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1 Introduction

In this paper we perform an in—depth investigation of relative merits of two adaptive

learning algorithms with constant gain, Recursive Least Squares (RLS) and Stochas-

tic Gradient (SG). Properties of RLS as a learning algorithm are reasonably well

understood, as it has been used extensively in the adaptive learning literature. For

an extensive review, see Evans and Honkapohja (2001). SG learning received a more

limited attention in the past, but the situation is changing: Evans, Honkapohja and

Williams (2005) promote the constant gain SG, together with a generalized SG, as a

robust learning rule which is well suited to the situation of time—varying parameters.

A different motivation to studying the properties of the SG learning comes from

a recent interest in the heterogeneous learning, cf. Honkapohja and Mitra (2005)

or Giannitsarou (2003). Several types of agents use different adaptive rules to learn

the parameter values in the model. Often, some of the groups are using RLS while

the others employ SG. A desirable property of such a model is its stability under all

implemented types of learning.

Finally, our interest is focused on the properties of the learning algorithm which

are not strictly local. It is known that E—stability of the rational expectations

equilibrium (REE), which implies local stability under RLS with decreasing gain

learning, does not automatically imply local stability under SG with decreasing

gain, see Giannitsarou (2005). In contrast, we work in a situation when both RLS

and SG are, indeed, locally stable, but the behavior of the constant gain versions of

the two methods differ substantially away from the equilibrium.

As a testing ground for comparison we use the Phelps problem of a government

controlling inflation while adaptively learning the approximate Phillips curve, stud-

ied previously by Sargent (1999) and Cho, Williams and Sargent (2002) (CWS in

the sequel). A phenomenon known as “escape dynamics” can be observed in the

model under the constant gain RLS learning. In Kolyuzhnov, Bogomolova and Slo-

bodyan (2006) we applied a continuous—time version of the large deviations theory

to study the escape dynamics, and argued that a simple approximation by a one—

dimensional Brownian motion can be better suited for description of the escape

dynamics in a large interval of values of the constant gain. Here we derive an even

better one—dimensional approximation and discuss Lyapunov function—based ap-
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proach to establishing limits of applicability of this approximation. We also extend

our analysis to the SG constant gain learning.

The rest of the paper is organized as follows. We briefly describe the dynamic

and static versions of the model of CWS in Section 2. Section 3 is devoted to

describing the local stability (mean dynamics) results for the RLS and SG learning.

In Section 4, we present and contrast the non—local effects arising under constant

gain versions of these algorithms and discuss possible explanations for the difference

in behavior of the mean dynamics and the actual real—time learning algorithm.

Section 6 concludes.

2 The model

The economy consists of the government and the private sector. The government

uses the monetary policy instrument xn to control inflation rate πn and attempts to

minimize losses from inflation and unemployment Un. It believes (in general, incor-

rectly) that an exploitable trade-off between πn and Un (the Phillips curve) exists.

The true Phillips curve is subject to random shifts and contains this trade-off only

for unexpected inflation shocks. The private sector possesses rational expectationsbxn = xn about the inflation rate, and thus unexpected inflation shocks come only

from monetary policy errors.

Un = u− χ (πn − bxn) + σ1W1n, u > 0, θ > 0, (1a)

πn = xn + σ2W2n, (1b)

bxn = xn, (1c)

Un = γ1πn + γT−1Xn−1 + ηn. (1d)

Vector γ =
¡
γ1, γ

T
−1
¢T
represents government’s beliefs about the Phillips curve.

W1n and W2n are two uncorrelated Gaussian shocks with zero mean and unit vari-

ance. ηn is the Phillips curve shock as perceived by the government, believed to be

a white noise uncorrelated with regressors πn and Xn−1. In the “dynamic” version

of the model, vector Xn−1 contains two lags of inflation and unemployment rates

and a constant,

Xn−1 =
¡
Un−1, Un−2, πn−1, πn−2, 1

¢T
, (2)
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while only the constant is present in Xn−1 in the “static” version.

Given beliefs γ, the government solves

min
{xn}∞n=0

E
P∞

n=0 β
n
¡
U2
n + π2n

¢
, (3)

subject to (1b) and (1d). This linear—quadratic problem produces a linear monetary

policy rule

xn = h(γ)TXn−1. (4)

CWS identify three particular beliefs in model, which replicate different equi-

libria of the correctly specified version (government believes in [1a]) of the model.

