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Abstract  We measure the economic capital stock of money implied by the Divisia monetary aggregate 
service flow, in a manner consistent with asset pricing theory.  Based on Barnett’s [4] definition of the 
economic stock of money, we estimate the expected discounted flow of expenditure on the services of 
monetary assets, where expenditure on monetary services is evaluated at the user costs of the monetary 
components.  We use forecasts based on martingale expectations, asymmetric vector autoregressive 
expectations, and the Bayesian vector autoregressive expectations.  We find the resulting capital-stock index 
to be surprisingly robust to the modeling of expectations.   
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1.  Introduction 
 
 Empirical research in monetary economics commonly has used official central bank measures of 
aggregate money supply. Conventionally, central banks have measured the official monetary aggregates by 
adding up the nominal quantities of components included in the monetary aggregates. The resulting monetary 
aggregate is called the simple sum aggregate or simple sum index (SSI). But the SSI has long been questioned 
as a measure of money stock, because of its disconnect from microeconomic aggregation and index number 
theory.  The simple sum aggregate implicitly assumes that all monetary components are perfect substitutes, 
with all monetary components having equal linear weights.  Since monetary assets began yielding interest 
over half a century ago, with different interest rates paid on different monetary assets, perfect substitutability 
among monetary assets with equal weights has become an unrealistic assumption. 
 A theoretically appropriate alternative to the simple sum aggregate is the Divisia monetary 
aggregate derived by Barnett [2]. By taking into account the different user-cost prices of monetary 
components, the Divisia monetary aggregate permits imperfect substitutability among monetary assets and 
reflects the properly weighted contributions of all monetary components to the economy's flow of monetary 
services. However, the Divisia aggregate measures monetary service flows, not monetary stock. While most 
variables in economic theory are flows, monetary stock is needed for some purposes. For instance, the wealth 
variable in intertemporal Fisherine wealth constraints should be entered as money stock.  Similarly Pigou 
“real-balance” wealth-effects of monetary policy require stock explanatory-variables. The objective of this 
paper is to measure money stock in a manner consistent with the aggregation-theoretic foundations of the 
Divisia service-flow aggregate. We compute the first theory-based economic stock of money not requiring 
the assumption of martingale expectations. 
 Barnett [4] showed that the monetary stock implied by the Divisia flow aggregate is the expected 
discounted monetary-service-flow expenditure, with expenditure on monetary services being evaluated at 
user-cost prices.  Following Barnett, we call the money stock implied by the Divisia monetary service 
flow---the “economic stock of money.”  In addition to its direct derivation from microeconomic theory, the 
economic monetary stock (ESM hereafter) has several attractive properties.  First, the ESM is consistent with 
asset pricing theory.  In particular, the formula for ESM is consistent with valuation of a cash-flow generating 
asset by discounting the flow to present value.  Second, the economic monetary stock provides a general 
capital stock formula that nests the simple sum index and the currency equivalent (CE) index (of Rotemberg 
[16] and Rotemberg, et al [17]) as special cases. In particular, under the assumption of martingale 
expectations, the ESM index reduces to the CE index (Barnett [4]).  With the additional assumption of zero 
return-yield rates for all monetary assets, CE reduces to the simple sum index. 
 The assumptions of zero yield rates and martingale expectations are both highly implausible. We 
make neither of those assumptions.  We compute the ESM using forecasts of the future variables in the 
formula.  Our forecasts are based upon an asymmetric vector autoregressive model (AVAR) and a Bayesian 
vector autoregressive model (BVAR).  For purposes of comparison, we also compute the ESM using actual 
realized future data within sample. This paper compares the estimated ESM with the simple sum index (SSI) 
and the CE index.  We thereby investigate the measurement biases inherent in the SSI and the CE index.  Our 
use of VAR forecasting is part of our measurement procedure, rather than a means of judging policy 
relevance.  Our approach is aggregation-theoretic rather than policy-focused.  But VAR comparisons of 
Divisia and simple sum monetary aggregation for policy purposes do exist.  See Schunk [18]. 
 Use of the economically correct measure for monetary stock can improve the quality of empirical 
research on wealth effects caused by changes in the expected monetary service flow induced by policy shifts.   
 
2.  Microfoundations of Consumer Demand for Money
 2.1. Overview 
 
  In this section we review the theoretical foundations for a representative consumer’s money demand 
under perfect foresight in accordance with Barnett [2]. We first define the variables for period s, where t is the 
current period, and  T is the length of the planning horizon for t ≤ s ≤ t+T: 
 
cs = vector of per capita planned consumption of goods and services, 
ps =  vector of goods and services expected prices and of durable goods expected rental prices, 
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p *
s = the true cost of living index, 

ms = vector of planned real balances of monetary assets with components mis  ( i =1, 2,....,n), 
ris =  the expected nominal holding period yield on monetary asset i, 
Ls = planned labor supply, 
ws = the expected wage rate, 
BBs = planned holdings of the benchmark asset, 
Rs = the expected nominal holding-period yield on the benchmark asset, 
Is = all other sources of  income. 
 
 The benchmark asset is defined to be a pure investment asset providing financial yield Rs but no 
liquidity or other services.  A representative economic agent holds the asset solely as a means of 
accumulating and of transferring wealth among periods. Thus under risk neutrality ([5], section 3), the 
benchmark rate Rs will be the maximum expected holding-period yield in the economy in period s. 
 During period t, let the representative consumer's intertemporal utility function, Ut, be weakly 
separable in the block of each period's consumption of goods and monetary assets, so that an exact monetary 
aggregator function, u,  exists: 
 Ut = U(u(mt), ut+1(mt+1), … ,ut+T(mt+T); v(ct), vt+1(ct+1), … , vt(ct+T); BBt+T).   (2.1) 
The function u is assumed to be linearly homogeneous, which is a sufficient condition in aggregation theory 
for u to serve simultaneously as the monetary asset category utility function and the monetary asset quantity 
aggregator function.   Dual to the category utility function, vs(cs), of non-monetary goods and services, there 
exists true cost of living index,  p * = p (ps

*
s s), which can be used to deflate nominal values to real values during 

period s. 
 Maximization of intertemporal utility is subject to the following budget constraints for s = t,…, t+T: 
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 2.2. User Cost of Money  
 
 Money is a durable good. The cost of using the services of a durable good or asset during one period 
is the user cost price or rental price.  Barnett ([1], [2]) derived the user cost price of the services of monetary 
assets by recursively combining the T+1 multi-period budget constraints, (2.2), into the single discounted 
Fisherine wealth constraint, 
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From that factorization of the intertemporal constraint, we see that the forward user cost of the services of the 
monetary asset mi in period s is  
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where the discount rate for period s is 
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 As a result, the current period nominal user cost of monetary asset mi is   
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while the corresponding real user cost of monetary asset mi is /r
it it tpψ ψ ∗= . 

 
3.  Economic Aggregation and Index Number Theory 
 
 Let tψ = ( 1tψ ,…, ntψ )′, and define total current period expenditure on monetary services during 

period t to be (TE)t = m*
t, where m*

t is the optimized value of mt′ψ t from maximizing (2.1) subject to (2.2).  

Then the exact monetary aggregate, Mt = M(m*
t ) = u(m*

t ), can be tracked without error by the Divisia index 
(Barnett [3]) in the continuous time analog to ((2.1), (2.2)): 
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where ( )
mit it

it TE t
w ψ ∗

=  is the i'th asset's share in expenditure on all monetary assets' service flows at instant of 

time t.  
 In discrete time, the Törnqvist second order approximation to the Divisia index is 
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where , 1 (it it i tw w w −= + ) / 2 .  Equation (3.2) defines the discrete time “Divisia monetary aggregate,” which 
measures the aggregate monetary service flow during period t.  This Törnqvist approximation, (3.2), to the 
continuous time Divisia index, (3.1), is in the class of superlative index numbers defined by Diewert [10] to 
provide a chained quadratic approximation to the continuous time index.  
 
