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Abstract .While under recursive least squares learning the dynamics of the

economy converges to rational expectations equilibria (REE) which are E–stable,
some recent examples propose that E–stability is not a sufficient condition for
learnability. In this paper, we provide some further evidence on the conditions
under which E–stability of a particular equilibrium might fail to imply its sto-
chastic gradient (SG) or generalized SG learnability. We also claim that the
requirement on the speed of convergence of the learning process imposed by [4]
also implies that E–stable equilibria are likely to be GSG learnable. We show
this in a simple ”New Keneysian” model of optimal monetary policy design in
which the stability of REE under SG learning. In this case, the paper gives the
conditions which are necessary for reversal of learnability.
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1 Introduction

The concepts of adaptive learning and expectational stability (E–stability) in
macroeconomics have received much deserved attention recently, see, for ex-
ample, [2] for an extensive discussion. The authors provide the methodology
and list the conditions under which recursive learning dynamics obtain stability.
Rational expectations equilibria which E–stable (REE) may be attainable and
can be learned.1 Admittedly, however, their analysis also points to the lack
of general results under a wide variety of learning rules for which E–stability
holds,i.e., not all REE are indeed learnable. If recursive least squares (RLS)
learning is used by economic agents to update their expectations of the future
(or learn adaptively), then it is shown that the concept of E–stability plays a
crucial role: the RLS learning process converges only to rational expectations

1The possible convergence of learning processes and the E–stability criterion of REE dates
back to DeCanio (1979) and Evans (1985).
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equilibria which are E–stable. Equilibria which are stable under a particular
form of adaptive learning are also called learnable.

At the same time, earlier work by Bullard (1994) suggests that RLS learn-
ing, under certain conditions, may cycle about REE and never obtain them.
In addition, [1] and [6] explain that E–stability may not be a sufficient condi-
tion for learnability. [1] show that an alternative learning mechanism, namely,
stochastic gradient (SG) converges to REE but under different conditions than
RLS learning. In a recent paper, furthermore, [5] provides some examples of
E–stable equilibria which are not learnable under SG learning. [3] discuss the
sufficient conditions under which E–stable equilibria are learnable under SG
and Generalized Stochastic Gradient (GSG) learning. In this paper, we provide
some further evidence and discussion on the conditions under which E–stability
(equivalent to learnability under RLS learning) of a particular equilibrium might
fail to imply its SG or GSG learnability. We also claim that the requirement
on the speed of convergence of the learning process imposed by [4] also implies
that E–stable equilibria are likely to be GSG learnable.

The next section develops a New Keynesian model of optimal monetary pol-
icy and examines its REE under SG learning. Section 3 discusses the condition
under which these equilibria are E-stable and consequently learnable. Section
4 gives and analyzes a geometric example of the disappearance of D-stability
and the conditions under which we observe learnability reversal. Section 5 re-
lates these results to the speed of convergence of SG learning. The last sections
provides some concluding remarks.

2 The Model

To illustrate the main result of this paper we make use of a standard theoretical
framework on monetary policy design developed in Clarida, Gali and Gertler
(1999) and Woodford (2003). This is a dynamic general equilibrium model with
staggered sticky price setting and money. In reduced form the model of the
private sector yields the following two equations:

xt = −ϕ(it − Etπt+1) + Etxt+1 + gt (1)

πt = αxt + βEtπt+1 + ut. (2)

The intertemporal ”IS” curve, equation (1), expresses the output gap, xt, as
a function of the nominal interest rate, it, and is influenced by the expectations
of future inflation Etπt+1, the future output gap Etxt+1 and a demand shock,
gt. Equation (2) is modeled as an expectations-augmented Phillips curve, where
current inflation, πt depends on the current output gap, expected future infla-
tion, Etπt+1 and a supply shock, ut. The model is completely determined with
the addition of a monetary policy rule set by the monetary authority. Following
Ferrero (2004), we specify a general set of expectations based reaction functions
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that subsume previous results in the literature, e.g. Evans and Honkapohja
(2003). Thus the nominal interest rate follows:

it = γ + γπEtπt+1 + γxEtxt+1 + γggt. (3)

As a result, the economy evolves according to:

Yt = Q+ FEtYt+1 + Sψt, (4)

We study this model under SG learning and show the tenuousness of achiev-
ing E–stability of REE.

