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Abstract 
Using monthly data from 1926:01 to 2003:12 for the United States, this paper 
examines the predictability of real stock prices based on the dividend-price ratio.  In 
particular, we focus on estimating and forecasting a nonlinear exponential smooth 
autoregressive model (ESTAR).  One motivation for nonlinearity in asset markets is 
the presence of transaction costs, which result in a nonlinear adjustment process 
towards equilibrium through arbitrage.  Using a novel approach that allows for the 
joint testing of nonlinearity and nonstationarity, we are able to reject the null 
hypothesis of linearity and that of a nonlinear unit root.  We also find evidence of a 
nonlinear cointegrating relationship between stock prices and dividends where the 
error correction term follows a globally stationary ESTAR process.  This evidence 
together with nonlinear impulse response functions, which show that large deviations 
have faster speeds of mean reversion than small deviations indicates that while stock 
prices may reflect their fundamentals in the long run, they may deviate substantially 
from their fundamentals for periods of time.  Using an ESTAR-EGARCH model of 
the dividend-price ratio we find empirical support for in-sample and out-of-sample 
long-horizon predictability, and we explain why it is often difficult to exploit this 
predictability using real-time forecasts.     
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1. INTRODUCTION 

 

Economists have shown considerable interest in the properties of stock prices, with 

particular attention being paid in the literature to whether stock prices can be 

characterised as random walk or mean reverting processes.  If stock prices follow a 

mean reverting process, then any shock to the stock price is temporary and there is a 

tendency for the price level to return to its trend path overtime.  Therefore, investors 

may be able to forecast future returns based on past returns.  However, if stock prices 

follow a random walk process then any shock to the stock price is permanent and 

there is no tendency for the price level to return to a trend path over time.  This 

suggests that future returns are unpredictable based on historical observations.   

Investors and financial economists have expended enormous resources 

studying the predictability of asset prices.  Most early work in finance, such as that by 

Louis Bachelier (1900) was concerned with finding patterns in asset prices (see also 

Kendall, 1953; Samuelson, 1965; Mandelbrot, 1966). The findings of these studies, as 

summarized by Fama (1970), gave little reason to believe that there were any 

predictable patterns in asset prices that could be consistently exploited by investors to 

earn abnormal returns.   

In recent years, however, empirical research has identified some degree of 

predictability in asset prices.  Fama and French for instance, find that �predictable 

price variation due to mean reversion � (is) about 40% for 3-5 year return variances 

(Fama and French, 1988a, 246).� Poterba and Summers (1988) find positive serial 

correlation over short horizons and strong negative serial correlation over longer 

horizons.  They argue that such patterns may be a result of investors overreacting to 

news, causing prices to slowly mean revert.  McQueen and Thorley (1991) point out 

that such overreaction stories imply nonlinearities in returns and using a Markov 

Chain technique that allows for such nonlinearities, they find evidence of non-random 

behaviour in post-war annual returns. 

Campbell and Shiller (1988a,b, 2001) use the present value model to show that 

earnings and dividends are particularly useful in predicting future returns.  According 

to the present value model, stock prices are fundamentally determined by the 

discounted present value of expected future dividends (Campbell, Lo and MacKinlay, 

1997).  Campbell and Shiller (2001) argue that stock prices are not likely to drift too 

far from their normal levels relative to indicators of fundamental value, such as 



 -3-

dividends or earnings.  They contend that it seems natural to accentuate the mean-

reversion theory that when stock prices are very high relative to these indicators then 

prices will eventually fall in the future to bring the ratios back to more normal 

historical levels.   

A number of competing theories have tried to explain the deviations of 

fundamental values from their equilibrium value.  These include noise traders 

(DeLong Shleifer, Summers and Waldmann, 1990; Shleifer, 2000), fads (Shiller, 

1989) and stochastic speculative bubbles (Blanchard and Watson, 1982; West, 1988; 

Evans, 1991), as well as the theory of booms and slumps in economic activity (Phelps, 

1994; Phelps and Zoega, 2001).  These theories suggest that while stock prices may 

reflect their fundamentals in the long run, they may deviate substantially from their 

fundamentals for periods of time (De Long, Shleifer, Summers and Waldmann, 1990).   

This paper examines the ability of the log dividend-price ratio to predict 

excess stock returns at both short and long horizons in the United States, over the 

period 1926:01-2003:12.  Using both equally weighted and value weighted returns 

data and recent modelling and forecasting techniques1 we examine the forecast 

accuracy of Campbell and Shiller' s present value model of stock returns.  We test for 

evidence of nonlinear error correction towards the present value model and then 

following Kilian (1999) and Kilian and Taylor (2003)2 we parsimoniously model the 

nonlinearity using smooth transition autoregressive (STAR) models.  Using both 

equally weighted and value weighted data we find that the exponential smooth 

transition autoregressive (ESTAR) model appropriately represents the data.  This 

model allows for nonlinear mean-reversion in the dividend-price ratio.  Furthermore, 

we examine whether ESTAR predictors can improve in-sample and out-of-sample 

forecasts of US excess stock returns using a modified bootstrap procedure based on a 

nonlinear data generating process. 

Evidence of ESTAR suggests that the stock price should be more predictable 

at longer forecast horizons, at least for large enough sample sizes.  Evidence of 

ESTAR is a very important finding as its existence invalidates the standard errors of 

long horizon tests based on linear regression analysis.  The dividend-price ratio based 

on the U.S. equally weighted and value weighted data for the period 1926:01-2003:12 
                                                
1 See Luukonen, Saikkonen and Teräsvirta, 1988a,b; Teräsvirta and Anderson, 1992; Granger and 
Teräsvirta, 1993; Teräsvirta, 1994; Mark, 1995; Berkowitz and Giorgianni, 2001; Kilian, 1999; Kilian 
and Taylor, 2003; and Kapetanois et al., 2003; amongst others. 
2 Kilian  (1999) and Kilian and Taylor (2003) concentrate on exchange rate predictability. 
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is clearly represented by a nonlinear mean reversion process.  Therefore, previous 

empirical research examining long horizon stock price predictability based on linear 

models should be regarded as invalid.  We examine long horizon predictability using 

a nonlinear data generating process. 

 This paper is set out as follows: Section 2 briefly reviews the stock price 

predictability literature. Section 3 introduces the data and discusses some preliminary 

test statistics while Section 4 carries out unit root tests, cointegration tests, checks for 

nonlinearities and models any nonlinearities found.  In contrast to standard linear 

methods and empirical studies that test for linearity only, we consider a novel 

approach that allows for the joint testing of nonlinearity and nonstationarity.3  We 

reject the null hypotheses of linearity and nonstationarity indicating nonlinear mean 

reversion of the dividend-price ratio.  Using nonlinear impulse response functions we 

show that large deviations mean revert at a faster speed than small deviations.  We 

also find a nonlinear cointegrating relationship between stock prices and dividends 

where the error correction term follows a globally stationary ESTAR process.  The 

evidence of smooth threshold dynamics suggests that stock prices should be 

predictable at longer horizons, at least for large enough sample sizes. 

Section 5 assesses the degree of long-horizon predictability of real stock 

returns in the presence of smooth-threshold nonlinearities.  We use the empirical 

methodology outlined in Kilian and Taylor (2003) to test the relative forecast 

accuracy of our long horizon regressions against those of a pure random walk model 

and a random walk model with a drift.  These econometric tests allow us to move 

beyond the standard analysis of nonlinear models used in existing studies, so that we 

can better assess the extent of the support for nonlinear models of stock price 

behaviour. Finally, Section 6 summarises the findings of this paper. 

 

 

 

 

 

                                                
3 For a growing literature that addresses the joint issues of nonlinearity and nonstationarity see Michael 
et al., 1997; Enders and Granger, 1998; Berben and van Dijk, 1999; van Dijk et al., 2001; Kapetanios 
et al., 2003 and Kapetanios et al., 2004. 
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2. STOCK PRICE PREDICTABILITY AND LONG-HORIZON REGRESSION 

ANALYSIS 

 

A large body of empirical work has accumulated documenting stock return 

predictability.  One of the most popular predictors is the dividend-price ratio.4  

Among those examining the ability of the dividend-price ratio to predict stock price 

behaviour are Fama and French (1988a, b), Campbell and Shiller (1988a,b, 1998, 

2001), Ferson (1989), Goetzmann and Jorion (1995), Hodrick (1992), Stambaugh 

(1999), Goyal and Welch (2003) and Valkanov (2001).   

The foundation for much of the research into stock price predictability is based 

on the present value model of stock prices.  This model states that stock prices are 

fundamentally determined by the discounted value of their expected future dividends 

(Campbell, Lo and MacKinlay, 1997).  Early research based on the present value 

model, with constant discount rates found that stock price movements could not be 

explained solely by dividend variability.  Leroy and Porter (1981) and Shiller (1981), 

for example, found that, under the assumption of a constant discount factor, stock 

prices were too volatile to be consistent with movements in future dividends.  This 

conclusion, known as the excess volatility hypothesis, argues that stock prices exhibit 

too much volatility to be justified by fundamental variables.  While a number of 

papers challenged the statistical validity of the variance bounds tests of Leroy and 

Porter and Shiller, on the grounds that stock prices and dividends were non-stationary 

processes (Flavin, 1983; Marsh and Merton, 1986), much of the subsequent literature, 

nonetheless, found that stock price movements could not be explained solely by 

dividend variability as suggested by the present value model with constant 

discounting (Campbell and Shiller, 1987; West 1988). 

More recent research by Campbell and Shiller (1988a, b); Campbell (1991); 

Cochrane (1991, 1992) and Timmerman (1995) argue that the present value model 

with time-varying discount rates can explain fluctuations in stock prices.  Results 

based on this form of the present value model are as mixed as those based on the 

present value model with constant discount rates.  Froot and Obstfeld (1991) are 

unable to come to a decisive conclusion using data for the United States from 1900 to 

1988.  They contend that the results are dependant on the specification of the unit root 
                                                
4 Other popular predictors include interest rates (see Fama and Schwert, 1977; Glosten, Jagannathan 
and Runkle, 1993) and the price-earning ratio (see Ang and Bekaert, 2001; Rapach and Wohar, 2005).  
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tests.  Both Lamont (1998) and Balke and Wohar (2002) find evidence of 

nonstationarity in the log dividend-price ratio for the United States using quarterly 

data from 1947:01 to 1994:04 and 1953:02-1999:01 respectively.  However, while 

Lamont finds evidence of cointegration between dividends and stock prices using a 

bivariate Horvath-Watson (1995) test Balke and Wohar (2002) do not concur with this 

finding. 

