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Abstract

This paper employs a standard new Keynesian model to compute the inflation/output

volatility frontier, i.e. the "Taylor curve". The computation is performed both under

equilibrium uniqueness and under indeterminacy. While under uniqueness the Taylor curve

looks like expected - i.e. a monotonically decreasing curve in the (σx, σπ) diagram -, under

indeterminacy a new result arises. We find that the tighter is the monetary policy, the

higher is the inflation/output gap volatility. This is due to impact of systematic monetary

policy on inflation and output persistence. In fact, under indeterminacy a more aggressive

monetary policy causes an increase in inflation persistence, and augments its volatility.

The effects on output tend to be of opposite sign. This finding is robust to different

parameterization of the DSGE new-Keynesian monetary model employed. This result i)

offers support the move from "passive" to "active" monetary policy as one of the possible

rationales for the Great Moderation, ii) underlines the need of a deeper understanding

of the link between systematic monetary policy and macroeconomic persistence, and iii)

warns against sub-samples pooling when performing macroeconometric analysis.
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1 Introduction

Most monetary authorities aim at stabilizing inflation and the business cycle. The relative

importance attributed to the former objective with respect to the latter drives the choices

that monetary policymakers undertake to tackle the shocks that drive the variables of interest

off-targets. Taylor (1979) offered a graphical syntesis of the impact of such preferences on the

targeted variables: The downward sloping curve collecting the different pairs of inflation and

output volatilities - computed with a macroeconomic model in which the central bank varies

its aggressivity against inflation fluctuations - has been labeled as "Taylor curve".1 The Taylor

curve shows that monetary authorities face a trade-off between inflation and business cycle

stabilization: To move towards a scenario featured by a lower inflation volatility, a Society

must let the real side of the economy fluctuate more (all else being equal).

This conclusion is typically reached in studies concentrating on equilibrium uniqueness.

However, it is well known that multiple equilibria may arise in an economy featured by the

presence of rational agents and in which monetary policy is approximated by a simple rule.

A case of particular interest is that concerning the workhorse new Keynesian model "closed"

with a policy rule a la Taylor (1993). In such a context, it is possible to define a threshold

measure for the reactiveness monetary authorities have to display for pinning down private

sector’s expectations and, consequently, uniquely determine the equilibrium values of inflation

and the output gap (Clarida et al, 2000; Woodford, 2003). Such a threshold is the basis for the

so-called "Taylor principle": Monetary authorities must raise the nominal interest rate more

than one-to-one in reaction to an upward shift in inflation in order to rule out self-fulfilling

expectations fluctuations and stabilize inflation.

The goal of this paper is to understand how the Taylor curve looks like when the Taylor

principle is violated and monetary policy is therefore classifiable as "passive". Does a volatil-

ity trade-off still exist under multiple equilibria? Does it still work as under determinacy?

Although the relevance of these questions seem to be clear, to our knowledge no study in the

literature has attempted to answer them so far. We try to close this gap by employing a stan-

dard DSGE model in which a Taylor rule formalizes the behavior of the monetary authorities.

We investigate the case in which the Taylor principle is not met - i.e. passive monetary policy

-, and we contrast it with a more standard analysis in which inflation expectations are well

anchored by an aggressive policy conduct. Following Lubik and Schorfheide (2003,2004), we

deal with indeterminacy by imposing additional constraints on the dynamics of the system, so

selecting one solution out of all the multiple equilibria consistent with rational expectations.

1Taylor (1979) computed the Taylor curve by considering the unique optimal monetary policy under rational
expectation to be implemented in a set up in which an inflation targeter minimizes a loss function subject to
the structure of the economy. By contrast, this paper investigates the inflation/output volatility issue in a set
up in which monetary authorities follow a simple rule, and sunspot fluctuations may arise when a weak policy
conduct is implemented.
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Another goal of this study is that of understanding if the joint reduction in inflation and

the business cycle volatilities may be attributed to such a switch in the systematic monetary

policy. Indeed, as far as the U.S. case is concerned, several researchers - e.g. Clarida et al

(2000), Boivin and Giannoni (2003), Lubik and Schorfheide (2004), and Cogley and Sargent

(2005) - argue that monetary policy did not react aggressively enough to the inflationary shocks

hitting the American economy during the pre-’79 period.2 Then, it is not to be excluded that

this violation of the Taylor principle allowed for sunspot fluctuations of inflation and output.

But the standard Taylor curve predicts that to lower the volatility of the former a Society

must accept larger fluctuations of the real GDP. Does the move from a passive to an active

monetary policy trigger a reduction of both volatilities? A positive answer to this question

would offer an alternative explanation to the empirical evidence pointing towards a paramount

decrease in the volatilities of inflation and the output gap in the last two decades, labeled by

Bernanke (2004) as the "great moderation".

