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Université de Genève
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Abstract

We consider consistent tests for stochastic dominance efficiency at any order of a
given portfolio with respect to all possible portfolios constructed from a set of assets.
We propose and justify approaches based on simulation and the block bootstrap to
achieve valid inference in a time series setting. The test statistics and the estimators
are computed using linear and mixed integer programming methods. The empiri-
cal application shows that the Fama and French market portfolio is FSD and SSD
efficient, although it is mean-variance inefficient.
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1 Introduction

Stochastic dominance (SD) is a central theme in a wide variety of applications in
economics, finance and statistics, see e.g. the review papers by Kroll and Levy (1980)
and Levy (1992), the classified bibliography by Mosler and Scarsini (1993) and the
books by Shaked and Shanthikumar (1994) and Levy (1998). It aims at comparing
random variables in the sense of stochastic orderings expressing the common prefer-
ences of rational decision-makers. Stochastic orderings are binary relations defined
on classes of probability distributions. They translate mathematically intuitive ideas
like “being larger” or “being more variable” for random quantities. They extend the
classical mean-variance approach to compare riskiness.

The main attractiveness of the SD approach is that it is nonparametric, in the
sense that its criteria do not impose explicit specifications of an investor preferences
or restrictions on the functional forms of probability distributions. Rather, they rely
only on general preference and beliefs assumptions. Thus, no specification is made
about the return distribution, and the observed discrete distribution is posited to
represent the underlying distribution.

Traditionally, SD was tested pairwise. Only recently Kuosmanen (2004) and Post
(2003) have introduced the notion of stochastic dominance efficiency (SDE). This
notion is a direct extension of SD to the case where full diversification is allowed. In
that setting both authors derive statistics to test for SDE of a given portfolio with
respect to all possible portfolios constructed from a set of financial assets. Such a
derivation relies intrinsically on using ranked observations under an i.i.d. assumption
on the asset returns. 1

The goal of this paper is to develop consistent tests for SDE at any order for time-
dependent data. Serial correlation is known to pollute financial data (see the empirical
section), and to alter, often severely, the size and power of testing procedures when
neglected. We rely on Kolmogorov-Smirnov type tests inspired by the consistent
procedures developped by Barrett and Donald (2003), hereafter BD, in testing for
SD. 2 We develop general SD efficiency tests that compare a given portfolio with an
optimal diversified portfolio formed from a given finite set of assets. We build on the
general distribution definition of SD in contrast to the traditional expected utility
framework.

Note that De Giorgi (2004) have solved a portfolio selection problem based on
reward-risk measures consistent with second-order stochastic dominance (SSD). If
investors have homogeneous expectations and optimally hold reward-risk efficient

1Remark that contrary to the initial observations, ranked observations, i.e. order statistics, are
no more i.i.d.. Besides, each order statistic has a different mean since expectations of order statistics
correspond to quantiles. However the approach suggested by Post (2003) based on the bootstrap is
valid (see Nelson and Pope (1992) for an early use of bootstrap in SD tests). Indeed bootstrapping
the ranked observations or the initial observations does not affect bootstrap distributions of test
statistics, at least in an i.i.d. framework.

2Other SD tests has been suggested in the literature; see e.g. Anderson (1996), Beach and David-
son (1983), Davidson and Duclos (2000). However these tests rely on pairwise comparisons made
at a fixed number of arbitrary chosen points. This is not a desirable feature since it introduces the
possibility of test inconsistency.
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portfolios, then in the absence of market frictions, the portfolio of all invested wealth,
or the market portfolio, will itself be a reward-risk efficient portfolio. The market
portfolio should therefore be itself efficient in the sense of SSD according to that
theory (see De Giorgi and Post (2005) for a rigorous derivation of this result). This
reasoning is similar to the one underlying the derivation of the CAPM (Sharpe (1964),
Lintner (1965)), where investors optimally hold mean-variance efficient portfolios. A
direct test for SSDE of the market portfolio can be viewed as a nonparametric way
to test empirically for such a theory.

The paper is organized as follows. In Section 2, we recall the notion of SDE intro-
duced by Kuosmanen (2004) and Post (2003), and discuss the general hypotheses for
testing SDE at any order. We describe the test statistics, and analyse the asymptotic
properties of the testing procedures. We follow BD, who extend and justify the pro-
cedure of McFadden (1989) (see also Abadie (2002)) leading to consistent tests of SD,
and we use simulation based procedures to compute p-values. From a technical point
of view, we modify their work to accommodate the presence of full diversification and
time-dependent data. Note that other resampling methods such as subsampling are
also available (see Linton, Maasoumi and Whang (2005) for the standard SD tests).
Linton, Post and Whang (2005) follow this route, in the context of testing procedures
for SDE. They use subsampling to estimate the p-values, and they also discuss power
issues of the testing procedures. In their work they focus on the dominance criteria of
order two and three. In our paper, we also test for FSDE, although it gives necessary
and not sufficient optimality conditions, as argued in Post (2005). The FSD criterion
places on the form of the utility function beyond the usual requirement that it is
nondecreasing, i.e., investors prefer more to less. Thus, this criterion is appropriate
for both risk averters and risk lovers since the utility function may contain concave
as well as convex segments. Owing to its generality, the FSD permits a preliminary
screening of investment alternatives eliminating those which no rational investor will
ever choose. The SSD criterion adds the assumption of global risk aversion. This
criterion is based on a stronger assumption and therefore, it permits a more sensible
selection of investments. The test statistic for SSD is formulated in terms of stan-
dard linear programming (LP). Note that numerical implementation of FSD is much
more difficult since we need to develop mixed integer programs (MIP). Nevertheless,
standard widely available algorithms can be used to compute both test statistics.