Gallagher and Taylor (2001), Bohl and Siklos (2004), Coakley and Fuertes 

(2004) and Kanas (2005) amongst others argue that the failure of the present value 

model with time varying discount rate is a result of the way in which the dividend-

price ratio is modelled.  Each of these studies argues that the dividend-price ratio 

should be modelled as a nonlinear process.  They contend that while the present value 

model with a time varying discount rate may be a valid representation of the long-run 

behaviour of the stock price, it does not allow for short-term deviations in the ratio.5 

One set of models which allows the present value model to hold in the long-

run but to deviate from its equilibrium for short periods of time is the Smooth 

Transition Autoregressive (ESTAR) models (see Granger and Teräsvirta, 1993; 

Teräsvirta, 1994).  These models allow the dividend-price ratio to exhibit random 

walk behaviour when it is close to equilibrium and mean-reverting behaviour as it 

deviates further away from its equilibrium value.  Aslanidis (2002) maintains that this 

type of model is very appropriate in a stock market where there are a large number of 

participants, each switching at different times due to a number of reasons including 

heterogeneous beliefs, varying learning speeds, and different investment horizons.  

The nonlinear representation of the dividend-price also enables us to allow for �limits 

to arbitrage� in our present value model (see Gallagher and Taylor, 2001; Kapetanois 

et al, 2004).6  Kilian and Taylor (2003) contend that this type of long-run mean 

reverting behaviour may improve predictability. 

                                                
5 This hypothesis is consistent with the view that the stock market is efficient in the long run but 
deviates from its fundamental value in the short run due to factors such as noise traders, booms and 
slumps in the economy etc. (see for example Blanchard and Watson, 1982; De Long, Shleifer, 
Summers and Waldmann, 1990; Evans, 1991; Phelps, 1994; Phelps and Zoega, 2001; Shleifer, 2000; 
Shiller, 1989; West, 1988). 
6 In reality arbitrage, (defined as the simultaneous purchase and sale of the same, or essentially similar, 
security in two different markers for advantageously different prices) opportunities are limited by a 
number of factors like the existence of transaction costs, short-selling constraints, or mispricing of 
securities deepening in the short run.  Given a distribution of degrees of risk aversion across smart 
traders, arbitrage will increase as the degree of fundamental mispricing increases, so that arbitrage is 
stabilising and becomes more stabilising in extreme circumstances.  Traditional arbitrage models, 
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The question of stock price predictability is fundamentally a question of stock 

market efficiency.  If the stock market is efficient then the random-walk theory of the 

stock market states that stock price changes are not predictable.  In other words the 

dividend-price ratio has no ability to forecast movements in stock prices.  Campbell 

and Shiller (2001) argue however, that for the dividend-price ratio to remain within its 

historical range then the dividend-price ratio must predict future growth in dividends.  

As there is little empirical evidence to support this claim they continue by questioning 

whether the dividend-price ratio forecasts future dividend movements as required by 

the random-walk theory, or whether it forecasts future movements in stock prices.  

Using graphical analysis they conclude that in some countries such as France, 

Germany and Italy the dividend-price ratio does not appear to forecast future dividend 

growth, whereas in other countries such as Australia, Canada, Spain, Japan and the 

US the dividend-price index appears to forecast stock price behaviour.   

Several formal approaches have been adopted in the literature to evaluate 

stock price predictability.  Among these are variance-ratio tests, long-horizon 

regressions and vector autoregressive techniques.  These predictability tests have 

important implications for asset pricing and market efficiency.  In an efficient capital 

market, equity prices reflect currently available information and one should not be 

able to predict future returns using historical returns data.  Therefore, if returns are 

predictable, it could imply market inefficiency.  To date, the literature indicates that in 

the absence of market efficiency, deviations of asset prices from their long-run 

equilibrium value should help predict cumulative future asset returns (Kilian, 1999).  

This predictability proposition is frequently tested using long-horizon regression tests 

(see for example: Ang and Bekaert, 2001; Berkowitz and Giorgianni, 1997; Campbell 

and Shiller, 1998a,b; Fama and French, 1988a,b; Hodrick, 1992; Kilian, 1995; Kilian 

and Taylor, 2003).  

 

2.1. Long-Horizon Regression Analysis  

The long-horizon regression approach entails estimating k individual equations: 
 

k
kttkk

k
kt ezs ++ +β+α=∆    k=1,2,�.K          (1) 

 

                                                                                                                                       
therefore, imply a degree of nonlinearity in asset price dynamics (see Gallagher and Taylor, 2001; 
Cuthbertson, and Nitzsche, 2004). 
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Where st and zt are observed data, ∆ denotes the first difference, k is the horizon 

length and αk and βk are the parameters to be estimated.  In the stock price 

predictability scenario st represents the log of the real stock price and zt represent the 

log dividend-price ratio.   

 We can examine the statistical significance of (1) using either in-sample or 

out-of-sample tests.  In-sample forecasts are based on the full sample of data whereas 

the out-of-sample forecasts are evaluated using the sample of data available to the 

trader at each moment in time. 

 

2.2. In-Sample Analysis 

In-sample mean reversion in the stock-price dividend ratio may be detected by a t-test 

of H0:βk = 0 versus H1: βk < 0 for a given horizon for some k in equation (1) for all 

forecast horizon as H0:βk = 0 ∀  k versus H1:βk <0 for some k.7   

Berkowitz and Giorgianni (1997) argue that if the t-statistics and the 

regression R2�s are found to increase with k, then the researcher can take this as 

evidence that zt can predict long-run changes in st better than short-run movements.  

However, Kilian (1995) argues that under the alternative hypothesis, the slope 

coefficients will increase with the forecast horizon, so that evidence of increasing 

slopes and R2 measures do not imply increased long-horizon predictability. 

Hodrick (1992) investigates the predictability of stock returns at five horizons, 

from one month to four years, for the US from 1952 to 1987.  Using dividend yields 

as the regressor, Hodrick finds strong evidence that dividend yields predict stock 

prices at long horizons.  His findings suggest that stock prices are predictable at the 

12-month horizon.  Campbell and Shiller (1998a, b) find that the price-dividend and 

the price-earning ratios are useful for forecasting changes in real stock prices at long 

horizons.  Using annual S&P 500 data from 1871 to 1997, they use scatter plots and 

R2 measures to indicate a weak ability for the price-dividend ratio to forecast real 

stock price growth over the next year, but a strong ability for the price-dividend ratio 

to forecast real stock price growth over the next ten years.   

A number of authors including Hodrick (1992), Nelson and Kim (1993) and 

more recently, Ang and Bekaert (2001) have pointed out that the finite sample 

distribution of the long-horizon regression coefficient and its associated t-statistic can 

                                                
7 See Mark (1995) for further details on this joint hypothesis test. 
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be quite different from the asymptotic distribution due to persistence in the 

independent variable and overlap in the returns data. 

 One key issue with long horizon regression analysis is that when the horizon k 

is larger than one, the dependent variable in (1) becomes time overlapping.  This 

induces an MA(N-1) component in the error terms, which needs to be corrected for in 

the estimation.  The standard way of doing this correction is to apply the methods of 

Newey and West (1987).  However, statistics based on these corrections will 

approximate the relevant asymptotic distributions very poorly in finite samples, 

especially when the degree of time-overlap becomes large.  In addition, when k grows 
k

kts +∆  becomes more and more persistent and will, in a finite sample, often be 

indistinguishable from non-stationary unit root processes.  

This dilemma has lead to a large body of literature, which questions the 

interpretation of long-horizons regression test results.  For example, Mankiw, Romer 

and Shapiro (1991), Hodrick (1992), Nelson and Kim (1993), and Berkowitz and 

Giorgianni (2001) have all reported that conventional long-horizon regression tests 

are biased in favour of finding predictability.  They argue that severe size distortions 

may arise from spurious regression fits and from small-sample bias in the estimate of 

regression coefficients and asymptotic standard errors. 

Mark (1995), Chinn and Meese (1995) and Bauer (1995) attempt to correct for 

these problems by generating bootstrap critical values for the diagnostic tests 

associated with the long horizon regressions.  Mark (1995) generates pseudo-data for 

long horizon regressions to examine the question of exchange rate predictability.  He 

argues that the change in the exchange rate should be modelled as a random walk 

process and the fundamental should be modelled as a linear autoregressive process as 

follows 

t,10t ae ε+=∆  

∑
=

− ε++=
p

1j
t,2jtj0t zbbz               (2) 

where et is the log of the domestic-currency price of one unit of foreign exchange and 

zt ≡ ft � et, where ft is the purchasing power parity relationship calculated as the 

logarithm of the domestic consumer price index minus the logarithm of the foreign 

consumer price index.  Using data for Canada, Germany, Japan and Switzerland from 

1973:01 to 1991:04, Mark finds a pattern of increased long-horizon predictability.  
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While only some of his long-horizon regression test statistics were significant at 

conventional levels, Mark conjectured that only the small sample size prevented more 

of his results from being significant. 

Kilian (1995) and Berkowitz and Giorgianni (2001) disagree with Mark�s 

(1995) findings.  They assert that the bootstrap procedure used by Mark is not entirely 

correct, and may result in spurious inference.  Berkowitz and Giorgianni (2001) 

explain that the linear data generating framework postulated by Mark (1995) implies 

that real stock prices should be predictable at all horizons or at no horizon.  This 

results from the fact that in a linear framework, long-horizon forecasts are simple 

extrapolations of short-horizon forecasts.  As Mark�s result depends on the 

stationarity of zt, the bootstrap is likely to be unreliable unless one corrects the bias in 

the initial slope coefficients of the lags of zt.  Re-estimating Mark�s dataset correcting 

for the implied bias, Berkowitz and Giorgianni (2001) only report one significant 

slope coefficient and this is at the 90 percent confidence interval. 

One possible explanation for the pattern of stock price predictability in the 

data focuses around statistical power.  According to Berkowitz and Giorgianni (2001) 

while the argument that a linear framework implies predictability at all horizons or no 

horizon is logically correct, it may be the case in certain circumstances that the power 

to detect predictability in a linear framework is greater at long horizons.  Berben and 

van Dijk (1998), Mark and Sul (2002), Campbell (2001), Kilian (1999) and Kilian and 

Taylor (2003) investigate whether there are power advantages at long horizons in 

predictive regression tests using various asymptotic frameworks and Monte Carlo 

simulations for finite samples.  While the results are somewhat mixed the 

preponderance of studies find potential power gains at long horizons.   

