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Abstract

In impulse response analysis the construction of intervals for the response at a par-
ticular time is a familiar topic. This paper considers the construction of confidence
bands for the path of responses. It investigates the feasibility of procedures based
on heuristic optimisation methods for constructing bootstrap confidence bands and

evaluates the coverage properties of these bands for a stylised empirical VEC model.



1 Introduction

When a vector autoregressive model is fitted it is routine to carry out impulse response analysis.
There is a considerable literature on how best to construct confidence intervals for the responses,
that is for the response at a particular time. By contrast, the construction of confidence bands for
the entire response path has received very little attention although it is a subject of considerable
interest. Confidence intervals for responses are often presented as plots of intervals against time
with the highest points in successive intervals and the lowest points joined so that the reader is
almost invited to interpret the area between the two lines as a confidence band for the entire
path. This is a rather hazardous proceeding for a coverage of 95%, say, for each of the intervals
will not necessarily produce anything like a 95% coverage for the band. The present paper takes
off from the belief that there should be some gain in taking a more considered approach than
joining the intervals and hoping for the best. The methods proposed combine bootstrapping,
which is now widely used for the construction of intervals, with the use of heuristic optimisation
methods for finding the narrowest band for the entire path.

A recent paper (Staszewska (2006a)) on the construction of confidence intervals for impulse
responses included a brief consideration of the construction of confidence bands for impulse
response paths and gave some preliminary results on the performance of different procedures.
The present paper has a more thorough discussion of the issues involved in constructing such
bands and evaluates the performance of different methods when applied to a VEC model of the
kind used in empirical work. It is found that the coverage probability of the ad hoc procedure of
joining up the confidence intervals is substantially less than the desired value while the proposed
methods for constructing confidence bands perform well for short horizons, at least, and always

achieve much higher coverage probabilities than the joined up intervals.



2 Confidence intervals and confidence bands

We begin by noting the inconclusiveness of reasoning from the properties of intervals for particular
responses to the properties of bands for the entire response path. The main point is that knowing
the confidence levels for the intervals for each period may tell us little about the confidence level
of the band produced by joining up the intervals.

The standard result linking joint probabilities to marginal probabilities is Bonferroni’s in-

equality; see Miller (1980). It states that for any collection of events {A;}

P(NA;) >1— (ZP (Z@-))

and it applies to the present situation if we interpret A; as being in the i-th confidence interval

and NA; as being in all the intervals. If P(A4;) = 0.95 for ¢ = 1,..,6 then
P(A) > P(NA) >1— (6 x 0.05) = 0.70

If we look ahead 12 periods then the lower bound falls to 0.40, while if we look ahead 24 periods
the bound is uninformative. However the inequality can be used more positively to construct a
confidence band, albeit a conservative one: thus to obtain a path coverage of 0.95 for 24 intervals
a stringent probability of 0.998 is required for each interval. Another benchmark is the case when
the {A;} are independent. In this case P (NA;) = [[ P (A;) which for P(4;) =0.95,i=1,..,24
generates P (NA;) = 0.29. In impulse response analysis a ‘hit’ in one interval is not independent
of a hit in another and the result does not apply; rather successive hits are strongly positively
associated.

The obvious condition P (A;) > P (NA;) should not be overlooked for it implies that the



performance of the joined up method for the whole path cannot be better than the performance
for an individual period. In Monte Carlo experiments similar to those described in sections 5
and 6 below Staszewska (2006a) computed intervals for responses over a period of 24 months
and found that the lowest coverage probability was around 0.7 (for a nominal level of 0.95); the
joined up intervals had a coverage probability for the path of around 0.5. So the overall path

performance was considerably worse than any of the individual interval performances.

3 The bootstrap procedure

The objective of impulse response analysis is to discover how the VAR responds to typical eco-
nomic shocks. This objective has been interpreted in different ways, corresponding to different
views of what is economically reasonable and intelligible. Three distinct forms of economic exper-
iment have been proposed leading to traditional, generalised and orthogonalised impulse response
analysis; the terms are from Koop, Pesaran & Potter (1996). The confidence bands proposed
below can be applied to all forms of response analysis and results on the performance of the bands
have been obtained for all three forms but, as the present interest is in the methods, most of the
results reported relate to one form of economic experiment, that leading to the traditional anal-
ysis. The traditional analysis is based on the vector moving average representation of the VAR
and the economic experiment involves altering the error associated with one variable, holding
the other errors fixed. Staszewska (2006a) considered intervals for all three forms of experiment.