In Section 3 we discuss two practical ways to compute the p-values for testing SDE.
The first one relies on a simulation-based multiplier method while the second relies
on a block bootstrap method. In Section 4 we provide an empirical illustration. We
analyze whether the Fama and French market portfolio can be considered as efficient
according to FSD, and SSD criteria when confronted to diversification principles
made of the 6 Fama and French benchmark portfolios formed on size and book-to-
market equity ratio, and the riskless asset. The fact that many institutional investors
invest in mutual funds, motivate us to test the efficiency of the market portfolio.
These funds track value-weighted equity indices which strongly resemble the market
portfolio. We find that the market portfolio is FSD and SSD efficient. We give some
concluding remarks in Section 5. Proofs and mathematical programming formulations
are gathered in an Appendix.
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2 Testing for stochastic dominance efficiency

We consider a strictly stationary process {Y t, t ∈ Z} taking values in a compact set
E ⊂ Rn. The observations consist in a realization of {Y t; t = 1, ..., T}. These data
correspond to observed returns of n financial assets. For inference we also need the
process being strong mixing (α-mixing) with mixing coefficients αt such that αT =
O(T−a) for some a > 1 as T → ∞ (see Doukhan (1994) for relevant definition and
examples). In particular returns generated by various stationary ARMA, GARCH
and stochastic volatility models meet this requirement (Carrasco and Chen (1998)).
We denote by F (y), the continuous cdf of Y = (Y1, ..., Yn)′ at point y = (y1, ..., yn)′.

Let us consider a portfolio λ ∈ L where L := {λ ∈ Rn
+ : e′λ = 1} with e for

a vector made of ones. This means that short sales are not allowed and that the
portfolio weights sum to one. Let us denote by G(z, λ; F ) the cdf of the portfolio
return λ′Y at point z given by:

G(z, λ; F ) =

∫
E

I{λ′u ≤ z}dF (u).

We denote by a the largest scalar so that G(a, λ; F ) = 0 for all portfolios λ ∈ L,
and b the smallest scalar so that G(b, λ; F ) = 1 for all portfolios λ ∈ L. Then the
interval made of the upper bond a and the lower bound b forms the narrowest common
support of all portfolio return distributions, and the nature of E and L ensures that
the interval [a, b] is finite.

Let us define for z ≤ b:

J1(z, λ; F ) = G(z, λ; F ),

J2(z, λ; F ) =

∫ z

a

G(u, λ; F )du =

∫ z

a

J1(u, λ; F )du,

J3(z, λ; F ) =

∫ z

a

∫ u

a

G(v, λ; F )dvdu =

∫ z

a

J2(u, λ; F )du,

and so on. 3

From DD Eq. (2), we know that

Jj(z, λ; F ) =

∫ z

a

1

(j − 1)!
(z − u)j−1dG(u, λ, F ),

which can be rewritten as

Jj(z, λ; F ) =

∫
E

1

(j − 1)!
(z − λ′u)j−1I(λ′u ≤ z)dF (u). (2.1)

3These multiple integrals of the cdf are not well defined if a or b are infinite. This is the case
for instance when the support of F is Rn instead of E. Note however that we may consider any
finite interval containing [a, b] and define the integrals accordingly. Hence if we take such an interval
sufficiently large, this should not affect the stochastic ordering in practice.
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The general hypotheses for testing the stochastic dominance efficiency of order j
of τ , hereafter SDEj, can be written compactly as: 4

Hj
0 : Jj(z, τ ; F ) ≤ Jj(z, λ; F ) for all z ∈ [a, b] and for all λ ∈ L,

Hj
1 : Jj(z, τ ; F ) > Jj(z, λ; F ) for some z ∈ [a, b] or for some λ ∈ L.

In particular we get SSDE when j = 2.
The empirical counterpart to (2.1) is simply obtained by integrating with respect

to the empirical distribution F̂ of F , which yields:

Jj(z, λ; F̂ ) =
1

T

T∑
t=1

1

(j − 1)!
(z − λ′Y t)

j−1I(λ′Y t ≤ z), (2.2)

and can be rewritten more compactly for j ≥ 2 as:

Jj(z, λ; F̂ ) =
1

T

T∑
t=1

1

(j − 1)!
(z − λ′Y t)

j−1
+ ,

where (x)+ = max(x, 0).
Since

√
T (F̂ − F ) tends weakly to a mean zero Gaussian process B ◦ F in the

space of continuous functions on E (see e.g. the multivariate functional central limit
theorem for stationary strongly mixing sequences stated in Rio (2000) 5), we may
derive the limiting behaviour of (2.2) using the Continuous Mapping Theorem (as in
Lemma 1 of BD).

Lemma 2.1. The vector
√

T [Jj(·; F̂ )−Jj(·; F )] tends weakly to a Gaussian process
Jj(·;B ◦ F ) with mean zero and covariance function given by:

- for j = 1:

Ω1(z1, z2, λ1, λ2) = E[G(z1, λ1;B ◦ F )G(z2, λ2;B ◦ F )]

=
∑
t∈Z

E [I{λ′1Y 0 ≤ z1}I{λ′2Y t ≤ z2}]−G(z1, λ1; F )G(z2, λ2; F ),

- for j ≥ 2:

Ωj(z1, z2, λ1, λ2) = E [Jj(z1, λ1;B ◦ F )Jj(z2, λ2;B ◦ F )]

4Remark that the general hypotheses for testing the stochastic dominance of order j of the
distribution of portfolio τ over the distribution of portfolio λ take analoguous forms but for a given λ
instead of several of them. Indeed the notion of stochastic dominance efficiency is a straightforward
extension to the case where full diversification is allowed. Note also that saying that a portfolio
dominates all other portfolios is a sufficient but not necessary condition for efficiency (being not-
dominated). The last formulation is the one used by Kuosmanen (2004) and Post (2003).

