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Abstract

This paper explores how the introduction of Rational Inattention (RI) a¤ects optimal con-

sumption and portfolio rules and asset pricing in the consumption-based CAPM framework. I

�rst solve an otherwise standard portfolio choice and asset pricing model with RI explicitly and

show that RI can generate smooth consumption process and low contemporaneous correlation

between consumption growth and asset returns. Second, it is shown that in the RI economy

asset returns are determined by the ultimate consumption risk rather than the contemporaneous

risk. As a result, RI has a potential to reduce the demand for the risky asset and could endo-

genize �limited stock market participation�hypothesis. Third, I show that RI can disentangle

the coe¢ cient of relative risk aversion with the elasticity of intertemporal substitution endoge-

neously by increasing the e¤ective CRRA. RI can therefore be an alternative explanation for

the equity premium puzzle and the risk free rate puzzle. Fourth, I compare RI with recursive

preference, robustness, and habit formation. Fifth, I investigate the implications of RI for opti-

mal consumption and portfolio choice when investment opportunities are stochastic and labor

income is modelled explicitly. Finally, I propose a general equilibrium asset pricing framework

to examine the implications of RI for the equity premium, the mean ratio of price to dividend,

and the equity volatility in equilibrium.
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1. Introduction

Optimal asset allocation is a classic problem in �nancial economics and macroeconomics. In a

single-period setting or a multiperiod setting where investment opportunities are constant, optimal

portfolio weights are functions of the �rst and second moments of asset returns. Speci�cally, in a

portfolio with one riskless asset and one risky asset, the optimal share invested in the risky asset

is proportional to the expected excess return and inversely proportional to the volatility of the

risky asset. However, given the observed mean and volatility of the risky asset and plausible risk

aversion, this kind of models generates a counterfactually high stock market participation rate1.

Another important topic that is closely related to optimal portfolio choice is asset pricing.

According to canonical consumption-based capital asset pricing theory (CCAPM), the expected

excess return on any risky portfolio over the riskless interest rate is determined by the quantity

of risk times the price of risk, where the quantity of risk is measured by the covariance of the

excess return with contemporaneous consumption growth and the price of risk is the coe¢ cient of

relative risk aversion (CRRA) of the representative agent. Given i.i.d. stock returns, the optimal

portfolio share in equities of an investor with power utility is proportional to the risk premium

and the reciprocal of the CRRA and the volatility of asset returns. Hence, the canonical CCAPM

theory predicts that equities are not very risky because of the low covariance between equity

returns and contemporaneous consumption growth2. Consequently, to generate the observed high

equity premium measured by the di¤erence between the average real stock return and the average

short-term real interest rate, the CRRA must be very high. Mehra and Prescott (1985) examined

this issue in the Lucas-type general equilibrium asset pricing framework and �rst called it �the

equity premium puzzle�3. Hansen and Jagannathan (1991) and Cochrane and Hansen (1992)

related this puzzle to the volatility of the stochastic discount factor (SDF). They argued that this

puzzle is such that an extremely volatile SDF is required to match the Sharpe ratio4. Kandel

and Stambaugh (1991) responded to this puzzle by arguing that the CRRA is indeed much higher

than the values traditionally thought. However, as argued in Weil (1989), although a high value

of the CRRA can help resolve this puzzle, it brings another puzzle, the risk free rate puzzle5.

1 In a country with a well-developed equity culture like the U.S., the direct ownership of publicly traded stocks
was 21.3% in the 2001 Survey of Consumer Finance.

2Given the property of equity returns, the low covariance is determined by the smoothness of consumption and
the low correlation between equtiy return and consumption.

3For the history of this puzzle, see Lucas (1978), Grossman and Shiller (1981), Hansen and Singeton (1983),
Mehra and Prescott (1985), Hansen and Jagannathan (1991), and Cochrane and Hansen (1992). Kocherlakota
(1996), Campbell (1999, 2003), and Cochrane (2005) gave useful reviews on this topic.

4 It is de�ned as the ratio of the equity premium to the standard deviation of stock returns.
5Weil (1989) argued that if one accepts high risk aversion, the corresponding equation for the risk less rate implies

that the risk free interest rate is extremely high. To generate a 5% interest rate, a negative 15% discount rate is
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Numerous economic arguments have been proposed to explain this puzzle. A partial list of these

explanations in the CCAPM framework includes: habit formation in consumption (Contantinides,

1982; Campbell and Cochrane, 1999), recursive utility (Epstein and Zin,1989; 1991), limited stock

market participation (Vissing-Jorgensen, 2002), delayed adjustment (Grossman and Laroque, 1990;

Lynch, 1996; Marshall and Parekh, 1999; and Gabaix and Laibon, 2001), and the preference for

robustness (Maenhout, 2004).

An implicit but key assumption in the bulk of this work is that individuals have unlimited

information-processing capacity and thus can observe the relevant state(s) without errors and react

instantaneously and completely to any innovations to equity returns. However, as argued in Sims

(1998, 2003, 2005), this assumption is not consistent with the inborn ability of human beings, that

is, ordinary people only have limited information-processing capacity. Consequently, people cannot

observe the state(s) perfectly and thus have to react to the innovations to the state gradually and

with delay. In Sims (2003), this kind of information-processing constraints is �rst called �Rational

Inattention�(henceforth, RI). Recently, RI has been incorporated into a variety of economic models

to address some interesting issues, e.g., the observed inertial behavior, the persistence problem, and

so on. I will give a brief review later.

For this reason, it is desirable to take RI into account when studying optimal consumption

and portfolio rules and asset returns. In this paper, I examine the implications of RI on optimal

portfolio choice and asset returns in both the partial equilibrium and general equilibrium CCAPM

frameworks. RI was �rst introduced into economics by Sims (2003). In his RI framework, a concept

in information theory, entropy, is used to measure the uncertainty of a random variable, and the

reduction in the entropy is used to measure information �ow. For �nite Shannon capacity (a kind

of cognitive limitation), the reduction in entropy is bounded above by the limited capacity. As

a result, individuals cannot eliminate all uncertainty about the state(s) when new information

arrives. He then developed a tractable framework for solving individuals�LQG (Linear-Quadratic-

Gaussian) optimization problems when they have �nite Shannon capacity and showed that the

optimal reactions of individuals with respect to fundamental shocks are delayed; hence RI can be

an alternative candidate to explain the observed inertial behavior in the US economy. In contrast to

the stochastic optimal control problems with exogenous noises in the stochastic control literature6,

the RI model implies that the nature of the noise due to imperfect observations is determined

endogenously and/or optimally when agents need to allocate their limited information capacity

across various sources.

required.
6See Whittle (1982, 1996) for details.
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In this paper, I introduce RI into the CCAPM frameworks and explore its implications for

optimal consumption and portfolio choice and asset returns. As a �rst contribution, I solve a

partial equilibrium CCAPM model7 with RI explicitly and all results are then obtained in closed

form. The explicit expressions of optimal consumption and portfolio rule in terms of primitive

parameters and the parameter governing the degree of RI (�) give us clear insights about the

impacts of RI on portfolio choice and asset returns.

Second, after solving the model, I show that RI can substantially a¤ect the intertemporal allo-

cation of consumption and thus generate a smooth consumption process and low contemporaneous

covariance between consumption growth and asset returns8. In addition, the model implies that

lagged equity returns could be used to predict future consumption growth, which is consistent with

the data to some extent9. The intuition is simple. Because the individuals devote their �nite

information capacity to observing the state of their �nancial wealth, and thus the state can not be

perfectly observed, optimal consumption and portfolio decisions are made relative to a noisy signal

of the true state, and information about changes in the true state are not entirely incorporated into

forecasts. In other words, they have to take some time to digest new information about the state.

Hence, past information about equity returns is helpful to predict future consumption growth.

Third, I show that just as argued in Parker (2001; 2003) and Parker and Jullard (2005), because

consumption takes many periods to adjust with respect to the innovations to risky assets in the

RI economy, the quantity of the risk of the risky portfolio should be determined by its ultimate

consumption risk instead of the contemporaneous one. Speci�cally, the usual Euler equation does

not hold because consumption cannot react instantaneously and completely to the innovations due

to limited capacity in processing information. Instead, a long-term Euler equation holds in the RI

world because consumption reacts slowly with respect to the changes in wealth and takes many

periods to adjust. Hence, the equity premium should be measured by the ultimate consumption

risk. Because the ultimate consumption risk is larger than the contemporaneous one, the individuals

will face larger risk if measuring the risk correctly and will then require higher equity premium

for compensating. In sum, incorporating RI can reconcile three apparent anomalies in the full-

information CCAPM model simultaneously: a) the excess smoothness of aggregate consumption,

7Actually, it is a log-linearized version of the standard Merton and Samuelson model.
8This RI model predicts similar aggregate dynamics generated from the delayed adjustment model (e.g., the 6D

bias model proposed by Gabaix and Laibson (2001)) because both of them predict that aggregate consumption
should react to lagged changes in wealth. However, their individual consumption behaviors are di¤erent in that the
consumers in the Gaibax-Laibson economy update their consumption every D periods, while consumers in the RI
economy adjust consumption every period, but are subject to information capacity constraints.

9When we solve the benchmark CCAPM model with RI, we assume that the equity return is i.i.d.; hence we cannot
address the question: can consumption growth be used to predict equity returns? But when we allow time-varying
investment opportunities, it will be clear that current consumption growth can predict future equity returns.
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b) the low contemporaneous covariance between consumption growth and asset returns, and c) the

high equity premium.

Fourth, it is straightforward to show that incorporating RI into this expected utility maximiza-

tion framework can also disentangle the CRRA from the elasticity of intertemporal substitution

(EIS) by increasing the e¤ective CRRA and reducing the EIS10. Hence, if individuals are highly

inattentive, the model can generate high equity premium by just increasing the e¤ective CRRA

that is an increasing function of the degree of inattention and leaving the true CRRA unchanged.

RI can therefore be an alternative explanation for both the equity premium puzzle (by increasing

the e¤ective CRRA) and the risk free rate puzzle (by remaining the true CRRA unchanged). In

other words, RI can reconcile low estimates of risk aversion obtained from experimental evidence

or introspection, with high estimated values of risk aversion based on asset pricing data. Further,

given i.i.d. equity returns, it is easily shown that RI reduces the demand for the risky asset. The

intuition is that if agents can not allocate enough channel capacity in monitoring their �nancial

wealth evolution, it is not rational for them to invest a large fraction of their wealth in the risky

portfolio because the innovations to their �nancial wealth can generate large consumption risk in

the long run if the capacity is low. As a result, RI provides a possibility for �the limited stock

market participation�observed in the data.

Fifth, I explore the di¤erent implications of RI, recursive preference, and the preference for

robustness on asset holdings and asset returns. In the Epstein-Zin (1989) andWeil (1989)�s recursive

utility framework, CRRA and EIS are exogenously separated in the preference. Hence, increasing

relative risk aversion can help resolve the equity premium puzzle and will not cause the risk free

rate puzzle because the CRRA and the IES are unrelated in the recursive utility framework. In

the robustness asset pricing literature, Maenhout (2004) used similar methodology as developed

by Hansen and Sargent (2002) and Anderson et al. (2002), and showed that the preference for

robustness dramatically reduces the optimal share of the portfolio allocated in equities because

investors are very conservative or pessimistic when forming portfolios due to robustness (model

uncertainty)11.

Sixth, in the expected utility framework the CRRA and the EIS are closely related. This

link between the two distinct parameters is broken in the recursive utility framework. Hence,

incorporating RI into the recursive utility framework allows us to explore the interactions of RI,

the CRRA, and the IES when determining portfolio choice and asset returns. It is shown that

10RI reduces the EIS in consumption because individuals are constrained to substitute consumption over time due
to �nite capacity. This is an objective source of reluctance instead of a subjective one from changing the preference
directly.
11 In fact, we can also regard RI as a source of pessimism or conservatism.
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incorporating RI in this framework then goes further in explaining the equity premium puzzle and

the risk free rate puzzle.

Seventh, in the data it seems that expected asset returns vary through time so that investment

opportunities are not constant, and the evidence for predictable variation in the equity premium is

particularly strong. Several papers have been developed to solve for optimal portfolios in models

with realistic predictability of returns. See Campbell and Viceira (1999, 2002) for detailed discus-

sions. Hence, it seems natural to analyze the optimal asset demands including both myopic demand

and hedging demand of the consumers in the RI economy. It is shown that RI reduces the speed

of adjusting the portfolio with respect to the innovations to equity returns.

Finally, the high equity premium is, literally speaking, no puzzle in the above partial equilibrium

CCAPM framework because asset prices are speci�ed exogenously. The endogenous variables in

this model are consumption processes of individual consumers. Aggregating over all consumers

yields an aggregate consumption process. It is therefore interesting to examine the implications

of RI on the equity premium puzzle in the general equilibrium CCAPM framework. Speci�cally,

I show that in a Lucas-type equilibrium asset pricing model, RI reduces the mean ratio of price

to dividend, increases the equity premium, and provides an explanation for the equity volatility

puzzle.