Recent developments in the literature indicate that the underlying data-

generating process (DGP) of many variables including exchange rates (See Taylor and 

Peel, 2000; Taylor, Peel and Sarno, 2001; Kilian and Taylor, 2003) should be 

represented as nonlinear processes.  For example, Kilian and Taylor (2003) argue that 

the data generating progress for a long horizon regression model examining the 

predictability of exchange rates should be characterised as follows 

t,10t ae ε+=∆  

zt = µ + λ (zt-1-µ) - [1-exp{-γ (zt-d - µ)2}][λ(zt-1-µ)]+ε2,t             (3) 
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Where similar to Mark (1995) the change in the exchange rate is modelled as a 

random walk process, however here the fundamental is modelled as a nonlinear 

smooth transition autoregressive (STAR) process.   

 

2.3. Out-of-Sample Tests 

Even a sophisticated trader can only use prevailing information to estimate the long 

horizon regression model, (1) and therefore it is important that we evaluate our model 

using only real time data.  The random walk model is a natural benchmark in judging 

forecast performance.  Many statistics have been identified in the literature to 

compare the performance of the augmented model with the performance of the 

respective benchmark model.  In this section we focus on four of these, two tests of 

equal forecast accuracy and two tests for forecast encompassing.  In particular, we 

consider the t-statistic for equal MSE developed by Diebold and Mariano (1995) and 

West (1996) and the F-statistic proposed by McCracken (2000).  We also consider the 

t-statistic for forecast encompassing developed in Harvey, Leybourne and Newbold 

(1998) and West (2001) and the variant proposed by Clark and McCracken (2001).  

Comparison of the forecasts from a benchmark model with those from an 

augmented model enables us to determine the added value of the features of the 

augmented model, if any.  To carry out these forecasts, the total sample, of T 

observations are divided into an in-sample and an out-of-sample portion, where the in-

sample portion spans the first R observations and the out-of-sample portion the last 

(P-k+1) observations.  We then estimate the benchmark and augmented models using 

the in-sample portion of the total sample, and we use the estimated models to generate 

two series of (P-k+1) one-step-ahead out-of-sample forecasts, one corresponding to 

the fitted benchmark model and the other to the fitted augmented model.  We denote 

the one-period out-of-sample forecast errors for the benchmark model as { } kT
Rt1t,Au� −

=+  

and the augmented model as { } kT
Rt1t,Bu� −

=+ .  Forecasts are recursively updated to generate 

a time series of one-period ahead forecasting errors { } kT
Rtkt,iu� −

=+  , where i = A, B and t = 

R+1, �, T+1, giving a total of P = T+1-R observations.   

The first test is the Diebold and Mariano (1995) predictive accuracy test.  This 

statistic provides a statistical comparison of the accuracy of two competing forecasts, 

A and B, using the loss differential.  This is computed as the difference between the 

forecast errors: 
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( ) ( )2
kt,B

2
kt,At u�u�d� ++τ+ −=    t = 1, 2,�T               (4) 

Where ( ) ( )2i
kt

i
kt

2
kt,i p�pu� +++ −=  and i = A, B.  The large-sample N(0, 1) statistic for 

testing the null of equal forecast accuracy is given by  

( )
dd

21 d*1kPTMSE
φ

+−=−                   (5) 

where ( ) ∑
−

=
+

−+−=
kT

Rt
kt

1 d�1kPd = MSEA-MSEB,  is the average loss differential, φ is its 

asymptotic variance that, as suggested by Diebold and Mariano (1995) can be 

estimated by an unweighted sum of dt�s autocovariance: ( )∑
−

−−=

γ=φ
1k

)1k(i
tdd d�� , where k is 

the forecast horizon.8  The null hypothesis is that there is no significant difference in 

the accuracy of the competing models conditioning on being in a particular regime, 

hence the difference in the MSE�s will be less than or equal to 0.  Under the 

alternative, MSEB should be smaller than MSEA.  Hence the MSE-T test and the other 

equal accuracy test are one-sided to the right.9 

The second test is the ENC-T test.  Drawing on the methodology of Diebold 

and Mariano (1995), Harvey, Leybourne, and Newbold (1998) propose this 

encompassing test which uses a t-statistic for the covariance between uA,t+k and uA,t+k- 

uB,t+k.  To estimate this statistic, we estimate 

 ( )kt,Bkt,Akt,At u�u�u�c� +++τ+ −=                    (6) 
 

The large-sample N(0, 1) statistic for testing the null of equal forecast accuracy is 

given by  
 

( )
cc

21 c*1kPTENC
φ

+−=−                   (7) 

 

where ( ) ∑
τ−

=
τ+

−+−=
T

Rt
t

1 c�1kPc and ( )∑
−

−−=

γ=φ
1k

)1k(i
tcc c��� .  Under the null that model A�s 

forecast encompasses model B, the covariance between uA,t+ι and uA,t+ι- uB,t+ι will be 

less than or equal to 0.  Under the alternative that model B contains added 

                                                
8 Note, if the DM statistic is computed based on a one-step-ahead forecast then φ�  reduces to 0�γ , the 
variance of dt. 
9 See Clark and McCracken (2004) for further details. 
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information, the covariance should be positive.  Hence the ENC-T test as well as the 

other encompassing test described below is one-sided to the right. 

The third test, the ENC-NEW test, is also a forecast encompassing test. Clark 

and McCracken (2001) derive the asymptotic distribution of the ENC-NEW statistic 

under the null hypothesis that the augmented model encompasses the information of 

the benchmark. The statistic of the ENC-New test is 
 

( )
( ) [ ]

( ) ∑

∑

=
+

−

=
+++

−

+−

−+−
+−=− T

Rt

2
1t,B

1

T

Rt
1t,B1t,A

2
1t,A

1

u�1kP

u�u�u�1kP
*1kPNEWENC               (8) 

 

The fourth test, the MSE-F test, is 
 

[ ]

∑

∑

=
+

=
=+ −

+−=− T

Rt

2
1t,B

T

Rt

2
1t,B

2
1t,A

u�

u�u�
*)1kP(FMSE                  (9) 

The null hypothesis here states that the benchmark model has a mean-squared 

forecasting error less than or equal to the error of the augmented model; the 

alternative is that the augmented model has a smaller mean-squared error.  Clark and 

McCracken show that these two tests - the ENC-NEW and the MSE-F tests - have the 

best overall power and size properties.10   

It is well known that asymptotic critical values for these test statistics are 

severely biased in small samples.  In order to mitigate these size distortions critical 

values may be calculated based on the bootstrap approximation of the finite sample 

distribution of the test statistic under the null hypothesis of no predictability in the 

cointegrated model or some equivalent representation of the data-generating process 

(McCracken, 2000).  Unlike asymptotic critical values, bootstrap critical values based 

on the percentiles of the bootstrap distribution automatically adjust for the increase in 

the dispersion of the finite-sample distribution of the test statistic that occurs in near-

spurious regressions as the sample size grows. (Kilian, 1999)  As a result, bootstrap 

inference is immune from the near-spurious regression problem discussed in 

Berkowitz and Giorgianni (2001).   

                                                
10 We examine the size and power of each of the out-of-sample tests as applied to our data generating 
process in Section 5 below. 
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 Before examining the in-sample and out-of-sample results of our long horizon 

stock price predictability regressions we need to examine the data and the nature of 

the nonlinearity in the log dividend-price index in the US for the period 1927:01-

2003:12, if any. 

 

3. DATA DESCRIPTION  

 

Prior to setting up the empirical model we briefly outline our data set.  The variables 

of interest are: the value weighted stock market price and its associated dividend 

yield; the equally weighted stock market price and its associated dividend yield; the 

one-month Treasury bill return and the inflation rate.  All of the data is obtained from 

the Centre for Research in Security Prices of the University of Chicago�s School of 

Business (CRSP) Database.  The data is available from 1925:12-2003:12.11 

The monthly value-weighted return series without dividends (RWDt) is used to 

calculate the nominal value-weighted stock price.  The value-weighted nominal stock 

price, NPt, is calculated as (1+RWDt)*NPt-1.  The value-weighted nominal dividend 

series is calculated using both the monthly value-weighted return series with 

dividends (RDt) and the monthly value-weighted return series without dividends 

(RWDt).  The value-weighted nominal dividend series, NDt, is calculated as (RDt - 

RWDt)*NPt-1.  The equally-weighted stock price and dividend series are calculated in 

the same way. 

Monthly inflation rates, πt, are used to calculate the monthly nominal goods 

price level.  The normalised nominal goods price level series, CPIt is produced by 

setting the price in December 1925 equal to 1 and recursively setting CPIt = 

(1+πt)*CPIt-1.  The nominal stock price and dividend series are deflated by the CPI to 

give the real stock price (Pt) and the real dividend (Dt) series.  The log of real stock 

prices is denoted by pt and log dividends by dt.   

The one-period real return series is calculated as ( ) t1t1t1t PDPR +++ += , where 

Pt is the end-of-month real stock price and Dt is the real dividends paid during month 

t.  Excess returns are calculated as the one-period real return series minus the one-

period return on a one-month Treasury bill. 

                                                
11 The first twelve observations are used to calculate the annualised dividend index. 



 -15-

To compute the dividend-price ratio we follow the approach of Hodrick 

(1992).  Since dividend payments are highly seasonal, a monthly annualised dividend 

series, MDt, is computed from compounding twelve monthly dividends at the 1-month 

Treasury bill rate rt: 
 

11t1tt2t1tt1tttt D)r1)(r1(...D)r1)(r1(D)r1(DMD −−−−− +++++++++=                  (10) 
 

The annual dividend-price series is defined as: ttt PDZ = . 

Table 1 reports some summary statistics on the log of the stock price, the log 

of the dividend series, the change in the log of the stock price, the change in the log of 

the dividend series, the returns series, the excess returns series, the log dividend price 

series and change in the dividend price series.12  The results are largely as expected.  

Normality is rejected in each of the series and there is strong evidence of both 

skewness and kurtosis.  The latter may imply that there are outlying observations; that 

the error process is heteroskedastic; or that the data would be better described by 

using a nonlinear time-series model. 

The sample autocorrelations of the price series and the dividend series, both in 

levels and logs, reveal some degree of persistence.  The first-order autocorrelation 

values are close to one, which suggests that these series are non-stationary.  On the 

other hand, the sample autocorrelations of the first difference series are low and 

insignificant indicating that the series are first difference stationary. 

 

4. MODELLING THE DIVIDEND-PRICE RATIO 

 

The empirical analysis begins by testing for nonlinearity in the value-weighted and 

equally-weighted dividend-price ratio series.  If evidence of nonlinearity is found we 

fit appropriate nonlinear models to the series.  Next, model diagnostics are used to 

examine the appropriateness of our models and graphs of the transition functions are 

used to characterise our models.  Any heteroskedasticity in the data is modelled using 

(G)ARCH models.  Finally, the most appropriate parsimonious models are used to 

generate impulse response functions for both the value-weighted and equally-

weighted dividend price ratio series.  These functions investigate whether the speed of 

                                                
12 In each of the tables which follow, part (a) refers to the value-weighted series whereas part (b) refers 
to the equally-weighted series. 
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adjustment towards equilibrium increases with the size of a shock to dividend-price 

ratio.  

