and G = (do/6 + f,(0)/ fuw(0)) /2. Whereas in Sun and Phillips (2003) the
term leading the asymptotic bias, b, is different when var(u;) = 0 and var(u;) > 0, we do
not need to discriminate both situations and in both cases the asymptotic bias is of the
same order. To eliminate this bias we have to choose a bandwidth of order o(n®/(@+0-5)

instead of that in assumption B.5.

When var(u;) > 0 the asymptotic bias of (CiALPE, BALPE) can be approximated by

D', = Dnlle\/mm( S )G
(2do+a+1)(2do+1)(1+a)

. A%Q(Qdo + 1)G a — 2dy
T 4do(T+ )2(2dp + a + 1) | A2 Glotlidot Do

0

which for the processes considered in Sun and Phillips (2003) corresponds to the result in
their Remark 2 but with the b, of their o, = 0 case and correcting the rate of convergence
in the asymptotic bias of Bx7pg and the f,(0)2/f,(0)? term which should be f,,(0)2/ fu,(0)?

in their formula (48). The asymptotic bias of d ALPE can then be approximated by

(2m)*a(2dy + 1) (o — 2dp)G
4dp(1+ @)?(2dg + a + 1)

~ m\ &
ABias(darpg) = <—> Ky where Kg=
n

In contrast to the LPE and NLPE, d ArpE has an asymptotic positive bias which decreases

with dg. The asymptotic variance is

7[.2

AVCL?“(CZALPE) = %Cdo

and consequently the asymptotic mean squared error can be approximated by
AMSE(d ™t () K2
(dasre) = g5 Cor+ () 55

5 Comparing “optimal” bandwidths

The role of the bandwidth on semiparametric memory parameter estimates is crucial in
order to get reliable estimates. A too large choice of m can induce a large bias whereas a
too small m generates a high variability of the estimates. An optimal choice of m is usually
obtained minimizing an approximate form of the mean square error (MSE). In this section

we compare the optimal bandwidths obtained in this way for the estimators considered

11



above in the long memory signal plus noise process characterized by assumptions B.1-B.3

with a2 > 0.

By Sun and Phillips (2003, Theorem 1), the asymptotic bias of drpp can be approxi-
mated by

. 7 do 2d
AB d = —0Bp——5220 1
tas(dLpE) Bo (2dg + 127 (13)

and considering the asymptotic variance 72/(24m), the bandwidth that minimizes the ap-

proximate MSE is

opt

1
2 (2dy + 1)4 Tdo+1  4dg
miey = [24(271’)4%@%4618} n3do+1 (14)

Using similar arguments to those employed by Henry and Robinson (1996) it is easy to
show that the asymptotic bias of dase can also be approximated by (13). In consequence

the optimal bandwidth is (Arteche, 2004)

opt __
Mgsg =

Tdp+1 — 15
4 (27r)4d0534dg 0 U #=3> (15)

~

1
[1 (2dy + 1)4 :|4d(}+1n 4dg M Idy+1 ot
AVCLT‘(deE)

and since AVar(dgsg) < AVar(dppg) then mgéE < mOLpIE.E.

Similarly the optimal bandwidth of the NLPE is given by Sun and Phillips (2003)

opt

m = n8do+1 16
NLPE {192dg(2d0+1)2(2w)8doﬂg (16)

FQCdO (4do + 1)4(6d0 + 1)2:| &ioﬁ 8dg

The ALPE share the same asymptotic variance as the NLPE but the lower order bias
produces a higher optimal bandwidth. Minimizing AMSFE (cf ALpE) the optimal bandwidth

is

1
2 5o
mCq, \ 2°tT 2
m(X’iPE = do nZa+i,
4804Kg

The optimal bandwidth of the ALPE increases with n faster than m%’é pp- Correspond-
ingly AMSE(CZALPE) with mffiPE converges to zero at a rate n—20/(20+1) which is faster that
the n—4do/(4do+1) rate of dALPE with moLpliE and faster than the n~84/(8do+1) rate achieved

by dnrpg with m?\’,)tLPE if a > 4dp (as in the usual a = 2 case).