Impulse responses are functions of the autoregressive parameters and estimates of the re-
sponses are calculated using the same functions with estimates of the coefficients instead of the
true parameter values. Recently bootstrapping has been used to obtain confidence intervals.

However, although bootstrapping has undergone spectacular development since its introduction



by Efron in 1979, its use in complicated models remains something of an art and numerous ways
of proceeding have been proposed.

A brief account of interval construction is in order for, though our interest is in constructing
bands, we exploit the methodology for constructing intervals and indeed we want to evaluate
the practice of joining intervals to form bands. The interval estimates considered here are non-
parametric versions of the standard construction introduced by Efron and a modification due
to Hall (1992) for dealing with biassed estimates. Computations were also done for the para-
metric version but they are not reported here. Staszewska (2006a) constructed intervals using
both versions and found very little difference in the intervals obtained. Although the parametric
method uses information about the Monte Carlo DGP-that the disturbances are normal-it does
not perform better than the nonparametric method which does not. Further methods for interval
construction are described by Benkwitz, Liitkepohl and Wolters (2001).

Following the notation of Benkwitz, Liitkepohl and Wolters (2001), let ¢; be some general
impulse response coefficient at period 1, gAbl the estimator implied by the estimators of the model
coefficients and 5: the corresponding bootstrap estimator. The standard method of constructing
a (1 — )% confidence interval uses s’ , and s, ), the 7/2 and (1 — v/2)-quantiles of the

bootstrap distribution of 5: and is given by:

Cls = [832 5(1-/2))

The interval Clg is the construction as it appears in Efron and Tibshirani (1993). They point
out, however, that the interval may not have the desired coverage probability, for instance, if 52
is a biased estimator of ¢, . One of the modifications of C'Is developed to deal with this problem

is Hall’s (1992) method.



In Hall’s method the confidence intervals are constructed using ¢7 , and ¢7;__ ), the ¥ /2 and

(1 — 7/2)-quantiles of the distribution of the difference 3: — ¢,;. The interval is defined as

~ -~

Clg = [¢z - t>(k1—*y/2)7 Cbz - tiky/2]‘

This method is the one preferred by Benkwitz, Liitkepohl and Wolters (2001). It performed well

in the experiments conducted by Staszewska (2006a).

4 Constructing confidence bands

The basic method for constructing a 95% confidence interval for the response for a given period is
to order the B bootstrap values for that period and identify the top and bottom 2.5 percentiles.
In the case of paths there is no underlying ordering because the paths typically cross. The guiding
idea of discarding extreme paths can be retained but the implementation has to be changed; in
fact, the idea can be implemented in several different ways.

Formal optimisation methods can be used. There are two obvious possibilities. For a 95%
confidence band choose from the B bootstrap paths (24 component vectors if the analysis is done
for 24 periods) the 0.95 x B that are closest together; of course different metrics produce different
selections of vectors. Another possibility is to find the narrowest band which contains 0.95 x B
of the paths. We investigated the feasibility of doing this using the genetic algorithm (GA) of
Carroll (2001).

In the implementation of the genetic algorithm B, the number bootstrap replications, is 1000
and the confidence level is 95%. Finding the narrowest band containing the 0.95 x B paths is
equivalent in the present application to rejecting 50 paths and obtaining the band as an outline

or envelope of the remaining 950 paths. The 50 paths rejected were chosen from 150 pre-selected



paths. The pre-selection was based on the following reasoning. The candidate paths for rejection
are those providing the 50 biggest and 50 smallest bootstrapped responses for all periods. For
the data generated in the Monte Carlo experiments and for the original WKK data (described
below) the number of such paths varied roughly between 300 and 600 paths for the 24 period
horizon, excluding 400-700 “internal” paths from consideration. Choosing 50 paths out of 600 or
even 300 proved to be computationally very demanding, with slow genetic algorithm convergence.
In the present study the computations are not done once but done as many times as there are
Monte Carlo replications and for this exercise to be tractable it seemed judicious to limit the set
of candidate-paths for rejection. After some experimentation it was decided to limit the set to
150 paths. They were chosen as the ones that would most enlarge the area of the band produced
by the set of “internal” paths.

Because these formal optimisation methods are computationally demanding some heuristic
procedures were considered as well. Heuristic method 1 (H1) was an iterative procedure with
steps:

a) For each period for which the paths are constructed look at the most extreme of the
bootstrap values (the smallest and the largest) and identify the paths they belong to. In the case
of 24 periods there are 48 extreme points to look at and maximally 48 paths they belong to (it
is likely however that some of the extreme points belong to one and the same paths).

b) Find a path which provides the biggest number of extreme points and remove this path
from the set of B paths.

c) Repeat steps a) and b) now for B — 1 remaining paths, then for B — 2 and so on until
we've removed (1 —0.95) x B paths

d) Obtain the 95% confidence band as the outline (envelope) of the remaining 0.95 x B paths.

