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Abstract

We present a multivariate generalization of the simple markov-switching
model. We allow for the introduction of several latent processes that have a
simple parametric distribution. The matrix-variate bernoulli distribution
yields a flexible yet parsimonious pattern of dependence between the dif-
ferent latent processes while preserving the markovian property. We also
show how to estimate the model in the bayesian framework and give several
examples.
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1 Introduction

The Markov-switching regression model has proved to be a useful tool in econo-
metrics over the past two decades. Generalizations of the model to the multi-
variate case have been undertaken in several papers (see for instance
[Krolzig, 1997] and [Sims and Zha, 2004b]. [Khaled, 2004] is a recent survey with
a lot of references.) However, all the generalizations assume the existence of a
single latent process underlying the model.

A powerful and simple justification behind the use of a single Markov chain as
the unique latent process underlying the system is that a Markov chain is already
a very general model that can encompass several processes by augmenting the
dimension of the system. As a simple example, suppose that the system is driven
by two dependent Markov chains, then we can always construct a “super”-Markov
chain that contains both chains and that is easily capable of describing the
system.

However, one criticism arises in the case of the super-chain and that is the
explosion of the number of parameters. Moreover, the great number of parameters
in the super-chain increases the possibility of zero occurrences for certain parame-
ters inside the matrix of transition probabilities.
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One solution to the problem is to try the simplify the possible patterns of
dependence between the different chains. It is posible to think of two polar situa-
tios. At one end, there is the case of completely independent! chains. At the other
end, there is the case where we allow complete flexibility by permitting complex
patterns of dependence through the construction of the “super”-chain. The objec-
tive of this paper is to construct a model that lies between those two extremes
andt that is flexible enough to allow complex pattern of dependence while staying
parsimonious. We show in section 3 how this can be accomplished by showing a
flexible model where the dimensionality was drastically reduced (we present an
example wherein the number of 50 parameters is reduced to just three!).

Briefly speaking, we build on the matrix-variate bernoulli distribution intro-
duced in |Lovison, 2006|. We are going to show that this distribution is capable of
modeling parameters of associations between different markov chains in a very
compact way.

We shall introduce the matrix-variate bernoulli distribution in section 2. Sec-
tion 3 presents the general model and describes how to estimate it in the Bayesian
framework. Several examples are presented in section 4. Section 5 concludes.

2 The matrix-variate bernoulli distribution

This section quickly reviews the paper of [Lovison, 2006] in which the matrix-
variate bernoulli distribution was introduced. We then present those aspects of
the distribution that we will require for our modeling of the markov-switching
multivariate regression. Throughout the section, we will keep [Lovison, 2006]’s ini-
tial notation.

Let z;, j =1, ..., m be a vector of binary variables containing 7" observations.
In our case, each z; represents a latent Markov chain. The ith entry in z; repre-
sents the ¢th time period. The matrix-variate bernoulli distribution describes the
joint modeling of the matrix Z = (21, ..., 2, constructed by the concatenation of
all the z; vectors. Therefore Z has T" x m entries. The matrix-variate bernoulli
distribution allows for different patterns of dependence. Those include dependence
between different variables (simple column-wise dependence between, say, z; and
zj for j' # j), dependence between different periods in time (or, put differently,
observational unit dependence between, say, z; ; and z;; for i’ # i) and finally
mixed variable-unit dependence (say between z; ; and z; j). However, the distri-
bution allows for pairwise interactions only. That might prove a formidable
restriction in certain applications, but in our case, the distribution offers exactly
what we need. The parameters describing association can therefore be classified in
three types. We are going to describe three different notations accordingly

e The parameters describing pure variable association
0! =67, Vi
;! Y .
9,-,/77-7 — 9.77.7 ’Vl

1. [Khaled, 2005] introduces a model where all the chains are statistically independent.
[Khaled, 2005] nevertheless attempts at tackling the dependence in a multivariate system by adding cor-
relations between the residuals of several sub-blocks of equations.
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e The parameters describing pure unit association

N
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e The parameters describing mixed unit-variable association

-
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The way each of those parameters is described is through the use of odds ratios.
hos
For instance ¢!/ can be defined as

( P{zl =1, 2 = 1}.P{zl-j:0, zij,’:(]} )

P{zfz 1,23,120}.P{z;7:0,zf,lz 1}

¢l =log

The probabilities in the log-odds ratios are conditional on the rest being zero.