Under Belief 1, γ = (−χ, 0, 0, 0, 0, u(1 + χ2))
T , policy function is xn = χu. This

is the Nash, or discretionary equilibrium of Sargent (1999). Beliefs 2 of the form

γ = (0, 0, 0, 0, 0, u∗)T lead to xn = 0 and zero average inflation for any u∗: Ram-

sey, or the optimal time—inconsistent equilibrium of Kydland and Prescott (1977).

Finally, Beliefs 3 where γ1 + γ4 + γ5 = 0 asymptotically lead to xn = 0: this is an

“induction hypothesis” belief, see Sargent (1999). In the misspecified model where

the government believes in (1d), the equilibrium is defined as a vector of beliefs

at which the government’s assumptions about orthogonality of ηn to the space of

regressors are consistent with observations:

E
h
ηn · (πn, Xn−1)

T
i
= 0. (5)

CWS call this point a self—confirming equilibrium, or SCE. Williams (2001) shows

that the only SCE in the model is Belief 1.

3 RLS and SG

In a period n, the government uses its current vector of beliefs γn to solve (3),

assuming the beliefs will never change. The generated monetary policy action xn is

correctly anticipated by the private sector and produces Un according to (1a). Then

the government adjusts its beliefs about the Phillips curve coefficients γn and, if

RLS learning is used, their second moments matrix Rn in an adaptive learning step.

Define ξn =
£
W1n W2n XT

n−1
¤T
, g(γn, ξn) = ηn ·

¡
πn, X

T
n−1
¢T

, and Mn(γn, ξn) =
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¡
πn,X

T
n−1
¢T · ¡πn,XT

n−1
¢
. Next period’s beliefs γn+1 and Rn+1 are given by

γn+1 = γn + �R−1n g(γn, ξn), (6a)

Rn+1 = Rn + � (Mn(γn, ξn)−Rn) , (6b)

under RLS learning and by

γn+1 = γn + �g(γn, ξn) (7)

under the SG learning.

The evolution of the state vector ξn can be written as

ξn+1 = A(γn)ξn +BWn+1, (8)

whereWn+1 =
£
W1n+1 W2n+1

¤T
, for some matrices A(γn) and B. The parameter

vector θ�,SGn is given as γn for SG and as

θ�,RLSn =
£
γTn , vechT (Rn)

¤T
(9)

for the RLS case. Finally, define HSG(θ�n, ξn) = g(γn, ξn) and

HRLS(θ�n, ξn) =
h
(R−1n g(γn, ξn))

T
, vechT (Mn(γn, ξn)−Rn)

iT
(10)

to obtain the Stochastic Recursive Algorithm (SRA) in the standard form:

θ�,jn+1 = θ�,jn + �Hj(θ�n, ξn), j = {RLS, SG} , (11a)

ξn+1 = A(γn)ξn +BWn+1. (11b)

Finally, the approximating ordinary differential equations corresponding to the above

SRA are given by
·
θj = E[Hj(γ, ξn)]. (12)

The SCE, which consists of the vector γ that forms Belief 1, and corresponding

2nd moments matrix R if RLS is used, is the only equilibrium of the above ODE. The

SCE is stable for both RLS and SG in the dynamic and static versions of the model.

Under some assumptions, this means that the continuous—time process θε,jt defined

as θε,jt = θ�,jn for t ∈ [nε, (n+ 1) ε) converges weakly (in distribution) to θj(t, a),

solution of the ODE (12) with the initial condition a = θ (0) which is also a starting
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point of the process θε,jt . This solution is also called the “mean dynamics trajectory”

of the SRA (11), with the right—hand side of (11) being the “mean dynamics”. A

variant of the mean dynamics approximation is the following difference equation

obtained from (11a):

θ�,jn+1 = θ�,jn + � · E[Hj(γ, ξn)]. (13)

The difference between the above approximation and (12) is that � is not assumed

to be approaching zero asymptotically. For details and derivations, see Evans and

Honkapohja (2001).