5We may also assume a weaker, but less standard, condition, namely that the process is weakly
dependent in the sense of Doukhan and Louhichi (1999) and rely on the multidimensionl functional
central limit theorem in Doukhan, Fermanian and Lang (2004).
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=
∑
t∈Z

1

((j − 1)!)2
E

[
(z1 − λ′1Y 0)

j−1
+ (z2 − λ′2Y t)

j−1
+

]
−Jj(z1, λ1; F )Jj(z2, λ2; F ),

with (z1, z2)
′ ∈ [a, b]2 and (λ′1, λ

′
2)
′ ∈ L2.

For i.i.d. data the covariance kernel reduces to

Ω1(z1, z2, λ1, λ2) = E [I{λ′1Y ≤ z1}I{λ′2Y ≤ z2}]−G(z1, λ1; F )G(z2, λ2; F ),

and for j ≥ 2:

Ωj(z1, z2, λ1, λ2)

=
1

((j − 1)!)2
E

[
(z1 − λ′1Y )j−1

+ (z2 − λ′2Y )j−1
+

]
− Jj(z1, λ1; F )Jj(z2, λ2; F ).

Let us consider the test statistic

Ŝj =
√

T sup
z,λ

[
Jj(z, τ ; F̂ )− Jj(z, λ; F̂ )

]
,

and a test based on the decision rule:

“ reject Hj
0 if Ŝj > cj ”,

where cj is some critical value that will be discussed in a moment.
The following result characterizes the properties of the test, where

S̄j := sup
z,λ

[Jj(z, τ ;B ◦ F )− Jj(z, λ;B ◦ F )] .

Proposition 2.2. Let cj be a positive finite constant, then:

(i) if Hj
0 is true,

lim
T→∞

P [rejectHj
0 ] ≤ P [S̄j > cj] := α(cj),

with equality when G(z, λ; F ) = G(z, τ ; F ) for all z ∈ [a, b] and some λ ∈ L ;

(ii) if H0 is false,
lim

T→∞
P [rejectH0] = 1.

The result provides a random variable 6 that dominates the limiting random vari-
able corresponding to the test statistic under the null hypothesis. The inequality yield
a test that will never reject more often than α(cj) for any portfolio τ satisfying the
null hypothesis. As noted in the result the probability of rejection will asymptotically

6We conjecture that a similar result holds with supz,λ Jj(z,λ;B◦F ) substituted for S̄j . We have
not been able to show this because of the complexity of the covariance of the empirical process which
impedes us to exploit the Slepian-Fernique-Marcus-Shepp inequality (see Proposition A.2.6 of VW)
as in BD. Note that this second result would not bring a significant improvement in the numerical
tractability of SD-tests as opposed to the context of BD.
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be exactly α(cj) when G(z, λ; F ) = G(z, τ ; F ) for all z ∈ [a, b] and some λ ∈ L. The
first part implies that if one could find a cj to set the α(cj) to some desired probability
level (say the conventional 0.05 or 0.01) then this would be the significance level for
composite null hypotheses in the sense described by Lehmann (1986). The second
part of the result indicates that the test is capable of detecting any violation of the
full set of restrictions of the null hypothesis. Of course, in order to make the result
operational, we need to find an appropriate critical value cj. Since the distribution of
the test statistic depends on the underlying distribution, this is not an easy task, and
we decide hereafter to rely on two different methods to simulate p-values. The first
one is based on a simulation based multiplier method and the second one on block
bootstrap methods.

3 Simulating p-values

3.1 Multiplier method

In this section we consider the use of a similation based method which exploits the
multiplier central limit theory discussed in VW (1996) Section 2.9. 7 The idea
is to rely on artificial random numbers to simulate a process that is identical but
(asymptotically) independent of B ◦ F .

To do this let {Ut; t = 1, ..., T} denote a sequence of i.i.d. N(0, 1) random vari-
ables that are independent of the data sample. Then the process is easily generated
from:

B̃(y, F̂ ) :=
1√
T

T∑
t=1

[
I{Y t ≤ y} − F̂ (y)

]
Ut,

where B̃(y, F̂ ) is the value of the simulated process B̃ ◦ F̂ at point y. We may then do
inference by computing p-values of appropriate functionals of the simulated process.

Indeed if we consider

S̃j := sup
z,λ

[
Jj(z, τ ; B̃ ◦ F̂ )− Jj(z, λ; B̃ ◦ F̂ )

]
,

the p-values can be estimated from:

p̃j := PU [S̃j > Ŝj],

where PU is the probability function associated with the normal random variable U
and is conditional on the realized sample. The following result provides the decision
rule in this environment.

Proposition 3.1. Assuming that α < 1/2, a test for SDEj based on the rule:

“ rejectHj
0 if p̃j < α ”,

7See BD for use in stochastic dominance test, and Hansen (1996), Guay and Scaillet (2003) for
other uses.
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satisfies the following

lim P [rejectHj
0 ] ≤ α if Hj

0 is true,

lim P [rejectHj
0 ] = 1 if Hj

0 is false.

The multiplier method can be justified by showing that the simulated process B̃◦F̂
converges weakly to an identical independent copy of the Gaussian process B◦F . An
application of the continuous mapping theorem shows then that we get a simulated
copy of the bounding random variables that appears in Proposition 2.2. In practice
we need to use Monte-Carlo methods to approximate the probability. The p-value is
simply approximated by

p̃j ≈
1

R

R∑
r=1

I{S̃j,r > Ŝj},

where the averaging is made on R replications. Note that the replication number
can be chosen to make the approximations as accurate as one desires given time and
computer constraints.

