
Multivariate Generalizations of theMarkov-switching Modelby Mohamad KHALEDUniversity of Paris I Panthéon-SorbonneFebruary 2006Preliminary and Very IncompleteDo not quote pleaseAbstractWe present a multivariate generalization of the simple markov-switchingmodel. We allow for the introduction of several latent processes that have asimple parametric distribution. The matrix-variate bernoulli distributionyields a �exible yet parsimonious pattern of dependence between the dif-ferent latent processes while preserving the markovian property. We alsoshow how to estimate the model in the bayesian framework and give severalexamples.Keywords: Bayesian statistics, markov-switching, matrix-variatebernoulli distribution, multivariate generalizations.JEL Classi�cation: C11, C32, C51.1 IntroductionThe Markov-switching regression model has proved to be a useful tool in econo-metrics over the past two decades. Generalizations of the model to the multi-variate case have been undertaken in several papers (see for instance[Krolzig, 1997] and [Sims and Zha, 2004b]. [Khaled, 2004] is a recent survey witha lot of references.) However, all the generalizations assume the existence of asingle latent process underlying the model.A powerful and simple justi�cation behind the use of a single Markov chain asthe unique latent process underlying the system is that a Markov chain is alreadya very general model that can encompass several processes by augmenting thedimension of the system. As a simple example, suppose that the system is drivenby two dependent Markov chains, then we can always construct a �super�-Markovchain that contains both chains and that is easily capable of describing thesystem.However, one criticism arises in the case of the super-chain and that is theexplosion of the number of parameters. Moreover, the great number of parametersin the super-chain increases the possibility of zero occurrences for certain parame-ters inside the matrix of transition probabilities.1



One solution to the problem is to try the simplify the possible patterns ofdependence between the di�erent chains. It is posible to think of two polar situa-tios. At one end, there is the case of completely independent1 chains. At the otherend, there is the case where we allow complete �exibility by permitting complexpatterns of dependence through the construction of the �super�-chain. The objec-tive of this paper is to construct a model that lies between those two extremesandt that is �exible enough to allow complex pattern of dependence while stayingparsimonious. We show in section 3 how this can be accomplished by showing a�exible model where the dimensionality was drastically reduced (we present anexample wherein the number of 50 parameters is reduced to just three!).Brie�y speaking, we build on the matrix-variate bernoulli distribution intro-duced in [Lovison, 2006]. We are going to show that this distribution is capable ofmodeling parameters of associations between di�erent markov chains in a verycompact way.We shall introduce the matrix-variate bernoulli distribution in section 2. Sec-tion 3 presents the general model and describes how to estimate it in the Bayesianframework. Several examples are presented in section 4. Section 5 concludes.2 The matrix-variate bernoulli distributionThis section quickly reviews the paper of [Lovison, 2006] in which the matrix-variate bernoulli distribution was introduced. We then present those aspects ofthe distribution that we will require for our modeling of the markov-switchingmultivariate regression. Throughout the section, we will keep [Lovison, 2006]'s ini-tial notation.Let zj, j = 1; � ; m be a vector of binary variables containing T observations.In our case, each zj represents a latent Markov chain. The ith entry in zj repre-sents the ith time period. The matrix-variate bernoulli distribution describes thejoint modeling of the matrix Z = (z1; � ; zm) constructed by the concatenation ofall the zj vectors. Therefore Z has T � m entries. The matrix-variate bernoullidistribution allows for di�erent patterns of dependence. Those include dependencebetween di�erent variables (simple column-wise dependence between, say, zj andzj 0 for j 0 � j), dependence between di�erent periods in time (or, put di�erently,observational unit dependence between, say, zi ;j and zi0;j for i 0 � i) and �nallymixed variable-unit dependence (say between zi;j and zi0;j 0). However, the distri-bution allows for pairwise interactions only. That might prove a formidablerestriction in certain applications, but in our case, the distribution o�ers exactlywhat we need. The parameters describing association can therefore be classi�ed inthree types. We are going to describe three di�erent notations accordingly� The parameters describing pure variable association�ij= �j; 8i�ij ;j 0 = �j;j 0; 8i1. [Khaled, 2005] introduces a model where all the chains are statistically independent.[Khaled, 2005] nevertheless attempts at tackling the dependence in a multivariate system by adding cor-relations between the residuals of several sub-blocks of equations.