 3.1.  Definition of the Economic Stock of Money under Perfect Foresight 
 
 The economic stock of money (ESM), as defined by Barnett [4] under perfect foresight, follows 
immediately from the manner in which monetary assets are found to enter the derived wealth constraint, (2.3).  
As a result, the formula for the economic stock of money under perfect foresight is 
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The economic stock of money is thereby found to be the discounted present value of expenditure flow on the 
services of all monetary assets, with each asset priced at its user cost.  Let  be the nominal balance of 

monetary asset i in period s, so that .  Using definition (2.5), V
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 A mathematically equivalent alternative form of (3.4) can be derived from quantity and user cost 
flow aggregates, discounted to present value.  Dual to any exact quantity flow aggregate, there exists a unique 
price aggregate.  The price aggregate equals the minimum cost of consuming one unit of the quantity 
aggregate.  Let Ψt = Ψ(ψt) be the nominal user cost aggregate that is dual to the exact, real monetary quantity 
aggregate, Mt.  By Fisher’s factor reversal, the product of the quantity and user cost price aggregate must 
equal expenditure on the components, so that 
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where (TE)s  is total nominal expenditure on the monetary services of all monetary components.  
Alternatively, instead of using real quantities and nominal user costs, we can use nominal quantities and real 
user costs to acquire 
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 Note that equation (3.7) provides a connection between the Divisia aggregate flow index, M(ms), 
and the discounted money stock, Vt.   Also observe that the formula contains a time-varying discount rate.  
 
 3.2.  Extension to Risk 
 
 All of the theory reviewed above assumes perfect foresight.  It has been shown by Barnett [5] and 
Barnett, et al [7] that all of the results on user costs and on Divisia aggregation, including (2.4), (2.6), (3.1), 
and (3.2), carry over to risk neutrality, so long as all random interest rates and prices are replaced by their 
expectations.    Under risk aversion, a beta-type correction for risk aversion is shown in [7] to appear in those 
formulas.  Those derivations did not use the discounted Fisherine wealth constraint, (2.3), but rather were 
produced from the Euler equations that solve the stochastic dynamic programming problem of maximizing 
expected intertemporally-separable utility, subject to the sequence of random flow of funds constraints, 
(2.2).1  Barnett and Wu [8] have extended those results to intertemporal nonseparability.  In this paper, we 
assume risk neutrality.  We introduce the expectations operator, Et, to designate expectations conditional 
upon all information available at current period t. 
 In accordance with consumption-based capital asset pricing theory (see, e.g., Blanchard and Fischer 
[9], p. 292), the general formula for the economic capital stock of money under risk becomes 
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where ξs is the subjectively-discounted intertemporal rate of substitution between consumption of goods in 
current period t and in future period s.  In general, ξs is random and can be correlated with current and future 
values of (TE)s.  Assuming maximization of expected intertemporal utility subject to the sequence of flow of 
funds equations (2.2), Barnett [5] and Barnett et al [7] have derived the relevant Euler equations for  ξs under 
intertemporal separability.  If we further assume risk neutrality, as in [9, p. 294], it follows that 
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which becomes (3.7) under perfect foresight. 

 
 3.3.  CE and Simple Sum Indexes as Special Cases of the ESM 
  3.3.1.  The CE Index 
 

 
1 Under risk, equation (2.3) is a state-contingent random constraint.  Neither (2.3) nor its expectation is used in Bellman’s 
method for solving and is not useful in producing the extension to risk aversion in [5] of [7]. 
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 Rotemberg [16] and Rotemberg, et al [17] introduced the currency equivalent index (CE index), 
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as a flow index under assumptions stronger than needed to derive the Divisia monetary flow index.  But 
Barnett [4] proved that the CE index can be interpreted to be a stock index, rather than a flow index.  In 
particular, he showed that the CE index is a special case of the ESM, (3.9), under the assumption of 
martingale expectations in addition to the assumption of risk neutrality used in deriving (3.9) from (3.8). 
  Following Barnett's proof, assume , , and  follow martingale processes.  Then we can see 
from (3.4), under risk neutrality, that equation (3.9) can be written as 
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so that 
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This shows the CE index is a special case of the economic stock of money, when the conditional expectation 
of the future value of each variable is equal to its current value.   
 From equation (3.11) under martingale expectations, we furthermore can show that the CE index is 
proportional to the Divisia current-period monetary flow aggregate, as follows: 
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  3.3.2.  The SSI Index 
 
 We define the simple sum aggregate, , by SSI

tV
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As a flow index, this index requires that all monetary components are perfect substitutes, so that linear 
aggregation is possible, and furthermore that the coefficients in the resulting linear quantity aggregator 
function are equal for all components.  But we also can acquire that index as a stock index under the 
assumption of martingale expectations, since it then follows that 
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r
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M is the discounted investment yield part of the simple sum aggregate and VCE  is the 

discounted monetary service flow part.  
 Hence the simple sum monetary aggregate, treated as a stock index, is the stock of a joint product, 
consisting of a discounted monetary service flow and a discounted investment yield flow.  For the SSI to be a 
valid as money stock measure, all monetary assets must yield no interest.  Clearly investment yield cannot be 
viewed as a monetary service, or the entire capital stock of the country would have to be counted as part of the 
money stock.  The simple sum monetary aggregates confound together the discounted monetary service flow 
and the non-monetary investment-motivated yield.  The simple sum aggregates will overestimate the actual 
monetary stock by the amount of the discounted non-monetary services. Furthermore, the magnitude of the 
simple sum aggregates’ upward bias will increase, as more interest-bearing monetary assets are introduced 
into the monetary aggregates. 
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 Under martingale expectations and the assumption that all monetary assets yield zero interest, it 
follows that: 
    .                                                                                 (3.16) SSI

t
CE

tt VVV ==
In short, the ESM is the general formula for measuring money stock and fully nests the CE and the SSI as 
special cases.  As financial innovation and deregulation of financial intermediation have progressed, the 
assumption that all monetary assets yield zero interest rates has become increasingly unrealistic.   
 
4.  Measurement of the Economic Stock of Money 
 
 The previous section showed that the economic monetary stock provides a general capital stock 
formula nesting the currency equivalent (CE) index and the simple sum index as special cases.  Each of these 
results requires martingale expectations, and the simple sum result further requires that every monetary asset 
pay a nominal return of zero. This section shows how the ESM can be computed without making either of 
those restrictive assumptions.  Although we make the simplifying assumption of risk neutrality in this paper, 
equation (3.9) remains analytically and empirically challenging.  We propose three methods of 
approximating Vt. The first two linearize the function in terms of expected future variables and the third 
imposes a set of convenient covariance restrictions. 
 
 4.1.  Method 1:  Linearizing around Current Values 
 
 The first method uses a first-order Taylor series expansion of Vt around current values to produce a 
linear approximation in the future benchmark rates, Rs, and future total monetary-services expenditures, (TE)s.  
This procedure converts the non-linear expectations equation into a linear expression that is easier to 
evaluate. 
 First, it is convenient to rewrite Vt as: 
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Then taking the first-order Taylor series expansion around current values of TE and R, we obtain: 
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Linearizing in this fashion is equivalent to approximating Vt around the CE index.  

 This measure of the economic stock of money depends on uncertain future values of the benchmark 
rate and of expenditures on monetary services.  Forecasting models must be used to calculate these future 
values.  Instead of separately forecasting individual components and their respective interest rates, we 
forecast total expenditures on monetary services. This approach reduces the number of variables to forecast 
and reduces the number of parameters in the forecasting models. 

 We use vector autoregression (VAR) models to produce these forecasts.  A VAR with any number of 
lags can be transformed into the VAR(1) form, 1t t−= +y Ay e , by suitably redefining the coefficient matrix, 
A, the residuals, et, and the vector of variables, yt.  In this equation, the vector of variables may include 
current and lagged variables.  Based on this VAR and the assumption that residuals are not serially correlated, 
the optimal forecast of yt+j, given all information at time t, is .  Then the value of the k-th variable in 

vector y expected to occur j periods into the future is obtained by pre-multiplying  by a selection vector 

having a one in the k-th position and a zero in all other locations.  Define this selection vector as .  If 
 is the first element in Y

j
tA y

j
tA y

k
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( )tTE t  and Rt is the second element, then expectations are given as: 
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′= A yδ t  and .  These expressions are used to eliminate expectation terms 
from (4.1). For example, the function of current and expected future monetary expenditures becomes:  
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The terms involving the sum of current and expected future benchmark returns are: 
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Combining results from equations (4.2) and (4.3), we obtain the Method 1 solution for Vt: 
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A significant difference from either the simple sum or the CE index is that this measure of Vt depends upon 
past, as well as current, variables and upon coefficients in the forecasting model. 
 
 4.2.  Method 2:  Martingale Expectations for Only the Benchmark Rate 
 
 Our second method makes the martingale assumption, but only on the benchmark rate, while 
continuing to use VARs to forecast total monetary expenditures.  This approach lies somewhere between 
Method 1, which uses a VAR to forecast both variables, and the CE index, which uses only current values in 
forecasting both variables.  Assuming tst RRE =  for all s t≥  yields: 
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With this formula, V is linear in current and expected future values of TE and is calculated in equation (4.2). 
Note that Methods 1 and 2 yield essentially the same measure of Vt, if changes in the benchmark rate are 
unforecastable. If, in addition, changes in total monetary expenditures are unforecastable, then the CE index, 
Method 1, and Method 2 all should obtain very similar measures. 
 