We achieve the following results. First, under indeterminacy the tighter the monetary

policy, the higher is the inflation/output gap volatility. This is due to impact of systematic

monetary policy on inflation and output persistence. In fact, under indeterminacy the tigher

the policy, the higher the persistence of inflation, the larger its volatility. The effects on

output seem to be of opposite sign. The move from passive to active monetary policy causes

a drop in macroeconomic persistence and volatility. Moreover, some policies may be Pareto-

superior with respect to others. Our findings tend to support i) the move from "passive"

to "active" monetary policy as one of the possible rationales for the Great Moderation, ii)

underline the need of a deeper understanding of the link between systematic monetary policy

and macroeconomic persistence, and iii) warn against sub-samples pooling when performing

macroeconometric analysis. This result is robust to several perturbations of the benchmark

model we employ.

The paper is structured as follows. Section 2 presents the model, and explains how we pick

up a single equilibrium under indeterminacy. Section 3 explains the algorithm we implement

for drawing the Taylor curve, and discusses the benchmark parameterization of the model.

Section 4 presents and discusses the results. Section 5 concludes, and References follow. A

Technical Appendix is then provided.

2 The economic framework

In stabilizing inflation and the output gap, policymakers face the inflation/output volatility

trade-off. Taylor (1979) - and several subsequent contributions, see e.g. the papers collected

in Taylor (1999) - concentrate on the unique equilibrium implied by (each of the) optimal

monetary policy (ies) computed under rational expectation in a set up in which an inflation

2 It must be acknowledged that this view is not uncontended, see e.g. Sims and Zha (2005).
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targeter minimizes a loss function subject to the structure of the economy. Our analysis relaxes

the assumption of equilibrium uniqueness, and employes a simple policy rule to represent the

policymakers behavior both under determinacy and under weak monetary policy.

To construct the Taylor curves presented in the following Section we employ the following

standard DSGE model:3

πt =
β

1 + wβ
Etπt+1 +

w

1 + wβ
πt−1 + κxt + επt (1)

xt =
1

1 + b
Etxt+1 +

b

1 + b
xt−1 − 1− b

σ(1 + b)
(Rt −Etπt+1) + εxt (2)

Rt = ρππt + ρyxt + εMP
t (3)

where x stands for real output, π represents the growth rate of the relevant aggregate

price index, R the short term nominal interest rate, and επt , ε
x
t , and εMP

t are zero-mean i.i.d.

stochastic structural shocks having - respectively - variance σ2επ , σ
2
εx , and σ2

εMP .

Eq. (1) is the Euler equation maximizing the profits of monopolistically competitive firms

whose discount factor is identified by the parameter β. We assume a staggered price setting

regulated by a Calvo-type mechanism, i.e. there is a probability θ for a firm of not reoptimizing

its price in each period. Among the firms who cannot reoptimize, there is a fraction w that

automatically adjust the price level according to a mechanical rule, i.e. Pj,t = πt−1Pj,t−1,
where j is the firm-index.4 The parameter expressing the link between demand fluctuations

and inflation reactions is a convolution of the already presented structural parameters, i.e.

κ ≡ (σ+η)(1−θ)(1−θβ)
(1+wβ)θ . Finally, we admit the presence of a cost-push shock επt .

Eq. (2) is a log-linearized IS curve stemming from the household’s intertemporal problem

in which consumption and bond holdings are the control variables. Contemporaneous output is

caused both by expectations on future realizations of the business cycle and by its past values.

The ex-ante real interest rate exerts a direct, contemporaneous impact on the cycle. The

coefficient b regulates the importance of (external) habits in the household’s utility function,

and concurs to "weight" the just mentioned elements.5 The shock εxt may be interpreted as a

demand shock, or a shock to household’s preferences.

3The variables of the model are expressed in percentage deviation with respect to their steady state values.
4Notice that there exists a difference between the adjustment mechanims embedded in this model and the

rule-of-thumb behavior a la Galí et al (2001). In this model firms who cannot reoptimize in a given period
adopt an automatic adjustment a al Christiano et al (2005). By contrast, the rule-of-thumb behavior a la Galí
et al (2001) applies to firms who are able to reoptimize.

5 In this set up, the preferences of the representative consumer are identified by the following utility function:
u(Ct, X) =

(Ct−Ht)1−σ
1−σ + f(X), where Ht = bCt−1 and X is the bunch of remaining arguments affecting

consumer’s utility.
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Eq. (3) is an interest rate rule according to which the central bank adjusts the policy rate

in response to fluctuations in inflation and the output gap. We interprest the random variable

εxt as the monetary policy shock.