 

4.1. Nonlinearity Test 

The first step in testing linearity is to select the order of the AR(p).13  We follow Tsay 

(1989) in using partial autocorrelation functions (PACF) to select the appropriate lag 

order of the AR.  Figure 1, part (a) examines the PACF of the equilibrium error of the 

value-weighted log dividend-price ratio.  It reveals correlations up to the order one.  

The PACF of the equilibrium of the equally-weighted log dividend-price ratio is 

shown in Figure 1, part (b).  This figure reveals correlation up to order two.  Therefore 

we conclude that the value-weighted log dividend-price series is best modelled as an 

AR(1), whereas the equally-weighted series is best modelled as an AR(2). 

Next we examine whether the log dividend-price ratio contains any 

nonlinearity.  To do this we estimate the following artificial regression 
 

[ ] t

p

1i

3
dtiti4

2
dtiti3dtiti21ti100t yyyyyyyy ε+β+β+β+β+β= ∑

=
−−−−−−−                         (11) 

 

where yt represents the demeaned dividend-price ratio, i represents the order of the 

autoregressive component and d represent the order of the delay function.  Based on 

the partial autocorrelation functions discussed above we set the autoregressive 

component, i, equal to one in each country, while we estimate the delay parameter, d, 

using a grid search procedure.  To examine whether our series is linear we test the null 

hypothesis whether β2 = β3 = β4 = 0.  If we reject this null hypothesis then our series 

is nonlinear.  In our grid search if we reject the null hypothesis for more than one 

delay parameter, d, then we select the delay parameter with the smallest probability. 

Once we have identified the delay parameter we can examine whether the 

nonlinearity is best characterised by an exponentially smooth transition autoregressive 

(ESTAR) process or by a logarithmic smooth transition autoregressive (LSTAR) 

process.   We can examine which process is viable, if any, using a sequence of nested 

tests based on our artificial regression (11).14  These tests are as follows: 
 

H03: β4i = 0    i = 1, �,p                                    (12a) 

                                                
13 In modelling and testing for nonlinearity we use the demeaned log dividend-price ratio. 
14 These tests were proposed by Teräsvirta (1994).   
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H02: β3i = 0  β4i = 0  i = 1, �,p                                   (12b) 

H01: β2i = 0  β3i = β4i = 0 i = 1, �,p                                    (12c) 

If we reject H02 then the log dividend-price ratio is modelled as an ESTAR process, 

otherwise it is modelled as an LSTAR process. 

 Table 2 (a) reports the results for the value-weighted series, while Table 2 (b) 

reports the results for the equally-weighted series.  In the first column of the tables we 

report the results of the nonlinearity test HL.  We clearly reject the null hypothesis of 

linearity and select a delay of 2 for the value-weighted series and a delay of 3 for the 

equally-weighted series.  Armed with this information we can now establish whether 

the log dividend-price ratios should be modelled as ESTAR or LSTAR processes. 

 Columns two, three and four of Table 2 report the results for the null 

hypotheses H03, H02 and H01 respectively as outlined in (12a) to (12c) above.  

Examining the results for the value-weighted series in part (a) of Table 2, we see that 

the tests conclude that the log dividend-price ratio may be modelled as either an 

ESTAR or an LSTAR process at the 10% level of significance, however using the 5% 

level of significant, the results select an ESTAR process.  The results in part (b) of the 

table relating to the log of the equally-weighted dividend-price ratio clearly select an 

ESTAR process.   

 As equation (11) is an artificial regression and hypotheses (12a) to (12c) are 

based on this regression we need to confirm that our results are correct by estimating 

the smooth transition autoregressive (STAR) model: 
 

[ ] [ ] [ ] t
d

1ddt

p

1j
jt

*
j

p

1j
jtjt ;;yyyy ε+γµΦµ−λ+µ−λ=µ− =−

=
−

=
− ∑∑                        (13) 

Using a grid search procedure and both the Logistic Smooth Autoregressive 

Transition (LSTAR):  
 



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
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and the Exponential Smooth Autoregressive Transition (ESTAR)  
 



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characterisations of the transition function so that we can verify that we have selected 

the most appropriate delay parameter and form of the transition function. Here we 

select the delay parameter based on the probability level associated with the transition 

parameter, γ.  We select the transition parameter with the smallest probability 

parameter.  The results of these tests15 confirm that the log of the value-weighted 

dividend-price ratio is an ESTAR process with a delay of 2 and the log of the equally-

weighted dividend-price ratio is an ESTAR process with a delay of 3.  

 

4.2. Stationarity and Cointegration Tests 

Now that linearity has been rejected and an ESTAR model has been chosen for both 

the value-weighted and the equally-weighted series we can test for nonlinear 

stationarity and nonlinear cointegration using the procedure developed by Kapetanios 

et al. (2003, 2004).  For the purpose of comparison, we also report the conventional 

Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, 

Schmidt and Shin (KPSS) test statistics, denoted by tADF, tPP, KPSSµ and KPSSτ 

respectively (see Dickey and Fuller, 1979, 1981; Kwiatkowski et al., 1992; Perron, 

1988). 

As suspected the linear unit root tests suggest that the null hypothesis of a unit 

root cannot be rejected for the log stock price, excess stock price, dividend or 

dividend-price ratio series (see Table 3).  In each case the test statistics suggest that 

the variables are first difference stationary.   

The nonlinear unit root tests strongly reject the null hypothesis of a unit root in 

the ESTAR modelled dividend-price series (see Table 4).  The major implication of 

the finding of nonlinear stationarity in the dividend-price series is that although real 

stock prices consistently deviate from their long run equilibrium, the deviation is 

nonlinearly mean-reverting.  The strong results of the ADF, PP and KPSS tests and 

the result in the nonlinear unit root test suggests that stocks and dividends have roots 

of the same order, i.e. they may be cointegrated.   

The loglinear present value model shows that when the log of real stock prices 

and the log of real dividends are first-difference stationary they are cointegrated with 

a cointegrating vector ( )′−1,1 .  Therefore, the long-run equilibrium relationship 

described by the present value model is given by pt = dt.  The Ordinary Least Squares 

                                                
15 These results are not presented here but they are available on request. 
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(OLS) regression of log real stock prices on log real dividends and a constant are 

presented in Table 5.  

Examining the linear Engle Granger and the Error Correction Model statistics 

for the value-weighted series, we cannot reject the null hypothesis of no linear 

cointegration at the 5% level. Examining the results of our nonlinear cointegration 

tests we can easily reject the null hypothesis of no cointegration in favour of a 

globally stationary nonlinear ESTAR cointegration.   

The equally-weighted series, on the other hand, rejects the null hypothesis of 

no cointegration in both linear and nonlinear versions of our tests.  Overall, the test 

results clearly demonstrate adjustment towards equilibrium over the long run.  This 

suggests that the log dividend-price ratio is in fact mean-reverting.  

 

4.3. ESTAR Estimation Results 

ESTAR models are fitted to the dividend-price series.  We report the parsimonious 

form of the estimated ESTAR model.  The results are based on the demeaned log real 

dividend-price model. 

We begin by estimating an exponential smooth transition autoregressive model 

expressed as: 
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ddt

p

j
jtj
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j
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                      (15) 

 

where zt is the demeaned log dividend-price ratio and d is the delay parameter. To 

find a proper initial value for the transition parameter, γ, we standardise the model by 

dividing the exponential part of the transition function by 2
zσ , the sample variance of 

zt (Teräsvirta, 1994).  Granger and Terasvirta (1993) argue that scaling the 

exponential term by the sample variance speeds the convergence and improves the 

stability of the nonlinear least squares estimation algorithm.  It also makes it possible 

to compare estimates of transition parameters across equations. Since we are unable to 

reject the null hypothesis that *
jj λλ −=  we re-parameterise the ESTAR model as 

follows: 
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 Table 6 reports the results.  The estimated models perform well in terms of 

providing goodness of fit and statistically significant coefficients.  The log-likelihood 

tests show a clear preference for the ESTAR models over an autoregressive 

alternative.  The speed of adjustment of the transition variables can be clearly 

identified in Figure 2.  The Variance Ratio (VR) indicates a reduction of 2.6% in the 

unexplained component of the equilibrium error for the value-weighted log dividend-

price ratio and a reduction of 2.7% for the log of the equally-weighted dividend-price 

ratio.   

 The ARCH test results indicate that there is substantial conditional 

heteroskedasticity in both the value-weighted and equally-weighted series.  Therefore, 

it is imperative that we re-estimate the ESTAR models accounting for this 

heteroskedasticity.  In examining various possible forms of heteroskedasticity it was 

found that an ESTAR-EGARCH model is the most appropriate in both cases.  The 

ESTAR-EGARCH model used in this study is based on equation (16).  The error 

process is εt= 2
tte σ , where et~ N.I.D(0,1) and the conditional variance is 

ln ( )2
tσ =β1+β2


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ε +β4 ln ( )2

1−tσ  and is not dependent on et.   

The estimated ESTAR-EGARCH models perform well in terms of providing 

goodness of fit, statistically significant coefficients and satisfactory residual 

diagnostics (see Table 7).  The estimated standardised transition parameters, γ, 

appears to be significantly different from zero on the basis of the individual �t-ratios�.  

However, previous empirical studies (see for example Kilian, 1999; Kilian and 

Taylor, 2003) have noted that these �t-ratios� must be carefully interpreted since if 

under the null hypothesis the transition parameters are equal to zero, then the 

dividend-price series is generated by a unit root process. 

We therefore calculate the empirical marginal significance level of the 

transition parameters using Monte Carlo simulations assuming that the true data 

generating process for the dividend-price series is a first-order unit root process, with 

slope and innovation variance parameters calibrated using the actual value-weighted 

and equally-weighted dividend-price series respectively (Details relating to the 

program are contained in Appendix 1).  The empirical significance level is based on 

5000 simulations of length 1424, from which the first 500 were discarded (leaving 
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924 data points, corresponding to the size of our data set).  At each replication, an 

ESTAR-EGARCH equation was estimated for each artificial data set, identical in 

form to those reported in Table 7.  The percentage of �t-ratios� for the estimated 

transition parameters, greater in absolute value then that reported in Table 7 were 

obtained and taken as the respective empirical significance level.  Our estimated 

transition parameters are significantly different from zero at the 5% level.  This result 

indicates strong evidence of nonlinear mean reversion in the dividend-price ratio. 