 4.3.  Method 3:  Setting Covariances to Zero 
 
 Method 3 assumes that the covariance between ( )sTE  and the benchmark rate at any time is zero 
and all covariances between benchmark rates at different points in time are zero.2  Then the expression for Vt 
becomes: 
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where the last expression is obtained from the VAR forecasts, and where the expected discount factor is 

 1
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 We use a finite approximation to solve the infinite sums in each of the three methods (equations 
(4.2), (4.4), and (4.6)).  For example, the finite sum approximation for Method 3 is 

                                                           
2 The same results can be acquired from the nearly equivalent Assumption 3 of Barnett, et al [7]. 
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for any value of J > t.  Taking the limit as J goes to infinity in equation (4.7) yields equation (4.6).  Having 
expectations in the numerator and denominator rules out a simple closed-form solution.3  An alternative way 
of writing equation (4.7) is 

 
[( ) ]

( ) ( 1) t J
t t

J

E TE
V J V J

ρ
= − + .        (4. 8) 

Starting with Vt(0)=(TE)t, this equation builds up the measure of Vt recursively.  Our approach is to let J 
increase until we get the convergence, ( ) ( 1) 0t tV J V J− − → , with the convergence criterion 

 7( ) ( 1)
10

( 1)
t t

t

V J V J
V J

−− −
<

−
.        (4.9) 

  
5.  Forecasting Models 
 
 To construct the forecasts needed for calculating each approximation to the ESM, we consider three 
types of vector autoregressions:  unrestricted , asymmetric, and Bayesian VAR.  Because of Bayesian VAR 
models’  prior degree of success in forecasting economic data, we emphasize those results within the body of 
the paper, and provide results with the other two approaches in footnotes.  Since robustness across forecasting 
methods is our primary result, rather than our advocacy of any particular forecasting model, we do view the 
unrestricted and asymmetric VAR results to be relevant to understanding the findings of this paper. 
 
 5.1.  Unrestricted VARs 
 
 The unrestricted vector autoregressive model (UVAR) pioneered by Sims [19] is a standard model 
in the literature.  Sims developed the VAR approach as a tool for allowing historical data to summarize the 
dynamic interactions among time series variables.  A hallmark feature of any UVAR is that it has the same 
number of lags of each variable in each equation.  UVARs tend to obtain a relatively large number of 
statistically insignificant coefficients.  As a result, there are concerns about forecasting with UVAR models.  
Various approaches exist for solving this overparameterization problem. 
 
 5.2.  Asymmetric VARs 
 
 One way to reduce the number of parameters in the VAR is to eliminate the common lag assumption. 
Keating ([13], [14]), for example, developed the asymmetric VAR (AVAR), which is a VAR allowing lag 
lengths to vary across variables in the model.  The AVAR and UVAR models share a common trait:  each 
equation in the model has exactly the same set of explanatory variables without cross equation restrictions.  
Consequently, AVARs and UVARs are consistently and efficiently estimated by ordinary least squares under 
standard regularity conditions. However, an AVAR model is expected to have fewer insignificant coefficients, 
and thereby may obtain smaller out-of-sample forecast errors than the UVAR.  An AVAR lag specification 
can be chosen by an information criterion or by any other methods capable of testing non-nested alternatives. 
 
 5.3.  Bayesian VARs 
 
 Another response to overparameterization in UVAR models is the Bayesian approach of Doan, et al 
[11] and Litterman [15].  A Bayesian VAR (BVAR) model avoids exclusion restrictions, such as the different 
lag lengths permitted under the AVAR approach.  Instead, BVAR models assume each VAR coefficient is 

                                                           
3 Note that we can obtain closed-form expressions for Methods 1 and 2, if all roots of A/(1 + Rt) are outside the unit circle.  
The finite approximations to infinite sums in the paper also require that condition on roots. These finite approximations 
will be nearly the same as the closed form solutions, because the convergence criterion, equation (4.9), is very small. 
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drawn from a normal distribution and impose restrictions on the mean and the variance of each of those 
distributions.   
 The Minnesota (or Litterman) prior is based on the empirical evidence that most economic variables 
appear to have a unit root. Thus each coefficient is given a prior mean of zero, except for the coefficient on 
the first lag of the dependent variable in each equation.  That coefficient has a mean of one. Coefficients on 
shorter lags are given larger prior variances than the coefficients on longer lags.  This choice of prior 
variances is based on the reasonable assumption that recent data are likely to be more informative than older 
data in explaining current outcomes, so recent data should be permitted to dominate prior views about short 
lag parameters.  This approach also allows different priors to be imposed on different variables.  For example, 
if a certain variable is thought to have more explanatory power than other variables, the prior variance 
associated with that variable would be made larger than for the other variables to permit the information in 
the data to dominate the prior.  Flat (non-informative) priors are assumed for all deterministic variables. 
 
6.  Model Specification  
 6.1.  Data Description  
 
 The models in this paper use U.S. data for total expenditure on monetary services (TE), the 
benchmark interest rate (BENCH), industrial production (INDPRO), and the consumer price index (CPI). 
Relative to the notation in section (2.1), BENCHt = Rt and CPIt = p *

t , although the latter equality is an index 
number theoretic approximation to the exact true cost of living index of economic theory.  Data are monthly 
and seasonally adjusted, covering the period from 1959:1 through 2004:3.  All data were obtained from the 
Federal Reserve Economic Database (FRED), published by the Federal Reserve Bank of St. Louis.4  The 
initial choice of output and price was based on a priori beliefs regarding those variables most likely to help 
forecast interest rates and monetary-services expenditures.  Those prior beliefs were then supported by 
statistical tests for marginal predictive content. We also considered other variables in the specification search, 
but those additional variables did not improve the forecasts and are therefore omitted from the final 
equations. 
 The choice of benchmark rate can have important consequences for the ESM or the CE index.  
Rotemberg, et al [17] used the commercial paper rate and found that their CE index was extremely volatile. 
Our benchmark rate path is the upper envelope over the paths of Moody's BAA bond rate and the interest 
rates of all of the components of the Federal Reserve’s broadest aggregate.  The resulting benchmark rate is 
not as volatile as the commercial paper rate. 
 In each VAR , we control for the effects of exogenous oil supply shocks by including dummy 
variables for oil shock dates.  We used the dates identified by Hoover, et al [12].5  To model the dynamic 
response of the economy to oil price shocks, the VAR included current and seven lags of the oil shock dummy 
variables.  To appropriately specify the forecasting models, we needed answers to several important 
questions. Are the data nonstationary?  How many lags should the VAR models have?  What values should be 
given to the hyperparameters that are used in constructing priors in the BVAR approach? 
 
 6.2.  Nonstationarity and Data Transformation 
 
 We use standard unit root tests to answer questions about stationarity.  Table 1 reports ρ-test results 
from augmented Dickey-Fuller regressions along with results from Phillips-Perron (PP) Z-tests. 
 

                                                           
4 At each level of aggregation, j, total expenditure on the monetary services, ( ) j

tTE , was computed from the first 
equality in equation (3.6).  The data source details and the list of monetary assets included at each level of aggregation can 
be found in [6], which contains the details of the design and data, but not the empirical results that are in this paper. 
5 Hoover and Perez’s (1994) shock dates are 1969:3, 1970:12, 1974:1, 1978:3, 1979:9, and 1981:2.  
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Table 1.  Dickey-Fuller Tests (ρ) and Phillips-Perron Tests (Z) for Unit Roots 

            Trend + Constant                Constant Only                          No Constant  
Variable lags  ADF

τρ   ( )PPZ τρ lags  ADF
μρ   ( )PPZ μρ  Lags    ADFρ ( )PPZ ρ   

Log 1( )mTE  2 -5.563 -6.46 2 -1.714 -1.7694 2 0.649 0.643 

Log 2( )mTE  2 -18.236 -8.535 2 -0.445 -1.873 2 1.405 0.676 

Log 3( )mTE  2 -12.683 -8.996 2 0.141 -1.711 2 1.732 0.716 
BENCH 8 -4.57 -5.759 8 -5.422 -6.497 8 -0.399 -0.507 
log CPI 9 -9.657 -0.301 9 -0.666 -0.169 9 0.406 0.418 
log INDPRO 3 -9.984 -7.872 3 -0.966 -1.180 3 0.312 0.329 
Notes: The lag was selected using SIC information criterion. 
 