When the gain is constant, the convergence of θ�n to the mean dynamics trajectory

θ(t) is only in distribution. Evans and Honkapohja (2001, Prop. 7.8) show that as

ε→ 0 the process Uε,j
t =

θε,jt −θj(t,a)√
ε

converges (weakly) to a following diffusion:

dU �,j
t = Dθp(θ

j (t, a))U �,j
t dt+ Σ1/2

¡
θj (t, a)

¢
dWt, (14)

where Wt is a multi—dimensional Brownian process with dimensionality equal to

that of θ. p(θ) is the mean dynamics vector, and Σ the matrix whose elements are

covariances of different components of the mean dynamics vector, both with respect

to the unique invariant probability distribution Γθ(dy) of the state vector X:1

p(θj) =

Z
Hj(θj, y)Γθ(dy), (15)

Σik =
P∞

k=−∞Cov
£
Hj

i (θ
j,Xk(θ

j)), Hj
k(θ

j,X0(θ
j))
¤
. (16)

This result is used to get continuous—time approximation of SRA, given any

initial condition:

dθε,jt = Dθp(θ
j (t, a))

£
θε,jt − θj (t, a)

¤
dt+

√
εΣ1/2

¡
θj (t, a)

¢
dWt. (17)

For the RLS case Williams (2001, Theorem 3.2) shows that the above results can be

used to derive a local continuous—time approximation of the SRA around the SCE

θ:

dϕRLS
t = Dθp(θ̄

RLS
)ϕtdt+

√
�Σ1/2(θ̄

RLS
)dWt, (18)

where ϕt = θRLSt −θRLS are deviations from the SCE. Similar result is easily obtained
in the SG case.

1State vector ξn has a unique invariant probability distribution: it contains stationary Gaussian
random variables W1n and W2n, a constant, and a stationary 4—dimensional (in the dynamics
model) or 1—dimensional (in the static model) AR(1) variable. This distribution can be calculated
explicitly.
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4 Behavior of Simulations

The discussion below refers to the model as parametrized in CWS: σ1 = σ2 = 0.3,

u = 5, χ = 1, β = 0.98.

4.1 Recursive Least Squares

It is well known that under the constant gain RLS learning beliefs in the Phelps

problem can exhibit “escapes”: after a number of periods spent in the neighborhood

of the SCE, the beliefs vector γ suddenly deviates from the SCE towards “induction

hypothesis” plane γ1 + γ4 + γ5 = 0 (γ1 = 0 axis for the static model), see CWS,

in particular Figs. 6 and 7. During such an escape, the inflation rate falls from its

Nash equilibrium value equal to u and approaches 0, see Fig. 1 in CWS.

In Kolyuzhnov et al. (2006), we have studied these escapes extensively and de-

scribed the following sequence of events. If the constant gain parameter � is not too

small, the behavior of equation (6a) is almost one—dimensional. It is well known

that in this model the region of attraction of the SCE is very small, see Fig. 1

reprinted from Kolyuzhnov et al. (2006). Outside of the immediate neighborhood

of the SCE, the mean dynamics trajectories point away from it and towards the

“induction hypothesis” plane. These trajectories linger in the neighborhood of the

plane for a relatively long time and then start a slow return to the SCE. The largest

eigenvalue of R
−1
is λ1 =3083.8 and the next largest λ2 =29.1, less that 1% of λ1.

The projection of g(γn, ξn) onto v1, the dominant eigenvector of R
−1
, is magnified

100 times as strongly as the projection onto the second eigenvector. As a result,

simulation runs with escapes tend to contain a set of points aligned along the domi-

nant eigenvector of R
−1
all the way towards the “induction hypothesis” plane, which

is clearly demonstrated in the Figure 2 reprinted from Kolyuzhnov et al. (2006).

In the Figure, 6—dimensional vector of beliefs γ is presented in the space of

(eγ1,eγ2), defined as γ1 + γ4 + γ5 and u · (γ2 + γ3) + γ6. For a discussion on this

choice of variables, see that paper. The significant disbalance of eigenvalues of R
−1

is inherited by the matrix Σ, and the eigenvector v1 is essentially collinear to first 6

components of ev1, the dominant eigenvector of Σ.
We use this essential one—dimensionality to derive the following approximation

of (18). Write ϕt ≈ xt · ev1, and multiply (18) by evT1 from the left. The resulting
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1—dimensional approximation is then given by

dxt ≈ evT1Dθp(θ̄
RLS

)ev1 · xtdt+q�eλ1 · evT1 · dWt,

dxt ≈ A · xtdt+
q
�eλ1dWt. (19)

Note that dWt in the second line is now a one—dimensional standard Brownian

motion. (19) is an Ornstein—Uhlenbeck process with well—known properties. In

particular, one could easily derive the expected time until the process leaves any

interval of the real line, see Borodin and Salminen (1996). A equals -0.41 andeλ1 =277.58.2
To estimate the region of applicability of the approximation (19), take x2t as the

Lyapunov function and calculate LV for one—dimensional diffusion (19):3

LV = 2 ·
³
Ax2t + �eλ1´ .