The next step is model evaluation.  Obvious assumptions to be tested 

following Eitrheim and Teräsvirta (1996) are the null hypotheses of no remaining 

nonlinearity, no residual autocorrelation, and parameter consistency as we assume that 

the parameters are constant when we estimate the models.16  Table 7 also outlines 

these results.  The models capture all the nonlinear features of the data: the NRL 

statistic reports the p-value for the Lagrange Multiplier test of the null of no 

remaining nonlinearity.  If the null were rejected the models should be re-estimated, 

that is not the case here.  Testing for parameter consistency is also important in this 

nonlinear framework since the model has been estimated assuming constant 

parameters.  In contrast to the linear case where the alternative to the null of 

parameter constancy is a single structural break, the statistics ET1, ET2 and ET317 in 

Table 7 test for parameter consistency in ESTAR model under a parametric 

alternative, which explicitly allows the parameters to change smoothly.  According to 

these test statistics the model is stable. 

The speed of adjustment can be visualized from the plots of the estimated 

transition function, F[yt-d], against the corresponding lagged values of the series, yt-d. 

Figure 3 shows that the transition functions are mildly explosive near the equilibrium 

and mean reverting away from the equilibrium level.  The inverted-bell shaped plots 

in Figure 3 show that the adjustment processes of the negative and positive deviations 

are acceptably symmetrical in nature.  This finding is in accordance with most 

literature (Gallagher and Taylor, 2001).  

To gain more insights into how the adjustment of the dividend-price ratio 

transfers from one regime to the other, we plot the estimated transition functions 

against time.  While the transition appears to be slightly more volatile in the equally 

                                                
16 See Appendix 10.1 for details relating to these three tests. 
17 ET1 refers to Smooth Monotonic parameter consistency; ET2 refers to Symmetric Non-Monotonic 
parameter consistency and ET3 refers to Monotonic and Non-Monotonic parameter consistency. 
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weighted case, Figure 4(b) shows that both functions reach their uppermost value at 

times or booms.  For example, Figure 4 captures the Great Depression (1929-1932), 

World War II (1941-1945), the period of phenomenal economic growth after World 

War II (mid 1940�s � mid 1950�s), Oil Crisis (1973), serious recession during Ford�s 

Presidency (1974) where unemployment rose to over 12%, rise in oil prises (1980), 

recession in Regan�s Presidency (1982), Stock Market Crash (1987), technology 

boom (1990�s) etc. This provides strong visual justification for the use of nonlinear 

models, in particular ESTAR models, in estimating and forecasting the stock 

dividend-price ratio. 

To obtain further insights into the dynamic structure of dividend-price ratio, 

we perform impulse response function analysis to evaluate the propagation 

mechanism of shocks to the dividend-price ratio.  Figure 5 presents the impulse 

response analysis for our value-weighted and equally-weighted nonlinear models 

respectively.  As pointed out by Taylor and Peel (2000) the impulse response 

functions in nonlinear models are not independent from the initial conditions, the size 

of the shock and the future path of the exogenous innovations.  As a result, the 

impulse response functions must be computed by Monte Carlo integration.   

In this paper the impulse response functions are calculated as follows:  starting 

with the first eleven observations set to their historical values, we estimate 5000 

simulations of length 200 of our model with and without a shock of size �s� at time 

eleven.  Thus, for every simulation, we obtain two realisations of the deviations of the 

dividend-price ratio from its fundamental.  The difference between the two simulated 

paths, one allowing for a shock �s� and the other without it, are stored and averaged 

over all 5000 simulations, so that this average is taken as the estimated impulse 

response function for a size shock �s�.  We consider six shocks: 1, 5, 10, 15, 20 and 30 

percent.  Figure 5 clearly shows that the speed of the adjustment towards the 

equilibrium increases with the size of the shock, that is, when the dividend-price ratio 

is driven further away from its fundamental.18  Thus, shocks of small size appear to be 

persistent and the dividend-price ratio apparently does not follow its fundamental. 

 

                                                
18 This is discernible from the half-life estimates of the shocks.  The half-life of the value-weighted 
estimates are 1% = 114 months, 10% = 107 months, 20% = 98 months, 30% = 88 months, 40% = 79 
months and 50% = 70 months.  The half-life of the equally-weighted estimates are 1% = 43 months, 
10% = 43 months, 20% = 43 months, 30% = 42 months, 40% = 40 months and 50% = 39 months. 



 -23-

Although the combined evidence from the nonlinear impulse response 

functions may be difficult to interpret and generalise it is clearly indicative of the 

presence of nonlinearities in the dynamic structure of the dividend-price ratio.  These 

nonlinearities call into question the results of many studies, which have generated 

forecasts conditional on the adequacy of a linear dynamic structure for the dividend-

price ratio. 

Now that we have established that the log of the value-weighted and equally-

weighted dividend-price ratios are best represented as ESTAR(1)-EGARCH(1) and 

ESTAR(2)-EGARCH(1) processes respectively, we can proceed with estimating the 

long horizon regressions and determining the degree with which we can predict stock 

returns, if any. 

 

5. STOCK PRICE PREDICTABILITY: EMPIRICAL RESULTS 

 

The in-sample and out-of-sample tests are based on the long-horizon regression 

approach.  This approach entails estimating k individual equations: 
 

k
kttkk

k
kt ezr ++ +β+α=   k=1, 4, 8, 12, 18, 24, 36, 48                        (17) 

 

where k
ktr + represents either the continuously compounded k-period rate of return or 

the continuously compounded k-period rate of return minus the risk-free rate  of 

return, zt is the dividend-price ratio, k is the horizon length and αk and βk are the 

parameters to be estimated.  The error term k
kte +  is an element of the time t+k 

information set. 

 We examine the in-sample and out-of-sample tests using, (i) the value-

weighted excess returns series and (ii) the equally-weighted excess returns series.  Our 

in-sample tests are based on the H0: βk = 0 versus H1: βk < 0 for a given horizon for 

some k, or jointly for all forecast horizons as H0:βk = 0 ∀  k versus H1:βk <0 for some 

k (Mark, 1995), while our out-of-sample tests are based on comparing the forecast 

accuracy of (17) with that of (a) a random walk model and (b) a random walk model 

with a drift,19 using the MSE-T, MSE-F, ENC-T and ENC-F test statistics. 

                                                
19 This is essentially a test of predictability as it involves comparing 

k
kttkk

k
kt ezr ++ +β+α=  with   

k
ktk

k
kt er ++ +α= .  
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Since much of the literature20 criticises long-horizon regressions for size 

distortions and low power, we begin by examining the power of our long horizon 

stock price predictability regressions. In contrast to the stock price predictability 

literature we generate the critical values for the log-dividend price ratio using an 

ESTAR-EGARCH data generating process. 

 

5.1. Power and Size Properties of our Long Horizon Regressions 

To estimate the size and power properties of our long horizon model we use a Monte 

Carlo experiment; which generates pseudo stock price and dividend-price data series, 

estimates a long horizon regressions for each data set and assesses the significance of 

each of these regressions.  We calculate both the power and size results using the 

parameters estimated from the equally-weighted returns series.21 

Similar to Kilian and Taylor (2003) our bootstrap approach follows a two-step 

process.  In step 1, we write down the unrestricted reduced form representation of the 

data.  This reduced form, which is compatible with the data, encompasses the 

restricted model under the null hypothesis and encompasses the unrestricted model 

under the alternative hypothesis.  In step 2, we generate critical values by estimating 

the process subject to the restrictions under the null hypothesis and simulating the 

distribution of the test statistics in repeated replications.   

We postulate that the unrestricted data generating process may be represented 

as a bivariate nonlinear model for ( )′tt zr ,  such that zt follows an ESTAR process and 

rt is possibly predictable based on historical data. 
 

t11t1tttt u,...)d,p,d,p(~r +−−                             (18) 
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Here we can clearly see that the dividend-price variable is always represented as an 

ESTAR model, zt. The returns series, rt, on the other hand, is not as narrowly 

specified.  This model is broad enough to encompass both the random walk behaviour 

                                                
20 See for example Mankiw, Romer and Shapiro (1991), Hodrick (1992), Nelson and Kim (1993), and 
Berkowitz and Giorgianni (2001). 
21Similar power and size statistics are generated using the value weighted series and therefore are not 
reported. 
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of stock returns and more complicated linear or nonlinear serially correlated 

processes. 

Although, the nature of the unrestricted model affects the power of the test, we 

never have to estimate this fully unrestricted model in practice.  Since we are 

interested in testing the null hypothesis that stock returns are unpredictable based on 

past information, we can represent the null:  
 

t1t0 ur:H =µ−                                      (20) 
 

Here, we have restricted the returns series to follow a random walk process, whilst the 

log dividend-price process, zt, remains as a nonlinear process.  

We examine the marginal significance of each forecast, in step 2, based on a 

bootstrap procedure with the following data generating process for rt and zt: 
 

t1t ur =µ−                                (21) 
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This ESTAR process is consistent with our dividend price series, whilst the returns 

series is generated under the null hypothesis that returns follow a random walk 

process.  The innovations ut= ( )′t2t1 u,u  in practice will be treated as independent and 

identically distributed.  Bootstrap p-values for the long horizon regression test 

statistics under the null hypothesis may be obtained by generating repeated trials from 

this bootstrap data generating process, and by then re-estimating the long-horizon 

regression test statistics for each set of bootstrap data and evaluating the empirical 

distribution of the resulting long-horizon regression test statistic.  We repeat this 

process 500 times to obtain our marginal significance values.22 

 

5.1.1. Size Test Results 

To compute the size of our tests we conduct Monte Carlo experiments with the data 

generated under the null hypothesis of no predictability.  In other words, the data 

generating process for the size tests are based on equations (21) and (22).  The size of 

the test is the proportion of the t-statistics at each horizon that have a p-value less than 

                                                
22 The ESTAR-EGARCH procedure is shown in Appendix 1. 
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10%.  The results from the in-sample size tests are reported in Figure 6, while the out-

of-sample test results are presented in Figure 7.  The in-sample results indicate that 

our bootstrap is remarkably accurate.  The effective size of each test is reasonably 

close to the nominal significance level of 10% and remains fairly constant across 

forecast horizons.  Therefore, we can reasonably conclude that size distortions do not 

lead to increased long-horizon predictability.  Some of the out-of-sample results are 

slightly less accurate, particularly at long horizons.  The MSE-T (i.e. the Diebold 

Mariano Test) is accurate at short horizons, up to the one-year horizon, after which it 

tends to under reject the null hypothesis.  The ENC-T test is slightly more accurate at 

short horizons, but under rejects the null hypothesis of no predictability after the two-

year horizon.  The MSE-F and ENC-F results are more accurate.23  Therefore we can 

conclude that while the MSE-T and ENC-T test statistics have good size properties at 

short horizons, the MSE-F and ENC-F test statistics have good size properties at all 

horizons. 