In all but one of these cases, the test fails to reject the null hypothesis of unit root at the 10% significance level. 
The exception is the ADF test on total monetary expenditures for M2, but even in this case we fail to reject at 
the 5% level.  Therefore, we conclude that each variable has a unit root.  We take the log transform of all 
variables, except for interest rates.  Based on the unit root evidence, we then take the first difference of each 
transformed series, when estimating UVAR and AVAR models.  The BVAR models are estimated in the log 
levels, because our prior assumptions allow for possible unit roots.  Since the benchmark rate is an interest 
rate, those levels and changes were not transformed by logarithm in any of the models. 
 
 6.3.  Selection of Lag Length 
 
 Likelihood ratio tests, modified by the small-sample correction of Sims 18], are used to select the 
lags in unrestricted VARs.  We used that same lag length for a Bayesian VAR.  We considered a maximum lag 
of 24 and sequentially tested for smaller lags until a test was significant at the 1 percent level.  This procedure 
selected 13 lags.  We used the Akaike (AIC) and Schwarz (SIC) information criteria to select lags in the 
AVAR models, while searching over all models with up to a maximum of 13 lags for each variable.  With 4 
variables and up to 13 lags, there were 134 possible AVAR specifications from which to choose.  For the 
AVAR-M1 model at the M1 level of aggregation, the AIC chose six lags of  three lag of  1log ( ) ,mTEΔ

log INDPROΔ , six lags of   , and six lags of  CPIlogΔ BENCHΔ  , while for the AVAR-M2 model at the 
M2 level of aggregation and the AVAR-M3 model at the M3 level of aggregation,  AIC selected six lags of  

in the AVAR-M2 model, six lags of  in the AVAR-M3 model, three lags of  2log ( )mTEΔ 3log ( )mTEΔ
log INDPROΔ , six lags of , and seven lags of CPIlogΔ BENCHΔ .  The notation j designates the level of 

aggregation of Mj, where j = 1, 2, 3.  The SIC chose 1 or 2 month lags for all variables in each model.  Since 
these lag lengths are insufficient to capture dynamics, we used only AVAR models selected by the AIC. 
 
 6.4.  Criterion for Evaluation of Forecasting Performance  
 
 Forecasts are assessed using the following procedure.  Estimate a VAR with the sample from 1959:1 
to 1990:12 and forecast for each month up to 48 months ahead.  Then add the next month’s data to the sample, 
estimate a VAR, and forecast up to 48 periods ahead.  Continue adding a month, re-estimating the VAR, and 
forecasting until we can no longer make the 48-month-ahead forecast, at which point we forecast ahead by as 
many observations as remain.  Since our full sample ends in 2004:3, our sequential procedure begins 
forecasting a declining number of periods ahead at 2000:4, until no more forward observations remain within 
the sample for forecasting. 
 Then we use root mean squared error (RMSE) and Theil's U statistic to evaluate forecasting models. 
If  is the value of a variable at t+h and t hy + ˆt hy +  is the forecast of this variable at time t, then  

 1 2

1
ˆ (model) ( )

Th
h t h t h

t
RMSE T y y−

+ +
=

= −∑    
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=

∑ −
= =
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,    (6.1) 

where  is the forecast horizon and Th h is the total number of forecasts computed for the forecast horizon h. 
Theil's U statistic compares the RMSE for a model’s forecast errors with the RMSE from a no-change 
forecast.  When a U statistic is less than one, the model forecasts better than a no-change forecast.  If a U 
statistic exceeds one, the naive no-change forecast outperforms the model.  Note that a no-change forecast is 
analogous to the martingale expectations assumption used by Barnett [4] to motivate the CE index as a stock 
index.  Thus when U-statistics are less than 1, our approximations are expected to be more accurate measures 
of the ESM than the CE index. 
 
 6.5.  Specification of Priors 
 
 In estimating the BVAR, the first step is to search for the Litterman [15] prior’s hyperparameters, γ, 
d, and W,  that can minimize out-of-sample forecast errors.  The criterion function, U , used in selecting the 
priors is set to be the weighted average of the Theil U statistics  for one month-ahead to 24 months-ahead 
forecasts.  The weights are the number of forecasts for each forecast horizon divided by the total number of 
forecasts for all forecast horizons during a given period.  The hyperparameters are γ = measure of overall 
tightness, d = the lag decay parameter, and W = [wij], where wij = relative tightness, defined to be the tightness 
on variable j in equation i relative to variable i.  In the literature on this BVAR approach, the parameter γ  is 
usually equal to the standard deviation of the parameter of the first own lag in each equation in the VAR.  The 
parameters γ  and d are scalars that are constant across equations in the specification.  For more formal 
definitions of parameters and details of the BVAR specification, see sections 5.3 and 6.5 of Barnett, Chae, 
and Keating (2005).6

 After many experiments, we decided to estimate two sets of priors by minimizing the criterion 
function over two different periods (1989:1-1990:12, 2000:1-2001:12).   With starting periods in the range 
1991:1 to 2001:12 and 2002:1 to 2004:3, respectively, we applied the priors in generating forecasts for up to 
200 steps ahead.7  The reason we select two sets of priors for two different periods is that the best priors 
selected on the basis of a certain period may not necessarily be optimal for far beyond that period.  Forecast 
performance is sensitive to the priors. The priors were selected by searching over the arguments (γ, W, d) to 
minimize the following objective function: 

 
2 24 2

1 1 1
( , , ) ,h ih i

i h i
Min U d U Uγ α

= = =
= =∑ ∑ ∑W       (6.2) 

where the  i = 1,2 subscript indexes the two variables, total monetary-services expenditure and benchmark 
rate,  h is forecast step,  is Theil's U statistic for variable i 's -step ahead forecast,ihU h kh

h Kα =  is the 

weight for each forecast step h, and  iU  =  is the weighted average of Theil's U statistics for 

variable i’s 1-month-ahead to 24-months-ahead forecasts during  the evaluation period.

ihh
h

Uα∑
=

24

1
8  The variable kh is 

                                                           
6Alternatively see Littermann (1986) regarding the “Litterman prior.” 
7Although we do not consider more than 48 step-ahead forecasts to be meaningful in comparing models, we needed more 
than 48 step-ahead forecasts to seek convergence of equation (4.9).  We generated the 200 step ahead forecasts to assure 
that we would have enough to attain convergence of (4.9).  But for purposes of evaluating forecast performance, we used 
no more than 48 step-ahead forecasts.  
8In principle, there could be advantages to selecting an objective function that is directly derivable from the ESM formula.  
But in choosing equation (6.2), we had the more modest objective of minimizing forecast errors.  Regarding the limitation 
to 24 step-ahead forecasts for this purpose, we would have preferred to have used 48 step-ahead forecasts, but data 
limitations prevented us from doing so.  We forecasted 1989:1 - 1990:12, after using data up to 1988:12 to estimate the 
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the number of times that the h -step ahead forecast has been computed during the evaluation period, and 

 is the total number of times that all forecasts for 1 to 24 months ahead  have been computed during 

the evaluation period.

h
h

kK
24

1=
∑=

9  
 The criterion function (6.2) is an average of the accumulated Theil U statistics for all forecasts 
during the evaluation period.  The number of forecasts, kh, at each forecast step decreases, as the forecast 
steps become longer during the evaluation period.  Hence, the number of forecast statistics for shorter-step 
horizons,  relative to that of all step-horizons, plays a role as a weight, in computing average Theil U statistics 
for all forecast-step horizons in the criterion function.  In constructing the criterion function, more weight is 
thereby put on shorter forecast steps than longer ones.  Forecasts of total monetary-services expenditure and 
of the benchmark rate will enter the formula for the discounted economic money stock.   As expected from 
the flow discounting, the weight on shorter forecast steps will be heavier than on longer ones, since forecasts 
for short horizons will have the heaviest impact in determining the discounted economic stock of money. 
 Our criterion function includes U statistics for only total monetary-services expenditure and the 
benchmark rate, instead of considering all variables in the VAR, since we are forecasting only those two 
variables.   We start with a symmetric prior by setting the same values for relative tightness, wij, to all the 
off-diagonal variables of W with the diagonal elements normalized to equal 1.0, and then relax the prior to 
allow for more general interactions among the variables. The search for the optimizing hyperparameters was 
conducted using the genetic algorithm optimization method. 
 For notational convenience, we will name the models according to the level of aggregation: 
UVAR-M1, UVAR-M2, and UVAR-M3 are unrestricted VAR models, with the total expenditure variable 
being on the services of the monetary assets that are included in M1, M2 and M3, respectively.  Analogously   
AVAR-M1, AVAR-M2, and AVAR-M3 are the asymmetric VAR model, with the total expenditure variable 
being on the services of monetary assets that are included in M1, M2 and M3, respectively;  while BVAR-M1, 
BVAR-M2, and BVAR-M3 are the Bayesian VAR model, with total expenditure being on the services of 
monetary assets that are included in M1, M2 and M3, respectively. 
 When we searched for symmetric priors by minimizing the criterion function over two different 
periods (1989:1-1990:12, 2000:1-2001:12), we found no symmetric prior that produced weighted average U 
statistics for the benchmark rate that were less than one in all three BVAR models for the period 
1989:1-1990:12.  Hence, we then searched for general priors to optimize the criterion function.  For total 
monetary-services expenditure and for the benchmark rate, the best general priors10 yield Theil U statistics 
that are less than one for all models.  Tables 2 and 3 show how much the weighted average of Theil's U 
statistics, under the general prior specification, have improved, compared to that under the symmetric prior.  
In the tables, the weighted average iU  has subscript i = 1 for total expenditure and i = 2 for benchmark rate.  