Now we are going to put the parameters. Let us introduce the following sym-
metric matrices

gl gLz ... glm
2
®- f
Qm
Maoob2 o glm
s 12,1 z:z
A=Ay ;= AL :
We can put all those into one big matrix
{ © Mg - AMirn Air \
Ay C) : Ao r .
= § o § =I;00+Y Y Ea oA
: : : : i=1 i'#i
AT*I,I : ® AT*I,T

Ari Ars - Apgry ®

E; ;» is such that all of its entries are zero except for the (7, i’)th entry which is
equal to one.

The joint likelihood of Z is equal to

C’(\Il).exp{vec(Z’)'AILvec(Z’)}
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where C'(W¥) is the integration constant that depends on W.

QTm, —1

C(P) = Z exp{vec(Z,é)'AIkvec(Z,Q)}

k=1

We can factor the likelihood so as write it in a form proportional to

T
exp{tr(Z".Z. O]} [ | [ exp{tr[Z"E: i Z A i)}
i=1 i'%i

After writing the likelihood in that form, we can immediately see that the quanti-
ties

Z'Z
and each one of

Z' B .7

are sufficient statistics for ©® and each one of the A; ;/ respectively.

2.1 Markov Chains

Now we are going to illustrate the special case of Markov chains. The problem
simplifies greatly since we need temporal dependence of the first order only. The
contemporaneous dependence between chain j and chain j’ will be captured by
677",

The markovian dependence between units in each chain is captured by

VoM if =it
i 0 otherwise

Mixed dependence of the first order can also be allowed (i.e. dependence in one
chain on past values of other chains)

71!

ji' = { ¢l i =i+ 1

0 otherwise
Therefore
(Aol o
At

Ai,i+1 - A] -
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The easiest case is, of course, when there is no temporal dependence across dif-
ferent chains (i.e. the current value of a given chain does not depend on one-
period lagged values of other chains). In that case A, is diagonal

(00

A] — Al

The case of diagonal A; will be enough in most circumstances.

The matrix containing all parameters can, as a result, been written as

V=I;©O+L oA

01 0 0

0 0 1 0
L,= P

0o 0 - 0 1

0o 0 - 0 0

and the likelihood can be written as
C(W).exp{tr|Z'.Z.O] +tr[Z'.L,.Z.A]}

where Z'.Z and Z'.L,.Z are the sufficient statistics for that case.

3 The general model

The usual markov switching multivariate regression model is

yt:xt'/BSt_Fut

utNN(Ou Est)

where y; is a 1 x k vector of independent variables, z; is a 1 x ¢ vector of covari-
ates and s; is a discrete variable that follows a finite Markov chain. As described
earlier, we will restrict ourselves to the case where s; has only two states (i.e., we
can as well model it as a binary variable s, € {0, 1}). The equation represents a
multivariate regression where the parameters I';, and 3, are state-varying
(having a discrete number of possible values). That is, conditionally on each value
of the unobserved s;, we simply have a multivariate regression.
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One drawback that one can think of is the fact that s; describes the behavior
of all the parameters at the same time. This is highly restrictive because there is
no reason why ¢.k + k(kQ—H) different parameters should stochastically change in
the same way. Nevertheless, the model is less restrictive than it might seems at
the beginning because one can always expand the different chains describing the
behavior of different parameters into one big chain. However, the number of addi-
tional parameters to be estimated can easily explode. Imagine one introduces
three different chains with two states each. A super-chain of eight states will be
necessary and that chain will contain 56 parameters to be estimated. The original
three different chains contained only six parameters to be estimated. Which in
turn means that the increase in the number of parameters necessary to model the
association between the chains is 50. If we decide to model the dependence struc-
ture between the three chains through the use of the matrix-variate bernoulli dis-

ignore the depdence of a given chain on lagged values of other chains, then the
number of additional parameters is going to be three. Three parameters is much
less than 50 and this illustrates the highly parsimonious nature of modeling with
the matrix-variate bernoulli distribution instead of the super-chain. Moreover, the
estimation with the super-chain might not be possible with all datasets, especially
in the case where the time series is not very long.

[Khaled, 2005| considers in detail several of those aspects. It also considers
some encompassing issues that originate from the introduction of several pro-
cesses. However, in that paper, the author assumes that the chains are completely
independent and attempts to recover some correlations between different sub-
blocks of the dependent variables by assuming correlations between the residuals
arising from those different sub-blocks. In a sense, our paper is an extension to
[Khaled, 2005].