Heuristic method 2 (H2) is a more elaborate iterative procedure which uses information about



how far the extreme paths are from the others. (Distance was interpreted both in the [; sense
and in the Iy sense):

a) For each period identify the most extreme of the bootstrap values and the paths they
belong to.

b) For each path providing any extreme points calculate the sum of distances from these
points to the next most extreme points (or, in the squared variant of this method, the sum of
squared distances).

c) Remove the path with maximal sum.

d) Repeat steps a), b) and c¢) until (1 — 0.95) x B paths are removed.

e) Obtain the 95% confidence band as the outline of the remaining 0.95 x B paths.

The methods just described make no use of the original estimated response path gAbl, - 524. In
the case of confidence intervals the Hall method which used the &;Z values as well as the bootstrap
values 5: was quite effective. So a method which used these values was considered; this involved
identifying paths near the estimated response path. We refer to it as the neighbouring paths
method (NP).

a) For each bootstrap path {g: } compute the distance from the estimated path {gAbZ} .

b) From the B bootstrap paths {5:} choose the 0.95 x B that are closest to {51}

c¢) Obtain the 95% confidence band as the envelope of these paths.

As before ‘closeness’ was interpreted both in a squared error sense and in an absolute error sense.
This method differs from the other heuristic methods in that it is not trying to mimic the working
of the optimisation methods.

Thus we have six methods to compare, the genetic algorithm and five heuristic methods,

heuristic 1, heuristic 2 in two variants and neighbouring paths in two variants. In evaluating

these methods two points are of interest: closeness to the designed coverage probability of 0.95



and width of the band. The optimal band would be the narrowest band with the correct coverage
probability. In the present study most attention is paid to the closeness to the nominal value.
Before proceeding to a comparison of the characteristics of the different methods we give an
example of their use with real data.

Figures 1-3 show bands constructed for the VEC model for wages, prices and labour produc-
tivity developed by Welfe, Karp and Keblowski (2004); see section 5 below for details of this
study which forms the basis of the Monte Carlo experiments performed in this paper. The three
figures show responses to a shock to w, wages, in wages, prices and productivity following the
traditional analysis; in this instance the actual historical series are used, not simulated series.
For clarity only three bands are shown: for one joined-up interval method (standard nonpara-
metric) and for two joint methods, the genetic algorithm and one heuristic (neighbouring paths
absolute); the omitted graphs for the joint methods are similar to those included. The original
estimated response is the line in the middle.

The three plots show that the bands produced by the new joint methods are generally wider than
the bands produced by joining up intervals. Close examination of the paths reveals, however,
that it is not the case that the former bands lie outside the latter for all periods; that is so in
Figure 3 but not in the other two cases. Whether any of the lines are far enough apart to achieve

the designed coverage probability is considered in section 6.

5 The Monte Carlo design

The coverage properties of the confidence bands obtained by the techniques described in the
previous section were investigated by Monte Carlo methods. The specification of the data gen-

erating process used for the Monte Carlo analysis, like that in Staszewska (2006a), follows the
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Figure 1: Traditional impulse response analysis: shock to w, response from w.
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Figure 2: Traditional impulse response analysis: shock to w, response from p.
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Figure 3: Traditional impulse response analysis: shock to w, response from z.

VEC model for wages, prices and labour productivity developed by Welfe, Karp and Kebtowski
(2004). The WKK model is of a size and complexity common in modern applied work. It has
3 modelled or endogenous variables, wages, prices and labour productivity, 3 cointegrating rela-
tions and 5 weakly exogenous variables. The system with 4 lags in the VAR was re-estimated
and the long-run parameters restricted, leaving the short-term dynamics unrestricted. These
estimated values were used as the true values in the Monte Carlo data generating process. In
the Monte Carlo DGP the errors are assumed to be normally distributed; the sample size is 120,

as in WKK.

11



The Monte Carlo DGP is a VECM with the long-run relationships:

w—p = 8793+ 0.233z — 0.015U
p = —6.1354+0.61w — 0.61z 4+ 0.39pm

z = —8.423+0.76kl 4 0.039fd + 0.195V.

