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Abstract: We use the Relevant Vector Machine, a technique of supervised learning
introduced by Tipping (2001), to conduct a dynamic cointegration analysis on the series
of the price of gold and silver over the period 1971-2004. Unlike the results of traditional
cointegration analysis, this study reveals that there is a dynamic long run relationship over
the whole period.
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1. Introduction

In this paper we study the dynamic relationship between gold and silver (fig.1) over the
period 1971-2004, that covers a very extensive range of economic conditions, political
change in major producers and increased sophistication in asset markets generally.
Gold and silver have been actively traded for thousands of years and remain important
and closely observed markets. They have historically been seen as close substitute for
one another and this would suggest that the two markets share the same dynamics.

However there are also economic fundamentals that may drive the prices of gold and
silver apart. While both are used extensively in industrial processes, there are significant
differences between these uses. Therefore it seems that while they share a similar set of
drivers they each also have important unique macroeconomic drivers (see for example

Figure 1: Gold and silver time series (respectively in black and red)
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Dooley, Isard and Taylor, 1995).
In literature there are several attempts to test for the existence and stability of the gold

silver relationship (among the others, Escribano and Granger, 1998). In this framework,
we want to give further insight to the problem. We analyse the data set of monthly
prices of gold and silver over 1971-2004 with an extremely recent approach to reveal the
existence of a dynamic cointegration relationship (Pellizzari, Pizzi and Salmasi, 2005).
The estimation of the cointegration coefficient is realized with a technique of supervised
learning called Relevance Vector Machine or RVM (Tipping, 2001) that exploits a
probabilistic Bayesian learning framework to derive accurate predictions models.
In the next section we describe dynamic cointegration and the RVM. while section 3 is
devoted to the results of the application to the gold and silver data set.

2. Dynamic cointegration

The traditional concept of cointegration (Engle and Granger, 1987) assumes that the
cointegrating coefficient is constant over time. If the coefficient is allowed to be non
constant we have the following definition of dinamic cointegration:

Let xt a N × 1 vector, its components are dynamically cointegrated of orderd, b,
CI(d, b) if i) the series inxt are allI(d) and ii) there exists a non zero vectorαt such
thatzt = αt′xt is I(d − b), b > 0.

Let us consider the case ofN = 2, the (dynamic) cointegrating relation iszt =
x1t − αtx2t. Several problems can be tackled:i) to determineαt ii) to comprehend the
structure ofαt iii) to develop valid estimation techniques.

If the time span is sufficiently largeαt can be approximated byαt
∼= x1t

x2t
. In general, we

can assume thatαt depends on several variables,αt = l(xt, xt−1, . . . , yt, yt−1, . . . , t), and
its structure can be investigated by plottingαt versus the variables that presumably affect
its dynamics. As far as the third problem is concerned, we propose the use of a Bayesian
probabilistic framework for learning, known as Relevant Vector Machine (RVM), Tipping
(2001). It is a model of identical functional form to the Support Vector Machine (SVM),
among the others Vapnik (1998), but the training takes place in a Bayesian framework and
predictive distributions of the outputs instead of point estimates are obtained.

Given a set of examples of input vectors{xn}N
n=1 (training set) along with

corresponding targets{tn}N
n=1, “learning” is the process of inferring a functiony(x) on

which are based the predictions oft for previously unseen values ofx. The RVM makes
predictions based on the function

y(x, w) =
N∑

i=1

wiK(x, xi) + w0

whereK(x, xi) is a kernel function,wi are the weights. One basis function is defined for
each example in the training set.

The main feature of RVM (for further formal details, see Tipping, 2001) is represented
by the introduction of a prior density function over the model weights governed by a set
of hyperparameters, one associated with each weight, whose most probable values are
iteratively estimated from the data. Sparsity is achieved because in practise we find that
the posterior distibutions of many of the weightswi are sharply peaked around zero. For



this reason, one of the advantages in using RVM is that, with the same generalization
performance, it utilises way fewer kernel functions than an equivalent SVM.

3. Real data analysis

The data set we examine comes from the Interational Financial Statistics. The two series
are the monthly prices of gold and silver (US dollars per ounce) from the beginning of
1971 to april 2004. In the first 3 rows of table 1 we report the results of the ADF test on the
series of gold (xt), silver (yt) and residuals of the traditional cointegrating regressions (zt).
As we can observe, there is no evidence of linear cointegration since the null hypothesis
of unit root is always accepted.

Table 1: ADF test

Series Test ADF p-value
yt -2.5295 (lag order=7) 0.3536
xt -2.756 (lag order=7) 0.2580

zt (linear coint.) -2.6716 (lag order=7) 0.296
zt (dynamic coint.) -5.8458 (lag order=7) 0.01

After rescaling seriesxt andyt in (1, 2) we determineyt

xt
(solid line in fig.2). Since the

latter can be thought asαt+
zt

xt
, we employ the RVM approach to filter outαt. It is assumed

a gaussian prior distribution on weigthswi, whereas for theN + 1 hyperparameters the
distributions are non informative Gamma. We use a gaussian kernel and setσ, the inverse
of the bandwidth parameter, equal to 5e-04.

Table 2: Relevant vectors with their time index and corresponding date

Time index 1 51 52 100 132 162 189 222 280 343 400
Date 1:71 3:75 4:75 4:79 12:81 6:84 9:86 6:89 4:94 7:99 4:04
wi 0.914 -4.627 5.101 0.6 -0.102 0.757 -0.114 0.549 0.533 0.623 0.549

The RVM algorithm finds 11 relevant vectors (tab. 2) and theαt series, obtained
filtering yt

xt
, is represented with a dashed line in fig.2. An ADF test is performed on the

dynamic cointegration residuals and the results are reported in the last row of table 1. As
we can see, unlike the traditional cointegration case, in this dynamic case the unit root is
rejected. This means that evidence of dynamic cointegration is found.

Interesting information is gathered by observing the time index of the relevant vectors
(tab. 2). Some of them are located where theαt series tends to exhibit a sort of level
shift, see for instance the vector with index 100 which is located just before the well
documented bubble in silver prices from roughly june 1979 to march 1980. Bearing in
mind the relevant vectors indexes, we consider, in particular, two subperiods 1:71-4:79
and 4:79-4:04. The ADF test reveals in both of them evidence of linear cointegration
(p-values, respectively, 0.06 and 0.08). The relevant vectors show also other possibilities
to split the sample, but in those cases no linear cointegration is found after 4:94.



Figure 2: yt

xt
(solid line) and αt (dashed line) series
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This results show clearly how promising seems to be the use of RVM in the pioneering
context of dynamic cointegration. Indeed, RVM exhibits interesting potentiality both in
terms of accuracy when filtering the series and ability in revealing where are located the
main change points of the long term dynamic.
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