It is well known that the linear rational expectations model (1)-(3) can be associated to a

unique solution as long as the Taylor principle is satisfied, i.e. the condition ρπ > 1− (1−β)
κ ρy

is met (Clarida et al, 2000; Woodford, 2003). By contrast, if ρπ ≤ 1 − (1−β)
κ ρy, monetary

authorities are unable to uniquely pin down private sector’s expectations, and there is room

for self-fulfilling fluctuations triggered by sunspot shocks hitting the economy.6 Formally, in

this model the equilibrium/equilibria are computed as follows:

st = Γ
∗
1st−1 +

h
Ψ∗ −Π∗V.1D−111 U 0.1Q2.Ψ+Π∗V.2fMi

εt +Π
∗V.2ζt (4)

where st = [xt, πt, Rt, Etxt+1, Etπt+1]
0 collects the n variables of the system, εt = [εMP

t , επt , ε
x
t ]

is the vector of l fundamental shocks, ζt is the sunspot shock hitting the economy. As shown

by Lubik and Schorfheide (2003,2004), under uniqueness V.2 = 0[lx1], then the last two terms

of (4) drop out and the equilibrium values of the variables belonging to the vector st are

completely identified by the structure of the economy. By contrast, under indeterminacy the

i.i.d. zero mean sunspot shock ζt - whose variance is σ
2
ζ - influences households’ expectations

and, consequently, the equilibrium values of inflation, the output gap, and the policy rate.

Notice that in this scenario the matrix fM may affect the transmission mechanism linking the

structural shocks to the variables of the system. Lubik and Schorfheide (2004) propose to

compute such matrix by requiring that the on-impact reaction of the endogenous variables st
to the shocks εt be as close as possible to the one on the frontier dividing the parameter space

into determinacy and indeterminacy, a scenario labeled as "continuity".7 As an alternative,

Lubik and Schorfheide (2003) consider the possibility of setting fM = 0[1xl], a scenario labeled

as "orthogonality". In drawing the Taylor curve under indeterminacy we will alternatively

employ these two identification schemes.

6To understand why, suppose that inflation expectations suddenly raise merely due to a sunspot shock. Ac-
cording to the Phillips curve (1), inflation should raise, but the policy rate reacts as well given the prescriptions
of the Taylor rule (3). However, since the Taylor principle is not met, the real expected interest rate eventually
decreases and boosts the real side of the economy. Eventually, inflation is pushed up by the demand channel.
Hence, in equilibrium inflation is off-target even if no structural shock has hit the economy.

7Following Lubik and Schorfheide (2004), M = [B0
2(θ)B2(θ)]

−1
B0
2(θ) B1(θ)−B1(θ) , where θ =

[ρπ, ..., σ
2
εMP ] is the vector of the parameters of the model, θ = [ρπ, ..., σ

2
εMP ] is a "manipulated" vector

whose only different element with respect to θ is ρπ = 1 − (1−β)
κ

ρx (a value positioning the economy on the

indeterminacy frontier), ∂st
∂ε0t
(θ) = B1(θ) + B2(θ) = Ψ∗ − Π∗V.1D−111 U

0
.1Q2.Ψ + Π∗V.2M , and ∂st

∂ε0t
(θ) = B1(θ).

See the Technical Appendix for more details.
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3 Drawing the Taylor Curve

To draw the Taylor curve, we implement the following algorithm. First, we fix the values of

ρπ and ρx. Then, given the calibration of the structure of the model, we compute the rational

expectation solution. Notice that, in case of ρπ ≤ 1 − (1−β)
κ ρx, we select one of the multiple

solutions consistent with rational expectations by choosing either "continuity" or "orthogo-

nality" (as described in the previous Section). At that point, the unconditional volatilities

of inflation and the output gap are computed by constructing samples of 110,000 simulated

observations (whose initial 10,000 observations are then discarded as burn-in observations).

We then store the results, perturb the value of ρπ, and repeat all the steps.
8 Finally, we

collect all the pairs of inflation-output volatilities conditional to a given parameterization of

the structural model (1)-(2) and a given value of ρx.

We now turn to our benchmark calibration of the model (1)-(3). Regarding the Phillips

curve, we fix the discount factor β = 0.99, as commonly done in the literature in case of models

for quarterly frequencies. The degree of price indexation w is set to be equal to 0.90, as in

Rabanal (2006) and close to the "full indexation" hypothesis by Christiano et al (2005). We

select a Calvo-parameter θ equal to 0.80 as in Rabanal (2006) and Christiano et al (2005), and

slighly higher than the one proposed by Galí et al (2003). As far as households’ risk aversion

and labor elasticities are concerned, we select σ = 1 and η = 1, fairly standard values in the

literature.9 Moving to the IS curve, we impose a degree of habit formation b = .65 (in line with

Christiano et al, 2005; Rabanal, 2005; Dennis, 2005), which implies an intertemporal elasticity

of substitution equal to 0.2121, very similar to the set of estimates proposed by Fuhrer and

Rudebusch (2004). The Taylor rule is featured by ρπ ranging from 0 to 2, while ρx assumes

a value belonging to the set {0, 0.25, 0.5, 1} . Finally, to calibrate our volatilities we refer to
the study by Lubik and Schorfheide (2004) in which a model similar to (1)-(3) is estimated

under passive monetary policy. In particular, we set σ2επ = 1.16, σ
2
εx = 0.21, σ

2
εMP = 0.24, and

the volatility of the sunspot σ2ζ = 0.24. We now turn to the presentation and comment of our

results.