Table 2.  Weighted Average of Theil's U under Symmetric Priors 

BVAR-M1 
     1U  

BVAR-M1 
     2U  

BVAR-M2 
      1U  

BVAR-M2 
     2U  

BVAR-M3 
      1U  

BVAR-M3 
     2U  Period for  

( )Min U  
   1( )mTE  BENCH     2( )mTE  BENCH     3( )mTE  BENCH 

1989:1-1990:12 0.8405 1.07944 0.950 1.079 0.935 1.079 
2000:1-2001:12 0.8900 0.78016 0.883 0.788 0.891 0.787 

 

                                                                                                                                                                             
priors.  The split of the sample between observations needed for estimating the priors and observations used in forecast 
evaluation prevented forecast evaluation for 48 step-ahead forecasts.  If we had split the sample earlier, there would not 
have been enough observations available for the estimation of priors. 
9  For instance, when h = 1, 2,….,24, and if evaluation period is 24 months, then k1 is 24, k2 is 23,…. , and k24 is 1. 
10 We do not report the selected priors here. Interested readers can see the complete set of priors in [6]. 
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Table 3.  Weighted Average of Theil's U under General Priors 

BVAR-M1 
      1U  

BVAR-M1 
      2U  

BVAR-M2 
       1U  

BVAR-M2 
      2U  

BVAR-M3 
       1U  

BVAR-M3 
      2U  Period for  

( )Min U   
    1( )mTE  BENCH      2( )mTE  BENCH     3( )mTE   BENCH 

1989:1-1990:12 0.80442 0.89229 0.90 0.898 0.877 0.897 
2000:1-2001:12 0.88178 0.75825 0.798 0.76 0.763 0.772 

 
 
7.  Empirical Results: Forecasting Performance and Evaluation 
 
 We generated forecast using the general priors selected in section 6.5.  The accuracy of 
out-of-sample forecasts for 1991:1-2004:3 was evaluated based on the average of Theil's U statistics for 1 to 
48 month-ahead forecasts.  Table A1 in the appendix reports out-of-sample forecast performance statistics for 
UVAR and AVAR models.11   

 

Table 4. Out-of Sample Forecast Performance Statistics: BVAR Model 

  BVAR-M1   BVAR-M2                BVAR-M3 
        1U        2U          1U        2U          1U        2U     Evaluation 

      Period      1( )mTE   BENCH     2( )mTE   BENCH     3( )mTE  BENCH 
1991:1-2001:12 0.928 0.868 0.936 0.864 0.889 0.862 
1991:1-1995:12 0.759 0.819 1.02 0.815 1.09 0.816 
1996:1-2001:12 0.816 0.859 0.838 0.849 0.741 0.847 
2002:1-2004:3 1.278 0.833 1.189 0.824 1.289 0.844 

                                                           

m mTE TE

11 Those performance statistics are based on the average of Theil's U statistics for 1 to 48 step-ahead forecast errors over 
the period 1991:1 to 2004:3.  The results are also reported for sub-samples 1991:1-1995:12, 1996:1-2001:12, and 
2002:1-2004:3, since forecasting performance may depend on sample period.  In all three AVARs (AVAR-M1, 
AVAR-M2, AVAR-M3) and three UVARs (UVAR-M1, UVAR-M2, UVAR-M3), the averages of Theil U statistics for 

   and for the benchmark rate are significantly less than one over the full sample periods and 
over the sub-sample periods. Hence, forecasts of total expenditure and benchmark rate based on AVARs and UVARs are 
more accurate than martingale no-change forecasts.  Comparing performances of AVARs relative to those of  UVARs in 
forecasting benchmark rate, with average Theil statistics of 0.737 for AVAR-M1, 0.738 for AVAR-M2, and 0.738 for 
AVAR-M3, we find that AVARs perform slightly better than the UVARs counterparts over all sample periods except for 
the third sub-period 2002:1-2004:3, during which UVAR-M1 and UVAR-M2 outperform the AVAR counterparts.  In 

addition, the average Theil's U statistics for ,  and   from AVARs are also less than those from 
UVARs over most of the sample periods, but are only marginally less. 
 To examine forecasting performance for various forecasting horizons, we also computed the average Theil's U 
statistics for every additional 6 month horizon.  We do not report the average Theil's U statistics for every additional 6 
month horizon, but interested readers can find those statistics in [6].The results indicate that over short horizons, 
AVAR-M models improve relative to the UVAR-M models.  In addition, in both AVARs and UVARs, the average 
Theil's U statistics over the shorter horizons are greater than those over the longer horizons, so that forecasting accuracy 
of AVARs and UVARs improves relative to random walk forecasting model over the longer horizons. 

1( ) ,mTE 2( ) ,mTE 3( )mTE

1 2( ) , ( ) 3( )mTE

 We also report in-sample forecast statistics over 1960:2-1990:12 in table 5.  In contrast with out-of-sample 
forecast performance, in-sample forecast statistics show that UVARs marginally outperform AVARs in terms of average 

Theil's U statistics for  , and for the benchmark rate.  These in-sample results are to be 
expected, since AVAR is nested within UVAR as a special case. 

1 2( ) , ( ) ,m mTE TE 3( )mTE
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Table 5. Within-Sample Forecast Performance Statistics: Evaluation Period (1960:2-1990:12) 

                   UVAR-M1                    AVAR-M1                  BVAR-M1 

         (TE) m1       BENCH        (TE) m1      BENCH         (TE) m1    BENCH 

          1U          2U            1U            2U             1U          2U  
0.665 0.650 0.670 0.658 0.694 0.763 
                   UVAR-M2                      AVAR-M2                   BVAR-M2 

       2( )mTE    BENCH         2( )mTE     BENCH          2( )mTE     BENCH 
0.678 0.648 0.684 0.654 0.637 0.758 
                   UVAR-M3                    AVAR-M3                    BVAR-M3 

       3( )mTE     BENCH        3( )mTE      BENCH        3( )mTE     BENCH 
0.681 0.648 0.687 0.655 0.634 0.759 

 
 Table 4 reports forecast performance for the BVAR models.  We estimate BVARs with two sets of 
general priors for two different periods, 1991:1-2001:12 and 2002:-2004:3, respectively, since the accuracy 
of the forecasts is sensitive to the specification of the priors and the optimal prior is likely to depend on 
sample period. The set of priors obtained by minimizing the weighted average of U values for 1989:1 to 
1990:12 was used to generate forecasts for the period of 1991:1 to 2001:12, and the other set of priors 
obtained from 2000:1 to 2001:12 was applied to compute forecasts for the period of 2002:1 to 2004:3.12

 Over the sample period 1991:1 to 2001:12, forecasts of  ,  and  from 

BVARs are better than the corresponding no-change forecasts.  But forecast performances for  and 

 are unimpressive, since the weighted average U statistics are not considerably less than one.  Over 
the period 2002:1 to 2004:3, forecasts of  from the BVAR models are even worse than the no-change 
forecasts, with weighted average U statistics of 1.28, 1.19, and 1.29 for   and , 
respectively.  On the other hand, out-of sample forecasts of the benchmark rate from BVAR-M1, BVAR-M2, 
and BVAR-M3 are consistently and substantially better than the no-change forecast in all sample periods.  