The rational expectations equilibrium (REE) of this model take the form:

Yt = Φ+ Sψt. (5)

Under learning, the expectations are given by:

EtYt+1 = Φt. (6)

TO BE COMPLETED

3 E–Stability and Learnability

Denote the rational expectations equilibrium of the above model by Φ. This
equilibrium is called E–stable if Φ is stable under the dynamics defined by the
following ordinary differential equation:

dΦ

dτ
= T (Φ) − Φ. (7)

Φ is stationary point of (7). It is stable iff the Jacobian of (7) evaluated at Φ,
J = DT (Φ) |Φ=Φ − I, has only eigenvalues with negative real parts.

If, instead of using RLS as an adaptive learning algorithm, one relies on SG
learning, convergence of the learning process is governed instead by the following
differential equation,

dΦ

dτ
= M(Φ) · (T (Φ) − Φ) . (8)

The equilibrium Φ is still a stationary point of (8). It is learnable iff Φ is
stable under the flow (8), which means that all eigenvalues of M(Φ) · J have
negative real parts, see [1] for a proof. M(Φ) is a matrix of second moments of
state variables; it is symmetric and positively definite. Additionally, one could
consider Generalized SG learning (GSG), in which case learnability is equivalent
to negativity of all eigenvalues of the matrix

M · J, (9)

where M is arbitrary positive definite matrix.
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The problem of a correspondence between E–stability and learnability under
GSG learning is, therefore, equivalent to the following linear algebraic problem:
given a matrix J with all the eigenvalues to the left of imaginary axis, could
one guarantee that no eigenvalue of M · J becomes positive? This problem is
well known in economics and is called a D–stability problem, see Arrow (1974)
and Johnson (1974). Many sufficient conditions for D–stability are known, but
they are usually hard to interpret from economic point of view. We will pro-
vide a geometric interpretation of a case when D–stability does not obtain in 2
dimensions.

4 Geometric Interpretation of Disappearance of
Stability

Suppose that the 2 × 2 matrix J has only eigenvalues with negative real parts.
The eigenvalue problem can be written as

J · V = V · Λ, (10)

where V is the matrix whose columns are eigenvectors of J and Λ is diagonal with
corresponding eigenvalues λi on the main diagonal. For expositional simplicity
we assume that both λi are real and negative. In case eigenvalues are linearly
independent (which is a generic case for non–singular matrices), matrix J could
be diagonalized as J = V ΛV −1. Learnability of the equilibrium under GSG
adaptive learning is determined by eigenvalues of M · J , where M is symmetric
and positively definite and thus could be written as M = PDPT .2 We are thus
interested in the following eigenvalue problem:

PDPT · V ΛV −1 · Ṽ = Ṽ · Λ̃, (11)

where Ṽ consists of eigenvectors of M · J and Λ̃ is a diagonal matrix with
eigenvalues of M · J as entries.

Pre–multiply (11) by P−1 and define V = P−1Ṽ to get

D · PTV ΛV −1P · V = DJ̃ · V = V · Λ̃. (12)

It is obvious that the matrix J̃ = PTV ΛV −1P has the same eigenvalues as J,
namely the values on the main diagonal of Λ. Geometrically, if J represents a
linear map in a 2–dimensional space, then J̃ represents the same map in new
coordinates. These new coordinates are given by two orthogonal eigenvalues of
M . In the new coordinate system, any vector v is transformed into P−1v.

To fix notation, let us order d1 and d2, the eigenvalues of M , so that d1
d2
< 1.

Eigenvalues of J and J̃ are −λ1 and −λ2, ordered so that |λ1|
|λ2| < 1. Denote

the eigenvectors of J̃ corresponding to −λ1 and −λ2 are v1 and v2. We are
2Eigenvalues of a symmetric matrix are orthogonal, and so P−1 = P T .
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interested in a case when D · J̃ has positive eigenvalue λ̃.3 The eigenvector
corresponding to λ̃, let call it ṽ, can be represented as a weighted average of v1
and v2, ṽ = αv1 + βv2. Without loss of generality, set α equal to 1.4 Write

λ̃ṽ = DJ̃ṽ = D · J̃ · (v1 + βv2) = D ·
(
J̃v1 + βJ̃v2

)
= (13)

D · (−λ1v1 − βλ2v1) . (14)