 

5.1.2. Power Test Results 

To investigate the power of our long horizon regressions, we conduct Monte Carlo 

simulations based on the best fitting model under the alternative hypothesis of 

predictability.  As pointed out by Kilian and Taylor (2003), the power of the test will 

in general depend on the specific form of the alternative model.  As it is difficult to 

identify the actual underlying nonlinear process at work in the stock price from the 

actual data, we focus instead on the easier task of finding a reasonable approximation 

to the time series process of the fundamental, ∆dt.  Given the DGP for zt, selecting a 

DGP for ∆dt will pin down the implied DGP for rt, where rt is calculated as24 
 

1tt1tt1t d))dpexp()dpdpln(exp(r +++ ∆++−=                           (23) 
 

dt represents the log dividend series and dpt represents the log dividend-price ratio.  

Based on preliminary analysis we can conclude that ∆dt follows a linear process.25  

The lag structure for the fundamental is selected using the AIC.  This procedure 

                                                
23 Harvey, Leybourne and Newbold (1998), West (2001) and Clark and McCracken (2001) come to a 
similar conclusion. 
24 See Goyal and Welch (2003). 
25 Tests of the form shown in equation (11) indicated no significant evidence of nonlinear behaviour in 
the dividend growth series. 
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selected 6 lags for the change in dividends and 2 lags for the price variable.  All 

insignificant lags were then dropped resulting in:  
 

t12t46t33t21t1t updddd +∆γ+∆γ+∆γ+∆γ=∆ −−−−                            (24) 
 

The data generating process under predictability is thus given by equations (21) and 

(24).  By randomly re-sampling the residuals and using the estimated equations, we 

can build up a pseudo-sample of data for rt (using equation (23)) and zt which matches 

the original sample size.26 

Next we estimate the long-horizon regressions and the t-statistic corresponding 

to kβ� .  We calculate the p-value corresponding to each t-statistic using the bootstrap 

procedure.  The power results reported are the proportion of the p-values that are less 

than 10% for each k.  As the actual size is close to the nominal size, there is no need 

for size corrections. 

Our power study shows that the proposed long horizon regressions are highly 

accurate under the null hypothesis of no return predictability.  The result from the in-

sample power test is reported in Figure 8, while the results from the out-of-sample 

tests are reported in Figure 9.  The in-sample test results show that the power of the 

test is very accurate at all horizons. The power of the test only falls slightly at the 

four-year horizon. 

As expected the power of the ENC-F test is greater than the power of the 

standard MSE-T test.27, 28  Similar to Clark and McCracken (2001), we find that the 

power of MSE-T< ENC-T< MSE-F< ENC-F.  We note that the power for the out-of-

sample test, Figures 9, is lower than that in the in-sample tests, Figure 8. 

 

5.2. Stock Price Predictability in the United States, 1926:01-2003:12 

Now that we have established that our ESTAR-EGARCH models have appropriate 

size and power levels we continue by examining whether the dividend-price ratio has 

predictive power in the United States from 1926:01 to 2003:12.  In particular, using 

value-weighted and equally-weighted data respectively, we examine whether the log 

dividend-price ratio can predict one-step ahead excess stock return forecasts. 

                                                
26 As in previous estimations our simulations here are estimated using 1424 observations from which 
the first 500 are discarded, leaving 924 observations corresponding to the sample size. 
27 Previous empirical research has traditionally examined the MSE-T statistic only. 
28 See, Harvey, Leybourne and Newbold (1998), West (2001) and Clark and McCracken (2001). 
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We begin by examining the results from the in-sample t-tests.  If our model of 

stock price determination is correct then we should expect to see a clear pattern of 

increased long-horizon predictability in the form of an increased adjusted r-squared 

measure and p-values that fall as the horizon grows.  This is indeed what we find.  

Table 8 shows the adjusted r-squared measure for each series.  Similar to Hodrick 

(1992) we find that the 2R  adjusted never exceeds 20%.  As expected the 2R  

becomes stronger as one increases the horizon, k. 

Figure 10 shows the bootstrap p-values from our long-horizon regression tests.  

We examine the ability of the log-dividend price ratio to predict four different returns 

series.  These returns series are: (1) the excess value-weighted returns series and (2) 

the excess equally-weighted returns series  In each case separate results are shown for 

horizons of k=1, 4, 8, 12, 18, 24, 36 and 48 months.  The marginal significant levels 

for the value-weighted series are generated using an ESTAR(1)-EGARCH(1) data 

generating process, while the marginal significance levels for the equally-weighted 

series are generated using an ESTAR(2)-EGARCH(1) data generating process.  As 

expected, the p-values fall as stock prices become more predictable at longer 

horizons.  Figure 10 also shows the results for a joint test29 for all forecast horizons as 

H0: βk = 0 ∀  k versus H1: βk <0 for some k.  The joint test is significant at the 5% 

level for each of the four returns series. 

Next we examine the out-of-sample forecasts.  Again, we look at the ability of 

the log dividend-price series to predict our four returns series.30  The out-of-sample 

tests are based on a sequence of rolling forecasts and involve comparing the null 

hypothesis of equal forecast accuracy against the one-sided alternative that forecasts 

from the long horizon regressions are more accurate than random walk forecasts.  

Comparison of the forecasts from the long horizon model with those from benchmark 

random walk models31 enables us to determine the ability of the log dividend-price 

ratio to forecast movements in the stock price.  To carry out these forecasts, we divide 

the total sample of T observations into an in-sample and an out-of-sample portion, 

where the in-sample portion spans the first 697 observations and the out-of-sample 

portion the last 227 observations for stock returns.  In other words we consider one-

step-ahead forecasts over the period 1985:01 � 2003:12. 
                                                
29 See Mark (1995) for details regarding this joint test statistic. 
30 These return series are (i) the value-weighted excess returns series and (ii) the equally-weighted 
excess returns series.   
31 We examine both a pure random walk model and a random walk with a drift model. 
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We will begin by examining whether stock returns based on the log-dividend 

price ratio out-predict those based on a pure random walk model.32  As the asymptotic 

critical values from our out-of sample test statistics are severely biased in small 

samples, we generate the marginal significance level using a bootstrap approximation 

of the finite sample distribution of the test statistic under the null hypothesis of no 

predictability (see McCracken, 2000).  Unlike asymptotic critical values, bootstrap 

critical values based on the percentiles of the bootstrap distribution automatically 

adjust for the increase in the dispersion of the finite-sample distribution of the test 

statistic that occurs in near-spurious regressions as the sample size grows (Kilian, 

1999). 

 

5.2.1. Dependent Variable: Excess Returns. Alternative Model: Pure Random Walk 

Figures 11 and 12 show the bootstrap p-value for the MSE-T, ENC-T, MSE-F and 

ENC-T test statistics for the equally-weighted returns series and value-weighted 

excess returns series respectively.  The benchmark model in this case is the pure 

random walk model.  We consider the present value model to have superior predictive 

ability if the marginal significant level is less than 10%.  If, on the other hand, the 

marginal significance level is greater than 10% then the benchmark model has 

superior power. 

The MSE-T statistic tells us that the dividend-price ratio is superior at the 48-

month horizon; however this test fails the joint test.  The MSE-F test, on the other 

hand, concludes that the log dividend-price series has greater predictive ability at the 

12, 18, 36 and 48 month horizon.  The ENC-T test finds the log dividend-price ratio is 

only superior at the 18-month horizon, and the ENC-F test concludes that the log 

dividend-price series is superior at the 18, 24 and 36 month horizons.  Bearing in 

mind that the size and the power properties of the ENC-F are more accurate than those 

for the remaining tests, we conclude that the log dividend-price ratio has the ability to 

beat the pure random walk model at medium horizons (i.e. from one and a half years 

to three years). 

Figure 12 presents the bootstrap p-values relating to the ability of the 

dividend-price ratio to forecast one-step-ahead changes in the value-weighted excess 

returns series.  Here we are unable to identify any level of predictability.  It is likely 

                                                
32 The pure random walk model states that Pt = Pt-1. 
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that the finding of a unit root in log dividend-price ratio (see Table 3) is driving this 

result. . 

 

5.2.2. Dependent Variable: Excess Returns.  Alternative Model: Random Walk with a 

Drift 

Next, we consider an alternative benchmark model.  In this scenario we compare the 

forecasts from our long horizon regressions, estimated as 
k

kttkk
k

kt ezr ++ +β+α=  with 

those from a random walk model with a drift, estimated as k
ktk

k
kt er ++ +α= .  Figure 13 

presents the results generated using the equally-weighted returns series and Figure 14 

presents the results generated using the value-weighted returns series. 

 As before, the one-step-ahead forecasts based on the equally weighted returns 

series indicate some degree of predictability, while those based on the value weighted 

series have no out-of-sample predictive ability.  Therefore, we will only examine the 

results from the equally-weighted series. 

 

 The out-of sample forecasts generated using equally-weighted excess returns 

are reported in Figure 17.  As the ENC-F test statistic has the most accurate size and 

power characteristics we will only examine this statistic here.  This statistic finds that 

the log-dividend price series produces superior forecasts at the 4, 8, 12, 18, 24, 36 and 

48-month horizon.  The joint test is also significant.  These results are similar to those 

calculated using the returns series, therefore in this case adjusting for the risk-free 

interest rate does not reduce the predictive ability of the log dividend-price ratio. 

 

5.2.3. Summary   

We conclude that the in-sample and out-of-sample results for the equally-weighted 

series are in agreement.  This finding is at odds with recent studies (see Goyal and 

Welch, 2003;33 Lewellen and Shanken, 2001, and Bossaerts and Hillion, 200134) and 

                                                
33 Goyal and Welch (2003) suggest that the lack of out-of-sample predictability may be a consequence 
of learning in the marketplace.  That is, the best in-sample investment strategies may not persist into 
subsequent periods because the market adjusts to the new information.   
34 On the other hand, Lewellen and Shanken (2001) and Bossaerts and Hillion (2001) argue that the 
Bayesian learning of economic agents can generate ex-post predictable patterns that are ex-ante rational 
and therefore not real-time tradable opportunities.  In this case, predictability is just an ex-post illusion.  
For example, suppose you know that the time-series of stock returns is mean-reverting.  In real time, 
you still do not know if stock prices will be higher or lower next period because you do not know the 
true mean of the distribution.  Nonetheless, a pattern of mean reversion is easily detected ex post 
relative to the sample mean. 
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with the findings from the value-weighted return series.  It is likely that the results 

using the equally-weighted series are driven by small firms while those of the value-

weighted series are driven by larger firms (see DeFusco, Geppert, Zorn, 2005).  This 

indicates that the success of the equally-weighed series may be due to size of the firm.   