3.2 Block bootstrap methods

The second method relies on block bootstrap methods. 8 Block boostrap methods
extend the nonparametric i.i.d. bootstrap to a time series context. They are based
on “blocking” arguments, in which data are divided into blocks and those, rather
than individual data, are resampled in order to mimick the time dependent structure
of the original data. An alternative resampling technique could be subsampling, for
which similar results can be shown to hold as well (see Linton, Maasoumi, and Whang
(2001) for use in stochastic dominance tests).

Let b, l denote integers such that T = bl. We distinguish hereafter two different
ways of proceeding, depending on whether the blocks are overlapping or nonoverlap-
ping. The overlapping rule (Kunsch (1989)) produces T − l + 1 overlapping blocks,
the kth being Bk = (Y ′

k, ...,Y
′
k+l−1)

′ with k ∈ {1, ..., T − l + 1}. The nonoverlap-
ping rule (Carlstein (1986)) just asks the data to be divided into b disjoint blocks,
the kth being Bk = (Y ′

(k−1)l+1, ...,Y
′
kl)
′ with k ∈ {1, ..., b}. In either case the

block bootstrap method requires that we choose blocks B∗
1, ...,B

∗
b by resampling

randomly, with replacement, from the set of overlapping or nonoverlapping blocks.
If B∗

i = (Y ∗′
i1, ...,Y

∗′
il )
′, a block bootstrap sample {Y ∗

t ; t = 1, ..., T} is made of
{Y ∗

11, ...,Y
∗
1l, Y

∗
21, ...,Y

∗
2l, ...,Y

∗
b1, ...,Y

∗
bl}, and we let F̂ ∗ denote its empirical distri-

bution.
Let Ê∗ denote the expectation operator with respect to the probability mea-

sure induced by block bootstrap sampling. If the blocks are nonoverlapping, then
Ê∗Jj(z, λ; F̂ ∗) = Jj(z, λ; F̂ ). In contrast Ê∗Jj(z, λ; F̂ ∗) 6= Jj(z, λ; F̂ ) under an over-
lapping scheme (Hall, Horowitz, and Jing (1996)). The resulting bias decreases the
rate of convergence of the estimation errors of the block bootstrap with overlapping

8See BD and Abadie (2002) for use of the nonparametric i.i.d. bootstrap in stochastic dominance
tests.
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blocks. Fortunately this problem can be solved easily by recentering the test statis-
tic. 9 Hence let us introduce

S∗j :=
√

T sup
z,λ

{[
Jj(z, τ ; F̂ ∗)− Ê∗Jj(z, τ ; F̂ ∗)

]
−

[
Jj(z, λ; F̂ ∗)− Ê∗Jj(z, λ; F̂ ∗)

]}
,

with, for the overlapping rule,

Ê∗Jj(z, λ; F̂ ∗) =
1

T − l + 1

T∑
t=1

w(t, l, T )
1

(j − 1)!
(z − λ′Y t)

j−1I{λ′Y t ≤ z},

where

w(t, l, T ) =


t/l if t ∈ {1, ..., l − 1},
1 if t ∈ {l, ..., T − l + 1},
(T − t + 1)/l if t ∈ {T − l + 2, ..., T},

and with, for the nonoverlapping rule, Ê∗Jj(z, λ; F̂ ∗) = Jj(z, λ; F̂ ).
Let us define

p∗j := P [S∗j > Ŝj].

Then the block bootstrap method is justified by the next statement. 10

Proposition 3.2. Assuming that α < 1/2, a test for SDEj based on the rule:

“ rejectHj
0 if p∗j < α ”,

satisfies the following

lim P [rejectHj
0 ] ≤ α if Hj

0 is true,

lim P [rejectHj
0 ] = 1 if Hj

0 is false.

Again we need to rely on Monte-Carlo methods to approximate the probability in
a manner analogous to the one of the previous subsection.

4 Empirical application

In this section we present the results of an empirical application. To illustrate the
potential of the proposed test statistics, we test whether different SDE criteria (FSDE,
and SSDE) rationalize the market portfolio. Although we focus the analysis on testing
the SSD efficiency of the market portfolio, we additionally test FSD to examine the
degree of the subjects’ rationality (in the sense that they prefer more to less).

9See also Hall and Horowitz (1996), Andrews (2002) for a discussion of the need for recentering
to avoid excessive bias in tests based on extremum estimators.

10Note that deleting the expectations, i.e. setting Ê∗Jj(z, τ ; F̂ ∗) = 0 and Ê∗Jj(z,λ; F̂ ∗) = 0
under both rules, would not change the statement.
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4.1 Description of the data

We use the 6 Fama and French benchmark portfolios constructed as the intersections
of 2 ME portfolios and 3 BE/ME portfolios. The portfolios are constructed at the
end of June. ME is market cap at the end of June. BE/ME is book equity at the last
fiscal year end of the prior calendar year divided by ME at the end of December of
the prior year. Firms with negative BE are not included in any portfolio. The annual
returns are from January to December. We use data on monthly returns (month-end
to month-end) from July 1963 to October 2001 (460 monthly observations) obtained
from the data library on the homepage of Kenneth French11. Excess returns are
computed from the raw return observations by subtracting the return on the one-
month U.S. Treasury bill. We also use the Fama and French market portfolio, which
is the value-weighted average of all non-financial common stocks listed on NYSE,
AMEX, and Nasdaq, and covered by CRSP and COMPUSTAT. Further, we use the
one-month U.S. Treasury bill as the riskless asset.

First we analyze the statistical characteristics of the data covering the period
from July 1963 to October 2001 (460 monthly observations) that are used in the
test statistics. As we can see from Table 4.1, portfolio returns exhibit considerable
variance in comparison to their mean. Moreover, the skewness and kurtosis indicate
that normality cannot be accepted for the majority of them. These observations
suggest to adopt the FSD and SSD tests which account for the full return distribution
and not only the mean and the variance.