Clearly, LV is positive for small x, and thus V (xt) = x2t is expected to increase. In

other words, in a small neighborhood of the SCE the Stochastic Recursive Algorithm

(11) is expected to be locally divergent on the average. We would call values of

� “small” if for xt corresponding to the boundary of the SCE’s stability region

under the mean dynamics, the value of LV is negative: once the SRA approaches

this boundary, it is expected to turn back towards the SCE. If such behavior is

observed, one expects the invariant distribution derived along the lines of Evans

and Honkapohja (2001, Ch. 14.4) to be valid, and other methods of describing

escape dynamics are needed, such as the Large Deviations Theory, see CWS and

Kolyuzhnov et al. (2006). For “not small” �, the approximation (19) could be used

to derive expected escape time. In the dynamic model, values of � below 2 · 10−5 are
“small”.

Dynamics of the static model under the constant gain RLS learning is qualita-

tively similar: a move out of the immediate region of attraction of the SCE, followed

2Ornstein—Uhlenbeck approximation could also be useful in case one is interested in selecting
the value of � such that for a given time period the probability of observing an escape is below
some given threshold (dynamics under learning is empirically stable).

3The operator L defined for a function V has the following meaning: Under certain conditions,
the expected value of V (t,X(t)) − V (s,X(s)) is given as an integral from s to t over LV , see
Khasminskii (1980, Ch. 3). In some sense, in stochastic differential equations LV plays the role of
time derivative of the Lyapunov function dV

dt for the deterministic system.
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by a long trek to the Ramsey equilibrium outcome with zero average inflation. The

dynamics is essentially one—dimensional. However, the radius of the region of attrac-

tion is slightly larger in the dominant direction than in the dynamic model, and the

diffusion is less powerful: A =-0.52 and eλ1 equals 26.09. The combined effect of the
stronger drift, weaker diffusion, and larger stability region is obvious: a significantly

larger expected number of periods until the simulations escape neighborhood of the

SCE. Table 1 compares empirically observed average time needed to escape with the

theoretically predicted values for different choices of the constant gain parameter �.

For relatively large values of � ≥ 4 ·10−4, the agreement is rather good, especially for
the static model. The theory starts to overpredict for smaller �; again, this effect is

more pronounced in the static model, because “smallness” of � starts earlier: Gains

below 3 · 10−4 are “small” in the static model.

TABLE 1. A comparison of the theoretically derived values of expected escape

time and empirically observed average escape times
Dynamic model Static model

� Simulations Theory Simulations Theory

2 · 10−5 1.10 · 105 1.86 · 105
3 · 10−5 5.10 · 104 7.21 · 104 4.40 · 107 9.40 · 108
5 · 10−5 1.88 · 104 2.34 · 104 1.93 · 106 9.90 · 106
1 · 10−4 4.84 · 103 5.43 · 103 1.50 · 105 2.75 · 105
2 · 10−4 1.26 · 103 1.31 · 103 2.38 · 104 2.97 · 104
4 · 10−4 336.96 321.5 5.06 · 103 5.26 · 103
1 · 10−3 64.59 50.9 733.57 701.5
2 · 10−3 21.49 12.68 189.98 165.7
3 · 10−3 12.50 5.63 87.00 72.27
4 · 10−3 8.77 3.16 52.08 40.28
5 · 10−3 6.79 2.02 34.39 25.64
6 · 10−3 5.99 1.40 24.76 17.74
7 · 10−3 4.98 1.03 19.14 13.00
8 · 10−3 4.49 0.79 15.02 9.93
9 · 10−3 4.12 0.62 13.32 7.84
1 · 10−2 3.70 0.51 11.16 6.34