 

6. CONCLUSION 

 

The results from tests of the traditional present value model produce mixed results.  

Moreover, recent studies on the effects of transaction costs and limits to arbitrage 

suggest that the cointegrating relationship between real stock prices and dividends 

should be approximated by a nonlinear adjustment.  Since previous empirical studies 

modelled the cointegrating relationship between stock prices and dividends as a linear 

process, they were biased in favour of finding predictability and were subject to 

severe size distortions.  Thus their results are invalid.   

The purpose of this paper is to contribute to the debate on the relevance of 

nonlinear models in financial markets.  To that end, we employed nonlinear unit root 

tests, cointegration tests and ESTAR models to show that the reason for poor 

predictive performance of stock price models is due to nonlinearity in the adjustment 

of the dividend-price ratio to its long run equilibrium path.  We examine both value-

weighted and equally-weighted stock price data. 

The evidence presented reveals that the estimated cointegrating residual of the 

present value model is approximated well by an ESTAR(1)-EGARCH(1) model using 

value-weighted data and by an ESTAR(2)-EGARCH(1) model using equally-

weighted data.  In other words, the error correction towards the cointegrating 

equilibrium implied by the present value model is nonlinear.  The parameters of the 

nonlinear models and the generalised impulse response functions imply random walk 

behaviour for small deviations and fast mean-reverting adjustment for large deviations 

from equilibrium.  This finding is consistent with features of the stock market, such as 

transaction costs and limits to arbitrage and noise trader activity. 

Taken together, the evidence presented in this paper confirms the results of 

recent studies that emphasise the importance of allowing for nonlinearity in the 

adjustment of the dividend-price ratio towards its long-run equilibrium path.  Hence, 

we offer a potential reason why stock price models may have failed to out-perform the 

forecasting performance of the random walk model in the past. 
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Allowing for the exponentially smooth autoregressive behaviour of the 

dividend-price ratio allows us to account for nonlinearities which result from limits to 

arbitrage, such as the existence of transaction costs, short-selling constraints, or 

mispricing of securities deepening in the short run. Our long horizon regression tests 

designed to detect nonlinear long-horizon predictability provided strong in-sample 

evidence against the random walk model.  For example, our in-sample long-horizon 

tests were superior to the random walk model at the 12, 18, 24, 32 and 48-month 

horizons at the 5% level of significance. 

Our out-of-sample results are mixed.  While we find that the present value 

model has an ability to predict the equally-weighted returns series, particularly at 

medium horizons; we find that it has no ability to predict the value-weighed returns 

series at any horizon. Previous studies concur with our finding for the value-weighted 

returns series.  For example, Bossaerts and Hillion (1999) and Goyal and 

Welch(2003) document substantial in-sample predictability but find no evidence of 

out-of-sample predictability.  Similarly, while Lo and MacKinlay (1997) find some 

evidence of market timing profits from 1967 to 1993, Pesaran and Timmermann 

(1995) conclude that a real-time investor could have profited only during the 1970�s 

from timing the stock market, not in the 1960�s or the 1980�s. 

 Our out-of-sample tests demonstrate why it is difficult to predict stock prices 

based on the dividend-price ratio in real time.  In practice, only very large deviations 

from the dividend-price ratio will reveal a stock returns inherent tendency to mean 

revert.  The plots of the transition functions over time highlight that such large 

deviations are rare, particularly in the value-weighted return series.  The ability of the 

present value model to predict the equally-weighted returns series may be related to 

the fact that deviations from equilibrium for this series has a tendency to mean revert 

quite quickly, as shown in the impulse response function. 
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Table 1: Summary Statistics  

United States � Value Weighted 
 Mean Std Dev Skew Kurt JB ρ(1) ρ(2) ρ(3) ρ(4) 
pt 0.718   0.647   0.177   

(0.02) 
-0.575   
(0.00) 

17.58   
(0.00) 

0.996* 0.992* 0.987* 0.984* 

dt -2.530 0.357   -0.587   
(0.00) 

-0.657   
(0.00) 

69.84   
(0.00) 

0.998* 0.997* 0.995* 0.993* 

∆pt 0.002   0.054   -0.435   
(0.00) 

6.834   
(0.00) 

1825.86   
(0.00) 

0.097 -0.016 -0.102* 0.008 

∆dt 0.000   0.015   -0.085   
(0.29) 

16.279   
(0.00) 

10193.5   
(0.00) 

0.204* 0.191* 0.439* 0.190* 

Rt 0.005 0.054 -0.415 
(0.00)   

6.802   
(0.00) 

1808.02   
(0.00) 

0.097 -0.017 -0.107*  0.008 

ERt 0.004 0.054 -0.412 
(0.00) 

6.776 
(0.00) 

1794.00 
(0.00) 

0.098* -0.015 -0.105* 0.010 

dt-1-pt -3.249 0.376   -0.351   
(0.00) 

0.224   
(0.16) 

20.96   
(0.00) 

0.988* 0.974* 0.960* 0.948* 

∆(dt-1-pt) -0.001 0.056   -0.005   
(0.94) 

6.750   
(0.00) 

1752.44   
(0.00) 

0.111* -0.004 -0.082 0.027 

 
United States � Equally Weighted 
 Mean Std Dev Skew Kurt JB ρ(1) ρ(2) ρ(3) ρ(4) 
pt 2.055 1.165 -0.382 

(0.00) 
-0.721 
(0.00) 

42.55 
(0.00) 

0.998* 0.995* 0.993* 0.991* 

dt -1.240 1.100 -0.741 
(0.00) 

-0.227 
(0.15) 

86.74 
(0.00) 

0.999* 0.999* 0.998* 0.997* 

∆pt 0.004 0.070 0.453 
(0.00) 

9.855 
(0.00) 

3766.83 
(0.00) 

0.159* 0.002 -0.098 -0.057 

∆dt 0.003 0.020 0.865 
(0.00) 

18.208 
(0.00) 

12866.1 
(0.00) 

0.609* 0.524* 0.635* 0.455* 

Rt 0.007 0.069 0.450 
(0.00) 

9.849 
(0.00) 

3766.00 
(0.00) 

0.160* 0.002 -0.103* -0.057 

ERt 0.006 0.069 0.453 
(0.00) 

9.826 
(0.00) 

3749.34 
(0.00) 

0.162* 0.004 -0.101* -0.056 

dt-1-pt -3.299 0.333 -0.118 
(0.14) 

0.478 
(0.00) 

10.95 
(0.00) 

0.975* 0.940* 0.904* 0.871* 

∆(dt-1-pt) 0.000 0.074 -0.972 
(0.00) 

11.656 
(0.00) 

5371.02 
(0.00) 

0.199* 0.022 -0.058 -0.038 

Note:  pt is the log of real stock prices series, dt is the log of the annualised real dividend series, Rt is 
the returns series, ERt is the excess returns series and ∆ = (1-L) denotes the first difference.  
Skew, Kurt and JB denotes the standard skewness, kurtosis and Jarque-Bera statistics as reported 
in Kendall and Stuart (1958).  ρ(k) is the autocorrelation between xt and xt-k.  The sample period 
is 1927:01 � 2003:12.  
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Table 2: P-Values for the linearity Tests 
(a) Value -Weighted 
 

 HL H01 H02 H03 
D=1 0.5416 0.7902 0.1831 0.7078 
D=2 0.0687 0.0504 0.0297 0.2774 
D=3 0.2294 0.1206 0.0599 0.3972 
D=4 0.4546 0.9514 0.3661 0.4052 
D=5 0.2869 0.4337 0.3094 0.0862 
D=6 0.2967 0.7957 0.0730 0.3066 
D=7 0.1689 0.2967 0.0321 0.5251 
D=8 0.2143 0.9103 0.0931 0.2257 
(b) Equally-Weighted  
 

 HL H01 H02 H03 
D=1 0.0105 0.7408 0.0187 0.9539 
D=2 0.0001 0.0238 0.1394 0.0065 
D=3 0.0000 0.1361 0.0578 0.2079 
D=4 0.3417 0.7926 0.1108 0.7604 
D=5 0.2768 0.2782 0.0991 0.5193 
D=6 0.0304 0.0426 0.0157 0.3069 
D=7 0.0001 0.0004 0.0152 0.0356 
D=8 0.0499 0.0150 0.0250 0.0541 
Note: Values are estimated including the robusterrors option in RATS. 
 

Table 3: Linear Unit Root Test Results 
 DF PP 

 
KPSSµ KPSSτ DF PP KPSSµ KPSSτ 

 VW VW VW VW EW EW 
 

EW EW 

pt   0.785 -0.844 13.44 0.87 -0.95 -1.03 17.10 1.13 
∆pt  -12.10 -27.44 0.07 0.04 -8.80 -25.64 0.02 0.01 
         
dt  -1.15 -1.19 15.48 0.83 -0.99 -1.16 16.67 2.16 
∆dt -7.41 -29.65 0.07 0.06 -7.98 -18.35 0.12 0.06 
         
Returns -12.15 -27.45 0.04 0.04 -8.76 -25.61 0.02 0.02 
Excess Returns -12.08 -27.40 0.05 0.04 -8.71 -25.58 0.03 0.02 
         
(dt-1 �pt) -2.34 -2.17 7.04 0.94 -4.83 -4.04 1.60 0.62 
∆(dt-1-pt) -11.41 -27.07 0.04 0.02 -9.29 -24.77 0.02 0.01 
Note:    VW refers to the value weighted series and EW refers to the equally weighted series.  pt is the 

log of the real stock prices series, dt is the log of the annualised real dividend series  as 
calculated in Hodrick (1992), ∆ = (1-L) denotes the first difference.  The unit root tests are the 
Augmented Dickey Fuller (ADF), the Phillips-Perron Zt (PP) and the Kwiatkowski, Phillips, 
Schmidt and Shin (KPSS) test statistics (see Dickey and Fuller, 1979, 1981, Kwiatkowski, 
Phillips, Schmidt and Shin, 1992, Perron, 1988).  The null hypothesis for the ADF and the PP 
test statistics are that the series are I(1). These statistics are estimated with a constant and 
without a trend and the number of lags is selected using the Bayesian Information Criterion.  
The critical values for the DF and the PP test statistics are �2.587 at the 10% level, -2.86 at the 
5% level and -3.43 at the 1% level.  The null hypothesis for the Kwiatkowski, Phillips, 
Schmidt and Shin test is that the series is stationary.  The number of lags in these tests is set at 
four.  This statistic is estimated with a constant, KPSSµ and with a constant and a trend, 
KPSSι .  The 1% critical level for the KPSSµ unit root test is 0.739; the 5% critical level is 
0.463 and the 10% level is 0.347.  The 1% critical level for the KPSSι  unit root test is 0.216; 
the 5% critical level is 0.146 and the 10% level is 0.119.   
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Table 4:  Nonlinear Unit Root Test Results 

 tKSS1 tKSS2 
 

tKSS1 tKSS2 
 

 VW VW 
 

EW EW 

AR        -2.58 -3.02 -4.07 -5.19 
AR-ARCH  -5.33 -6.44 -3.98 -4.69 
Note:    VW refers to the value weighted series and EW refers to the equally weighted series.  The 

number of lags is selected using the Akaike Information Criterion.  tKSS1 refers to a t-test of the 
H0: δ=0 in erroryy 3

1tt +δ=∆ − , whereas tKSS2 refers to a t-test H0: δ=0 in 

β erroryyy 3
1t

p

1j
jtjt +δ+∆ρ=∆ −

=
−∑ .  In the AR-ARCH model heteroskedasticity was explicitly 

modelled using an ARCH(1) model.  The 10%, 5% and 1% critical values for KSS test 
statistics are, respectively -2.55, -2.88 and -3.48.   