The variables are w - wages, p - consumer price index, z - productivity, U - unemployment rate,
pm - import prices, kl - capital-labour ratio, fd - cumulated foreign direct investments (FDIs) per
employee, V - share of GDP generated in the private sector in total GDP measuring privatisation
where small letters denote natural logarithms. The following variables are assumed to be weakly
exogenous: U,pm, kl, fd,V and the values of these variables are the historical values from I.
1993-X11.2002 as used in the WKK study to which the reader is referred for further details. The
data is monthly and seasonally unadjusted.

For each of the methods we follow the same procedure:

e In a single Monte Carlo replication: generate data from the Monte Carlo DGP and estimate

the model:

— start bootstrapping: treating the estimated model as the bootstrap DGP, generate

data from it 1000 times and construct confidence bands for the response path;

— check whether the true response path from the Monte Carlo DGP falls into the confi-

dence band.

e Produce 1000 Monte Carlo replications and count the proportion of times that the band

contains the true path.

In constructing the bootstrap samples we do not re-estimate the cointegrating relationships every

12



time but use the original estimates; it has been found (see Staszewska (2006) and Benkwitz,
Liitkepohl and Wolters (2001)) that re-estimation makes very little difference to the intervals

created while it takes a lot of computing time.

6 Experimental results and evaluation

This section reports the results of the main Monte Carlo experiments investigating coverage
probabilities and also the results from some subsidiary studies. Path coverage probabilities were
obtained for the band methods introduced above and for the naive joined-up (JU) intervals
procedure. Table 1 shows the performance of the various methods for constructing confidence
bands for 24 periods ahead; the economic experiment is the same as that behind Fig. 1, viz. the
traditional impulse response analysis considering the effects on the three endogenous variables of

a one standard deviation shock to w.

Table 1: coverage probabilities compared

traditional experiment

w P z

JU (stand) | 0.562 | 0.646 | 0.483

JU (Hall) | 0.507 | 0.624 | 0.55

GA 0.75 | 0.755 | 0.85

H1 0.708 | 0.758 | 0.816

H2 (abs) | 0.731 | 0.763 | 0.823

H2 (sq) 0.747 | 0.763 | 0.826

NP (abs) |0.745 | 0.79 | 0.873

NP (sq) | 0.747 | 0.778 | 0.884
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While the probabilities are all substantially less than 0.95 all of the joint methods perform much
better than the naive methods, JU (stand) and JU (Hall). The six joint methods offer similar
improvements over the naive methods but the last two neighbouring paths (NP) methods seem
to be the best overall. In the case of shocks to other endogenous variables the joint methods
offered similar improvements over the joined-up methods. In all the cases the neighbouring paths
methods were somewhat better than the other joint methods.

The improved performance of the band methods over the joined-up intervals is not an artifact
of the economic experiment chosen. Table 2 shows the coverage probabilities obtained for a
variety of bands—though not including the genetic algorithm—for non-traditional impulse response
analyses for a shock to w. Four distinct experiments are reported, the generalised analysis
and different orthogonalised analysis corresponding to different ways of ordering the variables;
different orderings of the variables do not always generate distinct responses and so in the table

some equivalent experiments are shown together.

Table 2: orthogonalised & generalised

orth wpz,wzp, gen. | orth pzw, zpw orth pwz orth zwp

w p z w 4 z w p z w P z
JU (stand) | 0.491 | 0.569 | 0.379 0.522 | 0.629 | 0.474 | 0.465 | 0.559 | 0.366 | 0.553 | 0.666 | 0.466
JU (Hall) | 0441 | 052 | 0.327 0.461 | 0.597 | 0.511 | 0.415 | 0.504 | 0.325 | 0.484 | 0.623 | 0.517
H1 0.587 | 0.684 | 0.518 0.686 | 0.74 | 0.813 | 0.56 | 0.667 | 0.549 | 0.707 | 0.771 | 0.813
H2 (abs) 0.601 | 0.652 | 0.572 0.705 | 0.74 | 0.818 | 0.593 | 0.64 | 0.593 | 0.734 | 0.768 | 0.812
H2 (sq) 0.62 | 0.655 | 0.59 0.718 | 0.751 | 0.818 | 0.607 | 0.644 | 0.602 | 0.747 | 0.775 | 0.818
NP (abs) 0.655 | 0.715 | 0.613 0.725 | 0.776 | 0.872 | 0.642 | 0.699 | 0.636 | 0.77 | 0.799 | 0.877
NP (sq) 0.638 | 0.689 | 0.655 0.731 | 0.76 | 0.882 | 0.63 | 0.683 | 0.687 | 0.764 | 0.816 | 0.87
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In two of these sets of economic experiments the performance of the methods is similar to that
of the traditional methods reported in Table 1. However, in the case of the first and the third,
performance is inferior for all the methods.