4.1.1 What is the right � and the time scale?

How should one approach the problem of choosing �? Putting aside any considera-

tions related to the stability of learning in a particular model, two rules of thumb
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for selecting � seem sensible. The first is based on the fact that constant gain adap-

tive learning is well suited to situations with time—varying parameters or structural

breaks. In this case, 1/� should be related to the typical time which is needed to

observe a break, or for the time variation to become “significant”. Alternatively,

one could imagine that the initial value of parameters is obtained through some

method of statistical estimation such as OLS. In this case, it is natural to assign to

every point in the initial estimation a weight equal to 1/N . If there is no reason to

believe that subsequent points are in some sense superior to those used to derive an

initial estimate, the constant gain � should be comparable to 1/N . Given the nature

of the Phelps problem where inflation might be available on the monthly basis but

the output gap could be obtained only at the quarterly basis, values of � not much

larger or smaller than 0.01 seem empirically justified.

Notice that a period in the Phelps model could not be shorter than a quarter (or

a month). At economically relevant time scale (at most a hundred years), there are

no escapes for � < 1 · 10−4 in the dynamic model and � < 4 · 10−4 in the static one.
An important caveat to this statement is that both the theoretical and simulation

results are obtained by imposing the SCE as the starting point. In other words,

one starts from a situation of a learning which is completed in the sense that the

government and the private sector are playing Nash equilibrium, and is interested in

the expected time until the economy “unlearns” Nash equilibrium given a particular

constant gain learning rule. If, instead of the SCE, initial beliefs are given by a point

which is closer to the stability region’s boundary, one would expect smaller escape

times.

4.2 Stochastic Gradient Learning

4.2.1 Dynamic Model

The behavior of the dynamic Phelps model under the SG learning is dramatically

different. In the approximation (13), the matrix

z(�) = I + �Dθp(θ̄
SG
)

is stable but only just: for � = 0.01, its eigenvalues range from 0.2447 to 0.9988

to 0.99999862. Five out of six eigenvalues are almost unitary. Under the mean
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dynamics (13), any deviation from the SCE results in a fast movement along x1,

the eigenvector which corresponds to 0.2447 eigenvalue, and then an extremely slow

convergence back to the SCE along the remaining five directions, see Figure 3.

On the other hand, simulations behave very differently. Figure 4 plots a norm of

deviations from the SCE: there is a clearly distinguishable movement away from the

SCE which seems almost deterministic.4 Figure 5 plots values of γ6 and eγ2, which
both exhibit a clear divergence. For this value of �, inflation rate will drop below 4

(its mean equals 5 at the SCE) in a couple hundred iterations, which is definitely

the time scale one should be concerned with. How could one explain the discrepancy

between the mean dynamics (13) and the simulations?

Fig. 6 plots a projection of γn−γ
kγn−γk

onto the subspace spanned by five eigenvectors

of z(�) which correspond to the almost unitary eigenvalues for a typical simulation
run with � = 0.01. Within the first hundred simulation periods, this projection

becomes very close to unity: average value for the first ten (hundred) periods is

0.69 (0.80). Thus, simulation run very fast approaches some neighborhood of the

subspace and does not leave it for any extended period of time. This behavior is

natural: any initial deviation along x1 will shrink to 0.24473 ∼1.5% of its initial size
in just 3 steps. On the other hand, deviations along five other eigenvectors will take

at least ln(0.5)
ln(0.9988)

∼577 periods to reach 50% of their initial magnitude.

Another feature of the matrix z(�) which helps to explain the behavior of simu-
lations is the presence of directions along which deviations are expected to increase

before declining. Such directions exist because the matrixz(�)+z(�)T is not stable.
In this case, one could find a unit vector w such that wT · z(�) · w is greater than

one. A deviation in the direction w is thus expected to increase its projection onto

w and thus to increase its norm, at least initially. We define the vector w as the unit

vector which maximizes wT ·z(�) ·w at 1.103 (this value equals 1.01 at � = 0.001 and
1.001 at � = 1 · 10−4). A projection of γn−γ

kγn−γk
onto w is plotted in the Figure 7 (only

the absolute value of the projection matters, not its sign). It becomes large very

fast, in about one hundred simulation periods or less. A system (13) is expected

to demonstrate a locally divergent behavior whenever this projection is large. To

support further the crucial importance of the projection onto w, Figure 8 presents

4If we observe the simulations for larger number of periods, the belief vector γ eventually reaches
values at which the state vector process loses stationarity, and the simulation breaks down.
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the norm of deviation from the SCE for the mean dynamics trajectory which started

from a point γ that lies in the direction w. There is a steep initial increase in the

norm, followed by a long decline which is still far from complete after 2000 periods.