 
Table 5: Cointegration Tests  

(a) Value Weighted Series 

 
 
(b) Equally Weighted Series 

Note:   pt and dt are the logs of real stock price and dividend series respectively.  All tests are carried 
out under the null hypothesis of no cointegration.  All the tests are based on demeaned series.  
The critical values for the linear Engle Granger tests are �3.02 at the 10% level, -3.37 at the 
5% level and 4.00 at the 1% level of significance.  The critical values for the linear Error 
Correction Model (ECM) tests are �1.28 at the 10% level, -1.64 at the 5% level and -2.32 at 
the 1% level of significance The critical values for the nonlinear Engle Granger tests are -2.98 
at the 10% level, -3.28 at the 5% level and -3.84 at the 1% level.   The critical values for the 
nonlinear Error Correction Model (ECM) tests are -2.92 at the 10% level, -3.22 at the 5% 
level and -3.78 at the 1% level.  The number of lags selected for each test was selected using 
the Akaike Information Criteria (AIC).    

 
 

 
Value Weighted 

 
dt-1 =   -2.87      +  0.483pt 
 (0.008)  (0.008) 
 [339.1]  [55.16] 
 

R2   = 0.77 
DW   = 0.04 
 

Linear Engle 
Granger 

Nonlinear Engle 
Granger 

Linear ECM Nonlinear ECM 

-2.70 -3.21 -5.23 -4.62 

Equally Weighted 
 

dt-1 =   -3.10      +  0.905pt 
 (0.021)  (0.008) 
 [147.1]  [101.41] 
 

R2   = 0.91 
DW   = 0.04 
 

Linear Engle 
Granger 

Nonlinear Engle 
Granger 

Linear ECM Nonlinear ECM 

-3.25 -3.56 -10.57 -11.55 
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Table 6: ESTAR Model 
 
(a) Value Weighted Series 
 
 
yt = 0.19 +  [1.02*(yt-1 + 0.19)] *[exp{-0.064(yt-2 + 0.19)2}] + tu�  
      (-3.23)  (134.8)       (-3.23)              (-3.85)         (-3.23)   
                                                               [0.001] 
 
R2   = 0.97 SEE = 0.056 
DW = 1.81 VR = 0.973 
ARCH (1) = 182.4 

   (0.000) 
LR(1) = 24.99 

   (0.000) 
 

(b) Equally Weighted Series 
 
 
yt = (1.19yt-1 + (1- 1.19)yt-2) * [exp{-0.075(yt-3 )2}] + tu�  
       (36.77)        (36.77)                  (-4.76)    
                                                        [0.000] 
 
R2   = 0.95 SEE = 0.072 
DW = 1.99 VR = 0.974 
ARCH (1) = 278.4 

   (0.000) 
LR(1) = 23.80 

   (0.000) 
Note:    The figures in parenthesis are t-ratios and the figures in the square brackets are marginal 

probability values.  The marginal probability value is calculated from 5000 Monte Carlo 
experiments � see text for details. R2 is the proportion of the variation in yt explained by the 
model, s is the standard error of the estimate.  DW is the Durbin-Watson statistic, ARCH(n) is 
a tests for autoregressive conditional heteroscedastity with n lags of the squared residual, 
LR(1) is a log-likelihood test against an AR(1) model, VR is the variation ratio.  
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Table 7: ESTAR-EGARCH Model 
  
(a) Value Weighted Series 
 
yt = 0.18 +   [1.01*(yt-1 + 0.18)] * [exp{-0.04(yt-2 + 0.18)2}] + tu�  
       (2.55)   (139.7)        (2.55)             (2.46)          (2.55)   
                                                                [0.030]                 
                                                   

ln ( )2
tσ   = -0.143 + 0.186













π
−

σ −

− 2u
2

1t

1t - 0.337
2

1t

1tu

−

−

σ
+ 0.975ln ( )2

1t−σ  

               (-3.96)    (7.88)                  (-3.46)              (158.9) 
 
R2    = 0.97 VR  = 0.972 
LR(1)  = 25.30 
  (0.000) 

H0: No Remaining Nonlinearity 0.002 
(0.999) 

H0: No Error Autocorrelation: H0: Parameter Consistency: 
 No of residual lags = 1 2.969 

(0.085) 
Smooth Monotonic  0.002 

(0.999) 
 No of residual lags = 2 1.541 

(0.214) 
Symmetric Non-Monotonic  0.002 

(0.999) 
 No of residual lags = 3 2.395 

(0.066) 
Monotonic and Non-Monotonic  0.002 

(0.999) 
 
 (b) Equally Weighted Series 
 
yt = (1.21yt-1 + (1- 1.21)yt-2) * [exp{-0.056(yt-3 )2}] + tu�  
       (35.35)        (35.35)                  (-2.83)    
                                                        [0.000] 
                                                   

ln ( )2
tσ   = -0.081 + 0.194













π
−

σ −

− 2u
2

1t

1t - 0.400
2

1t

1tu

−

−

σ
+ 0.984ln ( )2

1t−σ  

               (-3.17)    (6.49)                  (-3.44)              (218.7) 
 
R2   = 0.95 VR  = 0.974 
LR(1)  = 24.07 
  (0.000) 

H0: No Remaining Nonlinearity 0.004 
0.999 

H0: No Error Autocorrelation: H0: Parameter Consistency: 
 No of residual lags = 1 0.861 

(0.353) 
Smooth Monotonic  0.004 

(0.999) 
 No of residual lags = 2 0.518 

(0.595) 
Symmetric Non-Monotonic  0.003 

(0.999) 
 No of residual lags = 3 1.476 

(0.219) 
Monotonic and Non-Monotonic  0.002 

(0.997) 
Note:   The figures in parenthesis are t-ratios and the figures in the square brackets are marginal 

probability values.  The marginal probability value is calculated from 5000 Monte Carlo 
experiments � see text for details. R2 is the proportion of the variation in yt explained by the 
model, LR(1) is a log-likelihood test against an AR(1)-EGARCH model, VR is the variation 
ratio. The autocorrelation test examines first to third order serial correlation.  The test of no 
remaining nonlinearity uses an additive ESTAR model.  An ESTAR-EGARCH with a delay 
of 2 is used for the Value Weighted process and a delay of 3 is used in the Equally-Weighted  
process. 
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Table 8: Long Horizon Regression: Adjusted R- Squared  
 

 2R  
k Equally-Weighted Excess 

Returns Series 
Value-Weighted Excess 

Returns Series 
1 0.00030 0.00065 
4 0.00733 0.00823 
8 0.01560 0.02055 

12 0.03814 0.04069 
18 0.07785 0.06899 
24 0.11284 0.08775 
36 0.15336 0.11887 
48 0.19631 0.14375 

Note: The sample period is 1927:01-2003:12.  2R  is the r-squared adjusted measure of multiple 
determination. 
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Figure 1: Partial Autocorrelation Function, Dividend-Price Ratio 

(a) Value Weighted Series 
 

INSIGNIFICANT SIGNIFICANT

Partial Correlations levels, 1927:01-2003:12
Value Weighted Series

0 5 10 15 20 25 30 35
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

 
 
 
(b) Equally Weighted Series 
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Note: The sample size is 1927:01-2003:12. Significant refers to the partial correlations which are at 

least three standard deviations from the mean. 
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Figure 2: Transition Function, ESTAR Model 

 
(a) Value Weighted Series 
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(b) Equally Weighted Series 
 

Transition Function, ESTAR(2) Model, 1927:01-2003:12
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Figure 3: Transition Function, ESTAR-EGARCH Model 
 
(a) Value Weighted Series 
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(b) Equally Weighted Series 
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Figure 4: Transition Function over Time, ESTAR-EGARCH Model 
 
(a) Value Weighted Series 
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(b) Equally Weighted Series 
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Figure 5: Nonlinear Impulse Response Functions 

 
(a) Value Weighted Series 
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(b) Equally Weighted Series 
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Note: These impulse responses are based on 1000 simulations. 
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Figure 6: In-Sample Effective Size of Bootstrap Test under ESTAR-EGARCH 
Null 
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Note: This contains 500 Monte Carlos each with 500 bootstraps. 
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Figure 8: In-Sample Power of Bootstrap under ESTAR-EGARCH Null. 

In-Sample - Power of Bootstrap under ESTAR-EGARCH DGP
1927:01-2003:12

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000

-

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 4 8 12 18 24 36 48 Joint

Horizon Interval

Pe
rc

en
t

 
Note: Based on 500 Monte Carlos each with 500 bootstraps. 
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Appendix 1: Bootstrap Technique for an ESTAR GARCH Process 

 

1. Estimate the ESTAR(p)-EGARCH model: 

              [ ] [ ] [ ] 



 γµΦµ−λ+µ−λ+µ−−=ε

=−
=

−
=

− ∑∑ ;;zzzz d
1ddt

p

1j
yjtj

p

1j
yjtjtt ~N(0,σε)   (A1) 

where, ln ( )2
tσ =β1+β2









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

π
−

σ −

− 2u
2
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2

1t

1tu

−

−

σ
+β4 ln ( )2

1t−σ  

The autoregressive order p is determined by the partial autocorrelation 

function and the parameters are estimated through maximisation of the log-

likelihood function. 

 

2. Due to the assumed normality of the disturbances εt in (A1), the bootstrap 

residuals { *
tε } are constructed accordingly; let *

tu  be an independent 

draw from a N(0,1) distribution, then the bootstrap residuals are 

computed as 

 

ln ( )2
t�σ =
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3. The bootstrap samples are created recursively.  

 

 

 