Staszewska (2006a) found that the performance of the bootstrapped confidence intervals—in
terms of coverage probability—deteriorated as the horizon was lengthened. So the effect of the
horizon on the performance of the band methods was investigated with the experiments repeated
for 6 and 12 month horizons. Improved performance is to be expected at these shorter horizons,
in the case of the joined up method because the Bonferroni lower bound rises and in all cases
because the bootstrapping is less effective for the remoter periods. Table 3 presents results on
performance for shorter horizons with the information from Table 1 on the long horizon for

comparison.

Table 3: different horizons

6 months 12 months 24 months

w D z w D z w D z

JU (stand) | 0.679 | 0.802 | 0.681 | 0.596 | 0.722 | 0.563 | 0.562 | 0.646 | 0.483

JU (Hall) | 0.685 | 0.813 | 0.74 | 0.587 | 0.723 | 0.66 | 0.507 | 0.624 | 0.55

GA 0.88 |0.924 | 0.895 | 0.815 | 0.834 | 0.867 | 0.75 | 0.755 | 0.85

H1 0.89 | 0.978 | 0.965 | 0.814 | 0.866 | 0.934 | 0.708 | 0.758 | 0.816

H2 (abs) 0.87 [0.901 | 0.872 | 0.8 0.838 | 0.849 | 0.731 | 0.763 | 0.823

H2 (sq) 0.872 1 0.901 | 0.873 | 0.804 | 0.84 | 0.851 | 0.747 | 0.763 | 0.826

NP (abs) 0.942 1 0.93 | 0.94 | 0.842 ] 0.861 | 0.906 | 0.745 | 0.79 | 0.873

NP (sq) 0.925 | 0.921 | 0.917 | 0.842 | 0.86 | 0.9 0.747 | 0.778 | 0.884

All methods show substantially better performance for 6 months ahead than for the longer
horizons. The method with best overall performance was the neighbouring paths absolute but
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even this performed badly for the 24 months case.

To gain insight into the working of the joint methods coverage probabilities for individual
periods were calculated, i.e., the proportion of the B paths lying within the band at the particular
period 12. Some of these probabilities are shown in the following table (traditional analysis of a

shock to w response in w) for the genetic algorithm and the two neighbouring paths methods.

Table 4: coverage probabilities for individual periods

NP (abs) | NP (sq) | GA
1 ] 0.992 0.992 0.98
6 | 0.991 0.991 0.995
121 0.9 0.897 0.905
24108 0.8 0.825

While the early periods show the necessary excess over 0.95 the later periods are disappointingly
deficient. In a study of the properties of confidence intervals Benkwitz, Liitkepohl and Neumann
(2000) found a similar problem with remote periods and suggested it could be a small sample
problem. We are currently investigating that possibility in the present set-up.

Good confidence procedures require not only coverage probabilities that are close to the
designed level but also small bands. For the different joint methods the coverage probabilities
are very similar-what about the size of the bands? These were calculated for the WKK data
(see Figures 1-3 above). The areas of the confidence bands are also very similar in size, as the

following table (traditional shock to w response in w) shows.
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Table 5: areas associated with different bands

w D z
GA 0.22287 | 0.11851 | 0.15673
H1 0.22539 | 0.11968 | 0.16205

H2 (abs) | 0.22416 | 0.11982 | 0.15674

H2 (sq) | 0.22578 | 0.12104 | 0.15933

NP (abs) | 0.23740 | 0.13054 | 0.17670

NP (sq) | 0.23372 | 0.12749 | 0.16994

This table in conjunction with Figures 1-3 suggests that the different methods are doing much
the same thing, although only the genetic algorithm has as its explicit objective the minimisation
of this area. It can be seen that the methods that did best in the coverage properties evaluation

have the largest band areas.

7 Conclusions

The main finding is that it is possible to produce confidence bands which are much more successful
in achieving a desired confidence level than the technique of joining up confidence intervals. This
conclusion is likely to hold in other circumstances although the detailed findings are subject
to the important caveat that they relate to a restricted set of experiments using a particular
DGP. Of the methods considered the neighbouring paths methods perform best. However a
serious unresolved problem with all of the bands—and the same holds for intervals—-is the poor
coverage probabilities achieved for responses at long horizons. A possible explanation for this
poor performance is the small estimation sample of 120 observations (see Benkwitz, Liitkepohl
and Neumann (2000)). The possibility that this is so is being investigated. Another matter
under investigation is the narrowness of the band generated by the various methods; the present
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paper has concentrated on the proximity of the achieved coverage probability to the desired level.

For the present, however, the results on the band methods seem promising and justify further

research.
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