Descriptive Statistics
No. Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Market Portfolio 0.462 4.461 -0.498 2.176 -23.09 16.05

1 0.316 7.07 -0.337 -1.033 -32.63 28.01
2 0.726 5.378 -0.512 0.570 -28.13 26.26
3 0.885 5.385 -0.298 1.628 -28.25 29.56
4 0.323 4.812 -0.291 -1.135 -23.67 20.48
5 0.399 4.269 -0.247 -0.706 -21.00 16.53
6 0.581 4.382 -0.069 -0.929 -19.46 20.46

Table 4.1: Descriptive statistics of monthly percentage excess returns (in %) from
July 1963 to October 2001 (460 monthly observations) for the Fama and French mar-
ket portfolio and the 6 Fama and French benchmark portfolios formed on size and
book-to-market equity ratio. Portfolio 1 has Low BE/ME and Small size, portfo-
lio 2 has Medium BE/ME and Small Size, portfolio 3 has High BE/ME and small
size...portfolio 6 has High BE/ME and Large size.

11http://mba.turc.dartmouth.edu/pages/faculty/ken.french
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Mean Variance Diagram
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Figure 4.1: Mean-Standard Deviation efficient frontier of the 6 Fama and French risky
benchmark portfolios. The diagram also shows the mean excess returns and standard
deviations of the individual benchmark portfolios as well as the Fama and French
Market (M) portfolio, which is the test portfolio.

One interesting feature is the comparison of the behavior of the market portfolio
with that of the individual portfolios. Figure 4.1 shows the Mean-Standard Deviation
efficient frontier of the 6 Fama and French risky benchmark portfolios. This Figure
diagram also shows the mean excess returns and standard deviations of the individual
benchmark portfolios as well as the Fama and French Market (M) portfolio, which
will be the test portfolio. We observe that the test portfolio (M) is Mean-Standard
Deviation inefficient. It is clear that we can construct portfolios that achieve a higher
expected return for the same level of standard deviation, and a lower standard de-
viation for the same level of expected return. If the investor utility function is not
quadratic, then the risk profile of the benchmark portfolios cannot be totally cap-
tured by the variance of these portfolios. Generally, the variance is not a satisfactory
measure. It is a symmetric measure that penalizes gains and losses in the same way.
Moreover, the variance is inappropriate to describe the risk of low probability events.
Finally, the mean-variance approach is not consistent with second-order stochastic
dominance. This is well illustrated by the mean-variance Paradox and motivates us
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to test whether the market portfolio is FSD and SSD efficient.

4.2 The SDE test results

We use the block bootstrap method (proposed in section 3) to compute the p-values
for testing SDE. 12 They are computed by comparing the test statistics with a number
of recentered bootstrap samples. We have found a significant autocorrelation of order
one at a 5% significance level in benchmark portfolios 1 to 3, while ARCH effects are
present in benchmark portfolio 4 at a 5% significance level. This indicates that a block
bootstrap approach should be favoured over a standard i.i.d. bootstrap approach.
The original data are divided into blocks. Since the autocorrelations die out quickly,
we may take a block of small size to compute the test statistics. We have chosen a
size of 10 observations. The blocks are overlapping, to avoid excessive bias in the
tests 13. The p-values are approximated by

p̃j ≈
1

R

R∑
r=1

I{S̃j,r > Ŝj}, j = 1, 2,

where the averaging is made on 300 replications. This number guarantees that the
approximations are accurate enough, given time and computer constraints. We reject
the null hypothesis if the p-value is lower than the significance level of 5%.

For the FSD efficiency, we found that the market portfolio is FSD highly and
significantly efficient. The p-value of the test statistic is p̃j ≈ 0.55. The market
portfolio is found to be efficient in 167 out of 300 replications.

Our test results suggest also that the market portfolio is highly and significantly
SSD efficient. The p-value of the test statistic is p̃j ≈ 0.59. The market portfolio
is found to be efficient in 179 out of 300 replications. Although Figure 4.1 shows
that the market portfolio is inefficient compared to the benchmark portfolios in the
mean-variance scheme, the FSD and SSD efficiency of the market portfolio proves the
opposite under more general schemes. These results indicate that the whole distrib-
ution rather than the mean and the variance plays an important role in comparing
portfolios. This efficiency of the market portfolio is interesting for investors. If the
market portfolio is not efficient, individual investors could diversify across diverse
asset portfolios and outperform the market.

The fact that the market portfolio is found to be SSDE cannot be attributed to
the lack of power of the test statistic. Indeed, we use a long enough time-series of 460
return observations, and a relatively narrow cross-section of 6 benchmark portfolios.

The fact also that our test is only a necessary and not sufficient condition for the
efficiency of the market portfolio, does not influence the results. Indeed, the market
portfolio SD dominates all other portfolios, thus, it is not dominated by any other
portfolio, and therefore it is efficient.

12Our experience indicates that using a bootstrap method or a multiplier method do not affect
dramatically the outcome of the tests.

13We use the overlapping rule because in the nonoverlapping rule we need to recenter the test
statistic, and the new S∗

j test is very difficult to optimize, since it involves a large number of binary
variables.
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4.3 Rolling window analysis

We carried out an additional test to validate the SSD efficiency of the market portfolio
and the stability of the model results. It is possible that the efficiency of the mar-
ket portfolio could change over time, as the risk and preferences of investors change.
Therefore, the market portfolio could be efficient in the total sample, but inefficient in
some subsamples. Moreover, the degree of efficiency may change over time, as pointed
by Post (2003). To control for that, we perform a rolling window analysis, using a
window width of 10 years. The test statistic is calculated separately for 340 overlap-
ping 10-year periods, (July 1963-June 1973), (August 1963-July 1973),...,(November
1991-October 2001).