Writing the model in the multiple dependent latent chains case is straightfor-
ward. We only need to change the subscript of 3 and X from s; (the scalar chain
at date t) to z; (the row vector at date ¢ in the matrix Z). Estimation procedures
will vary from model to model because this general framework encompasses an
enormous number of different possible parametrizations. Due to the complex
nature of the model, it would be convenient to think of the estimation problem in
a modular way, in the sense of decomposing the problem into a multitude of
simple distinct estimation procedures. We will show that this is straightforward
to undertake in a bayesian framework.

We shall describe the estimation problem in the next section.

3.1 Bayesian Estimation

The bayesian estimation of Markov switching models was introduced by
[Albert and Chib, 1993]. Some of the later extensions were given by, among
others, [Chib, 1996], |[Frihwirth-Schnatter, 2001] and [Sims and Zha, 2004a].
[Khaled, 2004] gives a a survey on Bayesian approaches to Markov-switching mul-
tivariate regressions.

Let ¢ represent the parameters in the model, i.e.,

¢: {Bzm 22,5’ \Il7 Z}
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We need to put a prior on ¢. The prior distributions on 8 and X will be of the
matrix-variate normal - inverse wishart distributions. One must note that dif-
ferent distributions need to be given on different sub-blocks corresponding to dif-
ferent z js.

We can specify any type of distribution for 8 and A; (for instance, matrix-
variate normal), beacause, as we shall see, we are going to need a Metropolis-
Hastings step in the algorithm.

The objectivie of the estimation procedure is to draw a sample of ¢ from the
posterior distribution p(@|y) o p(¢).p(y|@d) where p(¢) is the prior and p(y|¢@)
is the likelihood. Monte Carlo Markov chains can be used to get that sample. In
particular, a hybrid gibbs sampler with a metropolis-hastings step can be used.

This is how a standard estimation procedure can be made

1. We begin from an initial value for ¢, say ¢@°.

2. From the iteration m to iteration m + 1 (i.e. we already in possession of a
draw ¢™)

a. Conditional on the latent chains Z™, we can classify the dataset in
several clusters and then undertake usual ways of drawing different
sub-blocks of @ and X for those clusters.

b. Conditional on Z™, we can undertake a metropolis-hastings step for
the estimation of @ and A;.
We use the product of matrix-variate bernoulli likelihood with
the matrix-variate normal prior on W.

c. Conditional on ¥™, 377 and X7}, we can compute the proability of
occuence of each state conditional on the observables and the values
of the parameters p(z:|y,, ¥™, B2, £7!) through a recursive filtering
algorithm. (Extensive details on how to run the recursive filtering
algorithm can  be found in  |Kim and Nelson, 1999] or
|[Krolzig, 1997|.)

From the density p(z|y,, ™, 82", X7), we can draw Z™*+1.

Our presentation of the algorithm is too abstract. The examples and simulations
of the next section are going to illustrate in detail how to apply the algorithm.

4 Some examples

This section is very incomplete. It is going to be extensively revised in future ver-
sions of the paper. In particular, we shall add detailed comments on the estima-
tion methodology and some simulations.

4.1 A simple example

We begin by a very simple example just to illustrate the model. Consider
Y= mt'ﬁzl,f, + 022,t'€t

StNN<0, 1)
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B and o depend on two different latent chains z; ; and z5; that can be dependent.

4.2 A multivariate regression model with a different chain
underlying each equation

( Yie Y20 Y ) :mt-( Bz B2z, B3z, ) +uy

2
{ ( 0-17Z1,t \ \
2
UtNN 07 021 0-2,z2,t
2
031 032 03 23,
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5 Conclusion

One critique that can be leveled against the paper is the restriction to the two-
state model. What is needed is a matrix-variate multinomial distribution for a
more general use of the methodology in this paper. This a topic for future
research. Since a natural representation of a vector of multinomail variables can
be a matrix of indicator variables coding the states, the matrix-variate bernoulli
distribution can in fact be used to model multinomial variables. The ideas are
going to be further explored by the author in future work.

Moreover, due to the big number of possible alternative modelings, automatic
selection procedures are of great interest. This might prove a quite intriguing and
definitely challenging problem for future research.
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