Recently, there have been some papers that incorporate explicit information processing con-

straints into a variety of theoretical models and explore how they a¤ect the optimal decision rules

of consumers or �rms, as well as their implications for equilibrium outcomes. For example, Wood-

ford (2001), Ball et al. (2003), Adam (2004), and Gumbau-Brisa (2004) analyzed the e¤ects of

imperfect common knowledge on monetary policy and in�ation dynamics. Peng and Xiong (2001)

discussed how information capacity constraints a¤ect the dynamics of asset return volatility. Peng

(2004) explored the e¤ects of information constraints on the equilibrium asset price dynamics and

consumption behavior under the continuous-time CARA framework. Moscarini (2003) derived

optimal time-dependent adjustment rules from the information constraints in a continuous-time

framework. Kasa (2005) compared RI with the preference for robustness and showed that they

are observationally equivalent in the sense that a higher �lter gain can be interpreted as either a

strong preference for robustness or a strong ability to process information. Luo (2005) examined

the implications of RI for consumption dynamics in the permanent income hypothesis model and

showed that RI can be an alternative explanation for the excess smoothness puzzle and the excess

sensitivity puzzle. Luo and Young (2005) examined the e¤ects of RI on the ampli�cation and

propagation of aggregate shocks in a stochastic growth model. Máckowiak and Wiederholt (2005)

explored the implications of RI on optimal sticky prices. Nieuwerburgh and Veldkamp (2005a;
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2005b) study information acquisition, portfolio under-diversi�cation, and the home bias puzzle. A

number of recent papers have also explored the potential of inattentiveness from another attack

line. For example, Gabaix and Laibson (2001) assumed that investors update their portfolio deci-

sions infrequently and showed that this can better explain the risk premium puzzle; Mankiw and

Reis (2002) examined the e¤ects of inattentiveness of �rms on the dynamics of output and in�ation;

and Reis (2003) derived the optimal decision rules for inattentive consumers and then discussed

the implications of inattentiveness for individual and aggregate consumption behaviors12.

This paper is organized as follows. Section 2 presents and solves a partial equilibrium CCAPM

model with RI, and examines its implications for portfolio choice and the equity premium. Section

3 discusses the implications of RI in the recursive utility framework. Section 4 considers stochastic

investment opportunities to analyze the implication of RI on asset demands in some special cases.

Section 5 analyzes the implications of labor income risk in the CCAPM model with RI. Section

6 studies the implications of RI on asset prices in the Lucas-type general equilibrium framework.

Section 7 presents some empirical evidence. Section 8 concludes. Appendices contain the proofs

and derivations that are omitted from the main text.

2. Consumption-based CAPM Models with Rational Inattention

In this section, I �rst present a simple standard CCAPMmodel, and then discuss how to incorporate

RI into this framework and solve the model in close form approximately. The model proposed in this

section is based on three literatures. First, I follow Campbell (1993; 1999) and Campbell and Viceira

(1999) and solve the CCAPM by log-linearizing the budget constraint and the Euler equation and

by using the method of undetermined coe¢ cients to �nd policy functions13. Second, since the

original CRRA speci�cation can be approximated by a log-LQ framework under some conditions,

it can be �tted into the Gaussian-error RI framework developed in Sims (2003) approximately as in

the pure LQ problem. Third, in the RI economy, we need to use the ultimate consumption risk to

price risky assets. The logic is based on the work by Parker (2001; 2003) and Parker and Julliard

(2005).

12�RI�modeled in Sims (2003) and others is based on Shannon channel capacity, whereas Reis modeled �inatten-
tiveness�by assuming and justifying the existence of decision costs that induces agents to only infrequently update
their decisions. As shown below, although the two assumptions are based on distinct mechanisms, they may generate
similar aggregate dynamics.
13Actually, it is in the vein of Merton (69) and Samuelson (69). Here I adopt Campbell�s discrete-time log-linearized

version because it has an approximate linear-quadratic-Gaussian framework and thus RI can be easily introduced.
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2.1. Speci�cation and Solution of the Standard CCAPM Model

Before setting up and solving the CCAPM model with RI, it is helpful to present the standard

CCAPM model �rst and then discuss how to introduce RI in this framework. Here I consider

a simple partial equilibrium CCAPM model14; the identical consumers maximize the following

intertemporal welfare by choosing consumption,

V = E0

1X
t=0

�t
C1�
t � 1
1� 
 (2.1)

where Ct represents individual�s consumption at time t; � is the discount factor, 
 is the coe¢ cient

of relative risk aversion (CRRA), and � = 1=
 is the elasticity of intertemporal substitution (EIS).

When 
 = 1; the utility function becomes logarithmic form, logCt.

To keep the analysis simple, I assume that there are two tradable �nancial assets: asset e is

risky, with one-period log (continuously compounded) return ret+1(= logRet+1); while the other

asset f is riskless, with constant log return given by rf (= logRf ): I refer to asset e as a portfolio

of equities, and to asset f as savings or checking accounts. Furthermore, I assume that ret+1 has

expected return �; where � � rf is the equity premium, and an unexpected component ut+1 with

var(ut+1) = !2u:

The �ow budget constraint for consumers can be written as

Wt+1 = Rpt+1(Wt � Ct) (2.2)

whereWt+1 is an individual�s �nancial wealth which is de�ned as the value of �nancial assets carried

over from period t at the beginning of period t+1, Wt�Ct is savings15, and Rpt+1 is the one-period
return on savings given by

Rpt+1 = �t(R
e
t+1 �Rf ) +Rf (2.3)

where �t = � is the proportion of savings invested in the risky asset16. As in Campbell (1993), we

can easily derive an approximate expression for the log return on wealth as follows,

rpt+1 = �(ret+1 � rf ) + rf +
1

2
�(1� �)!2u: (2.4)

Because the term 1
2�(1 � �)!2u is one order of magnitude smaller than the mean values of the

14The model is based on Campbell (1993) and widely adopted in the macroeconomics and �nance literature.
15For simplicity, we do not model income process explicitly by assuming that all the income �ows including labor

income can be capitalized into marketable wealth.
16Given i.i.d. equity returns and power utility function, the share invested in equities, �t, is constant over time.
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returns on equity and the riskless asset given the realistic value of !2u observed in the data; for

simplicity, we may assume that rpt+1 ' �(ret+1 � rf ) + rf :
As the return on the portfolio is not constant, the simple discrete-time model can not be solved

analytically. Of course, it can be solved by using numerical methods adopted widely in the modern

consumption literature and the in�nite horizon models of portfolio choice with uninsurable labor

income, but here I follow Campbell (1993), Campbell and Viceira (1999), and Viceira (2001) and

use the log-linearization method to solve the model17.

First, I divide equation (2.2) by Wt and then log-linearize it around steady state c � w =

E(ct � wt):
�wt+1 = rpt+1 +  + (1� 1=�)(ct � wt) (2.5)

where � = 1� exp(c�w),  = log �� (1� 1=�) log(1��); and lowercase letters denote logs. Next,
I log-linearize the Euler equation

Et[�R
k
t+1(Ct+1=Ct)

�1=�] = 1

around18 Et[log � � 1
� (ct+1 � ct) + rkt+1] where k = e, f; and p, and obtain the following familiar

form19

0 ' log � � 1

�
Et[ct+1 � ct] +Et[rkt+1] +

1

2
vart[r

k
t+1 �

1

�
(ct+1 � ct)] (2.6)

Furthermore, guess that the optimal log consumption rule takes the following form

ct = b0 + b1wt; (2.7)

and thus we can easily get the expression for the change in consumption, �ct+1 = b1�wt+1:

Combining equations (2.5), (2.6), and (2.7) gives the undetermined coe¢ cients in the consump-

17This method proceeds as follows. First, both the �ow budget constraint and the consumption Euler equations
are log-linearized around steady state, in particular, the Euler equations are log-linearized by a second-order Taylor
expansion so that the second-moment e¤ects such as precautionary savings e¤ects are accounted. Second, guess
the optimal consumption and portfolio choices that verify these log-linearized equations. Finally, it pins down the
coe¢ cients of the optimal decision rules by using the method of undetermined coe¢ cients.
18Note that the Euler equation

Et[�R
k
t+1(Ct+1=Ct)

�1=�] = 1

can be written as
Et[exp(log � �

1

�
(ct+1 � ct) + rkt+1)] = 1:

19Note that this log Euler equation holds exactly given consumption growth and returns are jointly conditionally
lognormal.
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tion rule20:

b1 = 1 and b0 = logf1� exp[(
1



� 1)Et[rpt+1] +

1



log � +

1

2

(1� 
)2vart[rpt+1]g; (2.8)

and the optimal portfolio rule

� =
�� rf + 1

2!
2
u


b1!2u
(2.9)

Hence, the optimal portfolio has mean Et[r
p
t+1] = rf +

(��rf )(��rf+ 1
2
!2u)


!2u
and variance vart[r

p
t+1] =

(��rf+ 1
2
!2u)

2


2!2u
: It is also worth noting that for the isoelastic utility, the portfolio rule is independent of

the consumption rule, and when 
 = 1; the consumption rule is also independent of the stochastic

properties of �nancial assets.

Hence, (2.7) and (2.9) characterize the solution to the standard CCAPM completely. Further,

given the CRRA utility and i.i.d. equity returns, the value function of the consumer in terms of

log wealth can be then written as follows

V (wt) =
exp(�
b0 + (1� 
)wt)

1� 
 (2.10)

2.2. Implications for the Implied Equity Premium

Strictly speaking, there is no equity premium puzzle or riskfree rate puzzle in this partial equilibrium

framework because asset returns are given exogenously and we just solve for optimal consumption

and portfolio rules given the returns. I will discuss the implications of RI for the equity premium

puzzle in a general equilibrium framework in section 6. Here I only brie�y discuss how the equity

premium puzzle appears in this partial equilibrium model.

First, we need to use the implied relationship between consumption growth and asset returns.

Based on the results of the above CCAPM case, we know that the joint distribution of the returns

on the equity and consumption growth is log normal. Hence, the expected excess return can be

written as21

Et[r
e
t+1]� rf +

1

2
!2u = 
covt[ct+1 � ct; ret+1] (2.11)

= 
�!2u

where we use the formula that �ct+1 = �wt+1 = rpt+1 +  + (1� 1=�)b0:

20For the detailed derivations, see Appendix B in Viceira (2001) and Campbell and Viceira (2002).
21Given i.i.d. asset returns, this expression for the conditional expection of excess returns is equivalent to the

corresponding unconditional expression.
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Hence, the expected return on the risky asset is determined by the contemporaneous covariance

of its return and consumption growth as well as risk aversion. Given 
 is 3 and � is 0:2522; the equity

premium is close to 0:75!2u which is around 2:4%
23. Hence, this simple model may generate very

reasonable risk premium given this low value for the coe¢ cient of relative risk aversion, however,

as we can see from equation (2.11), this result is generated from the unrealistic contemporaneous

covariance between consumption growth and asset return which is 5:6 � 10�3 annually24 given !u =
15%: In Campbell�s US dataset, the standard deviation of real consumption growth is around

0:01 annually, and the covariance of consumption growth with equity returns is around 32 � 10�5:
Therefore, one puzzle for this simple consumption CAPM model is that the model predicts too

much contemporaneous covariance between consumption growth and asset returns due to large

consumption volatility and high contemporaneous correlation between consumption growth and

equity returns. As shown in Campbell (1999, 2003), once we substitute the empirical values of the

exess returns and the covariance between equity returns and consumption growth into (2.11), the

implied relative risk aversion, 
; is extremely high for both US data and international data. See

Campbell (2003) for a detailed discussion about the equity premium puzzle based on this equation.

Luo (2005) showed that introducing RI into a standard LQ PIH model can reduce the variability of

consumption growth when labor income is nonstationary, and then have a potential to explain the

excess smoothness puzzle (the Deaton�s puzzle) and the excess sensitivity puzzle in the consumption

literature. Hence, it seems promising to incorporate RI into this canonical CCAPM framework to

examine if it would be an alternative explanation for the equity premium puzzle and the risk free

rate puzzle.

2.3. Incorporating RI into the Standard CCAPM

In the standard LQ problem with imperfect observations on the state, we just need to apply the

separation principle and replace the true state with its estimated one. To apply this principle here,

we need to show that the volatility of stock returns has no impact on the decision rule, that is, there

is no precautionary saving here. From the decision rule (2.7) with the coe¢ cients, b0 and b1; de�ned

in (2.8), we can see that the precautionary saving term is zero only if the utility is logarithmic,

22Here setting the value of � to be 0:25 is based on a calibration exercise in Gabaix and Laibson (2001) where they
assumed that all capital is identical to stock market capital and calibrate the equity share of total wealth is around
0:22:
23Campbell (1999) reported a series of main moments from his dataset including 11 main industrialized countries.

For the US stock market, their estimate of the standard deviation of unexpected log excess return !u is around 18%
per year when the sample period is from 1891� 1994 and around 15% when the sample period is from 1947� 1996.
24We de�ne the covariance of consumption growth and asset returns as cov(�ct+1; ret+1) = �(�ct+1; r

e
t+1)��(�ct+1)�

�(ret+1): where �(�ct+1; r
e
t+1) is the correlation between equity return and consumption growth and �(�ct+1) =

��(ret+1) is the standard deviation of consumption growth:
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that is, 
 = � = 1: However, in this case the utility function as well as the value function is linear

if we reformulate the problem with the log variables, ct and wt: As a result, the loss function due

to RI is also a linear function; therefore, minimizing this loss function subject to the information

constraints does not imply that the true state follows a normal distribution given information at t.

See Sims (2005) for a discussion about the RI model with linear utility function. However, when 


is very close to 1 from above 25 such that (
 � 1)ct is close to 0; the CRRA utility function can be
approximated by a log-LQ function. Speci�cally, since (
 � 1)ct is close to 0; we can approximate
the utility function around (
 � 1)ct = 0 as follows:

C1�
t � 1
1� 
 =

(exp(ct))
1�
 � 1

1� 
 ' ct +
1

2
(1� 
)c2t +

1

3
(1� 
)2c3t (2.12)

where the third term, 13(1� 
)
2c3t ; measures prudence. Note that since the ratio of the third term

to the second term in the above approximation, 23(
 � 1)ct; is close to 0 when (
 � 1)ct is close to
0; the original CRRA function can be replaced by a log-LQ function, ct + 1

2(1� 
)c
2
t .