To overcome the initial increase and return the system to the norm of deviation

equal to its initial value, 150 periods are needed.

Notice that the norm of the projection of w onto the subspace spanned by the five

eigenvectors is rather large and equals 0.95. When the dynamics of (11) is restricted

almost exclusively to this subspace, mean dynamics plays almost no role in the short

run. Random disturbances are then very likely to produce value of γn−γ which has
a significant projection onto w during the 150 periods which are needed to eliminate

the effect of the previous shock in this direction. Once such shock happens, the

projection is not likely to disappear given a very weak stabilizing force of the mean

dynamics on the subspace.

As a final piece of evidence connecting the vector w with the divergent behavior

of simulations, consider Figure 9. In the periods when the projection of γn−γ
kγn−γk

onto

w (crosses) is particularly large, the distance between the beliefs γn and the SCE γ

(solid line) grows the fastest; a relative decline in the projection is correlated with

a temporary stop or even reversal of the divergent behavior.

Summarizing the discussion, we could say that a clear instability observed in the

behavior of the SRA for SG learning in the dynamic Phelps problem is caused by a

particular geometric structure. The subspace spanned by the almost unitary eigen-

values’ eigenvectors of the mean dynamics map is almost parallel to the direction

along which the mean dynamics is expanding in the short run rather than contract-

ing. Given that any random deviation away from the subspace is likely to be very

short—lived, and that contracting mean dynamics within the subspace is very weak,

random vectors with a relatively large projection onto the expansive direction are

likely to appear. Once such a projection appears, it is unlikely to be averaged away

by the mean dynamics.

We checked the behavior of the algorithm for other values of �. Qualitatively, the

picture does not change: there is still an apparent divergence of the vector of govern-

ment’s beliefs γn away from the SCE. One could still observe a very fast convergence

towards the subspace spanned by the five almost unitary eigenvalues’ eigenvectors
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and a significant projection onto the expanding direction w. The direction w re-

mains almost parallel to the subspace. Only for very small values of � ≤ 8 · 10−6 we
start observing a different behavior; the system (11) does not systematically diverge

and fluctuates in some neighborhood of the SCE.

4.2.2 Static Model

Taking into account that under the RLS learning the static model was much more

stable (it took much longer for the escape to the “induction hypothesis” plane to

happen), we expect this feature to be preserved under the SG learning as well. This

is what is indeed observed. Clearly unstable behavior is observed only for relatively

large values of � above 3 · 10−2. This instability could take two forms: either a
convergence to a quasi—stable stochastic steady state where kγ − γk is about 3 for
� between approximately 6.5 · 10−2 and 7.9 · 10−2 (above � ∼ 7.9 · 10−2, the mean
dynamics map z(�) has a real eigenvalue which is less than -1, and the SCE is
thus unstable under the mean dynamics), or a divergence of simulations from the

SCE for 3.5 · 10−2 . � . 6.5 · 10−2. When � equals 3.5 · 10−2 or less, empirically
relevant time scales are characterized by what seems to be a stable dynamics. The

speed of divergence significantly depends on the value of �: while at � = 5 · 10−2

less than 100 iterations are typically needed to observe a deviation from the SCE

such that kγ − γk ≥ 0.1, such large excursions are not likely to be observed before
500th iteration for � = 4 · 10−2. As in the dynamic model, the eventual outcome
of divergent simulations is the value of γ which leads to at least one eigenvalue of

the matrix A(γ) in (11b) being outside of the unit circle and thus to non—stationary

state process.

Applying the reasoning demonstrated above to the dynamics of the static model

under SG learning in real time, we could say the following. The map z(�) has two
eigenvalues. One is always close to one (0.9999 for � = 3·10−2). Another is a linearly
decreasing function of �. It equals -1 when � ∼ 7.9 ·10−2 and approaches 1 as �→ 0.