4 Results

Figure 1 displays the Taylor curves computed under uniqueness in the benchmark scenario

conditional of four different values of the parameter ρx. As expected, the Taylor curve depicts

a monotonically decreasing function in the (σx, σπ) diagram, i.e. the higher is the systematic

reaction of the nominal interest rate in eq. (3), the lower the inflation/output gap volatility

8We vary ρπ in the sub-domain [0, 2], and adopt a step-length equal to 0.1.
9These values imply an inverse of the sacrifice ratio κ = 0.0352, lower than other values present in the

literature, e.g. 0.10 as in Ireland (2004). However, notice that the sacrifice ratio is inversely related to the
degree or relative risk aversion σ, which will be augmented by a factor of 5 in the robustness check.
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ratio (all else being equal). This is "conventional wisdom" in the literature [see for instance

some of the contributions in Taylor (1999)].10

[insert Figure 1 about here]

The picture dramatically changes when the Taylor principle is not met (Figure 2).11 In

fact, the world under indeterminacy turns upside down. Under indeterminacy, the higher the

reaction of the policy rate to inflation fluctuations, the higher the inflation/output volatility

ratio! Interestingly, this finding holds both under orthogonality and under continuity. More-

over, by looking at the values of the volatilities plotted in Figure 2, we can notice that this

finding becomes more clear the higher is the reaction of the policy rate to the oscillations of

the output gap. This is due to the much higher volatility of inflation positively triggered by

ρx, that "stretches" the Taylor curve and renders even more clear the surprising behavior of

the curve. Moreover, we can also observe some "zig-zags" that are typically not present when

monetary policy is active. In other words, the curves are not necessarily monotonic. This is a

strong result, because it implies that some policies are Pareto-superior with respect to others.

For instance, the continuity case displayed in the north-east panel in Figure 3 witness that

the policy identified by (ρπ = 0.2, ρx = 0.25) - which implies the unconditional volatilities

(σx = 4.74, σπ = 3.41) - is Pareto superior with respect to the policy (ρπ = 0.3, ρx = 0.25) -

that delivers (σx = 4.80, σπ = 3.73).

[insert Figure 2 about here]

4.1 Monetary Policy, Macroeconomic Persistence, and Volatility

The results presented so far point towards a switch in the relationship between monetary

policy tightness and inflation-output volatility when moving from passive to active monetary

policy. Under passive monetary policy, such relationship is direct, while under active monetary

policy is inverse. To better understand this link, it is interesting to analyze the link between

monetary policy and persistence, and the link between persistence and volatility. Concentrate

on the latter, and consider the following reduced form autoregressive process:

zt = φ1zt−1 + φ2zt−2 + ...+ φnzt−n + ξzt (5)

10A closed form solution for the volatility ratio can be easily computed for a version of the model displaying no
endogenous persistence, i.e. w = b = 0. In fact, given the white noise nature of the structural shocks, Etπt+1 =

Etxt+1 = 0. Then, after some manipulations, it is possible to show that σπ
σx
=

(σ+ρx)
2σ2

επ
+κ2σ2

εMP
+(κσ)2σ2

εx

ρπ
2σ2

επ
+σ2

εMP
+σ2σ2

εx
.

Under determinacy (i.e. ρπ > 1), this implies ∂(σπ/σx)
∂ρπ

< 0 - for whatever admissible parameterization - which
proves the statement in the text.
11The plots regarding the indeterminacy scenarios do not include the pair (σx, σπ) obtained with ρπ = 1, ρx =

0 because of the out-of-scale volatility of inflation registered.
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with zt representing a generic macroeconomic variable, and ξt ∼ i.i.d.N(0, σ2ξ). We define

the degree of persistence of this process as zφ ≡
Pn

j=0 φj . Then, the unconditional volatility

- measured by the standard deviation - of z is

σz =
σξp
1− zφ

(6)

Obviously, given the volatility of the white noise shock of the process ξt, the more persistent

z, the higher its unconditional volatility σz. Then, to our purposes it is key to verify if zφ
increases under indeterminacy and decreases under determinacy. If so, we could argue that

monetary policy affects the persistence of inflation and the output gap, and consequently their

volatilities (and their volatility ratio).

We perform this check by fitting the simulated time series of inflation and the output

gap with an autogregressive model as (5), and confronting the estimated persistence with the

unconditional volatilities computed as described before.12

We plot our results in Figure 3 (inflation) and Figure 4 (output). Figure 3 shows an inter-

esting positive correlation between the estimated inflation persistence and the unconditional

inflation volatility when plotted against the policy parameter ρπ.
13 Indeed, this plot confirms

that as long as the Taylor principle is not met, the tighter the monetary policy management,

the higher the inflation persistence, the higher the inflation volatility. The switch to activeness

pays off, because it dramatically reduces inflation volatility, so delivering a better outcome for

the Society.