1( ) ,mTE 2( )mTE 3( )mTE
1( )mTE

2( )mTE
TEs

1( ) ,mTE 2( )mTE ,

                                                          

3( )mTE

 In the within-sample forecast performances reported in table 5,  the BVARs offer a considerable 
improvement relative to the naive model, with average Theil U statistics of 0.69, 0.63, and 0.63 for  

, and  respectively.  In-sample forecast of the benchmark rate from BVARs is also much 
better than the no-change forecast.  Based on forecast performance results, we chose AVAR and BVAR to 
generate forecasts of total expenditure and benchmark rate.

1( ) ,mTE
2( )mTE 3( )mTE

13   
 It is worthwhile to note the gains from BVAR forecasting. We have estimated BVARs in log level, 
and evaluated forecast performance based on Theil's U statistic.  In computing the ESM, forecasts of 
variables in the ESM formula that outperform no-change forecasts of those variables should permit more 
accurate measures of ESM than available from the martingale forecast assumption implied by the CE index. 
To facilitate direct comparison with the CE index, we therefore compute the economic stock of money using 
BVAR forecasts of total expenditure and the benchmark rate. 
 

 
12The time frame is as follows: 
1959:1-1988:12: Initial estimation 
1989:1-1990:12: Specify a set of priors by minimizing criterion function over this period. 
1991:1-2001:12: Generate forecasts and evaluate out-of-sample forecast performance. 
2000:1-2001:12: Specify a set of priors by minimizing criterion function over this period. 
2002:1-2003:12: Generate forecasts and evaluate out-of-sample forecast performance. 
13 The reason that we chose AVAR over UVAR is that the AVAR models outperformed their UVAR counterparts in 
out-of-sample forecast.  Although UVAR models marginally outperformed their AVAR counterparts at in-sample 
forecasting, we are more interested in out-of-sample forecast performance. 

 14



8.  Empirical Results: Estimation of Money Stock 
 8.1.  Economic Stock of Money Computed using Actual Data 
 

 First, we assume perfect foresight and compute the ESM using actual future data for 
monetary-services expenditure and the benchmark asset's rate of return.  We use the formula for  given by 
equation 3.7.  Although future values cannot be known ahead of time, the ESM computed using actual future 
data provides a useful yardstick in assessing the ESM computed using forecasted values.  With actual data 
available through 2004:3, we were able to compute and display the economic stock of money up to 1991:9.

tV

14  
To facilitate comparisons among different money stock measures, all figures contain simple-sum aggregates 
and the CE aggregates, as well as the economic stock aggregates.  For the CE index, we computed not only 
the contemporaneous CE index that uses the current weight, 

t

itt
R

rR − , for each asset, but also the smoothed CE 

index.  In smoothing the volatile contemporaneous CE index, Rotemberg, et al [17] used centered moving 
averages of the weights.  Following the same smoothing procedure, we computed smoothed CE index by 
replacing weights of monetary assets with 13-month centered moving averages of the weights. At the start 
and end of the sample, when symmetric centered moving averages are not available, asymmetric uncentered 
moving averages of the weights were used.  

 Figures 1, 2, and 3 show ESM1_actual, ESM2_actual, and ESM3_actual, respectively, from 1959:1 
through 1991:9, where ESM1_actual, ESM2_actual, and ESM3_actual denote the ESM computed using 
actual future data at each level of aggregation, while CE_mov13 denotes the CE aggregates computed using 
13-month centered moving averages of the weights. 

 
 

Figure 1:  Using Actual Current and Future Data 
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Note:  ESM1_actual:  Economic stock of M1 computed using actual data 
           CEM1_Mov13:  Smoothed CEM1, in which weights are replaced by 13 month centered moving average 
           CEM1:  Contemporaneous CEM1; SSM1: Simple-sum M1 
 

                                                           
14 The stopping point was determined by the convergence criterion in equation (4.9). 
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Figure 2:  Using Actual Current and Future Data 
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Note:  ESM2_actual:  Economic stock of M2 computed using actual data 
           CEM2_Mov13:  Smoothed CEM2, in which weights are replaced by 13 month centered moving average 
           CEM2:  Contemporaneous CEM2; SSM2: Simple-sum M2 

 

Figure 3:  Using Actual Current and Future Data 
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Note:  ESM3_actual:  Economic stock of M3 computed using actual data 
           CEM3_Mov13:  Smoothed CEM3, in which weights are replaced by 13 month centered moving average. 
           CEM3:  Contemporaneous CEM3  
           SSM3:  Simple-sum M3 
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Figure 4:  Using Actual Future Data 
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 Note:  Investment share was computed by ((SSI-V)/(SSI))*100 where V is the ESM_actual. 
 
 The figures show that the SSIM1, SSIM2, and SSIM3 are always greater than their ESM_actual 
counterparts.  The vertical gap between the ESM and the simple sum index can be viewed as the error in the 
SSI arising from the SSI’s failure to remove the investment motive from the discounted stock of money, as 
shown by equation (3.15).  Figure 4 presents the size of the errors of the SSI aggregates in percent.  As 
demonstrated by equation (3.15), the SSI fails to recognize the joint product nature of the money stock, when 
money yields interest.15

 On the other hand, the gap between the ESM and the CE index represents the bias of the CE index 
from its implicit assumption of martingale expectations.  Figures 1, 2, and 3 show that the CE index 
underestimates their ESM counterparts almost always, except for CEM2 and CEM3 during the late 1980s.  
However, the gaps between the CE index and the ESM_actual counterparts are very small, particularly early 
in the sample period.  
 To examine quantitatively the errors in the SSI and the CE index, we decomposed the SSI, as a joint 
product, into its monetary services share and non-monetary services (discounted investment yield) share.  
Table 6 reports monetary services share percentage and investment share percentage for the SSI relative to 
the economic money stock and CE aggregate, which both remove the investment motive from the discounted 
flow.   

 
Table 6.  Partition of Simple-Sum Aggregates into Monetary Services and Non-Monetary Services 

Share (Investment Share), Sample Period : 1959:1-1991:9 

                         V          Monetary Share of SSI  Investment Share of SSI 
ESM1_actual 74.68 % 25.32 % 
ESM2_actual 58.7 % 41.3 % 
ESM3_actual 55.14 % 44.86 % 
CEM1 70.32 % 29.68 % 
CEM2 53.98 % 46.02 % 
CEM3 50.56 % 49.44 % 

Note:  Sample Period is 1959:1-1991:9.  Money stock  V  was computed using actual data available up to 2004:3.  
 

                                                           
15 The size of that error in SSIM1 is relatively small, but the errors increase as the level of money aggregation broadens, 
since the broader aggregates introduce more discounted investment-motivated yield into the simple sum stock. 
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 We compute the monetary services share as 100(ESM/SSI) or 100(CE/SSI) and the investment 
share as 100(SSI-ESM) /SSI or 100(SSI-CE) /SSI.  Monetary services share and investment share were 
computed by averaging 100(V/SSI) and 100(SSI-V) /SSI over the sample period, respectively.  Over the 
sample period from 1959:1 to 1991:9, the decomposition relative to the ESM_actual suggests that the simple 
sum M1 index contains non-monetary services share of 25.32%, while the simple sum M2 and M3 indexes 
include non-monetary services of 41.3% and 44.86%, respectively.  The decomposition of the SSI based on 
the CE index suggests that, over the same sample period, SSIM1, SSIM2, and SSIM3 contain investment 
shares of 29.68 %, 46.02 %, and 49.44 %, respectively.   These percentages are slightly greater than those 
implied by the ESM_actual data.  We thereby find that when the CE index is used as the money stock measure, 
the CE aggregates underestimate economic money stock by 4.36% of SSIM1, 4.72% of SSIM2, and 4.58% of 
SSIM3.  However, these biases in the CE index are relatively small, compared to the biases of 25.32%, 41.3%, 
and 44.86% contained within SSI index.  
 
8.2.  Economic Stock of Money Based on BVAR Forecasts 
 
 In the previous section, the ESM was computed assuming perfect knowledge of the future.  In this 
section, we compute the ESM using forecasts of the benchmark rate and monetary-services expenditure.  The 
forecasts we report in this paper were generated using the BVAR, but to investigate robustness we also used 
AVAR models.  The models were first estimated using initial data from 1959:1 through 1990:12, and 
forecasts were then computed for up to 200 steps ahead.   In each month from 1991:1 through 2004:3, the 
coefficients are updated sequentially by adding one more observation.  Based on the resulting updated 
coefficients, a series of 200-step-ahead forecasts are computed.  For the period 1959:1 to 1990:12 over which 
we estimated the forecasting models, we generated in-sample forecasts.  For the period from 1991:1 to 
2004:3, we generated out-of-sample forecasts.   
 For the period 2002:1 to 2004:3, the BVAR models produced less accurate forecasts for TEs than a 
“naive” martingale model.  As a result, for that period we replaced those BVAR total-expenditure forecasts 
with the martingale forecast.  Even in this case, the ESM should contain less error than the CE index, since we 
use a better forecast of the benchmark rate.  The CE index uses the martingale forecast for both the TEs and 
the benchmark rate.   To compute the ESM, we use the three methods proposed in equations (4.4), (4.5), and 
(4.6), which we call Methods 1, 2, and 3, respectively.  The convergence criterion, used with all three 
methods, is provided by equation (4.9).  
 