It is still true that the divergent behavior is related to the movement along the

almost unitary eigenvalue’s eigenvector: projection of w onto this eigenvector equals

0.9988, and the fastest divergence of beliefs from their SCE values occurs when γ−γ
is in the closest alignment with w (wT · γn−γ

kγn−γk
is close to one). There are two crucial
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differences with the dynamics model, however: first, the direction w is very weakly

expansive, as wT ·z(�) · w equals only 1.0018 when � ∼ 3 · 10−2 and becomes even
smaller as � decreases. At the same time, the dominant eigenvalue of z(�) equals
0.23 for � ∼ 3 ·10−2 and is decreasing in �. Thus, for smaller values of � the dynamics
of (13) loses its essentially one—dimensional nature, and the expansive movement in

the direction w is not too strong (compare 1.0018 to the 1.103 reported for the

dynamic model). Instead of 150 periods needed to to start reversing a deviation in

the direction of w which we reported for the dynamic model at � = 0.01, only 3-4

iterations are needed to achieve the same result in the static model at similar values

of �. It is not a big surprise, then, that the static model under the SG learning stops

diverging at much larger values of the constant gain.

5 Conclusion

We compared the performance of two methods of adaptive learning with constant

gain, Recursive Least Squares and Stochastic Gradient learning, in a Phelps model of

a monetary policy which has been extensively studied previously. For the values of �

which might be justified for the problem, it is a well—known fact that the RLS adap-

tive learning could lead to “escapes”: large deviations of the government’s beliefs

about the Phillips curve from the Self—Confirming Equilibrium where inflation level

is set at high levels towards the beliefs which lead the policymaker to set inflation

close to zero. We approximated the discrete—time Stochastic Recursive Algorithm

which describes RLS constant gain learning by a one—dimensional continuous—time

Ornstein—Uhlenbeck process and derived expected escape times out of a small neigh-

borhood of the SCE. The theoretical prediction works rather well when compared

with the simulation results.

Turning our attention to the SG learning, we showed that the dynamics behaves

in a divergent way for a large interval of values of �. The divergence is especially

pronounced when SG learning is used in the dynamic version of the Phelps problem.

This behavior is caused by existence of eigenvalues of the SRA which are very close

to the unit circle, and thus deviations in the direction of corresponding eigenvectors

contract very slowly. Moreover, the mean dynamics of the SRA has directions which

are expected to expand in the short run rather than contract, and these directions

14



are almost parallel to the subspace spanned by the slowly contracting eigenvectors.

Such combination leads to a divergent behavior of the SRA, which is reversed only

for the very small � values when the expansion rate reduces to very small values.

Behavior of the static model exhibits similar features, with a crucial difference of the

expansion rate: for the empirically relevant values of �, it is less than 1.02 instead of

1.1 as in the dynamic model. This difference means that the SRA stops exhibiting

divergent behavior for much larger values of the constant gain parameter in the

static than in the dynamic model.

Comparing the two variants of the model under two types of constant gain adap-

tive learning, we could say that only SG learning in the static model demonstrates

an absence of large excursions of beliefs from the SCE at empirically relevant time

scale and for constant gain values likely to be used in practice (“stability”). Follow-

ing Evans et al. (2005), one could thus endorse using this adaptive learning method

for the static model. The overall result, however, cannot be judged as very good, as

three out of four modifications produce an “unstable” result.

A very unbalanced nature (large differences between the dominant eigenvalue

and the rest) of the second moments matrix R plays a significant role in the results,

making the stochastic dynamics strongly one—dimensional in the RLS case and lead-

ing to almost unitary eigenvalues in the SG case. Whether this feature is caused

by the fact that the government uses a misspecified model in the Phelps problem

warrants further investigation.

The behavior of the SRA under SG learning in real time leads us to express a

warning. Checking that all the eigenvalues of the mean dynamics map are stable is

not enough to guarantee “stable” behavior of the constant gain learning algorithm

in real time; moreover, checking that the mean dynamics trajectories are stable in a

large region is not enough either. If many eigenvalues of the mean dynamics map for

a constant gain learning algorithm are close to the unit circle, Stochastic Recursive

Algorithm might exhibit divergent behavior despite convergent mean dynamics.
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Figure 1: The mean dynamics trajectories under RLS
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Figure 2: Typical simulation run and the “largest” eigenvector of R−1.
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Figure 5: Behavior of beliefs during a typical simulation run. Dots: γ6, crosses: eγ2.
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