[insert Figure 3 about here]

Figure 4 completes the picture. It emerges that a fairly robust correlation also characterizes

the volatility and persistence of the output gap.14 Interestingly, the standard deviation of the

output gap is curbed by an increase of ρπ as long as a passive monetary policy is implemented,

while it is enhanced under uniqueness. It is then not surprising that the overall effect on the

volatility ratio (Figure 2) is basically the opposite under the two monetary policy scenarios.

[insert Figure 4 about here]

These results offer a very new finding to the monetary policy literature regarding the

mechanism linking systematic monetary policy, inflation and output persistence, and their
12We admit up to four lags for the process (5). For each OLS estimated model, the number of lags was

selected according to the Schwarz’s Bayesian Criterion. Of course, the dynamics expressed by the reduced
form of model (1)-(3) is not necessarily captured by the simple, univariate autoregressive model we employ for
measuring the persistence of the simulated series, that just represent a first approximation of it.
13Under continuity, the correlations between volatility and persistence amounts to 0.90 (top panel) and 0.83

(bottom panel). Under orthogonality, 0.87 (top panel) and 0.81 (bottom panel).
14Under continuity, the correlations between volatility and persistence amounts to 0.82 (top panel) and 0.91

(bottom panel). Under orthogonality, 0.83 (top panel) and 0.93 (bottom panel).
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volatilities. Interestingly, it emerges that, in case of a switch in the monetary policy regime

in an otherwise unchanged model, the persistence of the inflation and output gap processes

stemming from such model may vary quite significantly. This finding seems to represent a

warning on the use of long-samples featured by the presence of structural policy break when

estimating structural schedules. Indeed, such exercises may lead to flawed results due to model

misspecification.15

4.2 Indeterminacy and the Great Moderation

The observations of the volatilities of the U.S. economy in the last four decades suggest that

the last two decades have been featured by a much lower volatility of inflation and the output

gap. Figure 5 depicts 5-year moving averages that clearly show that, in first approximation,

two regimes may be identified. In the the first regime, the average standard deviation of

inflation is 2.20, and that of the output gap is 2.68. In the second regime, such figures drop

respectively to 1.00 and 2.03.16 Notice that this is not a finding one may easily explain by

employing the standard Taylor curve. In fact, the volatility trade-off predicts a raise (fall) of

the output gap volatility in reaction to a fall (raise) of the standard deviation of inflation.

[insert Figure 5 about here]

Interestingly, two recent contributions point towards a possible break-down of the standard

inflation/output trade-off. Branch et al (2004) show that a model in which firms choose their

information acquisition rate by minimizing a loss function that depends on expected forecast

errors and information costs. The central bank aims at minimizing a penalty function whose

arguments are the expected volatility of the cross-sectional price and that of the output

gap. When moving towards a tighter policy against price fluctuations, a direct effect on

the volatility of output (that increases) is exerted - but an indirect effect, channeled by a

decrease of the optimal information acquisition rate - tends to reduce such volatility. It

turns out that there is no trade-off between the price level stabilization and the output gap

stabilization as long as the central bank’s focus on the output gap stabilization is high enough.

Then, the great moderation may be explained by a shift in the degree of the relative policy

aggressiveness against price-level volatility. Orphanides and Williams (2004) propose a set

up in which agents "perpetually" learn about the structure of the economy, i.e. agents have

15For a nice paper showing how severely biased the estimates of a Phillips curve in such context may be,
see Surico (2005). A recent application by Lubik and Schorfheide (2004) shows how to deal with indetermi-
nacy in estimating a DSGE monetary policy model, while Castelnuovo and Surico (2005) show that inflation
expectations are important in SVAR analysis in sub-samples characterized by passive monetary policy.
16First regime, sample: 1966Q1-1979Q3. Second regime, sample: 1982Q4-2005Q3. The inflation rate is the

annualized quarterly variation of the GDP deflator. The output gap is measured as the log-difference between
real GDP and the measure of potential output of the Congressional Budget Office. The series employed in
this analysis were downloaded from the Federal Reserve Bank of St. Louis website in January 2006, and are
available upon request.
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an imperfect knowledge of the economic structure and infer about it at a constant pace via

a recursive least square formula that places greater weight on more recent observations. It

turns out that, for a Phillips curve in which inflation expectations have a great weight in

shaping inflation realizations, and for "low enough" policymakers preferences over inflation

stabilization, the inflation/output tradeoff may break down. This happens because in their

model inflation expectations persistently deviate from rational expectations, so becoming a

source of instability and providing an additional role for monetary policy.