The ALPE is comparable in terms of optimal bandwidth, bias and mse with the MGSE.
In fact, using similar arguments to those suggested by Henry and Robinson (1996) it is

straightforward to show that the bias of cZMGSE can be approximated by that of d ALPE
N ~ m\ @
ABias(dMGSE) = ABiGS(dALpE) = <7> Kg
n

12



and then

R T 1
Tdy+1
opt AVaT(dMGSE) 0 opt Cdo 20+1 20
m = ———= m =|—5 n2a+t
MGSE — 7 ALPE — 8 K2 :
AV&T’(dALpE) Qg

Contrary to chpE, CZGSE and CZNLPE, the asymptotic bias of CZALPE and JMGSE do not

L t . . .
depend on Gy and consequently m?fL pp and m?\gGS g are invariant to different values of nsr

fu(0)/C.
6 Finite sample performance

Deo and Hurvich (2001), Crato and Ray (2002) and Arteche (2004) have shown that the
bias in perturbed LM series of drpp and dasp is very high and increases considerably with
m, especially when the nsr is large. Consequently a very low bandwidth should be used to
get reliable estimates, at least in terms of bias. A substantial bias reduction is achieved by
including the added noise explicitly in the estimation procedure as in CZNLPE, CZALPE and

dyvcse. We compare the finite sample performance of these estimators in a LMSV
Zp = Yp + Uy

for (1 — L)doyt = wy and u; = log 5%, for £; and wy independent, &; is standard normal and
wy ~ N(0,02) for 02 = 0.5,0.1. We have chosen these low variances because they are close
to the values that have been empirically found when a LMSV model is fitted to financial
time series (e.g. Breidt et al. (1998), Pérez and Ruiz (2001)). These values correspond
to long run nsr f,(0)/fw(0) = 72, 572. The first one is close to the ratios considered in
Deo and Hurvich (2001), Sun and Phillips (2003) and Hurvich and Ray (2003). The second
corresponds more closely to the values found in financial time series. We consider dy = 0.2,
0.45 and 0.8. For dy = 0.8 the process is not stationary and is even larger than 0.75 so that
the proof of the asymptotic normality of dyvese in Hurvich et al. (2005) does not apply.
However the estimators are expected to perform well as long as dy < 1 (Sun and Phillips,
2003). Also, since &; is standard normal, u; is a log x? and assumption B.1 does not hold.
However we consider relevant to show that these estimators can be applied in LMSV models
which are an essential tool in the modelling of financial time series, and justify in that way

our conjecture of no necessity of Gaussianity of the added noise.

The Monte Carlo is carried out over 1000 replications in SPlus 2000, generating y; with

the option arima.fracdiff.sim and for the different non linear optimizations we use nlminb

13



for 0.01 < d < 1 and exp(—20) < § < exp(8) providing the gradient and the hessian. We
consider sample sizes n = 1024, 4096 and 8192 which are comparable with the size of many
financial series and permits the exact use of the Fast Fourier Transform. For each sample
size we take four different bandwidths m = [n%4], [n99], [n%8] and m%! for est = LPE,

est

NLPE, ALPE, GSE and MGSE with the constraint 5 < m%! < [n/2 — 1]. Table 1

est

opt

P’ for the different values of dy, n and 2. The lower constraint applies for the

displays m
LPE and GSE for low dy and/or 02, and also for the NLPE for dy = 0.2 and 02, = 0.1. The
upper limit is applicable for the ALPE and MGSE with the lower sample size. Note that
m?fz pp and mﬁtas  do not depend on the nsr.

TABLES 1 AND 2 ABOUT HERE

Table 2 shows the bias and MSE of the estimators across the models considered. The

following conclusions can be deduced:

e The bias of the LPE and GSE is very high, especially for a large bandwidth and nsr.
The bias clearly reduces with the estimation techniques which account for the added

noise.

e In terms of bias, the NLPE tends to be overcome by the ALPE and MGSE especially
for the high nsr case. The bias of the ALPE and MGSE is more invariant to different
values of the nsr and more stable with the bandwidth while a large choice of m produces
an extremely high bias of the NLPE. The NLPE tends to beat both ALPE and MGSE
in terms of MSE for low values of dy, n and m. In any other case d ALpe and CZMGS E

are better choices.