Figure 4.2 shows the corresponding p-values. Interestingly, we observe that the
market portfolio is SSD efficient in the total sample period. The SSD efficiency is not
rejected for all subsamples. The p-values are always greater than 15%, and in some
cases they reach the 80% − 90%. This result confirms the SSD efficiency that was
found in the previous subsection, for the whole period. This means that we cannot
form an optimal portfolio from the set of the 6 benchmark portfolios that dominates
the market portfolio by SSD. The line exhibit large fluctuations, thus the degree of
efficiency is changing over time, but remains always above the critical value.

Note that the computational complexity and the associated large solution time
of the FSD test are prohibitive for a rolling window analysis, which involves a large
number of optimization models (340 rolling windows times 300 bootstraps for each
one times 460 programs. 460 is the number of discrete values of z, a discretization
that reduces the solution time, as it is explained in the Appendix).

This is a strong indication of the SSD efficiency of the market portfolio, as the
resulting p-values remain always above the critical level of 5%.

5 Concluding remarks

In this paper we develop consistent tests for stochastic dominance efficiency at any
order for time-dependent data. We propose tests for stochastic dominance efficiency
of a given portfolio with respect to all possible portfolios constructed from a set
of assets. We propose and justify approaches based on simulation and the block
bootstrap to achieve valid inference in a time series setting. Linear as well as mixed
integer programs are developed to compute the test statistics and the estimators.

To illustrate the potential of the proposed test statistics, we test whether different
SDE criteria (FSDE, and SSDE) rationalize the Fama and French market portfolio
over the 6 Fama and French benchmark portfolios constructed as the intersections of
2 ME portfolios and 3 BE/ME portfolios. Empirical results indicate that the market
portfolio is SSD efficient. This result is also confirmed in a rolling window analysis.
In contrast, the market portfolio is Mean-Variance inefficient, indicating the weakness
of the variance to capture the risk.

The next step in this work is to develop estimators of efficiency lines as suggested
by Davidson and Duclos (2000) for poverty lines in stochastic dominance. For the
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SSD Efficiency of the market portfolio (Rolling Window Analysis)
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Figure 4.2: p-values for the SSD efficiency test using a rolling window of 120 months.
The test statistic is calculated separately for 340 overlapping 10-year periods, (July
1963-June 1973), (August 1963-July 1973),...,(November 1991-October 2001). The
SSD efficiency is not rejected.

first order we should estimate the smallest return at which the distribution associated
with the portfolio under test and the smallest distribution generated by any portfolios
built from the same set of assets intersect. Similarly we could rely on an intersection
between integrals of these distributions to determine efficiency line at higher orders.

Another future step in this direction is to further extend these inference proce-
dures to prospect stochastic dominance efficiency (PSDE) and Markowitz stochastic
dominance efficiency (MSDE). These concepts allows to take into account that in-
vestors react differently to gains and losses and have S-shaped or reverse S-shaped
utility functions. The development of necessary and optimal conditions for PSDE
and MSDE is of great interest.
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APPENDIX

In the proofs we will often use the shorter notation: Dj(z, τ , λ; F ) = Jj(z, τ ; F )−
Jj(z, λ; F ), while all limits are taken as T goes to infinity.

A Proof of Proposition 2.2

1. Proof of Part (i):

By the definition of Ŝj as well as the fact that under Hj
0 , Dj(z, τ , λ; F ) ≤ 0 for

all z and for all λ, we get:

Ŝj ≤ sup
z,λ

√
T [Dj(z, τ , λ; F̂ )−Dj(z, τ , λ; F )] + sup

z,λ

√
TDj(z, τ , λ; F )

≤ sup
z,λ

√
T [Dj(z, τ , λ; F̂ )−Dj(z, τ , λ; F )].

Therefore Part (A)(ii) results from the weak convergence of
√

T [Dj(·; F̂ )−Dj(·; F )]
and the fact that S̄j = supz,λ Dj(z, τ , λ;B ◦ F ).

2. Proof of Part (ii):

If the alternative is true, then there exists some z and some λ, say z̄ ∈ [a, b] and
λ̄ ∈ L, for which Dj(z̄, τ , λ̄; F ) := δ > 0. Then the result follows using the inequality

Ŝj ≥
√

TDj(z, τ , λ; F̂ ), and the weak convergence of
√

T [Dj(·; F̂ )−Dj(·; F )].

B Proof of Proposition 3.1

Let us write

B̃(y, F̂ ) =
1√
T

T∑
t=1

[I{Y t ≤ y} − F (y)] Ut −
[
F̂ (y)−−F (y)

] 1√
T

T∑
t=1

Ut.

First consider the second term, and recall that supy |F̂ (y)−F (y)| −→ 0 for almost
every sample (see e.g. Rio (2000)). Then since the Ui are i.i.d. N(0, 1), we have that
conditional on the sample:

PU

[
(sup

y
|
[
F̂ (y)− F (y)

] 1√
T

T∑
t=1

Ut| > ε)

]

=

[
PU(sup

y
|F̂ (y)− F (y)|| 1√

T

T∑
t=1

Ut| > ε)

]

≤

(
supy |F̂ (y)− F (y)|

)2

E[ 1
T

∑T
t=1 U2

t ]

ε2
−→ 0.
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Consequently for this sample we have that
[
F̂ (y)− F (y)

]
1√
T

∑T
t=1 Ut

p−→ 0,

which implies
[
F̂ (y)− F (y)

]
1√
T

∑T
t=1 Ut =⇒ 0, and even, since this holds for almost

all samples,
[
F̂ (y)− F (y)

]
1√
T

∑T
t=1 Ut

a.s
=⇒ 0.