  8.2.1. ESM Computed Using Forecasts from BVAR 
 
 Figures 5, 6, and 7 present ESM1, ESM2, and ESM3, computed using forecasts from the BVAR 
model with Method 1.  The ESM computed using forecasts from BVAR with Method 1 is denoted by 
ESM_mtd1_BVAR.  Figure 5 shows that ESM1_mtd1_BVAR is very close to ESM1_actual, especially in the 
early sample period. Observing the period after 1980, when the divergence of CEM1 from ESM1_actual 
begins to increase, we see that ESM1_mtd1_BVAR deviates less from ESM1_actual than the CEM1 does.  
However, during the same period, ESM2_mtd1_BVAR and ESM3_mtd1_BVAR are not much different from 
CEM2 and CEM3, in terms of their gaps with ESM2_actual and ESM3_actual, respectively. 
 The errors in SSI over time are measured by the investment shares in figure 8.  In comparing 
ESM_mtd1_BVAR with the SSI index, we can observe the same patterns as those obtained in the previous 
section.  In particular, the simple sum aggregates are biased upward.  As in the previous section, the CE 
aggregates turned out to be almost always biased downward throughout the sample period, but the gap 
between ESM_mtd1_BVAR and the CE index is small.  However, ESM_mtd1_BVAR appears to be more 
volatile than ESM_actual or smoothed CE index.  From Table 7, it is clear that the bias of SSI grows, as the 
level of aggregation broadens, and the sizes of the errors in the SSI based on ESM_BVAR are very close to 
those measured by the gap between the SSI index and the ESM using actual data .16

                                                           
16 Over sample periods ranging from 1960:2 to 2004:3, when the ESM is computed using forecasts from BVAR and 
Method 1, the simple sum M1 contains non-monetary services share of 22.76%, while the simple sum M2 and M3 
indexes include non-monetary service of 37.11% and 41.26%, respectively.  We first focus on the period from 1960:2 to 
1991:9, during which the ESM, computed using actual future data, is available.  Over this sub-sample period in table 8, 
the ESM, based on forecasts from the BVAR model with Method 1, indicate that the simple sum M1 contains 
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Table 7.  Partition of Simple-Sum Aggregates into Monetary Service and Non-Monetary Services 
Share (Investment Share), Sample Period: 1960(2)-2004(3) 

             Method 1                  Method 2              Method 3
         V         VS           IS         VS            IS         VS          IS
ESM1-BVAR 77.24 % 22.76 % 79.95 % 20.05 % 77.08 % 22.92 % 
ESM2-BVAR 62.89 % 37.11 % 64.8 % 35.2 % 62.71 % 37.29 % 
ESM3-BVAR 58.74 % 41.26 % 60.41 % 39.59 % 58.12 % 41.88 % 
ESM1-AVAR 76.48 % 23.52 % 78.44 % 21.56 % 76.35 % 23.65 % 
ESM2-AVAR 62.25 % 37.75 % 63.73 % 36.27 % 62.05 % 37.95 % 
ESM3-AVAR 57.88 % 42.12 % 59.32 % 40.68 % 57.67 % 42.33 % 
           V              VS                IS
CEM1 73.97 % 26.03 % 
CEM2 59.5 % 40.5 % 
CEM3 55.06 % 44.94 % 

 

Table 8.  Monetary Services Share and Investment Share, Sample Period: 1960(2)-1991(9) 

             Method 1                 Method 2                 Method 3

         V        VS        IS        VS         IS          VS          IS
ESM1-BVAR 73.6 % 26.4 % 73.22 % 26.78 % 73.4 % 26.6 % 
ESM2-BVAR 57.88 % 42.12 % 60.82 % 39.18 % 57.53 % 42.47 % 
ESM3-BVAR 54.37 % 45.63 % 56.64 % 43.36 % 53.51 % 46.49 % 
ESM1-AVAR 72.75 % 27.25 % 75.43 % 24.57 % 72.67 % 27.33 % 
ESM2-AVAR 57.02 % 42.98 % 59.08 % 40.92 % 56.65 % 43.35 % 
ESM3-AVAR 53.5 % 46.5 % 55.48 % 44.52 % 53.15 % 46.85 % 
 V    VS      IS
ESM1_actual 74.83 % 25.17 % 
ESM2_actual 58.74 % 41.26 % 
ESM3_actual 55.05 % 44.94 % 

Note: Sample period is 1960:2-1991:9.  Money stock V  was computed using forecasted values. VS  and  are 
monetary services share and investment share, respectively.  Monetary services share and investment share were 
computed by averaging 

IS

100V
SSI ∗  and ( 100)SSI V

SSI
− ∗

                                                                                                                                                                            

 over sample period, respectively. 

 
non-monetary services share of 26.4%, while the simple sum M2 and M3 indexes include non-monetary services of 
42.12% and 45.63%, respectively.  The error measures  are investment shares of  25.17 %, 41.21%, and 44.94%. Over the 
same period, the CE index indicates that SSIM1, SSIM2, and SSIM3 contain investment (non-monetary) shares of 29.52 
%, 46 %, and 49.53 %.  These error shares are slightly higher than those computed based on ESM-BVAR, because the CE 
index is downward biased. 
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Table 9.  Partition of Simple-Sum Aggregates into Monetary Service and Non-Monetary Services 
Share (Investment Share), Sample Period: 1991(1)-2004(3) 

              Method 1                  Method 2                Method 3
          V       VS        IS         VS           IS         VS        IS
ESM1-BVAR 85.78 % 14.22 % 86.09 % 13.91 % 85.78 % 14.22 % 
ESM2-BVAR 74.81 % 25.19 % 74.03 % 25.97 % 75 % 25.0 % 
ESM3-BVAR 69.16 % 30.84 % 69.24 % 30.76 % 69.14 % 30.86 % 
ESM1-AVAR 85.16 % 14.84 % 85.81 % 14.19 % 85.14 % 14.86 % 
ESM2-AVAR 74.19 % 25.81 % 76 % 24.0 % 75.16 % 24.84 % 
ESM3-AVAR 68.37 % 31.63 % 69.1 % 30.90 % 68.34 % 31.66 % 
           V             VS               IS
CEM1 82.74 % 17.26 % 
CEM2 73.13 % 26.87 % 
CEM3 66.22 % 33.78 % 

 
 Over the second sub-sample period 1991:1-2004:3 reported in table 9, investment shares, measured 
by the difference between SSI and ESM_method1_BVAR, are 14.22 % of SSIM1, 25.19% of SSIM2, and 
30.84% of SSIM3, while the gaps between SSI and the CE index produce investment shares of 17.26 %, 
26.87%, and 33.78%, respectively.  These results confirm that the CE index underestimates the ESM, but not 
by much, with the errors in the CE index being less than 4 % of the SSI index at all levels of aggregation and 
over all sub-sample periods. The investment shares in the second sub-period are substantially lower than 
those in the first sub-sample period.  Over the period from 1991 to early 1994 and the period after 2001:4, 
there was a strong tendency for investment shares to decline over time, as shown in figure 8.  We can infer 
that during these periods, the own rates of return on monetary assets, relative to the benchmark rate, have 
decreased, so that the investment motive for holding monetary assets declined.17

                                                           
17 We denote ESM, computed using forecasts from the AVAR model with Method 1,  Method 2, and Method 3, by 
ESM_mtd1_AVAR, ESM_mtd2_AVAR, and ESM_mtd3_AVAR, respectively.  ESMs obtained by AVAR models 
displayed much higher volatilities than those displayed by their counterpart ESMs obtained by BVAR models.  
Nevertheless, ESMs obtained by AVAR models also produce the same patterns as ESM_mtd1_BVAR with respect to 
biases in the SSI and the CE index.  In particular, the simple sum index is biased upward substantially, while the CE index 
is biased downward, but not substantially.  The size of the biases in the simple sum aggregates increases with broader 
aggregates.  In addition, the average levels of ESMs obtained by AVAR models are not much different from those of 
ESMs obtained by BVAR models, as shown in Tables 7, 8, and 9.  
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Figure 5:  Including Results with BVAR Forecasts 
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Note:  ESM1_actual:  Economic Stock of M2 computed using actual data. 
           ESM1_mtd1_BVAR:  Economic Stock of M1 computed using Method 1 and forecasts from BVAR. 
           CEM1_Mov13:  smoothed CEM1 in which weights are replaced by 13 month centered moving average. 
           SSM1:  Simple-sum M1. 
 