I next discuss how to incorporate RI in this log-linearized CCAPM model. First, I rede�ne ct

as the new control variable and wt as the new state variable. Then, following Sims (2003), Luo

(2005), and Luo and Young (2005), I present the CCAPM model with RI as follows26. I assume

that the individuals maximize their lifetime utility subject to both the usual �ow budget constraint

and the information-processing constraint that will be speci�ed later. The dynamic optimization

problem is bV ( bwt) ' max
ct;Dt

E0

1X
t=0

�t[ct +
1

2
(1� 
)c2t ] (2.13)

subject to

�wt+1 = rpt+1 +  + (1� 1=�)(ct � wt)

wt+1jIt+1 � Dt+1 (2.14)

wtjIt � Dt (2.15)

given w0jI0 � N ( bw0;�0) (2.16)

25Calibrated macroeconomic models designed to match growth and business cycle facts typically require that the
CRRA be close to 1 (slightly greater than 1) and the IES be also close to 1 (slightly less than 1). For example, see
Weil (1989).
26As suggested by Chris Sims, a more ideal way to solve this model with RI is to solve for the nonlinear Euler

equation for this nonlinear model with RI �rst and then approximate the nonlinear Euler equation and the nonlinear
�ow budget constraint. However, this approach is still not feasible now. I leave it for future research.
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and the requirement that the rate of information �ow at t + 1 implicit in the speci�cation of the

distributions, Dt and Dt+1 be less than channel capacity. bwt is the estimated state variable, and It
is the information available at time t: The expectation is formed under the assumption that fctg10
are chosen under the information processing constraints:

In the presence of RI, the individuals in the economy cannot observe the state(s) perfectly

because observing the state involves information transfer at a limited channel capacity �, so that

they have to choose the nature of the endogenous error optimally. For simplicity, here I assume that

all individuals in the model economy have the same channel capacity; hence the average capacity

in the economy is equal to individual capacity27. In this case the e¤ective state variable is not the

traditional state variable (e.g., the wealth level wt in this model), but the so-called information

state: the distribution of the state variable wt conditional on the information set available at time

t, It. In other words, it expands the state space to the space of distributions on wt. We therefore
have a �curse of dimensionality�problem.28 Fortunately, the above problem can be approximated

by a Linear-Quadratic-Gaussian framework in which the conditional distributions are Gaussian;

the �rst two moments, the conditional mean bwt and the conditional covariance matrix �t, are
therefore su¢ cient to characterize the e¤ective state. Hence, bV ( bwt) is the value function under RI,
and V (wt) is the value function from the standard model, where the consumers are assumed to

have unlimited channel capacity and thus can observe the state perfectly. Finally, I de�ne the loss

function at t due to imperfect information as the di¤erence between these two value functions, that

is, �V = V (wt)� bV ( bwt):
Here I also use the concept of entropy from information theory to characterize the rate of

information �ow and then use the reduction in entropy as a measure for information.29 With �nite

capacity, the agents will choose a signal that reduces the uncertainty of the state. Formally, this

idea can be described by the following information constraint

H (wt+1jIt)�H (wt+1jIt+1)� � (2.17)

where � is the consumer�s information channel capacity, H (wt+1jIt) denotes the entropy of the
state prior to observing the new signal at t + 1; and H (wt+1jIt+1) is the entropy after observing
the new signal. � imposes an upper bound on the amount of information �that is, the change in

27Assuming that channel capacity follows some distribution complicates the problem when aggregating, but does
not change the main �ndings.
28Another type of models which also have the problem of the curse of dimensionality are the heterogeneous-agent

models with both idiosyncratic shock and aggregate shock. In those models, the measure is a state variable. Sims
(2005) contains a discussion of some of the complications that such a model would present.
29Entropy is de�ned as a measure of the uncertainty about a random variable. See Shannon (1948) and Cover and

Thomas (1991) for details.

13



the entropy �that can be transmitted in any given period30.

So far I have not shown that Dt is a normal distribution. As in Sims (2003; 2005) and Luo
(2005), I propose the following procedure to deduce its property. First, I guess that the loss

function the agent used to deduce the distribution of the actual state wt is quadratic in terms

of wt � bwt. Minimizing this guessed loss function subject to information constraints implies that
wtjIt s N( bwt;�t)31: Second, using this key property, I can derive the optimal consumption function
and the value function in the RI case. Third, given the derived value functions in both the full-

information case and the RI case, I show that the loss function is indeed a quadratic function in

terms of wt � bwt32. Hence, I verify the guess that Dt is indeed a normal distribution N( bwt;�t)33.
Therefore, (2.17) can be rewritten as

1

2
[log	t � log �t+1] � � (2.18)

where �t+1 = vart+1 (wt+1) and 	t = vart (wt+1) are the posterior and the prior variance-

covariance matrices of the state vector. This means that given a �nite capacity � per time unit,

the optimizing consumer would choose a signal that reduces the conditional variance by34

� =
1

2
[log	t � log �t+1] (2.19)

Note that here I use the fact that the entropy of a Gaussian random variable is equal to half

of its logarithm variance plus some constant term. In the univariate state case this information

constraint completes the characterization of the optimization problem and everything can be solved

analytically, whereas for the multivariate state case, we need another information constraint, that

is, 	t � �t+1. This constraint embodies the restriction that precision in the estimates of the state
cannot be improved by forgetting some components (making the change in their entropy negative)

30 If the base for logarithms is 2; the unit used to measure information �ow is called �bits�, and if we use the natural
logarithm e; the unit is called �nats�. Hence, 1 nat is equal to log2 e = 1:433 bits.
31See Appendix B for a detailed derivation.
32Hence, minimizing this loss function under the IPC also implies that StjIt s N(bSt;�t): See Appendix B for a

detailed derivation.
33We can treat the above problem as a two-step optimization procedure. First, given the observed signal about the

state, we could derive the optimal decision rule in the case with imperfect information. Second, given the optimal
decision rule, the individual minimizes the expected loss function by choosing the information system, that is, the
property of the signal.
34Note that given �t; choosing �t+1 is equivalent with choosing the noise var(�t) since the usual updating formula

for the variance of a Gaussian distribution is

�t+1 = 	t �	t(	t + var(�t))�1	t

where 	t is a function of �t:
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and using that extra capacity to reduce other components by more than �.

Then �ow budget constraint (2.5) implies that

Et[wt+1] = Et[r
p
t+1] +  + bwt;

vart[wt+1] = vart[r
p
t+1] + (1=�)

2�t;

(2.19) therefore implies that

� =
1

2
[log(vart[r

p
t+1] + (1=�)

2�t)� log �t+1]; (2.20)

which has a steady state

� =
vart[r

p
t+1]

exp(2�)� (1=�)2 (2.21)

where vart[r
p
t+1] = �2!2u:

Hence, we can apply the separation principle35 in this log-LQ CCAPM model and then have

the following modi�ed consumption rule

ct = b0 + bwt (2.22)

and the information state bwt is characterized by the following Kalman �ltering equation
bwt+1 = (1� �) bwt + �w�t+1 (2.23)

where � = 1 � 1
exp(2�) is the optimal weight on observation, w

�
t+1 = wt+1 + �t+1 is the observed

signal, and �t+1 are the i.i.d. endogenous noise with var(�t+1) = �=�:

Note that consumers with more channel capacity will choose to observe a less noisy signal about

the state of the world because

@var(�t+1)

@�
< 0 as long as � >

1

4
log((1=�)2):

Note that when 
 is close to 1; � = �: Hence, for a typical quarterly estimation or calibration (say,

� = 0:99), this above condition requires that � > 0:005 nats; and for an annual exercise (� = 0:96);

this requires that � > 0:02 nats. Both required capacities seem very low and in the following

35This principle says that under the LQ assumption optimal control and state estimation can be decoupled. See
Whittle (1982, 1996) for detailed discussions. Of course, this modi�ed decision rule can be derived by solving the
stochastic optimal control problem explicitly. The detailed derivations are available from the author by request.
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discussions I assume this condition is always satis�ed. Further, @var(�t+1)@� < 0 implies that more

patient consumers choose to observe more carefully because they face higher costs in the future due

to having a suboptimal asset holding level.

Hence, individual consumption growth can now be written as36

�ct+1 = � bwt+1 = [��ut+1 + �� ((1� �)=�)ut
1� ((1� �)=�) � L ] + [��t+1 � �

(�=�)�t
1� ((1� �)=�) � L ] (2.24)

where L is the lag operator. See Appendix C for the derivations.

Note that in the above expression for the change in consumption, the optimal share invested in

stock market is still undetermined. In the next subsection, I will use this expression for consumption

growth and the Euler equation to derive the optimal portfolio rule. It will be more clear that how

optimal consumption rule and portfolio rule depends on each other in the RI model.

2.4. Long-term Consumption Risk and the Demand for the Risky Asset

Parker (2001; 2003) and Parker and Julliard (2005) argued that the long-term risk is a better

measure of the true risk of the stock market if consumption reacts with a delay to changes in

wealth because the contemporaneous covariance of consumption and wealth understates the risk

of equity. Hence, we need to use the long-term consumption risk to measure the risk of the equity

in the RI model because consumption reacts gradually and with delay to the innovations to the

equity.

In this subsection, I �rst de�ne the long-term consumption risk in the RI model and then

derive the optimal portfolio rule. Substituting the optimal portfolio rule into the consumption rule

and the changes in consumption gives us a complete solution to this simple optimal consumption

and portfolio choice model with RI. In the next subsection, these results will be summarized in a

proposition and I will further discuss how introducing RI reconciles two important phenomena in

the US economy: the smoothness of consumption, the low contemporaneous covariance between

consumption growth and the equity return, and the high equity premium.

Following Parker�s work, I de�ne the long-term consumption risk as the covariance of asset

returns and consumption growth over the period of the return and many following periods. Because

the RI model predicts that consumption reacts to the innovations to asset returns gradually and

slowly, it can rationalize the assumption used in Parker�s papers that consumption risk should be

long term instead of contemporaneous. Given the above analytical solution for consumption growth,

it is straightforward to calculate the ultimate consumption risk in the RI model. Speci�cally, when

36Note that this MA(1) expression requires that (1� �)=� < 1, which is equivalent to � > 1
4
log((1=�)2):
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consumers behave optimally but only have �nite capacity, we have the following equality for the

risky asset e and the risk free asset f37:

Et[R
e
t+1C

�

t+1+S ] = Et[R

fC�
t+1+S ]; (2.25)

which can be transformed to the following stationary form:

Et[R
e
t+1(Ct+1+S=Ct)

�
 ] = Et[R
f (Ct+1+S=Ct)

�
 ] (2.26)

where S is the number of periods in the future38. The standard equality Et[Ret+1C
�

t+1] = Et[R

fC�
t+1]

does not hold here because consumption reacts slowly with respect to the innovations to equity

returns and thus cannot adjust immediately and completely.

Log-linearizing equation (2.26) yields39 the following pricing equation

Et[r
e
t+1]� rf +

1

2
!2u = 
covt[ct+1+S � ct; ret+1] (2.27)

= 

SX
s=0

covt[�ct+1+s; r
e
t+1]

where I use the fact that ct+1+S � ct =
PS

s=0�ct+1+s:

Hence, substituting the expression for consumption growth,�ct+1+s = [��ut+1+s+��
((1��)=�)ut+s
1�((1��)=�)�L ]+

[��t+1+s� � (�=�)�t+s
1�((1��)=�)�L ]; into the above equation, it is easy to show that when S approaches to in-

�nity, the ultimate consumption risk is larger than the contemporaneous consumption risk because

lim
S!1

SX
s=0

covt[�ct+1+s; r
e
t+1] =

�

1� (1� �)=��!
2
u > �!2u; (2.28)

that is, the impacts of the risk on consumption can last in�nite following quarters. Note that

since consumption adjusts gradually to the shocks to asset returns in the RI model, this ultimate

consumption risk is the best measure of the riskiness of the equity.

Furthermore, since the return on the equity is i.i.d. with mean �; I rewrite the above pricing

37The equality can be obtained by using S + 1 period consumption growth to price a multiperiod return formed
by investing in equity for one period and then transforming to the risk free asset for the next S periods. Hence, the
following multiperiod moment condition holds

C�
t = Et[�
S+1C�
t+S+1R

e
t+1(R

f )S ]:

38This measure has some appealing features, see Parker (2003) for discussion.
39Note that the unconditional moments also hold if we assume that consumption growth and asset returns are joint

unconditional normal distribution.

17



equation as follows

�� rf + 1
2
!2u = 


�

1� (1� �)=��!
2
u (2.29)

where � � rf is the equity premium, � is the fraction of wealth invested in the equity, � = 1 �
exp(b0)

40; and the ultimate risk is represented by �
1�(1��)=� > 1. It is worth emphasizing that

b0 itself also depends on � if 
 is di¤erent from 1; and when 
 approaches 1; b0 approaches �:

Therefore, when 
 is close to 1 from above, we have the following proposition about the optimal

asset allocation in the risky asset.

Proposition 1. The optimal asset allocation of an investor in the RI economy can be expressed

by

� = #
�� rf + 1

2!
2
u


!2u
(2.30)

where # = 1�(1��)=�
� < 1 is inversely proportional to the ultimate consumption risk of the equity

Note that the ultimate consumption risk, �
1�(1��)=� ; is increasing with the degree of inattention:

The following �gure plots the relationship between the ultimate risk and channel capacity �:

[Insert Figure 1 about here]

This �gure shows that the e¤ects of RI on the ultimate consumption risk is decreasing with

channel capacity, that is, the larger the inattention of the consumer used in monitoring the dynamics

of his �nancial wealth, the larger e¤ect of RI on the ultimate consumption risk of the risky asset

for the consumer. The intuition is same as before: the less information capacity the consumer used

in his economic decisions, the larger the long-term consumption risk, and then he would hold less

amount of risky assets.