This vector equation in the coordinate form could be written as

−λ1

[
d1v11
d2v21

]
− βλ2

[
d1v12
d2v22

]
= λ̃

[
v11 + βv12
v21 + βv22

]
, (15)

or

v11

(
λ̃+ λ1d1

)
= −βv12

(
λ̃+ λ2d1

)
, (16a)

v21

(
λ̃+ λ1d2

)
= −βv22

(
λ̃+ λ2d2

)
. (16b)

Dividing (16a) by (16b), get

v11
v21

λ̃+ λ1d1

λ̃+ λ1d2

=
v12
v22

λ̃+ λ2d1

λ̃+ λ2d2

. (17)

For the above equation to have a solution λ̃ > 0, one needs sign(v11
v21

) =
sign(v12

v22
). In other words, both eigenvectors of J after rotation into the co-

ordinates defined by eigenvectors of M should be located in the same quadrant
of the plane. In this case, T = v22

v21

v11
v12

> 0. This is the first condition necessary
to generate learnability reversal.5

3As det(D �J) = det(D) ∗ det( �J), there are either two or zero eigenvalues with positive real
part.

4If �v is eigenvector of M �J, then α�v is also an eigenvector for any real α.
5Suppose v1 and v2 are two eigenvectors of J, and p1 and p2 are two orthogonal eigenvectors

of M. In the new coordinates the eigenvectors of MJ are given as�
pT
1

pT
2

� �
v1 v2

�
=

�
pT
1 v1 pT

1 v2

pT
2 v1 pT

2 v2

�
.

If we change the direction of p1, first coordinates of both eigenvectors of MJ change sign.
Possible moves are from the quadrant I to II and back, and from the quadrant III to IV and
back. If one changes the direction of p1, both eigenvectors of MJ move I ↔ IV or II ↔ III.
Finally, changing the direction of both p1 and p2 makes both eigenvectors move in I ↔ III
or II ↔ IV direction. If instead one switches the direction of v1 or v2 to the opposite, the
corresponding eigenvector of MJ moves between I and III or II and IV .

Thus, there are just two possibilities regarding the mutual location of the two eigenvalues of
MJ : they either could both be put into the first quadrant of the plane by some combination
of directional changes described above, or one of them is in the first quadrant and the other
is in the second.
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Rewrite (17) as

T
(
λ̃+ λ2d2

) (
λ̃+ λ1d1

)
=

(
λ̃+ λ2d1

) (
λ̃+ λ1d2

)
,

(18)

λ̃2 + λ̃
λ2d1 + λ1d2 − T (λ2d2 + λ1d1)

1 − T
+ λ1λ21d1d2 = 0. (19)

Note that T cannot equal one; in this case, two eigenvectors of J are collinear,
which is not generic situation.6

The quadratic equation λ̃2+bλ̃+c = 0, where c > 0, has at least one solution
with positive real part only if b < 0. Define T = 1 − ε, ε > 0 and rewrite the
condition b < 0 as

1 +
λ2

λ1

d2

d1
+

(
λ2
λ1

− 1
) (

1 − d2
d1

)
ε

< 0, (20)

ε · (1 + xy) < (1 − x)(1 − y), (21)

where we defined x = λ2
λ1

and y = d2
d1
. Finally, resolving the above inequality

with respect to y, one gets

y >
x− (1 − ε)

(1 − ε)x− 1
, x >

1
1 − ε

, (22)

y <
x− (1 − ε)

(1 − ε)x− 1
, x <

1
1 − ε

. (23)

The function y = x−(1−ε)
(1−ε)x−1 has a singularity at x = 1

1−ε > 1. For the values of x
less than 1

1−ε , y is less than one. Recalling that we have fixed y = d2
d1
< 1, this

branch of the solution is not admissible. Thus, the only branch of the solution
which might interest us is given in the first line of the above inequality.7 The
solution is illustrated in Figure 1 for two values of ε, ε = 0.0333 (solid) and
ε = 0.333 (dashed). The inequality is satisfied in the area of the Figure located
above and to the right of the corresponding line.

One could make the following conclusions. If eigenvalues of J are not too
collinear (the value of T not too close to 1), only the very high values of x =
λ2
λ1

and y = d2
d1

guarantee presence of a positive λ̃ and, therefore, reversal of
learnability.8 If, on the other hand, v1 and v2 are almost collinear, learnability
could be reversed for relatively mild ratios of λ2

λ1
and d2

d1
. Collinearity of two

eigenvectors of a matrix is not a generic property, and thus very low ε are
unlikely to be observed for a matrix J .