e Regarding the behaviour of the different estimators using the “optimal” bandwidth,
the best performance in terms of MSE corresponds to the MGSE which has the lowest
MSE in 16 out of 18 cases, followed by the ALPE which has lower MSE than the
NLPE, GSE and LPE in 13 out of 18 cases. Only for dy = 0.2 and dy = 0.45 with
n = 1024 the ALPE is overwhelmed by the LPE, GSE or NLPE. It deserves special
mention the situation for dg = 0.2 and n = 1024 since here the LPE and GSE are the
best choices. This was somehow expected because for such a low value of d there is
not much scope for bias and also the estimates are constrained to be larger than 0.01

limiting the size of the bias. For dy = 0.45,0.85 the MGSE and the ALPE have a
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lower MSE than the LPE, GSE and NLPE (only for dy = 0.45, n = 1024 and ¢2, = 0.5
the NLPE has a lower MSE than the ALPE).

e The “optimal” bandwidth performs better than the other three bandwidths for the
ALPE and MGSE suggesting that a large m should be chosen. However the NLPE

0.6 ; 0.6 ; opt
in those cases where n™° is larger than m'y; pp

tends to have lower MSE with m =n
which occurs in every case when n = 1024, and for n = 4096 and n = 8192 except

when dp = 0.8 and 02, = 0.5, suggesting that m%’z pp tends to be undervalued.

We also compute the coverage probabilities of the nominal 90% confidence intervals ob-
tained with the five estimators using the asymptotic normality of all of them (although
this is not true for dy = 0.8 we keep the normality assumption for comparative purposes).
For each we use two different standard errors. First we use the variance in the asymp-
totic distributions. For drpp and dgsg these are 72/(24m) and 1/(4m). The rest of
estimators have asymptotic variances which depend on the unknown memory parameter dy,
(1 + 2do)?/(16d2m) for dyasg and w2(1 + 2dg)?/(96d2m) for dyrpp and dappg. To get
feasible expressions we substitute the unknown dy with the corresponding estimates. We
also use the finite sample hessian based approximations for the standard errors suggested by
Deo and Hurvich (2001), Hurvich and Ray (2003) and Sun and Phillips (2003). For dppp,
CZGSE and CiALPE these are

-1
2

m m 2
— 5 1
var(drpg) = 5 g <log)\j—m§ log)\k>
j k=1

]:1 —

‘ 3

=

-1

m m 2
5 1
var(dgsg) = 4 g <log Aj— p— g log )\k)

Jj=1 k=1
var(darpp) = SE;j+(SEx — SEp)I(H(darps, Barrr) > 0)
SEy = ﬁ Hys(darpe, BaLpPE)
6 Hyi1(darpe, Barpe)Hoo(darpe, Barpe) — Hi2(darpe, BaLpE)?
’ T 22(d 3
SE; = 22(daLpE, BaLPE)

T
6 Jn,n(OZALPE, Barpg)Jnz2(darpe, BaLpE) — Jn,12(OZALPE, Barpr)?

where I(H(CZALPE, BALPE) >0)=1 ifH(ciALpE, BALPE) is positive definite and 0 otherwise
and J,(d,3) is defined in the proof of Theorem 3. W(CZNLPE) is similarly obtained as
defined in formulae (60) and (61) in Sun and Phillips (2003). We have also tried only SE;

and while this approach performs significantly worse in the NLPE it renders slightly worse
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ALPE confidence intervals for low m and n and similar for large values of the bandwidth
and sample size. var(dyasp) is defined in formula (16) in Hurvich and Ray (2003)! with
the unknowns substituted with the corresponding estimates.

TABLES 3, 4 AND 5 ABOUT HERE

Tables 3, 4 and 5 display the coverage frequencies, mean and median lengths of the
90% Gaussian based confidence intervals on dy = 0.2, 0.45 and 0.8 respectively, constructed
using the asymptotic variances with estimated dy (Prob.A, Mean.A and Med.A) and the
finite sample hessian approximation (Prob.H, Mean.H and Med.H). The following comments

deserve particular attention:

e The coverage frequencies of the LPE and GSE are satisfactory only for a low bandwidth
but as m increases they go rapidly towards zero. Here mean and median lengths are
equal because the approximations used for the standard errors do not depend on
estimates and do not vary across simulations. The finite sample approximation of the
standard error tends to give wider intervals and better (closer to the nominal 90%)

coverage frequencies.