As predicted by the standard CCAPM model, the optimal fraction of savings invested in the

risky asset is proportional to the risk premium (�� rf ) and the reciprocal of both the coe¢ cient of
relative risk aversion (
) and the variance of unexpected component in the risky asset (!2u). What

is new in the RI model is that the optimal allocation to the risky asset also depends on the degree

of inattention. The larger the inattention, the higher is the ultimate consumption risk. As a result,

individuals with low attention would invest lower shares in risky assets. The intuition for this result

is simple. In the RI economy, a one percent negative shock in individuals��nancial wealth would

40Note that b0 is the coe¢ cient of optimal consumption rule and de�ned in (2.8).
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a¤ect their consumption more than that predicted by the full-information model. For this reason,

rational inattentive individuals are willing to invest less in the risky asset. Note that we can rewrite

the expression (2.30) as

� =
�� rf + 1

2!
2
ue
!2u (2.31)

where the e¤ective coe¢ cient of relative risk aversion is e
 = 
=# > 
: Hence, the asset allocation

of the inattentive consumers is similar to the allocation of the more risk averse individuals41: both

groups hold less risky assets.

Note that I assume at the beginning all investors have same preference and devote same amount

of channel capacity in monitoring their wealth evolution, so they choose to invest the same fraction

of their wealth in the equity. Consequently, the fraction of the total wealth invested in stock market

in the RI economy is the same as the optimal share in the equity of individual investor. Therefore,

we could use some stylized aggregate facts and this formula to calibrate the degree of average

inattention in this economy. We have assumed that labor income is marketable and certain in this

simple model and thus included in the total wealth Wt; so we can regard human capital as a kind

of the riskless asset. Following Gabaix and Laibson (2001), using that fact that the ratio of total

nonhuman capital42 to total wealth is around 0:22; we have that

1� (1� �)=�
�

�� rf + 1
2!

2
u


!2u
= 0:22: (2.32)

Hence, substituting 
 = 1:01; � = � = 0:96; � � rf + 1
2!

2
u = 0:06; !2u = 0:182, we can calculate

that � is around 0:05; that is, if on average only 5% of the uncertainty about the wealth can be

eliminated after observing and processing information, that the otherwise standard portfolio choice

model can generate the observed share of total wealth invested in stock market. If we look at the

standard model without RI, to generate the same fraction invested in stock market, we must have a

much higher value of 
: For the same process of asset returns, this value is around 9: Note that this

value is not extremely high as predicted in the asset pricing literature because it includes another

puzzle: consumption is as volatile as wealth.

So far I have assumed that every agent has same channel capacity, however, in reality di¤erent

agents would have di¤erent levels of channel capacity in observing and processing information.

Hence, in this heterogeneous-attention case, consumers have di¤erent demands for the risky asset

even if they have the same preference and face the same asset returns process. Based on the

41According to the mutual-fund separation theorem, more risk-averse individuals should hold more of their wealth
in the riskless asset.
42Here I assume that all capital is identical to stock market capital.
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formula (2.30), it is straightforward to show that �limited stock market participation�43 can arise

endogeneously in the presence of RI. The intuition is that the demand for the equity is decreasing

with the degree of inattention, so some consumers do not have any demand for the equity when the

degree of their attention is low enough, that is, when the degree of RI, �; reaches the critical value

1� �; the demand for the equity is zero. Note that here I assume that there is no any transaction
costs in this economy. So it might be very likely that those consumers with low capacity would also

choose not to participate in the stock market even if the transaction cost is assumed to be very

tiny and the demand for the equity is nonzero44. I won�t explore this issue in detail here and would

leave it for future research. Hence, the model composed of consumers with di¤erent degrees of RI

can generate �limited stock market participation�endogeneously. Some consumers who know that

they cannot devote enough capacity in processing information about their wealth would choose not

to invest in stock markets.

2.5. A Complete Characterization of the Model�s Dynamic Properties

Combining (2.30) with (2.22) gives us optimal consumption and portfolio rules in the RI model.

The following proposition summarizes these results.

Proposition 2. Given �nite channel capacity �; the optimal share invested in the equity is

�� = #
�� rf + 1

2!
2
u


!2u
(2.33)

where # = 1�(1��)=�
� < 1; Furthermore, optimal consumption rule is then

ct = b0 + bwt (2.34)

and the estimated state bwt is characterized by the following Kalman �ltering equation
bwt = (1� �) bwt�1 + �w�t (2.35)

where � = 1� 1
exp(2�) is the optimal weight on observation, w

�
t = wt+ �t is the observed signal with

�t are the i.i.d. endogenous noise with var(�t+1) =
��2!2u

�(exp(2�)�(1=�)2) :

It is clear from this proposition that optimal consumption and portfolio rules are interdependent

each other in the RI model. The optimal portfolio rule is similar to the standard Merton solution,

43See Vissing-Jørgensen (2002) for a detailed discussion on limited asset market participation.
44For example, when � = 0:02 nats, 
 = 1:01; � = 0:96; �� rf + 1

2
!u = 0:06; and !u = 16%; � ' 0:01:
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where the usual CRRA is replaced by the e¤ective CRRA. RI amounts therefore to an increase in

the e¤ective relative risk aversion.

For the case without RI, the ratio of consumption to wealth is constant, that is, CtWt
= exp(b0):

However, when introducing RI, this ratio is a stochastic process the true wealth cannot be observed

perfectly. Formally, we have the following proposition:

Proposition 3. The ratio of consumption to true wealth in the RI case is a stochastic process

rather than a constant in both individual level and aggregate level, and both the expected ratio of

individual consumers and the average ratio over all consumers are greater than the ratios implied

by the model without RI. Furthermore, these ratios increase with the degree of RI.

Proof. For any individual, we can rewrite the ratio of his consumption to true wealth level as

follows
Ct
Wt

=
CtcWt

cWt

Wt

where CtcWt
= exp(b0),

cWt
Wt
= exp( bwt � wt) = exp(�(1��)�ut+��t1�((1��)=�)�L � 
1); and � = #

��rf+ 1
2
!2u


!2u
: Hence,

taking unconditional expectation on both sides yields

E[
Ct
Wt
] = exp(b0) exp[

1

2
((1� �)�)2 !2u

1� ((1� �)=�)2 +
1

2
�2

!2�
1� ((1� �)=�)2 ] (2.36)

Similarly, after aggregating over all consumers, we can also �nd that the average ratio of con-

sumption to true wealth is also greater than the standard one because

(
Ct
Wt
) = exp(b0) exp[

1

2
((1� �)�)2 !2u

1� ((1� �)=�)2 ]; (2.37)

where ( CtWt
) represents the average level of the ratio. Note that here all the private noises are

cancelled out after aggregation.

Here the expected high ratio of consumption to wealth at the optimum is due to imperfect

observations. In other words, Imperfect observation generates extra saving due to the fundamental

shocks and the endogenous noises, and thus at the optimum increases the ratio of consumption to

wealth.

Given these optimal rules, I next provide a general characterization of the dynamic properties of

the economy described above. Speci�cally, I analyze several important properties of the RI economy:

excess smoothness of consumption growth, low contemporaneous covariance between consumption
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growth and asset returns, postive autocorrelation of consumption growth, and non-zero covariance

of consumption growth and lagged equity returns.

Substituting (2.30) into (2.24) yields

�ct+1 = (1� (1� �)=�)
�� rf + 1

2!
2
u


!2u
[ut+1 +

((1� �)=�)ut
1� ((1� �)=�) � L ] (2.38)

+ [��t+1 � �
(�=�)�t

1� ((1� �)=�) � L ]

Further, because �t are i.i.d. information-processing induced endogenous idiosyncratic noise

(a kind of private information) with a mean of zero, we could assume that in the expression for

individual consumption growth all noise terms would be cancelled out when aggregating over all

consumers45. Consequently, after aggregating46, we have the following proposition

Proposition 4. Aggregate consumption growth in the CCAPM model with RI can be written as47

�ct+1 = ���ut+1 + ��
� ((1� �)=�)ut
1� ((1� �)=�) � L; (2.39)

which implies that 1) the covariance between aggregate consumption growth and asset returns is48

cov(�ct+1; r
e
t+1) = ���!2u; (2.40)

2) the standard deviation of consumption growth is

�(�ct+1) = �!u (2.41)

where � = ��� =
p
1� ((1� �)=�)2; 3) the correlation between consumption growth and equity

return is then

�(�ct+1; r
e
t+1) =

p
1� ((1� �)=�)2; (2.42)

45Note that as discussed in Sims (2003), there might have been some aggregate component in the noise terms left
after aggregating. If this is the case, we can see below that this additional term would a¤ect the smoothness of
aggregate consumption, but have no impact on the covariance between consumption growth and equity returns and
thus the equity premium and optimal portfolio choice. The reason is that the noises and the innovations to equity
returns are independent and thus have no correlation each other.
46For simplicity, we assume that individuals have identical channel capacity, and to avoid confusion, we still use c

to represent aggregate consumption.
47Since we focus on aggregate behavior and to avoid the notation confusion, in the following equation, we still use

c to represent aggregate consumption.
48Note that if we assume that there is also limited stock market participation in our RI economy and the fraction

of wealth shares for stockholders is �s which is around 28% based on the US data, the comtemporaneous covariance
between aggregate consumption growth with asset returns becomes cov(�ct+1; ret+1) = ���s!

2
u:
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4) the autocorreltion of consumption growth is then

��c(j) = corr(�ct;�ct+j) = [1� ((1� �)=�)2][(1� �)=�]j (2.43)

where j � 1; and 5) the covariance between consumption growth and lagged equity returns is

cov(�ct+1; r
e
t+1�j) = ���((1� �)=�)j!2u (2.44)

where j � 1:

Proof. Based on the derivations in Appendix C, it is straightforward to obtain the above results.

Equation (2.39) means that aggregate consumption adjusts gradually to the shocks of asset

returns, and thus, the contemporaneous covariance between consumption growth and asset returns

becomes49 ���!2u rather than �!
2
u
50; that is, the measured contemporaneous covariance between

consumption growth and risky returns will be lowered by a factor 1� (1��)=�: In the above simple
CCAPM model without RI, this contemporaneous covariance is around 1:23 �10�3 at the quarterly
frequency, and this �gure is well above its US empirical counterpart which is around 0:08 � 10�3:
When � = 0:1; the theoretical covariance value becomes 1:23 � 10�4; which is much closer to the
empirical value.

Equation (2.41) means that RI can also reduce the standard deviation of consumption growth

since � is less than 1 . Figure 2 shows the relationship between the smoothness of consumption

growth and channel capacity. It is clear from this �gure that the smoothness of consumption growth

is increasing with the degree of inattention. In the quarterly US data, the standard deviation of

consumption growth is around 0:54 � 10�2; which is well below 1:64 � 10�2; the value predicted by
the standard CCAPM model without RI. However, in our RI model with � = 0:3; the theoretical

value of �(�ct+1) becomes 0:5 � 10�2; which is also close to the empirical one.

[Insert Figure 2 about here]

Equation (2.43) shows that the autocorrelation of aggregate consumption growth is greater than

051: This �nding is roughly consistent with some empirical evidence52 that the autocorrelation is

49To match the empirical evidences, here we may also consider the limited stock market participation e¤ect, which
is measured by �s < 1: Consequently, the contemporaneous covariance becomes ���s!2u.
50Note that � =

��rf+ 1
2
!2u


!2u
is the optimal share invested in stock market in the model without RI.

51Note that the standard CCAPM case implies that the autocorrelation of consumption growth is 0; that is,
consumption growth is i.i.d.
52For example, Piazzesi (2001) reported the autocorrelation of consumption growth at di¤erent lags together with

95% con�dence bounds and found that they are signi�cant in the �rst several quarters. See section 1.2 in her paper
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signi�cant up to the third quarter, which means that consumption growth is de�nitely not i.i.d53.

Equation (2.44) shows that the covariance between consumption growth and lagged equity

returns is greater than zero, that is, lagged equity returns can be used to predict future consumption

growth. Further, the impacts of lagged returns on future consumption growth are decreasing at the

rate (1��)=�: It is obvious that in the absence of RI, lagged returns have no impact on consumption
growth. In the last section, I discuss some existing empirical evidence that shows that consumers

may not have enough knowledge about their �nancial wealth and lagged returns can be used to

predict future consumption growth.

From the above proposition, it is obvious that given the empirical evidence, we can use these

dynamic properties, for example, (2.42) or (2.43)54 to calibrate the average degree of inattention

in the economy governed by the deep parameter, �: For example, the observed contemporaneous

correlation between aggregate consumption growth and asset returns is around 0:34 in the US

quarterly data55; hence one can calibrate the value of � by setting
p
1� ((1� �)=�)2 = 0:23 and

using the fact that � ' �: After choosing � = 0:96; we have a calibrated � equal to 0:1; that is,

� = 0:07 bits, which means that to match the observed correlation between consumption growth

and equity returns, the average degree of RI in the economy would be quite low. Further, using

the expression for the autocorrelation ��c(j) = [1 � ((1 � �)=�)2][(1 � �)=�]j where j � 1 and

the empirical counterparts estimated from the US data; we may also calibrate �: Piazzesi (2001)

adopted the maximum likelihood method to estimate the US log aggregate consumption growth

composed of an AR(3) process combined with a Garch (1,1) process and found that ��c(1) = 0:31

with T-statistics 4:0156. Hence, setting [1 � ((1 � �)=�)2][(1 � �)=�] = 0:31 yields � = 0:27, that

is, � = 0:22 bits, which also implies a low average level of inattention. Note that here I did not

use con�dence bounds based on standard errors. Hence, I cannot determine what value of � can

satisfy all observed evidence exactly. However, it is obvious that a low value of � can roughly

capture some main properties of the US data about consumption growth and asset returns: the

standard deviation of aggregate consumption, the correlation between consumption growth and

asset returns, and the autocorrelation of consumption growth.

for a detailed description of the estimation.
53Of course, the empirical evidence on serial correlation in aggregate consumption growth is mixed. For example,

Measurement problems may bias these autocorrelation in either direction. Empirical estimates of discrete-time
Markov models by Kandel and Stambaugh (1991) and Mehra and Prescott (1985) also found some evidence for modest
predictable variation in US consumption growth, whereas Hall (1988), Cochrane (1997), Lettau and Ludvigson (2001)
found that US consumption growth is almost unforecastable.
54Note that both expressions do not depend on the optimal share of the risky asset.
55Campbell (2002) reported the correlations for di¤erent horizons in the quarterly data.
56For detailed estimation results, see table 1 in Piazzesi (2001).
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2.6. Revisiting the Equity Premium Puzzle

For illustrative purpose, we can consider the following question: what will an economist equipped

with the consumption CAPM model �nd if he observes data from the RI economy, but thinks he

is observing data from the standard model? This question can be answered after observing that

e
 = �� rf + 1
2!