For the first term since ‖U‖1 ≡ E|U | < ∞, ‖U‖2,1 ≡
∫∞

0

√
P [|U | > x]dx <

∞, and E max1≤i≤n |Ui|/
√

n −→ 0, we deduce from the multiplier inequalities of
Lemma 2.9.1 of VW that the asymptotic equicontinuity conditions for the empirical
and the multiplier processes are equivalent. Indeed these inequalities derive from
triangle inequalities which are unaffected by the time dependence in the data. This
means that the first term converges weakly to an independent copy B′ ◦ F of B ◦ F .
As in Theorem 2.9.7 of VW this leads to the almost sure conditional convergence
suph∈BL1

|EUh(B′ ◦F )−Eh(B ◦F )| a.s.−→ 0 where BL1 is the set of bounded Lipschitz
functions on l∞([0, 1]2).

Now to show the result concerning the asymptotic behavior of the p-values, let
P̃j(t) be the c.d.f. of the process (conditional on the original sample) generated by

S̃j. Since B̃ ◦ F̂
a.s

=⇒ B′ ◦ F , the CMT gives that

S̃j
a.s.
=⇒ sup

z,λ
Dj(z, τ , λ;B′ ◦ F ), (B.1)

where the latter random variable is an independent copy of S̄j. Note that the median
of the distribution P 0

j (t) of supz,λ Dj(z, τ , λ;B′ ◦ F ) is strictly positive and finite.
Since Dj(z, τ , λ;B′ ◦ F ) is a Gaussian process indexed by parameters living in a
compact set, P 0

j is absolutely continuous (Tsirel’son (1975)), while cj(α) defined by
P (S̄j > cj(α)) = α is finite and positive for any α < 1/2 (Proposition A.2.7 of VW).

The event {p̃j < α} is equivalent to the event {Ŝj > c̃j(α)} where

inf{t : P̃j(t) > 1− α} = c̃j(α)
a.s.−→ cj(α), (B.2)

by (B.1) and the aforementioned properties of P 0
j . Then:

lim P [reject Hj
0 |H

j
0 ] = lim P [Ŝj > c̃j(α)]

= lim P [Ŝj > cj(α)] + lim(P [Ŝj > c̃j(α)]− P [Ŝj > cj(α)])

≤ P [S̄j > cj(α)] := α,

where the last statement comes from (B.2), part i) of Proposition 2.2 and cj(α) being
a continuity point of the distribution of S̄j. On the other hand part ii) of Proposition
2.2 and cj(α) < ∞ ensure that lim P [reject Hj

0 |H
j
1 ] = 1.

C Proof of Proposition 3.2

Conditionally on the sample, we have that

√
T (F̂ ∗ − F̂ )

p
=⇒ B∗ ◦ F, (C.1)
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where B∗ ◦ F is an independent copy of B ◦ F (Bühlmann (1994), Peligrad (1998)).
We can see that the functional Dj(·; F ) is Hadamard differentiable at F by induc-

tion. Indeed D1(·; F ) is a linear functional, while Dj(·; F ) is also a linear functional
of a Hadamard differentiable mapping Dj−1(·; F ). The delta method (VW Chapter
3.9), the CMT and (C.1) then yields:

S∗j
p

=⇒ sup
z,λ

Dj(z, τ , λ;B∗ ◦ F ),

where the latter random variable is an independent copy of S̄j, and we can pursue as
in the proof of Proposition 3.1 but using convergence in probability instead of almost
sure convergence to get the final result.

D Mathematical Programming formulations

D.1 Formulation for FSDE

The test statistic Ŝ1 for FSDE is derived using MIP. The following is the full formu-
lation of the model:

max
z,λ

Ŝ1 =
√

T
1

T

T∑
t=1

(Lt −Wt) (D.1a)

s.t. M(Lt − 1) ≤ z − τ ′Y t ≤ MLt, ∀ t (D.1b)

M(Wt − 1) ≤ z − λ′Y t ≤ MWt, ∀ t (D.1c)

e′λ = 1, (D.1d)

λ ≥ 0, (D.1e)

a ≤ z ≤ b, (D.1f)

Wt ∈ {0, 1}, Lt ∈ {0, 1}, ∀ t (D.1g)

with M being a large constant.
The model is a Mixed Integer Program maximizing the distance between two

binary variables Lt and Wt which represent the J1(z, τ ; F̂ ) and J1(z, λ; F̂ ), respec-
tively. According to Inequalities (D.1b), Lt equals 1 for each scenario t ∈ T for which
z ≥ τ ′Y t and 0 otherwise. Analogously, Inequalities (D.1c) ensure that Wt equals 1
for each scenario for which z ≥ λ′Y t. Equation (D.1d) defines the sum of all port-
folio weights to be unity, while Inequality (D.1e) disallows for short positions in the
available assets.

Under this form, this is a very difficult problem to solve. It takes more that two
days to find the optimal solution. We reformulate the problem in order to reduce the
solving time and obtaining a tractable formulation. The steps are the following:

1) The factor
√

T/T can be left out in the objective function, since T is fixed.
The goal of this is to avoid numerical problems.