e The NLPE has close to nominal coverage frequencies for dy = 0.2 but as dg, n and
m increase the coverage frequencies decrease, being close to zero in several situations
(do = 0.45, m = n°8, n = 4096, 8192, and dy = 0.8, m = n%® for all n) . For dy = 0.2
the finite sample approximation of the standard error tends to give narrower intervals
and better coverage than the feasible asymptotic expression. However as dy increases
the situation changes and for dy = 0.8 the asymptotic expression gives in many cases

better coverage even with narrower intervals.

e For dy = 0.2 the performance of the confidence intervals based on ALPE and MGSE
is quite poor with very wide intervals and with mean lengths much higher than the
median, especially for low m and n. This fact was also noted by Hurvich and Ray
(2003) and explained by the existence of outlying estimates of dy. The intervals based
on the finite sample approximation of the standard errors can be extremely wide,
especially with a large nsr, due to large variations in the estimated nsr that require

larger sample sizes and bandwidths to be accurately estimated. For higher values of

'Note that bf’(l) in formula (16) of Hurvich and Ray (2003) corresponds to 8y in our notation.
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dp and large n the ALPE and MGSE confidence intervals behave significantly better
when the finite sample approximation of the standard error is used. Overall the MGSE

confidence intervals tend to perform better than the intervals based on the ALPE.

e Comparing the different estimators, there is not one that outperforms the others in
every situation and the best choice depends on n, m, dy and the nsr. Overall the NLPE
seems a good choice for low dy, m and n but for values of dg close to the stationary
limit or higher and a large sample size the MGSE (and the ALPE) with the finite

sample approximated standard error is a wiser choice.

7 LONG MEMORY IN IBEX35 VOLATILITY

Many empirical papers have recently exposed evidence of long memory in the volatility of
financial time series such as asset returns. In this section we analyze the persistence of the
volatility of a series of returns of the Spanish stock index Ibex35 composed of the 35 more
actively traded stocks. The series covers the period 1-10-93 to 22-3-96 half-hourly. The
returns are constructed by first differencing the logarithm of the transaction prices of the
last transaction every 30 minutes, omitting incomplete days. After this modification we get
the series of intra-day returns x;, t = 1,...,7260. We use as the proxy of the volatility the
series y; = log(zy — Z)? which corresponds to the volatility component in a LMSV model
apart from an added noise. Arteche (2004) found evidence of long memory in y; by means
of the GSE and observed that the estimates decreased rapidly with the bandwidth which

could be explained by the increasing negative bias of the GSE found in LMSV models.

Figure 1 shows the LPE, GSE, NLPE, MGSE and ALPE for a grid of bandwidths
m = 25, ..., 300 together with the 95% confidence intervals obtained using both the feasible
asymptotic expression and the finite sample approximations of the standard errors described
in Section 6. We do not consider higher values of m to avoid distorting influence of seasonal-
ity. To elude the phenomenon encountered in the Monte Carlo of excessively wide intervals
we restrict the values of the standard errors to be lower than an arbitrary value of 0.6 such
that if it exceeds that value we take the standard error calculated with a bandwidth in-
creased by one. This situation only occurs with CZN LpE for m = 29 when the approximated
standard error is 3.03. Both approximations of the standard errors provide similar intervals

for the LPE and GSE and for most of the bandwidths also for the NLPE. Only very low
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values of m lead to significant different intervals. The situation is different for the MGSE
and ALPE where the finite sample approximations always give wider intervals, especially

for low values of m.

It is also observable that the LPE and GSE decrease with m faster than the other
estimates. This situation is more clearly displayed in Figure 2 which shows the five estimates
for a grid of bandwidths m = 25, ...,200. The LPE and GSE behave similarly with a rapid
decrease with m. This can be due to a large negative bias caused by some unaccounted
for added noise which can render these estimates meaningless. In this situation a sensible
strategy is to estimate d by techniques that account for the added noise such as the NLPE,
ALPE or MGSE. The NLPE remains high for a wider range of values of m but finally
decreases for lower values of m than those where the MGSE and ALPE start to decrease,
both of them behaving quite similarly. This is consistent with the asymptotic and finite

sample results described in the previous sections.