2
u

cov[ct+1 � ct; ret+1]
=
�� rf + 1

2!
2
u

���!2u
> 
 ' 1;

where e
 is the estimated CRRA and 
 is the true value that is around to be close to 1: The

intuition is quite simple. The RI model can generate very low value of cov[ct+1 � ct; r
e
t+1] and

high equity premium simultaneously because the equity premium is determined by the long term

consumption risk, limS!1 cov[ct+1+S � ct; r
e
t+1]. In other words, the estimate of the coe¢ cient of

relative risk aversion will be biased upward by a factor measured by the long-term consumption

risk: For example, if the true 
 is 1 and 1=# = 10; he will �nd that the estimated value e
 will be 10.
Hence, the estimated high CRRA in the asset pricing literature might arise from a low degree of the

average attention in the economy instead of risk aversion itself. This result can reconcile two sets

of empirical evidence: 1) relatively low values of risk aversion in introspection and experimental

evidence and 2) high values of �risk aversion�inferred from consumption and asset prices data.

Given the smoothness of consumption and low contemporaneous covariance between consump-

tion growth and asset return, we can see where the equity premium puzzle arises from the following

standard pricing equation:

Et[r
e
t+1]� rf +

1

2
!2u = �covt[mt;t+1; r

e
t+1] (2.45)

where mt;t+1 = �
�ct+1 is a one-period stochastic discount factor and the equation says that the
equity premium is determined by the negative covariance of the asset with the stochastic discount

factor (SDF). Following Hansen and Jagannathan (1991) and Cochrane and Hansen (1992), we can

rewrite the equation as follows:

�m �
Et[r

e
t+1]� rf + 1

2!
2
u

�e
(2.46)

where �m is the standard deviation of the SDF, �e is the standard deviation of the asset return,

and here we use the fact that the correlation between the asset return and the SDF, �m;e � �1,
that is, �covt[mt;t+1; r

e
t+1] � �e�m.

The right hand side of (2.46) is a logarithmic Sharpe ratio for the asset, which is de�ned as the

excess return on an asset, adjusted for Jensen�s inequality, divided by the standard deviation of the

asset return. Hence, (2.46) says that the standard deviation of the log SDF must be greater than
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the Sharpe ratio for this risky asset. This inequality can be used to illustrate the equity premium

puzzle. In the postwar US data, the estimated low bound for �m is greater than 50%: However,

given the smoothness of consumption and the low correlation between consumption growth and

asset returns, the lower bound can be achieved only if the implied risk aversion coe¢ cients are

extremely high or the EIS is extremely low57. Lettau and Uhlig (2001) computed the Sharpe ratios

in the log normal framework with various types of habit formation and the recursive preference and

showed that none of these preferences is able to generate a high Sharpe ratio while keeping risk

aversion fairly low and the EIS fairly high, as would be desirable. Later, I will show that how the

RI hypothesis can do a better job in generating a high Sharpe ratio.

As shown in Weil (1989), simply accepting high risk aversion would bring about another puzzle,

the risk free rate puzzle. Note that the linearized equation for the risk free rate is

rf = � log � + 
E[�ct+1]�
1

2

(
 + 1)var[�ct+1]: (2.47)

Hence, if 
 takes a high value, say 30; with E[�ct+1] = 1% and var[�ct+1] = 0:0152; the risk free

rate is around 20% even if � = 1! In other words, in the expected utility function, we cannot resolve

the equity premium puzzle by simply setting high value of risk aversion. In the next subsection,

we shall see that introducing RI can increase the e¤ective risk aversion without changing the true

risk aversion, thus providing a potential explanation for the equity premium puzzle and the risk

free rate puzzle.

We can also see how RI can help resolve the equity premium by looking at the Sharpe ratio in

the RI economy. (2.27) implies that we use the S�period SDF, mt;t+S+1 to price the risky asset.

As in the previous subsection, we have

�Sm �
Et[r

e
t+1]� rf + 1

2!
2
u

�e
(2.48)

where �Sm is the standard deviation of the S�period SDF. Since

�mt;t+S+1 = 

SX
s=0

�ct+1+s and �ct+1+s = ��ut+1+s + ��
((1� �)=�)ut+s
1� ((1� �)=�) � L;

it is apparent that

�Sm > S � �m (2.49)

57See table 4 in Campbell (2003) for a detailed description.
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where �m = 
��
q
1 + ((1��)=�)2

1�((1��)=�)2!u is the standard deviation of the 1�period SDF. Hence, RI
can substantially increase the volatility of the SDF and then make the SDF enter the Hansen-

Jagannathan volatility bound.

It is worth emphasizing that if the above long-term Euler equation holds, then the actual IES

in the RI economy is not 1=
; but a value less than 1=
: To see this, we operate on the following

equation:

C�
t = Et[�
S+1C�
t+S+1R

p
t+1(R

f )S ]: (2.50)

Note that this equation is used to price a multiperiod return formed by investing in the portfolio

for one period and then transforming to the risk free asset for the next S periods. Because IES

is about the willingness to substitute intertemporally, we eliminate the uncertainty here and then

have
d(logCt+S+1 � logCt)

d(logRpt+1)
=
d(
PS

s=0� logCt+s+1)

d(logRpt+1)
=
1



: (2.51)

Therefore, the true IES is equal to
d(� logCt+1)

d(logRpt+1)
<
1



: (2.52)

2.7. Implications for the Cross-sectional Returns

In the previous subsection, I focus on the time series properties of the excess returns in the RI

model. In this subsection, I will brie�y discuss the implications of RI for the cross-sectional pattern

of risky returns. In Parker (2003) and Parker and Julliard (2005), they found in the data that

although contemporaneous consumption risk has little predictive power for explaining the pattern

of average returns across the Fama-French (25) portfolios, the ultimate consumption risk can explain

the average returns. In this subsection, I will show how RI can generate larger di¤erences across

risky portfolios if we measure the risk correctly.

For simplicity, I assume that there are two risky portfolios and one riskless asset in the economy.

We use r1t+1 and r
2
t+1 to represent the returns on these two risky assets, respectively. Further, I

assume that rit+1 is i.i.d. with a mean of �
i and standard deviation !i; where i = 1; 2: Denote the

market portfolio of consumers as

rpt+1 = �1r
1
t+1 + �2r

2
t+1 + (1� �1 � �2)rf : (2.53)

Using the same procedure as above, we have the following two pricing equations for the two
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risky portfolios:

Et[r
1
t+1]� rf +

1

2
!21 = 
covt[ct+1+S � ct; r1t+1]; (2.54)

Et[r
2
t+1]� rf +

1

2
!22 = 
covt[ct+1+S � ct; r2t+1]: (2.55)

Hence, the optimal shares invested in portfolios 1 and 2 are

�1 =
�1 � rf + 1

2!
2
1e
!21 and �2 =

�2 � rf + 1
2!

2
2e
!22 ;

respectively, where e
 = 
=# is the e¤ective CRRA due to RI. It is clear that given the properties of

the �nancial assets (the mean and standard deviation of the assets), RI reduces the optimal shares

invested in the two risky assets proportionally.

As usual, we could also think about this problem from the reverse direction. If given the shares

invested in the risky assets and the volatility of the equities, we can see how RI change the expected

returns on risky assets. Di¤erencing the two equations gives

Et[r
1
t+1 � r2t+1] = e
[�1!21 � �2!22] (2.56)

Hence, because e
 = 
=# is composed of two components: the true CRRA 
 and the ultimate

consumption risk 1=#(> 1); the degree of RI that determines the ultimate risk plays a role in

a¤ecting the cross-sectional returns. (2.56) implies that the higher the degree of RI, the higher the

expected di¤erence between the two risky assets is. In sum, here RI works as a multiplier that can

generate higher di¤erences in the expected returns of the two risky assets.

2.8. Comparisons with Robustness Hypothesis, Recursive Utility, and Habit Formation

Maenhout (2004) derived optimal consumption and portfolio rules that are robust to model misspec-

i�cation (that is, parameter uncertainty) in the lines of Anderson, et. al (2002). In that framework,

optimal decisions are designed such that they not only work well when the structural model holds

exactly, but also perform reasonably well when there is some kind of model misspeci�cation. One

possible misspeci�cation is based on the assumption that the decision maker worries about some

worst-case scenario. In this case, the disparity between the reference model and the worst-case

alternative model is constrained by a parameter governing the degree of the preference for robust-

ness. As a result, investors are very conservative or pessimistic when they form a risky portfolio,

and part of pessimism can be due to robustness or uncertainty rather than to risk aversion itself.
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Maenhout �s model used the continuous-time framework with CRRA utility and derived optimal

consumption and portfolio choice (equation (16)58 and (17) in Maenhout (2004)) as follows

C� = aWt (2.57)

�� =
1


 + e� �� r
f

�2
(2.58)

where a = 1

 [��(1�
)r�

1�

2(
+e�)(��r�2

)2]; 
 is the CRRA, � is the discount rate, � is the mean equity

return, r is the risk free rate, � is the standard deviation of the price of the equity, and e� measures
the preference for robustness59. When e� = 0; it reduces to the familiar Merton model. Note that
in the expression for ��; the true risk aversion coe¢ cient 
 is adjusted by e�: Hence, robustness
amounts to an increase in the e¤ective CRRA, that is, 
 + e�; and then reduces the demand for
risky assets: Furthermore, the robust consumption rule has a similar structure as that derived from

the Merton�s model, and the only di¤erence is that the key parameter, a; re�ects the di¤erence

in portfolio choice. Compare these results with the optimal consumption rule and portfolio choice

derived from our RI model, and we have the following proposition:

Proposition 5. A CRRA investor with RI is observationally equivalent to a CRRA investor with

a preference for robustness in the sense that both invest less in the risky asset due to a higher

e¤ective CRRA. However, they can be distinguished by their consumption rules.

Proof. It is straightforward by comparing (2.30) and (2.58) for optimal portfolio choice, and (2.22)

and (2.57) for consumption rule.

An advantage of this equivalence is that we can infer the values of the parameter governing RI

from the values of the preference governing robustness. For the range of the values of preference

for robustness, see Maenhout (2004). Maenhout discussed the relationship between robustness and

recursive utility and concluded in proposition 2 in his paper that an investor with CRRA(=
) utility

and a preference for robustness (e�) is observationally equivalent to a Du¢ e-Epstein-Zin investor
with EIS 1=
 and CRRA e�+ 
: In our RI model, the e¤ective CRRA is 
=#(> 
) and the true IES

is less than 1=
:

Luo (2005) showed that in the permanent income hypothesis framework RI and internal ad-

ditive habit formation (HF) can generate similar dynamics of consumption, savings, and wealth

accumulation if the degree of RI and the degree of HF satisfy some condition. Although both

58For simplicity here I set T =1:
59Maenhout (2004) used � to denote the preference for robustness. To avoid the confusion with the optimal

observation weight, �, de�ned in section 2, here I use e� to represent the preference for robustness.
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hypotheses are quite di¤erent from each other, both of them predict that current consumption not

only depends on permanent income, but also on past consumption. In the RI model people have to

do so due to �nite Shannon capacity, whereas in the HF model people are willing to do so because

they like to smooth consumption growth. In this CCAPM framework with CRRA preference, RI

and HF also have similar impacts on consumption dynamics. This conclusion is clear if we assume

that HF enters the utility function by this way:

(Ct � �Ct�1)1�

1� 
 ; (2.59)

where Ct and Ct�1 are individual consumption at time t and t � 1; respectively. As shown in
Dynan (2001), after approximating � log(Ct��Ct�1) with � logCt��� logCt�1; we can express
the change in logarithmic consumption by a MA(1) process given i.i.d. equity returns. Compared
with (2.39), when � = (1� �)=�; both models predict similar consumption dynamics.

3. RI and Recursive Utility

In the previous section, I showed that RI can reduce the demand for risky asset and could be

an alternative explanation for the equity premium puzzle in the time-separable expected utility

framework. However, to match the observed high equity premium, we must assume that channel

capacity is extremely small. In this section, I consider the e¤ects of RI on asset returns and portfolio

choice in the recursive utility framework proposed by Epstein and Zin (1989) and Weil (1989). A

crucial attribute of this recursive framework is that it allows us distinguish the CRRA and the EIS

and then it provides a suitable framework to examine the interaction among RI, risk aversion, and

intertemporal substitution in determining asset returns and portfolio choice60. Speci�cally, in this

section I will discuss that how incorporating RI into Epstein-Zin-Weil�s recursive utility model can

go further in explaining the equity premium puzzle and the risk free rate puzzle.

Following Epstein and Zin (1989), Weil (1989), Campbell and Viceira (1999), and others, the

consumer�s preference is described by the following utility:

U(Ct; EtUt+1) = f(1� �)C(1�
)=�t + �(EtU
1�

t+1 )

1=�g�=(1�
) (3.1)

where � < 1 is the discount factor, 
 > 0 is the CRRA, � is the EIS, and the parameter � is de�ned

60Although Epstein and Zin (1991) showed that this recursive utility can better explain the equity premium puzzle
and the risk free rate puzzle, Kocherlakota (1996) argued that this conclusion is not correct because Epstein and Zin
used the value-weighted return to the NYSE as a proxy to the gross real return to the representative agent�s portfolio
of assets, but this approximation understated the true level of diversi�cation of this agent.
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as � = (1� 
)=(1� ��1): Hence, when 
 = ��1; the above nonlinear recursion becomes linear and

the recursive utility reduces to the standard time-separable power utility.