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� The parameters describing pure unit association�i;i0j� The parameters describing mixed unit-variable association�i;i 0j;j 0The way each of those parameters is described is through the use of odds ratios.For instance �i;i0j;j 0 can be de�ned as�i;i0j;j 0 = log8><>: P fzij=1; zi0j 0 =1g:Pnzij=0; zi0j 0 =0oPnzij=1; zi0j 0 =0o:Pnzij=0; zi0j 0 =1o9>=>;The probabilities in the log-odds ratios are conditional on the rest being zero.Now we are going to put the parameters. Let us introduce the following sym-metric matrices �=0BB@ �1 �1;2 � �1;m�2 � �m 1CCA
�i;i0 =�i0;i0 =0BBB@ �i;i 01 �i;i01;2 � �i;i01;m�i;i02 
� 
�i;i0m 1CCCAWe can put all those into one big matrix
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Ei;i0 is such that all of its entries are zero except for the (i; i 0)th entry which isequal to one.The joint likelihood of Z is equal toC(	):exp�vec(Z 0)0:	:vec(Z 0)	
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where C(	) is the integration constant that depends on 	.C(	)=0@Xk=12Tm exp�vec(Zk0)0:	:vec(Zk0)	1A�1
We can factor the likelihood so as write it in a form proportional toexpftr[Z 0:Z:�]gYi=1T Yi0� i expftr[Z 0:Ei;i0:Z:�i;i0]gAfter writing the likelihood in that form, we can immediately see that the quanti-ties Z 0:Zand each one of Z 0:Ei;i 0:Zare su�cient statistics for � and each one of the �i;i 0 respectively.2.1 Markov ChainsNow we are going to illustrate the special case of Markov chains. The problemsimpli�es greatly since we need temporal dependence of the �rst order only. Thecontemporaneous dependence between chain j and chain j 0 will be captured by�j;j 0.The markovian dependence between units in each chain is captured by�i;i0j =( �1j if i 0= i+10 otherwiseMixed dependence of the �rst order can also be allowed (i.e. dependence in onechain on past values of other chains)�i;i0j;j 0 =( �1j;j 0 if i 0= i+10 otherwiseTherefore �i;i+1=�1=0BBB@ �11 �11;2 � �11;m�12 
� 
�1m

1CCCA
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The easiest case is, of course, when there is no temporal dependence across dif-ferent chains (i.e. the current value of a given chain does not depend on one-period lagged values of other chains). In that case �1 is diagonal�1=0BBB@ �11 0 � 0�12 
� 
�1m 1CCCAThe case of diagonal �1 will be enough in most circumstances.The matrix containing all parameters can, as a result, been written as	= IT 
�+L1
�1L1=0BBBB@ 0 1 0 � 00 0 1 � 0
 
 � � 
0 0 � 0 10 0 � 0 0
1CCCCAand the likelihood can be written asC(	):expftr[Z 0:Z:�] + tr[Z 0:L1:Z:�1]gwhere Z 0:Z and Z 0:L1:Z are the su�cient statistics for that case.

3 The general modelThe usual markov switching multivariate regression model is8<: yt=xt:�st+ututsN (0;�st)where yt is a 1 � k vector of independent variables, zt is a 1 � q vector of covari-ates and st is a discrete variable that follows a �nite Markov chain. As describedearlier, we will restrict ourselves to the case where st has only two states (i.e., wecan as well model it as a binary variable st 2 f0; 1g). The equation represents amultivariate regression where the parameters �st and �st are state-varying(having a discrete number of possible values). That is, conditionally on each valueof the unobserved st, we simply have a multivariate regression.