The results we presented above candidate the monetary policy switch story as another

(possibly complementary) explanation of the Great Moderation. Indeed, by looking at Figures

3 and 4 it is easy to realize that both volatilities fall once the central banker has moved to

an aggressive enough monetary policy. Clarida et al (2000) and Lubik and Schorfheide (2004)

propose estimates for the parameter ρπ of about 0.70 − 0.90 for the pre-Volcker era, and
close to 2 under the Volcker-Greenspan monetary policy regime. The estimates for the ρx are

surrounded by higher uncertainty, but the coefficient is positive and significant, above all in

the Greenspan sample. By associating these estimates to the volatilities in Figures 3 and 4, it

emerges that the shift from passive to active monetary policy might really represent (one of)

the explanation(s) of the reduction of the macroeconomic volatilities in the last two decades

in the United States.

The next Section shows how robust our findings are to some perturbations to our bench-

mark parameterization.

5 Robustness Check

We discuss here some of the robustness check we implemented. First, we enrich the Taylor

rule (3) with an interest rate smoothing argument, i.e. we consider the rule

Rt = (1− ρ)(ρππt + ρyxt) + ρRt−1 + εMP
t

The empirical relevance of the lagged coefficient in the Taylor rule has been supported e.g.

by Clarida et al (2000). In line with several empirical contributions, we set the degree of

interest rate smoothing at a high value, i.e. ρ = 0.7. The results turn out to be qualitatively

in line with the ones presented above. Interestingly, a comparison between Figures 2 vs. 6

and 3 vs. 7 highlights the role played by the interest rate smoothing in influencing inflation

expectations and reducing the volatility of inflation (while slightly augmenting that of the

output gap), an effect already discussed by e.g. Woodford (2003).17 As a second empirical

check, we substituted the Taylor rule (3) with its deterministic counterpart, i.e. we set σ2
εMP =

17The computation of the loss function L = σπ + λyσy for various scenarios under analysis confirmed that,
for values of λy belonging to the [0, 0.5] interval, the interest rate smoothing effect is beneficial for the Society
both under continuity and under orthogonality.
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0. We did so to line up with the contributions computing the Taylor curves either under

optimal monetary policy (typically not embedding a policy shock) or deterministic simple

rules. Figures 10-13 depict the results under this hypothesis. The results confirm what

already discuss. As a further check concerning the policy rule, we modified it in order to

enable policymakers to react to expected inflation fluctuations, i.e.

Rt = ρπEtπt+1 + ρyxt + εMP
t

Once more, the qualitative messages of the paper turn out to be robust (see Figures 14-

17). Another perturbation we tried is that of the coefficient of relative risk aversion σ, whose

benchmark value is equal to 1. We set it equal to 5, and remade our simulations.18 Figures

18-21 seem to confirm our main results. Finally, given the huge uncertainty surrounding the

importance of automatic adjustments for the formation of inflation, we repeat our simulations

with a much lower value for the share of the firms who automatically adjust their prices when

not allowed to reoptimize, i.e. w = 0.3. Figures 22-25 confirm the robustness of our findings.

[insert Figures 6-25 about here]

6 Conclusions

If monetary policymakers react too weakly to inflation oscillations and the Taylor principle

is not met, sunspot fluctuations of the macroeconomic variables may arise. In this scenario,

the inflation/output volatility works in a very particular manner, i.e. the inflation/volatility

ratio raises when the monetary policy becomes more aggressive. The reason for this results is

likely to be the impact that monetary policy has on inflation and output persistence. Under

indeterminacy, such an influence is positive, i.e. the more aggressive the central bank, the more

persistent inflation, and the less persistent the output gap. Under determinacy, it happens

right the opposite. This result may then explain our finding on the inflation/volatility ratio,

and is qualitatively in line with the facts regarding the observed volatilities and volatility

ratios in the U.S. (as well as other industrialized countries).

We think our findings call for a better understanding of the macroeconomic behavior under

passive monetary policy. Recent contributions by Fuhrer (2005) and Angeloni et al (2005)

discuss different possible sources of the inflation persistence. This paper candidates sunspot

fluctuations as a main driver of inflation in specific subsamples, and underlines the importance

of relating the persistence of inflation to the monetary policy conduct. The fact that under

different policy regimes the persistence of the main macroeconomic series may dramatically

18Such value for the relative risk aversion implies that the inverse of the sacrifice ratio is κ = 0.1650, much
more in line with some of the estimates in the literature.
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change seems to be a warning on the reliability of the econometric results obtained with long

samples incorporating different, regime-specific sub-samples.
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Figure 1. Taylor curves under uniqueness: Benchmark Model. Parameterization
described in the text
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Standard deviation of inflation; right y-axis: Inflation persistence.
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Technical Appendix: Solution of the LRE Model

The linear rational expectations model described by equations (1)-(3) can be cast in the

following canonical form:

Γ0(θ)st = Γ1(θ)st−1 +Ψ(θ)εt +Π(θ)ηt (7)

where the vector st = [xt, πt, Rt, Etxt+1, Etπt+1]
0 collects the n variables of the system, εt =

[εMP
t , επt , ε

x
t ]
0 is the vector of l fundamental shocks, ηt = [(xt−Et−1xt), (πt−Et−1πt)]0 collects

the k rational expectations forecast errors, and θ = [ρπ, ρx, ρ, β, w, κ, b, σ, σ
2
επ , σ

2
εx ] is the vector

of the parameters of the model outlined in the previous section.