Figure 6:  Including Results with BVAR Forecasts 
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Note:  ESM2_actual:  Economic Stock of M2 computed using actual data. 
           ESM2_mtd1_BVAR:  Economic Stock of M2 computed using Method 1 and forecasts from BVAR. 
            CEM2_Mov13:  smoothed CEM2 in which weights are replaced by 13 month centered moving average. 
            SSM2:  Simple-sum M2. 
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Figure 7:  Including Results with BVAR Forecasts 
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Note:  ESM3_actual: Economic Stock of M3 computed using actual data 
           ESM3_mtd1_BVAR: Economic Stock of M3 computed using Method 1 and forecasts from BVAR 
           CEM3_Mov13: smoothed CEM3 in which weights are replaced by 13 month centered moving average                        
           SSM3:Simple-sum M3 

 

Figure 8:  Using BVAR Method 1 Forecasts 
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Note:  INVSM_MTD1_BVAR is investment share in percentage inherent in SSI and is computed as ((SSI-V)/(SSI))*100  
          where V is ESM_mtd1_BVAR 
   
  8.2.2.  Comparison across Computing Methods 18

 
  When comparing the ESM across computing methods, we find that Methods 1 and 3 result in very 
similar values of the ESM at all levels of aggregation.  As indicated in tables 7, 8, and 9, the difference 
between these two methods is less than 1%.  This means that covariance terms among expected benchmark 
                                                           
18 We do not present the graphs for the ESMs obtained by AVAR models, nor do we present the graphs for the ESMs 
based on Method 2 and Method 3.  Interested readers can find those results in [6]. 
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rates, and covariances between expected benchmark rates and expected monetary-service expenditures, did 
not seem greatly to affect measurement of the ESM.  On the other hand, comparing the ESMs based on 
Method 1 and Method 2 over the full sample period, we found that monetary service shares estimated by 
Method 2 were greater than those estimated by Method 1, but the differences between  the two methods were 
less than 3% of the SSI at all levels of aggregation.  This divergence between Methods 1 and 2 results from 
the assumption that the benchmark rate follows a martingale process.  Nevertheless, the differences in 
economic money stock across computing methods seem to be negligibly small, relative to the overall bias in 
the SSI. Furthermore, regardless of the forecast models from which forecasts are generated, and methods by 
which ESM is computed, certain patterns are evident. The SSI is biased upward, while the CE index is biased 
downward, on average, with bias less than 4 % of SSI. 
 
9.  Discussion and Conclusion 
 
 We measure the United States capital stock of money implied by the Divisia monetary-services-flow, 
in a manner consistent with present-value discounting and time-varying discount rates.  Based on Barnett's [4] 
definition of the economic capital stock of money, we compute the economic stock of money by discounting 
to present value the expected monetary-services-flow expenditure, with user cost pricing of those flows. The 
economic stock of money nests the currency equivalent (CE) index as a special case under the assumption of 
martingale expectations. While the martingale expectations assumption greatly simplifies the present-value 
discounting, that assumption is very strong and often has motivated hesitancy to use the CE index as a stock 
measure.  Instead of assuming martingale expectations, we use forecasts based on asymmetric vector 
autoregression (AVAR) and Bayesian vector autoregression (BVAR).  For comparison, we compute the ESM 
using actual realized future data within our sample. 
 We report the size of biases embedded in the SSI and the CE index.  Those biases can be attributed to 
the two indexes’ implicit assumptions. The ESM computed using BVAR forecasts implies that the simple 
sum index greatly exaggerates money stock through inclusion of substantial non-monetary shares.  Over the 
period 1960:2 to 2004:3, those non-monetary shares comprised 22.76% of the stock at the M1 level, 37.11% 
at the M2 level, and 41.26% at the M3 level of aggregation.  
 The CE index almost always underestimated the economic stock of money, but the size of the bias in 
the CE index was less than 4% of the SSI index’s bias at all levels of aggregation.  Although the assumption 
of martingale expectations may be unappealing, the resulting bias of the CE index is very small compared 
with the bias of the SSI index.  A particularly noteworthy conclusion of this research was the robustness of 
our results across forecasting models. 
 Prior concerns about the use of Barnett’s economic capital stock of money have centered on the 
difficulties of discounting expected future flows and on the possible need to use sophisticated approaches of 
forecasting to acquire good results.  We find that robustness to the forecasting method is not only high, but is 
so high that even the simple martingale expectations method implicit in the easily computed CE index may be 
adequate for most purposes.  This conclusion is particularly clear, when the capital stock of money, computed 
with various models of expectations formation, is compared with the simple sum index.  In particular, the 
variation in capital stock indexes with different expectations formation models is small relative to the gap 
between any of their paths and that of the simple sum index.  Since the difference between the simple sum 
monetary aggregates and the discounted economic capital stock of money is large, accurate measurement of 
the theoretical capital stock could have important implications for understanding the wealth effects and 
transmission mechanism of monetary policy. 
 To do better than the CE index in measuring the growth rate of the monetary-asset capital stock, one 
can use our BVAR or AVAR model.  They both outperformed the “naive” martingale forecast model implicit 
in the CE index.  But data series that depend on forecasted variables are not likely to be preferred by 
governmental agencies, and we find the gains from forecasting to be small.  Although based upon “naive” 
forecasting, the CE is not atheoretical, unlike the atheoretical simple-sum accounting index.  In addition the 
CE index can easily be computed using data at a single point in time, with moving average smoothing of that 
otherwise highly volatile index. 
 In conclusion, the CE index can be used to measure the stock of money with reasonable accuracy, 
while the official simple-sum aggregate is an inappropriate measure of money stock or monetary-services 
flow.  While the use of BVAR or AVAR forecasting can produce small gains for research purposes, we believe 
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that the moving-average-smoothed CE index may be adequate for most policy purposes requiring a money 
stock variable.  We believe using an appropriate measure of money stock can produce advances in 
understanding the wealth effects of policy.  The prior hesitancy to use the theoretical economic capital-stock 
of money formula no longer is justified, since our finding of robustness of that formula to expectations 
formation removes the reason for that concern, when judged relative to the simple sum index.   
 Further improvements could be acquired from an adjustment to the CE index to remove the small 
systematic bias that we identify in that index.  Introduction of risk aversion also merits research, using the 
approach in Barnett and Wu (2005) to risk-adjust the flow that is discounted in the ESM.  Having established 
merits of the asset-pricing capital-stock approach to money measurement, we leave such possible 
refinements to future research.  But it is important to recognize that the large gain in moving from the 
simple-sum index to the ESM, computed with any forecasting procedure, far exceeds the gains from bias 
correction, risk adjustment, or choice among forecasting procedures.    

------------------------------------------------------------------------------------------------------------------------------ 

APPENDIX 

Table A1.  Out-of-Sample Forecast Performance Statistics: UVAR and AVAR 

                              UVAR-M2                      AVAR-M2 
                 1U              2U               1U              2U  Evaluation Period 

               2( )mTE        BENCH              2( )mTE       BENCH 
1991:1-2004:3 0.721 0.763 0.716 0.738 
1991:1-1995:12 0.771 0.838 0.7567 0.810 
1996:1-2001:12 0.737 0.762 0.733 0.711 
2002:1-2004:3 0.75 0.768 0.749 0.776 

                               UVAR-M3                        AVAR-M3 
                 1U             2U              1U             2U  Evaluation Period 

                3( )mTE       BENCH           3( )mTE       BENCH 
1991:1-2004:3 0.722 0.765 0.72 0.738 
1991:1-1995:12 0.777 0.837 0.766 0.81 
1996:1-2001:12 0.749 0.763 0.75 0.711 
2002:1-2004:3 0.76 0.78 0.753 0.777 

                               UVAR-M1                         AVAR-M1 
                 1U             2U               1U              2U  Evaluation Period 

              1( )mTE       BENCH             1( )mTE        BENCH 
1991:1-2004:3 0.747 0.767 0.730 0.737 
1991:1-1995:12 0.797 0.839 0.773 0.801 
1996:1-2001:12 0.776 0.769 0.741 0.715 
2002:1-2004:3 0.724 0.769 0.758 0.791 
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