Finally Figure 3 shows estimates and confidence intervals for m = 150,...,300. The
GSE and LPE give strong support in favour of the stationarity of the volatility. However
the NLPE, ALPE and MGSE cast some doubt about it, at least with a 95% confidence.
Taking into account the results described in the previous sections, we should be cautious in
concluding in favour of the stationarity of the volatility of this series of Ibex35 returns.

FIGURES 1, 2 AND 3 ABOUT HERE

8 CONCLUSION

The strong persistence of the volatility in many financial and economic time series, and
the use of LMSV models to capture such a behaviour, has motivated a recent interest in
the estimation of the memory parameter in perturbed long memory series. The added
noise gives rise to a negative bias in traditional estimators based on a local specification
of the spectral density which can be reduced by including explicitly the added noise in
the estimation procedure as the NLPE and MGSE. We have proposed an additional log
periodogram regression based estimator, the ALPE, whose properties are close to those of
the MGSE, which seems the better option in a wide range of possibilities. In particular both
show a significant improvement in terms of bias but at the cost of a larger finite sample

variance than the NLPE for low values of d, bandwidth and sample size. However, for large
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sample sizes and high values of d the ALPE and MGSE perform significantly better than

the NLPE, especially if the nsr is large as is often the case in financial time series.

A APPENDIX: TECHNICAL DETAILS

Proof of Theorem 1: The proof is similar to that of Theorem 1 in Hurvich and Beltrao

(1993) (see also Theorem 1 in Arteche and Velasco (2005)). Write

L) = [ ans)ax (A1)
where R
o) =Koty -V EGE s = S - )
and the Fejer s kernel satisfies
Kn(\) < constant x min(n,n”*A\7?) (A.2)

From (A.2) the integral in (A.1) over [, —n %] J[n?, 7] for some & € (0,0.5) is
O(n= N\ —n 072220 [ £, (\)d)) = O(n~1nPn=2d0) = o(n~2),

The integral over (—n=%,n7%) is A1, (j) + A2,(j) where

Am(j):/nl_(S o () dx

_pl-é 2 w2 ((2mj—A —2do
n'=% 27N sin (T CA;

A2n(j):/n16 o (%) _6) X

—nl=3 24in2 (2mi=2 —2do
nt=% 2mn® sin ( o CA;

and the theorem is proved letting n go to co. O

Proof of Theorem 3: The theorem is proved as in Sun and Phillips (2003) noting that

ﬁ)\zd 2d 4d
z;(d,f) = 21— 15 log Aj = 2log A\j(1 — BA;%) + O(A;%log Aj)  (A.3)
j
)\Zd
z25(d, ) m —/\2d + O()\4d) (A.4)

for (d,3) € A x ©. This approximation leads to two main differences in the proof of the

asymptotic normality. Noting the consistency of d aLpE and B ALPE, the first one is related to
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the convergence of the Hessian matrix in Lemma 5 of Sun and Phillips (2003), in particular

the proof of part a),

sup || D, (H(d, B) — Ju(d, B)) D, || = 0p(1) (A.5)
(d.8)€EOR

where ©,, = {(d,8) : |A\;%(d —dy)| < e and |3 — fo| < €} for € > 0 arbitrary small and
Tnab(d, B) = 375 @) ap;, a,b = 1,2. The proof that the (1,1), (1,2) and (2,1) elements of
the left hand side are o(1) is as in Sun and Phillips (2003) noting (A.3) and (A.4). However

the (2,2) element is not zero but

_ m *\4d
A WiA;j

1 m
o = a*(daﬁ)Wl(dvﬂ)
m st (1+ﬁ)\?d)2 m; J J
where
(4/m)*
(d, _ M
a]( /6) (1+/6Aj2d)2
Wij(d,B) = V;(d,B) +¢j + Uy
Vi(d, ) = 2(d—do)log); +log(1+ BoAi™) —log(1 + BA}?)
g = — N9 L o,
1+BO)\?dD J
Now

. 14d
Iaj(dﬁ)I:O([ﬂ ) j=12m,

and |a;(d, 8) — aj—1(d, B)| is bounded by

G/m)* (G =1/m)) (= 1/m) ([ = 1/m)