In order to transform the canonical form and solve the model, we follow Sims (2001) and

exploit the generalized complex Schur decomposition (QZ) of the matrices Γ0 and Γ1. This

corresponds to computing the matrices Q, Z, Λ and ∆ such that QQ0 = ZZ 0 = In, Λ and ∆

are upper triangular, Γ0 = Q0ΛZ and Γ1 = Q0∆Z. Defining wt = Z 0st and pre-multiplying
(7) by Q, we obtain:·

Λ11 Λ12
0 Λ22

¸ ·
w1,t
w2,t

¸
=

·
∆11 ∆12
0 ∆22

¸ ·
w1,t−1
w2,t−1

¸
+

·
Q1.
Q2.

¸
(Ψεt +Πηt) (8)

where, without loss of generality, the vector of generalized eigenvalues λ, which is the vector of

the ratios between the diagonal elements of ∆ and Λ, has been partitioned such that the lower

block collects all the explosive eigenvalues. The matrices ∆, Λ and Q have been partitioned

accordingly, and therefore Qj. collects the blocks of rows that correspond to the stable (j = 1)

and unstable (j = 2) eigenvalues respectively.

The explosive block of (8) can be rewritten as:19

w2,t = Λ
−1
22 ∆22w2,t−1 + Λ

−1
22 Q2.(Ψεt +Πηt) (9)

Given the set of m equations (9), a non-explosive solution of the linear rational expectations

model (7) for st requires w2,t = 0 ∀t ≥ 0. This can be obtained by setting w2,0 = 0 and choosing
for every vector εt the endogenous forecast error ηt that satisfies the following condition

Q2.(Ψεt +Πηt) = 0 (10)

A general stable solution for the endogenous forecast error can be computed through a singular

value decomposition of Q2.Π| {z }
mxk

= U|{z}
mxm

D|{z}
mxk

V 0|{z}
kxk

= U.1|{z}
mxr

D11|{z}
rxr

V 0.1|{z}
rxk

, where D11 is a diagonal matrix

19 It is possible to have some zero-elements on the main diagonal of Λ22. In this case, the latter matrix is
not invertible. The ’solving-forward’ solution proposed by Sims (2001) and extended by Lubik and Schorfheide
(2003) overcomes this problem. A Technical Appendix with a more detailed discussion of the solution strategy
is available from the authors upon request.
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and D and U are orthonormal matrices. Using this decomposition, Lubik and Schorfheide

(2003) show that in equilibrium the vector of endogenous forecast errors reads as follows:

ηt = (−V 0.1D−111 U.1Q2.Ψ+ V.2fM)εt + V.2ζt (11)

where fM is the (k − r)xl matrix governing the influence of the sunspot shock on the model

dynamics.

Assuming that Γ−10 exists, the solution (11) can be combined with (7) to yield the following

law of motion for the state vector:

st = Γ
∗
1st−1 +

h
Ψ∗ −Π∗V.1D−111 U 0.1Q2.Ψ+Π∗V.2fMi

εt +Π
∗V.2ζt (12)

where a generic X∗ = Γ−10 X.

In general, we can be confronted with three cases. If the number of endogenous forecast

errors k is equal to the number of nonzero singular values r, the system is determined and

the stability condition (10) uniquely determines ηt. In such a case, V.2 = 0, then the last two

addends of (12) drop out. This implies that the dynamics of st is purely a function of the

structural parameters θ.

If the number of endogenous forecast errors k exceeds the number of nonzero singular val-

ues r, the system is indeterminate and sunspot fluctuations can arise. Lubik and Schorfheide

(2003) show that this can influence the solution along two dimensions. First, sunspot fluctua-

tions ζt can affect the equilibrium dynamics. Second, the transmission of fundamental shocks

εt is no longer uniquely identified as the elements of fM are not pinned down by the structure

of the linear rational expectations model.