Given i.i.d. equity returns, using the same budget constraint (2.2), we can obtain the optimal

consumption and portfolio rules as follows

ct = wt + b0

� =
�� rf + 1

2!
2
u

[ �� + (1� �)]!2u

where b0 = log[1 � �
1
� (Et(R

p
t+1)

1�
)
1��
�

1
1�
 ]: Furthermore, the value function of the agents with

recursive utility in the full-information case also takes the form

V (Wt) = �W
1�

t

where � > 0 is a constant whose value is irrelevant for the present discussion. When 
 is close to

1 (but di¤erent from 1; otherwise � = 0 and the model reduces to the static CAPM); as shown in

section 2, the loss function is also log-quadratic. Hence, using the same argument in the CRRA

case discussed in section 2, it is straightforward to show that the conditional distribution of the

true state is also normal approximately in this recursive utility framework, and we choose the noise

due to imperfect observations to be normal such that the joint distribution of the true state and

the observed state is normally distributed. Following the same procedure as used in section 2, we

have

ct = bwt + b0
where bwt follows the same kalman �ltering equation (2.23). Given this modi�ed consumption rule,
we can easily derive the change in consumption as follows

�ct+1 = � bwt+1; (3.2)

Note that here the expression of � bwt+1 is the same MA(1) as the one derived in the CRRA
case except some constant terms that depend on the mean consumption wealth ratio, b0; which

is a function of risk aversion, intertemporal substitution, and optimal portfolio choice. Similarly,

aggregating over all consumers in the economy may eliminate all private noises and only leave the

fundamental shocks.

As shown in Epstein and Zin (1991), the recursive utility hypothesis can help resolve the equity

premium puzzle. Given the same �ow budget constraint (2.2) as in section 2, we have the following
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linearized pricing equation

Et[r
e
t+1]� rf +

1

2
!2u =

�

�
covt[ct+1 � ct; ret+1] + (1� �)covt[r

p
t+1; r

e
t+1] (3.3)

where rpt+1 ' �(ret+1� rf )+ rf : The equation says that the expected equity premium is a weighted

average of two covariances: the �rst is with consumption growth divided by the IES and gets weight

�; and the second is with the return on the market portfolio and gets weight (1� �)61:
As in the above expected utility maximization model, we now assume that consumers cannot

observe the state perfectly due to �nite Shannon capacity. The usual standard Euler equation,

U1;t = Et[U2;tU1;t+1R
e
t+1 ] = Et[U2;tU1;t+1R

f ]; (3.4)

does not hold, and instead a long-term Euler equation holds62, that is,

U1;t = Et[(�t � � � �t+S)U1;t+1+SRet+1(Rf )S ] = Et[(�t � � � �t+S)U1;t+1+S(Rf )S+1]: (3.5)

where Ui;t denotes the derivative of the aggregate function with respect to its i�th argument and
�t = U2;t is the discount factor63. Following the same procedure used above, we have the following

log-linearized pricing equation

Et[r
e
t+1]� rf +

1

2
!2u =

�

�
covt[ct+1+S � ct; ret+1] + (1� �)covt[r

p
t+1 + � � �+ r

p
t+1+S ; r

e
t+1] (3.6)

Since we assume that equity returns are i.i.d., covt[r
p
t+1 + � � �+ r

p
t+1+S ; r

e
t+1] = �!2u: Using the

results in the CRRA case, we can easily derive the optimal share invested in equity as follows

� =
�� rf + 1

2!
2
u

�
� (

�
1�(1��)=�)!

2
u + (1� �)!2u

(3.7)

where �
1�(1��)=� measures the ultimate consumption risk. Note that here we use the facts that

covt[ct+1+S � ct; r
e
t+1] =

�
1�(1��)=��!

2
u and stock returns are i.i.d. It is clear that when � = 1

61 It is easy to see that when � = 1; it reduces to equation (2.11). When 
 = 1; then � = 0 and a logarithmic version
of the static CAPM pricing equation holds. Furthermore, when � approaches 1; the coe¢ cient � goes to in�nity.
Giovannini and Weil (1989) showed that in this case the optimal consumption rule is myopic (in the sense that the
consumption and wealth ratio is constant), whereas optimal portfolio choice is not myopic unless 
 is also 1:
62 It is equivalent to

Et[(�t � � � �t+S)U1;t+1+SRet+1] = Et[(�t � � � �t+S)U1;t+1+SRf ]

63Hence, with time additive and expected utility, the discount factor U2;t = � is constant and then this Euler
equation reduces to the one discussed in section 2.
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(
 = 1=�), the above solution reduces to (2.30) derived in the CRRA case.

Expression (3.7) implies that the total risk in the asset allocation problem is a weighted average

of the ultimate consumption risk and the innovation to equity return itself. The weights are �
� and

1 � �; respectively. As discussed above, we assume that 
 is slightly greater than 1 such that the

approximation is valid. It is straightforward to show that how the interaction between RI, RRA,

and EIS a¤ects the optimal demand for the risky asset. First, keeping IES � unchanged, raising

RRA 
 can reduce the optimal share � in the presence of RI since �
1�(1��)=� > 1. Second, if keeping


 unchanged, reducing � would reduce the weight �
� and increase the weight 1� �. Consequently,

the related importance of RI on the �rst weight and the demand for the equity is reduced. As

I assumed above, the riskfree asset, bond, is inside bond, the share of the risky asset is 100% in

equilibrium. Hence, the above pricing equation means that RI has larger impacts on the equity

premium in the case with high RRA and IES.

4. Stochastic Investment Opportunities

So far, I have assumed that stock returns are i.i.d. and have constant expected returns. However,

the empirical evidence for the predictability of expected stock returns is strong. See Campbell and

Viceira (1999, 2002) for detailed discussions. In this section, as in Campbell and Viceira (1999), I

assume that the expected excess log return on the risky asset is dependent on a state variable xt;

such that

Et[r
e
t+1]� rf = xt (4.1)

and the unique state xt follows a AR(1) process:

xt+1 = �+ �x(xt � �) + �t+1 (4.2)

where �t+1 is conditionally homoskedastic and �t+1 � N(0; !2� ): Also, I assume that the unexpected

log return on the risky asset, ut+1; is conditionally homoskedastic and normally distributed with

N(0; !2u): Finally I assume the two random components are correlated, covt[ut+1; �t+1] = !u�: Given

the standard �ow budget (2.2) and the recursive utility (3.1) de�ned in last section, following the

same procedure proposed by Cambpell and Viceira (1999)64, we have the following equation

Et[r
e
t+1]� rf +

1

2
!2u =

�

�
covt[ct+1 � ct; ret+1] + (1� �)covt[r

p
t+1; r

e
t+1] (4.3)

64See Section III in their paper for detailed derivations.
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where rpt+1 ' �t(r
e
t+1 � rf ) + rf :

Based on this equation, I will discuss the implications of RI for equity premium and portfolio

selection in several special cases65.

Case 1 When � ! 1 and 
 6= 1; the optimal portfolio rule is not myopic, while consumption choice
is.

As shown in Giovannini and Weil (1989) and Cambpell and Viceira (1999), in this case the

consumption rule is myopic, that is, the consumption wealth ratio is constant, ct � wt = log(1 �
�): The optimal portfolio rule is not myopic and a¤ected by the intertemporal hedging demand.

Borrowing the results in Cambpell and Viceira (1999), we have the following optimal portfolio rule

�t = a0 + a1xt (4.4)

where

a0 =
1

2

� ( 1

1� � )(

 � 1



)
!u�
!2u
; (4.5)

a1 =
1


!2u
: (4.6)

Note that when !u� = 0; the results becomes to the familiar Merton�s solution, a0 = 1
2
 and

a1 =
1

!2u

: The second term in a0 measures the hedging demand of the risky asset.

As shown in Epstein and Weil (1989; 1991), the value function per unit of wealth in the recursive

utility framework can be expressed as

Vt = (1� �)��=(1��)(
Ct
Wt
)1=(1��) (4.7)

where Vt = Ut=Wt: In this case, Vt is a constant in that Ct
Wt
= 1� �: Consequently, here we do not

have a value function that depends on the state, and thus we cannot use the procedure in section

2 to derive the conditional distribution of the state in the presence of RI. Hence, to introduce RI

in this model, we need to de�ne a new loss function and assume that the consumers choose the

conditional distribution to minimize this loss function subject to information-processing constraints.

For simplicity, I assume that the loss function is quadratic. Hence, we can apply the results from

the CRRA case here, and it is clear that the true state xt; given information available at time t;

65 I use these two extreme cases because they can be solved in close-form and help us get much insights about the
implications of RI when investment opportunities are not constant.
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follows a normal distribution. Given the true process of xt; equation (4.2), the estimated process

follows the following process

bxt+1 � � = (1� �)�x(bxt � �) + �(xt+1 � �+ �t+1); (4.8)

and the decision rule becomes

�RI;t = a0 + a1bxt (4.9)

Proposition 1. In Case 1, RI reduces the speed of adjusting the optimal portfolio with respect

to the innovations in every period.

Proof. Without RI, the agents adjust their optimal portfolio according to the expected excess

return on equities. As this unique state follows an AR(1) process, past information can be used

to predict their future values because xt can written as a MA(1) process, xt = � + �t
1��x�L : With

RI, the decision rule depends on the estimated state, bxt = xt +
(��1)�t+��t
1�(1��)�x�L : Note that here we use

the fact that combining the true process (4.2) and the Kalman �ltering equation (4.8) implies thatbxt+1 � xt+1 = (��1)�t+1+��t+1
1�(1��)�x�L : Hence,

��RI;t = a0 + a1[xt +
(� � 1)�t + ��t
1� (1� �)�x � L

]

= a0 + a1[�+ ��t +
1X
j=1

�jx(1� (1� �)j+1)�t�j + �
1X
j=0

((1� �)�x)j�t�j ]; (4.10)

that is, the optimal portfolio choice also adjusts slowly with respect to the innovations to the

expected return on the risky asset.

On the other hand, with RI and � = 1, the following equation holds

Et[r
e
t+1]� rf +

1

2
!2u = �covt[ct+1+S � ct; ret+1] + (1� �)covt[r

p
t+1 + � � �+ r

p
t+1+S ; r

e
t+1]: (4.11)

Following the same procedure used in the CRRA case, we also need to use the ultimate risk to

determine the optimal allocation in risky asset. The above equation implies that

Et[r
e
t+1]� rf +

1

2
!2u = covt[r

p
t+1 + � � �+ r

p
t+1+S ; r

e
t+1] (4.12)

where we use the fact that �ct+1 = (ct+1 � wt+1)� (ct � wt) + �wt+1 = �wt+1:
Therefore, in this special case the expected excess return of equity is determined by the condi-

tional covariance between equity return at time t + 1 and the portfolio return at the same period
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as well as many following periods. Because rpt+1 = �tr
e
t+1 + (1 � �t)r

f , ret+1 = xt + ut+1; and xt

cannot be observed perfectly due to RI, we have

Et[r
e
t+1]� rf +

1

2
!2u = �t covt[r

e
t+1; r

e
t+1] +

SX
s=2

covt[r
p
t+s; r

e
t+1]

= �t[!
2
u + �

2
x] +

SX
s=2

covt[�sr
e
t+s; r

e
t+1]:

where �2x = vart[xt]: Rearranging the above equation gives

�t =
Et[r

e
t+1]� rf + 1

2!
2
u

!2u + �
2
x

�
PS

s=2 covt[�t+s�1r
e
t+s; r

e
t+1]

!2u + �
2
x

(4.13)

This equation takes a recursive form and has two components, each one capturing di¤erent

aspects of asset demand. The �rst term captures the part of asset demand induced by the current

risk premium adjusted by the estimation risk �2x due to RI. The second term captures another part

of asset demand: because the expected return is predictable, the correlation between current equity

return and the future portfolio returns is not zero, the consumers are willing to hold less equity to

hedge against future bad changes in investment opportunities.

Case 2 When 
 ! 1 and � 6= 166; both the optimal portfolio rule and consumption choice are not
myopic.

As discussed in Giovannini and Weil (1989), in the presence of RI, the portfolio rule under this

restriction is myopic, that is, portfolio choice �t = 1
2
 +

1

!2u

xt and it does not depend on the

hedging component; whereas the consumption rule is not myopic in the sense that the consumption

wealth ratio is not constant and in fact the log ratio is a linear function of the unique state xt;

ect = ct � wt = b0 + b1xt (4.14)

If Vt = (1 � �)��=(1��)(exp(b0 + b1xt))
1=(1��) can be approximated around b1=(1 � �) � xt = 0

by a linear quadratic function, as above we can introduce RI under these conditions: Speci�cally,

66Hence, it implies that � = 0:

36



with RI consumers form an estimated state to make optimal decisions, that is,

ect = ct � wt = b0 + b1bxt; (4.15)

�t =
1

2

+

1


!2u
bxt: (4.16)

Proposition 2. In Case 2, both the ratio of consumption to wealth and equity holdings react

slowly with respect to the innovations to the expected return in every period.

Proof. (see the proof in Case 1).

Note that in this case, �! 0 when 
 ! 1:Hence, we can have the same pricing equation (4.12)

and thus have the same optimal portfolio rule (4.13). In other words, in Case 2, the demand for

the risky asset is also composed by two components. The �rst captures the part of asset demand

induced by the current risk premium adjusted by both the fundamental risk !2u and the induced

estimation risk �2x due to RI, whereas the second can capture the intertemporal hedging demand

induced by the correlation between current equity return and the future portfolio returns.