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One drawback that one can think of is the fact that st describes the behaviorof all the parameters at the same time. This is highly restrictive because there isno reason why q:k + k:(k+1)2 di�erent parameters should stochastically change inthe same way. Nevertheless, the model is less restrictive than it might seems atthe beginning because one can always expand the di�erent chains describing thebehavior of di�erent parameters into one big chain. However, the number of addi-tional parameters to be estimated can easily explode. Imagine one introducesthree di�erent chains with two states each. A super-chain of eight states will benecessary and that chain will contain 56 parameters to be estimated. The originalthree di�erent chains contained only six parameters to be estimated. Which inturn means that the increase in the number of parameters necessary to model theassociation between the chains is 50. If we decide to model the dependence struc-ture between the three chains through the use of the matrix-variate bernoulli dis-tribution, then we will only need six additional parameters. And if we decide toignore the depdence of a given chain on lagged values of other chains, then thenumber of additional parameters is going to be three. Three parameters is muchless than 50 and this illustrates the highly parsimonious nature of modeling withthe matrix-variate bernoulli distribution instead of the super-chain. Moreover, theestimation with the super-chain might not be possible with all datasets, especiallyin the case where the time series is not very long.[Khaled, 2005] considers in detail several of those aspects. It also considerssome encompassing issues that originate from the introduction of several pro-cesses. However, in that paper, the author assumes that the chains are completelyindependent and attempts to recover some correlations between di�erent sub-blocks of the dependent variables by assuming correlations between the residualsarising from those di�erent sub-blocks. In a sense, our paper is an extension to[Khaled, 2005].Writing the model in the multiple dependent latent chains case is straightfor-ward. We only need to change the subscript of � and � from st (the scalar chainat date t) to zt (the row vector at date t in the matrix Z). Estimation procedureswill vary from model to model because this general framework encompasses anenormous number of di�erent possible parametrizations. Due to the complexnature of the model, it would be convenient to think of the estimation problem ina modular way, in the sense of decomposing the problem into a multitude ofsimple distinct estimation procedures. We will show that this is straightforwardto undertake in a bayesian framework.We shall describe the estimation problem in the next section.3.1 Bayesian EstimationThe bayesian estimation of Markov switching models was introduced by[Albert and Chib, 1993]. Some of the later extensions were given by, amongothers, [Chib, 1996], [Frühwirth-Schnatter, 2001] and [Sims and Zha, 2004a].[Khaled, 2004] gives a a survey on Bayesian approaches to Markov-switching mul-tivariate regressions.Let � represent the parameters in the model, i.e.,�= f�zt;�zt;	;Zg
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We need to put a prior on �. The prior distributions on � and � will be of thematrix-variate normal - inverse wishart distributions. One must note that dif-ferent distributions need to be given on di�erent sub-blocks corresponding to dif-ferent zt;js.We can specify any type of distribution for � and �1 (for instance, matrix-variate normal), beacause, as we shall see, we are going to need a Metropolis-Hastings step in the algorithm.The objectivie of the estimation procedure is to draw a sample of � from theposterior distribution p(�jy) _ p(�):p(y j�) where p(�) is the prior and p(y j�)is the likelihood. Monte Carlo Markov chains can be used to get that sample. Inparticular, a hybrid gibbs sampler with a metropolis-hastings step can be used.This is how a standard estimation procedure can be made1. We begin from an initial value for �, say �0.2. From the iteration m to iteration m + 1 (i.e. we already in possession of adraw �m)a. Conditional on the latent chains Zm, we can classify the dataset inseveral clusters and then undertake usual ways of drawing di�erentsub-blocks of � and � for those clusters.b. Conditional on Zm, we can undertake a metropolis-hastings step forthe estimation of � and �1.We use the product of matrix-variate bernoulli likelihood withthe matrix-variate normal prior on 	.c. Conditional on 	m, �ztm and �ztm, we can compute the proability ofoccuence of each state conditional on the observables and the valuesof the parameters p(ztjyt;	m; �ztm;�ztm) through a recursive �lteringalgorithm. (Extensive details on how to run the recursive �lteringalgorithm can be found in [Kim and Nelson, 1999] or[Krolzig, 1997].)From the density p(ztjyt;	m; �ztm;�ztm), we can draw Zm+1.Our presentation of the algorithm is too abstract. The examples and simulationsof the next section are going to illustrate in detail how to apply the algorithm.4 Some examplesThis section is very incomplete. It is going to be extensively revised in future ver-sions of the paper. In particular, we shall add detailed comments on the estima-tion methodology and some simulations.4.1 A simple exampleWe begin by a very simple example just to illustrate the model. Consideryt=xt:�z1;t+�z2;t:"t"t�N (0; 1)
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� and � depend on two di�erent latent chains z1;t and z2;t that can be dependent.4.2 A multivariate regression model with a di�erent chainunderlying each equation� y1;t y2;t y3;t �=xt:� �1;z1;t �2;z2;t �3;z3;t �+ututsN0B@0;0B@ �1;z1;t2�21 �2;z2;t2�31 �32 �3;z3;t2 1CA1CA
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5 ConclusionOne critique that can be leveled against the paper is the restriction to the two-state model. What is needed is a matrix-variate multinomial distribution for amore general use of the methodology in this paper. This a topic for futureresearch. Since a natural representation of a vector of multinomail variables canbe a matrix of indicator variables coding the states, the matrix-variate bernoullidistribution can in fact be used to model multinomial variables. The ideas aregoing to be further explored by the author in future work.Moreover, due to the big number of possible alternative modelings, automaticselection procedures are of great interest. This might prove a quite intriguing andde�nitely challenging problem for future research.
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