6Note, however, that if T = 1, then (17) has a solution �λ = 0. We would be interested in

behavior of �λ as a function of T and will use T = 1 as the benchmark case.
7Similar considerations demonstrate that if ε < 0, then both branches of the inequality do

not satisfy conditions x > 1, y > 1.
8Notice that the angle between eigenvectors of J is preserved under the rotation into

the coordinate system determined by the eigenvectors of M . Therefore, we can talk about
collinearity for eigenvectors of J and �J interchangeably.
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5 Reversal of Learnability and the Speed of Con-
vergence.

[4] studies the speed with which adaptive learning dynamics converges to the
REE. The paper considers a one–dimensional case. The author shows that in
case the (only) eigenvalue of J is below −0.5, the convergence of the adaptive
learning process to the REE occurs with the “root-t” speed, in other words,
exponentially fast. If this root is above −0.5 but below 0, so that the REE is
still E–stable, the convergence is much slower. Ferrero (2004) further quantifies
the welfare losses related to a slow convergence, and shows that they could
be very substantial. He advocates adopting monetary policy which assures
exponentially fast convergence to the REE, and thus the eigenvalue bounded
from above by −0.5. In a multi–dimensional context, the speed of convergence
is determined by the eigenvalue of J which is the smallest in absolute value.
This policy prescription then reads that monetary policy should be structured
in such a way that the real part of closest to the imaginary axis eigenvalue is
below -0.5.

Comparing the policy prescription with the result derived in the previous
section, it immediately obtains that accepting Ferrero’s recommendations makes
learnability reversals more difficult. Suppose that we pick values of ε > 0,
λ1 > 0, λ2 > 0, and d2

d1
> 0 from some joint distribution. It is immediately

obvious that by restricting the support of the distribution to λ1 > 0.5, λ2 > λ1
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will make picking a point with very high λ2
λ1

much less likely.9

If one is willing to impose the probability distribution described above, the
results in this paper further suggest that deriving the probability of picking
matrices J and M so that J is stable but MJ is not, would be a relatively
simple numerical exercise.

6 Conclusion

While under recursive least squares learning the dynamics of the model con-
verges to rational expectations equilibria (REE) which are E–stable, see Evans
and Honkapohja (2003), some recent examples propose that E–stability is not
a sufficient condition for learnability. In this paper, we provide some further
evidence on the conditions under which E–stability of a particular equilibrium
might fail to imply its stochastic gradient (SG) or generalized SG learnability.
We also claim that the requirement on the speed of convergence of the learn-
ing process imposed by [4] also implies that E–stable equilibria are likely to be
GSG learnable. We show this in a simple ”New Keneysian” model of optimal
monetary policy design in which we investigate the stability of REE under SG
learning. Our findings are two fold: we examine the model under an alternative
learning scheme SG and derive the conditions in this case which are necessary
for the reversal of learnability.

References

[1] Emilio Barucci and Leonardo Landi. Least mean squares learning in self-
referential linear stochastic models. Economics Letters, 57:313–317, 1997.

[2] George W Evans and Seppo Honkapohja. Learning and Expectations in
Macroeconomics. Princeton University Press, Pricenton, Oxford, 2001.

[3] George W Evans, Seppo Honkapohja, and Noah Williams. Generalized sto-
chastic gradient learning. NBER Technical Working Paper 317, 2005.

[4] Giuseppe Ferrero. Monetary policy and the transition to rational expecta-
tions. Banca’d Italia Termi di discussioni 499, 2004.

[5] Chryssi Giannitsarou. E–stability does not imply learnability. Macroeco-
nomic Dynamics, 9:276–287, 2005.

[6] Maik Heinemann. Convergence of adaptive learning and expectational sta-
bility: The case of multiple rational-expectations equilibria. Macroeconomic
Dynamics, 4:263–288, 2000.

9By how much less likely depends on the way the assumed probability density changes
when we change the support. One natural possibility is to increase probability density at every
remaining point proportionally. In this case, it is a straightforward exercise to determine a
probability of picking a matrix J with a ratio λ2

λ1
above any given number. The probability

should drop dramatically for any imaginable distribution .

8



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