5. Incorporating Labor Income Risk

So far I have assumed that labor income can be capitalized into marketable wealth. However, in

reality, human wealth67 is nontradable in the market because it is di¢ cult to sell claims against

future labor income. Consequently, consumers would adjust their �nancial asset holdings to take

account of their implicit holdings of human wealth. It is known that riskless labor income is

equivalent to an implicit holding of riskless assets that tilts asset allocations towards risky assets,

whereas risky labor income that perfectly correlates with risky assets is equivalent to an implicit

holding of risky assets and thus tilts the �nancial portfolio towards safe assets. Recent theoretical

works showed that labor income risk can have signi�cant e¤ects on consumption and portfolio

decisions. See Campbell and Viceira (2002) for a textbook treatment. Therefore, it is interesting to

examine how labor income risk a¤ects both risk premium and asset allocations in the RI economy.

In this section, I adopt the same preference speci�cation as section 2, while modelling the �ow

budget constraint for consumers di¤erently:

Wt+1 = Rpt+1(Wt + Yt � Ct) (5.1)

67An individual�s labor income can be seen as a dividend on the individual�s implicit human wealth.
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where Wt+1 is �nancial wealth at the beginning of t + 1 carried over from t, Wt + Yt � Ct is

savings, Rpt+1 is the one-period return on savings given by equation (2.3), and Yt+1 is labor income.

Following Viceira (2001) and Campbell and Viceira (2002), I specify the process for labor income

as follows

Yt+1 = Yt exp(vt+1 + g) (5.2)

where �t+1 � NIID(0; !2v) and g is the deterministic growth rate: The empirical evidence suggests

that individual labor income is composed of both permanent and transitory shocks. Here we ignore

transitory shocks to labor income to make the notations simple. Furthermore, I also assume that

the innovation to labor income may be contemporaneously correlated with the innovation to equity

return:

covt(ut+1; vt+1) = !uv: (5.3)

Note that !uv = 0 if labor income risk is idiosyncratic.

As in section 2, to derive the optimal consumption and portfolio choice rules, I �rst log-linearize

the �ow budget constraint (5.1) around c� y = E[ct � yt] and w � y = E[wt � yt] as follows

wt+1 � yt+1 ' � + �w(wt � yt)� �c(ct � yt)��yt+1 + rpt+1 (5.4)

where lowercase letters denote variables in logs and �; �w; and �c are log-linearization constants

that are given in Appendix D. The log consumption function takes the form

ct = b0 + b1mt (5.5)

where mt is a new state variable which is de�ned as wt +
1��w+�c
�w�1 yt and

b1 =
�w � 1
�c

and b0 =
1

�c
f� � g � �

b1
log � + (1� �

b1
)E[rpt+1]�

1

2
�g (5.6)

where � is the precautionary savings term (See Appendix D for a detailed derivation).

As shown in the Appendix D, for the CCAPM model with labor income, � and then b0 explicitly

depend on both the variance of the unexpected log equity return and the variance of labor income

growth. As a result, we cannot apply the Gaussian-error framework for RI in this case directly

because the certainty equivalence principle does not hold generally. However, we may impose

some condition to eliminate precautionary savings and then �t it into the RI framework as we
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characterized for the standard LQ case. It is clear from the expression for � :

� = (1� 1

�
b1)

2var[rpt+1] + (
1

�
b1)

2�var[vt+1]� 2
1

�
b1�(1�

1

�
b1)cov[r

p
t+1; vt+1] (5.7)

where � = 1��w+�c
�w�1 : When the elasticity of intertemporal substitution � is set to b1 2 (0; 1);

� = 1��w+�c
�w�1 var[vt+1] =

1
exp(c�y)�1var[vt+1] > 0: Hence, when w� y is large enough

68 or var[vt+1]

is small enough, the precautionary savings term � should be close to 0: As documented in Viceira

(2001) and Campbell and Viceira (2002), var[vt+1] is around 10% per year, but here we may set

it to a very low value because we are only interested in accessing how RI a¤ect risk premium and

asset allocation in the presence of labor income risk rather than calibrating the model to the real

economy.

Hence, adding RI in this model yields the following modi�ed consumption rule

ct = b0 + b1 bmt (5.8)

and the information state bmt can be characterized by the following Kalman �ltering equation

bmt+1 = (1� �)bmt + �(mt+1 + �t+1) (5.9)

where � and �t+1 have the same de�nitions as in section 2. Hence, consumption growth can now

be written as

�ct+1 = b1f[��t+1 + ��w
(1� �)�t

1� (1� �)�w � L
] + [��t+1 �

��t
1� (1� �)�w � L

] + 
g

where �t+1 = �ret+1 + �vt+1; L is the lag operator and 
 is constant term. Furthermore, as in

section 2, I assume that the endogenous noise terms in the second bracket of the above expression

will be cancelled out when aggregating over all consumers. Consequently, we have the following

proposition

Proposition 1. Aggregate consumption growth in the CCAPM model with RI can be written as69

�ct+1 = b1[��t+1 + ��w
(1� �)�t

1� (1� �)�w � L
+
]; (5.10)

which implies that 1) the contemporaneous covariance between aggregate consumption growth and

68Note that c� y is a linear function of w � y:
69Since we focus on aggregate behavior and to avoid the notation confusion, in the following equation, we still use

c to represent aggregate consumption.
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asset returns is

cov(�ct+1; r
e
t+1) = b1��!

2
u + b1��!uv; (5.11)

2) the ultimate covariance between consumption growth and asset return is

cov[ lim
S!1

(ct+1+S � ct); ret+1] = b1
�

1� (1� �)�w
�!2u + b1��!uv; (5.12)

and 3) the optimal asset allocation is

� = #2[
�


b1!2u
� ��!uv


!2u
] (5.13)

where #2 =
1�(1��)�w

� < 1:

Proof. see Appendix E and F.

Here #2 =
1�(1��)�w

� < 1 is inversely proportional to the ultimate consumption risk of the risky

asset. The term in the bracket represents the optimal allocation to the risky asset that has two

components. The �rst characterizes the optimal allocation when labor income risk is uncorrelated

with the risky asset, whereas the second component is an income hedging demand component. The

desirability of the risky asset depends not only on its expected excess return relative to its variance,

but also on its ability to hedge consumption against bad realizations of labor income70.

In Viceira (2001) and Campbell and Viceira (2003), they analyzed the optimal portfolio choices

of long-horizon investors with undiversi�able labor income risk and showed that a positive cor-

relation between labor income innovations and unexpected asset returns reduces the investor�s

willingness to hold the risky asset because the risky asset provides a poor hedge against unex-

pected declines in labor income. Because #2 < 1 and � < 1; we can see from the above proposition

that if we measure consumption risk correctly, RI reduces not only the standard optimal allocation

in the risky asset, but also the hedging component. One percent negative shock in both individuals�

�nancial wealth and human wealth would a¤ect their consumption more than that predicted by

the full-information CCAPM model. Hence, the hedging demand is reduced.

As in section 2, alternatively, we can also write the pricing equation using long-term consumption

70Note that if this covariance is negative, then the risky asset o¤ers a good hedge against negative income shock
and then increases the demand for the risky asset.
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risk as follows:

Et[r
e
t+1]� rf +

1

2
!2u = 


SX
s=0

covt[�ct+1+s; r
e
t+1] (5.14)

= 
[b1
�

1� (1� �)�w
�!2u + b1��!uv]:

where �
1�(1��)�w > 1 measures the ultimate consumption risk. It is clear that two components

a¤ect the equity premium in this case71. The �rst component represents the premium when labor

income risk is idiosyncratic, that is, uncorrelated with the risky asset, while the second component

measures an income hedging demand. In the full-information case, a positive covariance between

the risky asset return and labor income, !uv > 0; requires a higher equity premium because the risky

asset o¤ers a bad hedge against negative income shocks, and this dampens consumers�enthusiasm

for stocks. In this RI model, RI, measured by � appeared in the second component, reduces the

impact of the correlation of labor income and asset returns on the equity premium. Further, if this

covariance is negative, that is, the risky asset o¤ers a good hedge against bad income shocks, RI

also reduces its negative impact on the premium.

6. Equilibrium Asset Pricing under RI

In the previous section, I solved for the optimal consumption and portfolio rule of consumers facing

exogenous asset return processes, Lucas (1978), Mehra and Prescott (1985), and others adopted

another reversed procedure to derive the equilibrium asset returns by specifying an exogenous aggre-

gate consumption process and then modeling the stock market as paying a dividend proportional to

aggregate consumption due to leverage. In this section, I will explore the equilibrium implications

of the decision rules derived in the previous section. Speci�cally, I use the explicit partial equi-

librium results and an log-linear accounting identity to examine how RI a¤ects the price-dividend

ratio, the equity premium, and the equity volatility in equilibrium.

Following Campbell and Shiller (1988), Campbell (2003), and others, here I use a loglinear

approximation to link stock prices, dividends, and returns in an accounting framework. This

loglinear approximation starts with the de�nition of the log return on the risky asset e;

ret+1 = log(P
e
t+1 +D

e
t+1)� log(P et )

Note that log return is a nonlinear function of log prices pet+1 and p
e
tand log dividends d

e
t+1, and

71Of course, here I also assume that the share of the risky asset is given when examining the equity premium issue.
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can be approximated around the mean dividend-price ratio, E[det � pet ]; by using �rst order Taylor
expansion. Campbell (2003) derived the resulting approximation as follows:

ret+1 = k + �pet+1 + (1� �)det+1 � pet (6.1)

where � = 1=(1 + exp(E[det � pet ]))72 and k = � log �� (1� �) log(1=�� 1):
This equation is a linear di¤erence equation for the log stock price73:

pet � det =
k

1� � +Et
1X
j=0

�j [�det+1+j � ret+1+j ] (6.2)

where we need to impose the terminal condition limj!1 �jpet+j = 0:

Combining equation (6.1) with (6.2) yields

ret+1 �Et[ret+1] = (Et+1 �Et)
1X
j=0

�j�det+1+j � (Et+1 �Et)
1X
j=1

�jret+1+j ; (6.3)

which says that the unexpected stock returns must be associated with either the revisions in expec-

tations in future dividend growth (with a positive sign) or news about future returns (with negative

sign)74.

Following Lucas (1978), Mehra and Prescott (1985), and others, here I also assume that the

aggregate stock market, denoted by e for equity; is a reasonable proxy for the portfolio of total

wealth and thus can be priced as if it pays aggregate consumption as its dividend. Further, as in

Abel (1999) and Campbell (2003), dividend on equity equals to aggregate consumption raised to a

power �75: In logs, we have

det = �ct (6.4)

Note that in the Lucas-type economy, bonds do not exist explicitly. However, the shadow prices

of any security that is in zero net supply can be computed by using the intertemporal �rst order

condition of consumers. We can thus use this approach to price the risk free rate. In other words,

72 In the postwar quarterly data the average price-dividend ratio has been 28:3 on annual basis, which means that
� should be about 0:966 in annual data.
73Campbell (2003) (section 4) discussed how to derive this equation in detail.
74For example, a real bond has no dividend uncertainty, so unexpected returns cannot occur without changes in

future expected returns. However, dividend news is important for equity.
75They interpreted � as a measure of leverage.
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(2.47) is still valid in this economy. Substituting equation (2.47) into (2.29) gives76

Et[r
e
t+1] = �e +

1

�
Et[�ct+1] (6.5)

where �e is an asset-speci�c constant term77:

�e ' 
#�1�!2u �
1

2
!2u: (6.6)

Note that since #�1 is used to measure the ultimate consumption risk and is an increasing function

of the degree of RI, �e is also increasing with inattention.

Substituting (6.4) and (6.5) into (6.2) and (6.3), we obtain

pet � det =
k � �e
1� � + (�� 1

�
)Et

1X
j=0

�j�ct+1+j ; (6.7)

and ret+1 �Et[ret+1] = �(�ct+1 �Et[�ct+1]) + (��
1

�
)Et

1X
j=1

�j�ct+1+j (6.8)

Hence, (6.7) implies that the higher the inattention, the lower the price-dividend ratio. We can

further simplify these equations by specifying the aggregate consumption process as follows:

�ct+1 = �c�ct + (1� �c)g + �c;t+1 (6.9)

where �c;t+1 is i.i.d. white noise with mean 0 and standard deviation !c: Substituting this process

into (6.7) and (6.8) yields

pet � det =
k � �e
1� � + (�� 1

�
)[

g

1� � +
�ct � g
1� ��c

]

and ret+1 �Et[ret+1] = [�+ (��
1

�
)

��c
1� ��c

]�c;t+1

Now we can give the following de�nition about a RI equilibrium

De�nition 1. A RI equilibrium consists of a consumption rule ct; a portfolio rule �; the price-

dividend ratio pet � det ; and the risky return ret+1; such that simultaneously

76Note that with CRRA utility, the CRRA 
 = 1=�; where � is the EIS.
77Here we use the following approximation:

� log � � 1

2

(
 + 1)var[�ct+1] ' 0:
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1) Given exogenous asset returns, each individual solves the optimization problem (2.13) under

the �ow budget constraint and the information-processing constraint,

2) Markets clear in each period, that is, ct = det=� and � = 1:

Hence, given the explicit solutions for consumption and portfolio rule derived in the partial

equilibrium CCAPM, we can derive the equilibrium price-dividend ratio, equity premium, and the

volatility of asset returns. The following proposition gives the main results.