Alternatively, the number of endogenous forecast errors k can be smaller than the number

of nonzero singular values r, and then the system has no solutions. These three conditions

generalize the procedure in Blanchard and Kahn (1980) of counting the number of unstable

roots and predetermined variables.20

In order to compute fM and then the solutions of the model under indeterminacy, it is

necessary to impose some additional restrictions on the endogenous forecast errors. Following

Lubik and Schorfheide (2004), we choose fM such that the impulse responses ∂st
∂ε0t

associated

with the system (12) are continuous at the boundary between the determinacy and the inde-

terminacy region. This solution is labelled "continuity". As an alternative, we compute the

solution of the model under indeterminacy by imposing fM = 0can be computed using the

assumption that the effects of the sunspot shocks are orthogonal to the effects of the structural

shocks. This identification yields results, not reported but available upon request, that are

qualitatively similar to the findings for the continuity case.
20The solution method proposed by Sims (2001) has the advantage that it does not require the separation of

predetermined variables from "jump" variables. Rather, it recognizes that in equilibrium models expectational
residuals are attached to equations and that the structure of the coefficient matrices in the canonical form
implicitly selects the linear combination of variables that needs to be predetermined for a solution to exist.

18



Let ΘI and ΘD be the sets of all possible vectors of parameters θ0s in the indeterminacy
and determinacy region respectively. For every vector θ ∈ ΘI we identify a corresponding

vector
∼
θ ∈ ΘD that lies on the boundary of the two regions and choose fM such that the

response of st to εt conditional on θ mimics the response conditional on
∼
θ. This corresponds

to requiring that the condition

∂st
∂ε0t
(θ) = B1(θ) +B2(θ) = Ψ

∗ −Π∗V.1D−111 U 0.1Q2.Ψ+Π∗V.2fM (13)

be as close as possible to the condition

∂st
∂ε0t
(eθ) = B1(eθ) (14)

Applying a least-square criterion, we can then compute

fM =
£
B02(θ)B2(θ)

¤−1
B02(θ)

h
B1(eθ)−B1(θ)

i
(15)

and use (15) to calculate the solution of the model in (11) and (12).

The new vector
∼
θ is obtained from θ by replacing ρπ with the condition that marks the

boundary between the determinacy and indeterminacy region in the system (1)-(3). Woodford

(2003) shows that this condition corresponds to the following interest rate reaction to inflation

fρπ = 1− (1− β)

κ
ρx (16)

Contributions cited in this Technical Appendix

Lubik, T.A., and F. Schorfheide, 2003, Computing Sunspot Equilibria in Linear Rational
Expectations Models, Journal of Economic Dynamics and Control, 28(2), 273-285.

Lubik, T.A., and F. Schorfheide, 2004, Testing for Indeterminacy: An Application to US
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Figure 6. Robustness check, interest rate smoothing. [ρ = 0.7]
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Figure 7. Robustness check, interest rate smoothing. [ρ = 0.7]
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Figure 10. Robustness check with determinist Taylor rule. [σMP
ε = 0]

1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

St. dev. output gap

S
t. 

de
v.

 in
fla

tio
n

ρx = 0.00

3.5 4 4.5 5
2

4

6

8

10

12

St. dev. output gap

S
t. 

de
v.

 in
fla

tio
n

ρx = 0.25

3.5 4 4.5 5 5.5
0

5

10

15

20

St. dev. output gap

S
t. 

de
v.

 in
fla

tio
n

ρx = 0.50

3.5 4 4.5 5 5.5 6 6.5
5

10

15

20

25

30

35

St. dev. output gap

S
t. 

de
v.

 in
fla

tio
n

ρx = 1.00

continuity
orthogonality

Figure 11. Robustness check with determinist Taylor rule. [σMP
ε = 0]
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Figure 1: Figure 13. Robustness check with determinist Taylor rule. [σMP
ε = 0]
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Figure 14. Robustness check with forward looking Taylor rule.
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Figure 15. Robustness check with forward looking Taylor rule.

24



0 0.5 1 1.5 2
0

10

ρπ

ρx = 0.25, continuity

0 0.5 1 1.5 2
0.5

1

0 0.5 1 1.5 2
0

2

4

6

ρπ

ρx = 0.25, orthogonality

0 0.5 1 1.5 2
0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

5

10

ρπ

ρx = 1.00, continuity

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
0

5

10

ρπ

ρx = 1.00, orthogonality

0 0.5 1 1.5 2
0

0.5

1

St. dev. output gap
output gap persistence

Figure 2: Figure 17. Robustness check with forward looking Taylor rule.
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Figure 16. Robustness check with forward looking Taylor rule.
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Figure 18. Robustness check with high relative risk aversion. [σ = 5]
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Figure 19. Robustness check with high relative risk aversion. [σ = 5]
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Figure 20. Robustness check with high relative risk aversion. [σ = 5]
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Figure 21. Robustness check with high relative risk aversion. [σ = 5]
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Figure 22. Robustness check with a lower degree of automatic price adjustment.
[w = 0.3]
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Figure 23. Robustness check with a lower degree of automatic price adjustment.
[w = 0.3]
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Figure 24. Robustness check with a lower degree of automatic price adjustment.
[w = 0.3]
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Figure 25. Robustness check with a lower degree of automatic price adjustment.
[w = 0.3]
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