2) We can see that there is a set of at most T values, say R = {r1, r2, ..., rT}
containing the optimal value of the variable z.
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Proof: The vectors τ and Y t, t = 1, ..., T being given, we can rank the values
of τ ′Y t, t = 1, ..., T by order of increasing values. Let us call r1, ..., rT the possible
different values of τ ′Y t, with r1 < r2 < ... < rT (actually there may be less than T
different values). Now, for any z such that ri ≤ z ≤ ri + 1,

∑
t=1,...,T Lt is constant (it

is equal to the number of t such that τ ′Y t ≤ ri). Further, when ri ≤ z ≤ ri + 1, the
maximum value of −

∑
t=1,...,T Wt is reached for z = ri. Hence, we can restrict z to

belong to the set R.
3) A direct consequence of the above is that we can solve FSDE by solving the

smaller problems P (r), r ∈ R, in which z is fixed to r, and then to take the value for
z that yields the best total result. The advantage is that the optimal values of the Lt

variables are known in P (r). Precisely,
∑

t=1,...,T Lt is equal to the number of t such
that τ ′Y t ≤ r. Hence problem P (r) boils down to:

min
T∑

t=1

Wt

s.t. M(Wt − 1) ≤ r − λ′Y t ≤ MWt, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ∈ {0, 1}, ∀t ∈ T. (D.2a)

Note that this becomes a minimization problem.
Problem P (r) amounts to find the largest set of constraints λ′Y t ≥ r consistent

with e′λ = 1 and λ ≥ 0.
Let Mt = min Y t,i, i = 1, ..., n, i.e. the smallest entry of vector Y t.
Clearly, for all λ ≥ 0 such that e′λ = 1, we have that λ′Y t ≥ Mt. Hence, Problem

P (r) can be rewritten in an even reduced form:

min
T∑

t=1

Wt

s.t. λ′Y t ≥ r − (r −Mt)Wt, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ∈ {0, 1}, ∀t ∈ T. (D.3a)

We further reduce P (r) by fixing the following variables:
For all t such that r ≤ Mt, the optimal value of Wt is equal to 0 since the halfspace

defined by the t-th inequality contains the simplex.
For all t such that r ≥ Mt, the optimal value of Wt is equal to 1 since the halfspace

defined by the t-th inequality has an empty intersection with the simplex.
The computational time for this MIP formulation is significantly reduced. For

the optimal solution (which involves 460 MIP optimization programs, one for each
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discrete value of z) it takes less than two hours. This solution time reflects an average
for typical solvings of the respective problems. The problems were solved with IBM’s
CPLEX solver on an Intel Xeon workstation (with a 2*2.4 GHz Power, 6Gb of RAM).
We note the almost exponential increase in solution time with the increasing number
of observations. Clearly, this solution time is by no means prohibitive with today’s
available computing technologies. The problems could probably be solved much more
efficiently by developing specialized algorithms that exploit the structure of MIP
models. However, issues of computational efficiency are not of primary concern in
this study.

D.2 Formulation of SSDE

The test statistic Ŝ2 for SSDE is derived using MIP. The full formulation of the
problem is the following:

max
z,λ

Ŝ2 =
√

T
1

T

T∑
t=1

(Lt −Wt) (D.4a)

s.t. M(Ft − 1) ≤ z − τ ′Y t ≤ MFt, ∀ t (D.4b)

−M(1− Ft) ≤ Lt − (z − τ ′Y t) ≤ M(1− Ft), ∀ t (D.4c)

−MFt ≤ Lt ≤ MFt, ∀ t (D.4d)

Wt ≥ z − λ′Y t, ∀ t (D.4e)

e′λ = 1, (D.4f)

λ ≥ 0, (D.4g)

a ≤ z ≤ b, (D.4h)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t (D.4i)

with M being a large constant.
The model is a Mixed Integer Program maximizing the distance between two vari-

ables Lt and Wt which represent the J2(z, τ ; F̂ ) and J2(z, λ; F̂ ), respectively. This is
a difficult problem to solve, since it is the maximization of the difference of two convex
functions. We use a binary variable Ft, which, according to Inequalities (D.4b), equals
1 for each scenario t ∈ T for which z ≥ τ ′Y t and 0 otherwise. Then, Inequalities
(D.4c) and (D.4d) ensure that the variable Lt equals z − τ ′Y t for the scenarios for
which this difference is positive, and 0 for all the other scenarios. Inequalities (D.4e)
and (D.4i) ensure that Wt equals exactly the difference z−λ′Y t for the scenarios for
which this difference is positive and 0 otherwise. Equation (D.4f) defines the sum of
all portfolio weights to be unity, while Inequality (D.4g) disallows for short positions
in the available assets.

Again, this is a very difficult problem to solve. It takes more than a day for the
optimal solution. We reformulate the problem, following the exact steps as for the
FSDE. Then the model is transformed to a linear one, which is very easy to solve.

We solve SSDE by solving again smaller problems P (r), r ∈ R, in which z is fixed
to r, before taking the value for z that yields the best total result. The advantage is
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that the optimal values of the Lt variables are known in P (r). Precisely, Lt = r−τ ′Y t,
for the scenarios for which this difference is positive, and zero otherwise. Hence
problem P (r) boils down to the linear problem:

min
T∑

t=1

Wt

s.t. Wt ≥ r − λ′Y t, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ≥ 0, ∀t ∈ T. (D.5a)

The computational time for this LP formulation is very small. For the optimal
solution (which involves 460 linear optimization programs, one for each discrete value
of z) using the CPLEX solver, it takes three minutes on average. We can have an even
better formulation of this latter model. Instead of solving it for each discrete time of
z, we can reformulate the model in order to solve for all discrete values ri, i = 1, ..., T
simultaneously. The new model is the following:

min
T∑

i=1

T∑
t=1

Wi,t

s.t. Wi,t ≥ ri − λ′iY t, ∀i ∈ T, ∀t ∈ T

e′λi = 1, ∀i ∈ T,

λi ≥ 0, ∀i ∈ T,

Wi,t ≥ 0, ∀i ∈ T, ∀t ∈ T. (D.6a)

The optimal portfolio λi and the optimal value of variable z, ri are for that i, that
gives the min

∑T
t=1 Wi,t. Now, the computational time for this formulation of the

problem is less than a minute.
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