(1 + ﬁ)‘?d)Q (1 + ﬁ)\?d)2 (1 + ﬁ)\gd)Q (1 + ﬁ)\jgd_l)Q

() s - () () B 0,
m (1+B)\§d)2 J m

(1+ ﬁ>\?d)2(1 + W\?il)Q
=M\ = O(j_l)\‘;) for a # 0. By lemma 3 in Sun and Phillips (2003)

0, (=) =al0)

m=L ™ a*(d, B)V;(d, B)‘ is bounded by

sup
(d,3)€0n,

1
—>a;(d, B)Uz;

Jj=1

Also SUP(q,8)c0,, 14

S A, )2Ad — do)log \j| + swp |- a3(d, B)log (

m j=1 (d,3)€0n j=1

sup
(d,8)€On

= O(log)\m sup |d—d0|>+0< sup A?g) =o(1)
(

(d,8)€0n d,8)€0n
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since a; = O(1), and similarly

1
sup |— a;(d, B)ej| = O(A\y,) = o(1)
(d,8)€6, | T

and (A.5) holds. With this result the convergence of sup(qgce, D YH(d, 3)D; Y| to Q
follows as in Sun and Phillips (2003) noting (A.3) and (A.4).

The second difference with the NLPE lies on the bias term. Consider
15(40750 \/fZB Uzg +6])

where B; = (z7;(do, fo) , )\;fdoxgj (do, 3,))". The asymptotic bias comes from m /23" Bje;

such that

1 & 2 — o * G
— 2%(do, Bo)e; = —— 1= BoA2™)log \j| | ——25— + O (A>T
\/m; 1](0/60)J \/mjz;[( 50] ) log J} <1+50)‘32'd0 (] )
4+ O(ymAidotalog ), )
_ i S 0y o 2do+a a+t
_ Vm;;%xﬂp%+ouj D+OW%M1MMM
4+ O(ymA\2hTog \,) 4+ O(ymAidoTalog )\, )

2G .1 o a
= \/EZ(logj—mzk:logk))\j + o (vVmAy,)

2Ga o
= s )\ﬁ/\ (1+0(1))
)\ 2dg ™ )\—QdoG od 1 od A&
(do, = - Ao — =N ) T+ O (VimAg
Vi e = = Z( m 2 ) T O (AT
2d0aG

T @2do+a+ 1)(2do + 1)(1 + )Aa\ﬁ( o)

Then as n —

7T2
(d(]aﬁo + bn = ZB Uzg + 0 <07 GQ>

as in (A.34)-(A.37) in Sun and Phillips (2003) with minor modifications to adapt their proofs
to our assumption B.1-B.3. Since the rest of the proof relies heavily on Sun and Phillips
(2003) and Robinson (1995a) we omit the details. The proof when var(u;) = 0 follows as in
Theorem 4 in Sun and Phillips (2003). O
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Table 1: “Optimal” bandwidths

| [ [ 02 =05 \ 02 =0.1 |
| n || do [LPE GSE NLPE ALPE MGSE |LPE GSE NLPE ALPE MGSE |
0.2 6 5 12 511 511 5 5 5 511 511
1024 || 045 || 13 11 29 511 502 5 5 7 511 502
08 | 27 24 53 511 511 12 11 22 511 511
02 || 12 9 29 1895 1715 5 5 5 1895 1715
4096 || 0.45 | 32 27 87 1681 1522 | 10 8 21 1681 1522
08 | 79 70 177 2047 1936 | 36 32 74 2047 1936
02 | 16 12 45 3299 2987 5 5 5 3299 2987
8192 | 0.45 | 51 42 149 2027 2650 | 16 13 36 2027 2650
0.8 | 134 119 323 3723 3370 | 62 55 135 3723 3370
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Figure 1: Estimates and CI(95%) of the memory parameter of volatility

a) LPE and 95% confidence intervals

: — LPE

| == 5% Cl (as. var.)

"i. ----- 95%Cl (app. var.)
1

N e
L "Ww"’""wvxvs.»--uu

)

! PN,
"',L.\\' el .
"V /‘/\
R4

Wop o

10 120 230

¢) NLPE and 95% confidence intervals
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b) GSE and 95% confidence intervals
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d) MGSE and 95% confidence intervals
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Figure 2: Estimates of the memory parameter of volatility (m=25...200)
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Figure 3: Estimates and CI(95%) of the memory parameter of volatility (m=150...300)
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