Proposition 2. In equilibrium, the mean price-dividend ratio is given by

E[pet � det ] =
k � �e
1� � + (�� 1

�
)

g

1� � : (6.10)

The innovations of asset returns satisfy

ut+1 = [�+ (��
1

�
)

��c
1� ��c

]�c;t+1 (6.11)

Further, based on the partial equilibrium results, we have

�c;t+1 = �ut+1; (6.12)

where �c = (1� �)=�78. Hence, (6.11) and (6.12) imply that

[�+ (�� 1

�
)

��c
1� ��c

]� = 1: (6.13)

Finally, the expected excess return can then be written as

Et[r
e
t+1]� rf +

1

2
!2u = 


1

�

1

1� �c
!2c (6.14)

Note that to derive (6.14), we use the facts that

Et[r
e
t+1]� rf +

1

2
!2u = 
covt[ lim

S!1
(ct+1+S � ct);

�c;t+1
�
] and �ct+1+S =

�c;t+1+S
1� �c � L

+ g:

From equation (6.14), it is obvious that RI can help resolve the equity premium puzzle in this

equilibrium framework. Given the stochastic properties of aggregate consumption, the persistence

and volatility of aggregate consumption (�c and !2c ); RI increases the equity premium by a factor

78Note that since 
 is close to 1; � is �:
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1
� : This means that the higher the degree of RI, the higher the equity premium in equilibrium given

the observed consumption process.

Furthermore, since � = 1=(1 + exp(E[det � pet ])) and k = � log � � (1 � �) log(1=� � 1); (6.10)
implicitly determines the mean price-dividend ratio, and rearranging it yields an explicit expression

for E[pet � det ] :
E[pet � det ] = ��e � (��

1

�
)g: (6.15)

Hence, it is obvious that
@E[pet � det ]

@�
> 0 (6.16)

since @�e

@� < 0:

It is also worth noting that when � = 1; because 
 is set to be close to 1 (that is, � = 1=
 is

also close to 1) the equilibrium exists only if � = 1; that is, � = 1: In other words, with CRRA
utility and � = 1; there is no RI equilibrium. When � � 1

� > 079; there exists a RI equilibrium

when equation (6.13) is satis�ed.

Further, (6.12) implies that the higher the degree of RI, the larger the volatility of asset returns

given consumption volatility. RI can therefore be an alternative explanation for the equity volatility

puzzle80, that is, why is the volatility of real stock returns so high in relation to the volatility of

the short-term real interest rate?

In fact, we can also understand the equilibrium by the following way: 1) given asset returns,

one can solve for individuals�optimal consumption and portfolio rules; 2) aggregating over all con-

sumers generates the aggregate consumption process, which is a AR(1) process; 3) in equilibrium,

aggregate consumption is proportional to aggregate dividend because of leverage (when the lever-

age ratio is equal to 1, they are the same.); 4) Using the log-linear accounting identity that links

returns, prices, and dividends, if taking aggregate consumption process as given, one can determine

the price-dividend ratio, the equity premium, and the equity volatility; 5) in equilibrium, when

some conditions are satis�ed, the resulting returns should be just the initially given returns. This

procedure is similar to the computational algorithm used to compute a recursive competitive equi-

librium in the heterogenous-agent economy with idiosyncratic risk, e.g., the Bewley-Aiyagari type

models, where the equilibrium interest rate and wage rate is also determined by solving individuals�

optimization problem, aggregating over all individuals, and then iterating until convergence.

79As pointed out in Campbell (2003), an obvious way to generate volatile equity returns is to set a large value for
�; that is, a volatile dividend. However, this result depends on if �� 
 > 0 or not.
80For a detailed discussion of this puzzle, see Campbell (2003).
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7. Review of Related Empirical Evidence

Some existing survey evidence supports that 1) consumers do not have enough knowledge about

the evolution of their �nancial wealth and consequently can not adjust their consumption fully

in response to the innovations to the returns, and 2) the innovations to their �nancial assets can

be used to predict their future changes in consumption. For example, Dynan and Maki (2001)

analyzed the responses to the Consumer Expenditure Survey (CEX) from 1996 1. to 1999 1. and

found that around one-third of stockholders reported no change in the value of their assets whereas

the US stock markets rose over 15% per year during this sample period81. In the same paper, they

also reported that for stockholders with over $10; 000 in securities, a 1% increase in the value of

security holdings would cause lasting impacts on consumption growth and eventually consumption

would increase by 1:03%; one third of which increases during the �rst 9 months, another third of

which occurs from the 10th month to the 18th month, another quarter of which occurs form the

19th month to the 27th month, and the rest occurs from the 28th month to the 36th month. This

evidence may be largely captured by our RI model because equation (2.39) implies that

ct+1+S � ct =
SX
s=0

�ct+1+s

= ��[1 + (1� �)=�+ � � �+ ((1� �)=�)S ]ut+1

where lim
S!1

[ct+1+S � ct] =
��

1�(1��)=�ut+1: Consider a numerical example (the time unit here is 3

quarters) in which � = 0:99; � ' �; and � = 0:2 such that lim
S!1

[ct+1+S � ct] = 1:03 as estimated

from the data. When S = 0; ct+1+S � ct = 0:36; when S = 1; ct+1+S � ct = 0:58; and when S = 2;
ct+1+S � ct = 0:74: Thus, our numerical example can generate similar results as those estimated

from the US data. Furthermore, using the estimation results from Dynan and Maki (2001), we plot

�gure 8 to illustrate to what extent our RI model can match the survey results. In the left �gure, we

de�ne stockholders (henceforth, �SH�) as households with securities > $1; 000; whereas in the right

�gure, we de�ne SH as households with securities > $10; 000: When we plot the pro�le generated

from our model, we calibrate the observation weight � such that the initial jump of consumption

to the shock of asset returns can match the data exactly, and then check if the responses to past

shocks during the following 27 quarters (3 time units) can also �t the dynamic responses re�ected in

the data. The left �gure below shows that the RI model with � = 0:14 can �t the empirical results

quite well: the responses of consumption to the innovations is muted initially and then increases

81Kennickell, et. al (2000) and Starr-McCluer (2001) also reported similar results based on alternative survery
sources.
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gradually over time. The right �gure also shows a similar pattern of the responses, though the �t

is not as good as the left one.

[Insert Figure 3 about here]

As in Gabaix and Laibson (2001), we are also interested in whether the values of cov[ct+1+S �
ct; r

e
t+1] generated from our RI model can match the empirical counterparts. We use the cross-

country panel dataset created by Campbell (1999), and plot the empirical covariances Cov[ct+1+S�
ct; r

e
t+1] in US and the average covariance across countries with large stock markets

82 in the following

�gure. The �gure shows a main feature in the data: the empirical covariances gradually increases

with the horizon, s: Note that in the full information CCAPM model, the covariance should initially

jump to a plateau and stay there. This �gure also shows the covariance pro�les generated by the

RI model with di¤erent values of channel capacity. It is obvious that the RI model can capture

this apparent empirical feature successfully: the covariance slowly rises over time. The intuition

here is same as before: if a large number of consumers/investors in the economy can not digest the

innovations to their �nancial wealth and monitor their wealth evolution due to limited information

capacity constraints, aggregate consumption should react to the shock of asset returns with delay

and be sensitive to lagged shocks. Actually, it is not unreasonable. For example, as argued in

Thaler (1990), some consumers may put their retirement wealth in one of their mental accounts83

and ignore the accumulating �nancial wealth until their retirement age 65:

[Insert Figure 4 about here]

Parker (2001) used data from the CEX of the Bureau of Labor Statistics and calculated the

covariance and risk aversion using the impulse responses to returns in a vector autoregression

(VAR). This method provided a clear picture of consumption dynamics following an innovation

in excess returns. Speci�cally, he estimated a three-variable VAR in excess returns, the logarithm

of consumption, and the dividend-to-price ratio, each with four lags. Figure 1 reported in Parker

(2001) plotted the responses of �ow consumption to an innovation in excess returns and clearly

showed that �ow consumption adjusts gradually in response to innovation in excess returns and

the adjustment lasts many periods, as the RI model predicts.

82Following the same criterion (ordered the countries in the dataset by the ratio of stock market capitalization to
GDP) used in Gabaix and Laibson (2001), they are Switzerland (0.87), the United Kingdom (0.8), the United States
(0.72), the Netherlands (0.46), Australia (0.42), and Japan (0.4).
83This mental account can be regarded as �asset account�and the MPC from this account is less than the MPC

from the �current income�account.
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8. Conclusions

Ordinary people do not have unlimited channel capacity and information-processing abilities, in-

stead they only have �nite Shannon capacity when processing economic information. Rational

inattention, �rst introduced by Sims (2003), has recently been applied in some economic models

as a kind of information-processing constraints. This paper takes such information-processing con-

straint into account in the CCAPM framework and explores its e¤ects on optimal consumption and

portfolio choice as well as the equity premium.

The �rst contribution of this paper is to solve a simple CCAPM model with RI in closed form

approximately. The closed form solutions are useful in aggregating over all agents and calibrating

the model to the data. Second, given the solutions, it is shown that introducing RI can generate

excess smoothness of consumption growth, the low contemporaneous correlation between consump-

tion growth and asset returns, and implied high equity premium simultaneously. The intuition is

that agents with RI cannot digest all relevant information instantly and completely, so they react

gradually and with delay to the innovations. Hence, we need to use the ultimate consumption risk

rather than the contemporaneous one to measure the true risk of the asset. The larger the degree

of RI, the larger the ultimate consumption risk is. Consequently, RI reduces the demand for the

risky asset because they face more risk in long run.

Next, it is shown that incorporating RI into this expected utility maximization framework can

also disentangle the CRRA from the EIS by increasing the e¤ective CRRA and reducing the e¤ective

EIS. Hence, if individuals are highly inattentive, the model can generate high equity premium by

just increasing the e¤ective CRRA by increasing the degree of inattention and keeping the true

CRRA unchanged. RI can then be an alternative explanation for the equity premium puzzle (by

increasing the e¤ective CRRA) and the risk free rate puzzle (by keeping the true CRRA and then

the true IES unchanged). In other words, RI can reconcile low estimates of risk aversion obtained

from experimental evidence or introspection, with high estimated values of risk aversion based on

asset pricing data. I then discussed the di¤erent implications of RI, recursive preference, and the

preference for robustness for optimal consumption and asset holdings and asset returns.

Further, I consider incorporating RI into the recursive utility framework and examine the in-

teractions of RI with the CRRA and the EIS in determining optimal consumption and portfolio

choice as well as asset returns. I also consider the dynamic investment problem when consumers

face stochastic investment opportunities. It is shown that RI slows the speed of adjusting the

portfolio share and the consumption-wealth ratio with respect to the innovations to the expected

returns. Also, it a¤ects the hedging demand for the risky asset.

Finally, I propose a general equilibrium Lucas-type asset pricing framework to examine the
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implications of RI on the equity premium, the mean ratio of price to dividend, and the equity

volatility puzzle in general equilibrium.

A number of extensions of this framework considered here seem promising. First, we could

consider multiple risky assets in the model and investigate whether RI can resolve the �asset

allocation puzzle�of Canner, Mankiw, and Weil (1997). They �nd that the ratio of risky bonds to

equities in the optimal portfolio increases with the CRRA, which is consistent with conventional

portfolio advice but inconsistent with static mean-variance analysis. Another related question is

whether the investors with a high degree of RI prefer to hold long-term bonds. Second, how does

the horizon a¤ect the asset demand in the RI economy? Third, we can examine if time-varying

channel capacity can explain the observed undereaction and overreaction phenomena in the stock

market in this framework.

9. Appendices

9.1. Appendix A: Deriving the Value Function in the CCAPM Model with RI

Before deriving the value function in the RI economy, it is helpful to �rst derive the value function

in the corresponding full-information case. In the standard full-information PIH model, we have

the consumption rule: ct = b0 + wt: As usual, we guess that the value function has the following

form84

V (wt) ' A0 +A1wt +A2w
2
t (9.1)

where A0; A1; and A2 are undetermined coe¢ cients. Following the standard procedure, substituting

the optimal consumption function into the Bellman equation, V (wt) = max
ct
Et[u(ct) + �V (wt+1)];

we can then pin down the undetermined coe¢ cients:

A1 =
1

1� � (1� b0); A2 = �
1

2

1

1� � ;A0 =
1

1� � (b0 �
1

2
b20 + �A2!

2
u)

By contrast, in the RI economy, we have the following Bellman equation

bV ( bwt) = max
ct;Dt

Et[u(ct) + � bV ( bwt+1)] (9.2)

where the expectation is formed under the assumption that the current and future consumption

are chosen under information processing constraints. Similarly, we guess that bV ( bwt) = B0+B1 bwt+
84Note that the exact form of the value function is V (Wt) = exp(�
b0)W

1�

t
1�
 ; so when (
 � 1)wt is close to 0; this

value function can be approximated by this LQ form.
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B2 bw2t : Substituting the optimal consumption rule, the Kalman equation, and the guessed value
function into the above Bellman equation, we have the following equality

B0 +B1 bwt +B2 bw2t = (b0 + b1 bwt)� 12(b0 + b1 bwt)2 + �(B0 +B1Et[ bwt+1] +B2Et[ bw2t+1]) (9.3)

Using the following facts

Et[ bwt+1] = bwt;
vart[ bwt+1] = �2[(1=�)2vart[wt] + �

2!2u + var[�t]];

Et[ bw2t+1] = vart[ bwt+1] + bw2t ;
= ((1=�)2 � 1)vart[wt] + �2!2u + bw2t ;

we can then easily pin down the coe¢ cients B0; B1; and B2 as follows:

B1 =
1

1� � (1� b0); B2 = �
1

2

1

1� � ;B0 =
1

1� � [b0 �
1

2
b20 + �B2(((1=�)

2 � 1)vart[wt] + �2!2u)]

where vart[wt] = �t: Note that A1 = B1 and A2 = B2:

9.2. Appendix B: Deriving the Gaussianity of Optimal Signal

Given the LQG framework, we de�ne the loss function at t due to imperfect information as �V =

V (wt)� bV ( bwt): Hence, the expected loss function is
Et[�V ] = Et[V (wt)� bV ( bwt)]

= Et[(A0 �B0) +A1(wt � bwt) +A2(w2t � bw2t )]
= (A0 �B0) +A2Et[(wt � bwt)2]
= �RA2Et[(wt � bwt)2]

where we use the facts that V (wt) = A0 + A1wt + A2w
2
t ;
bV ( bwt) = B0 + B1 bwt + B2 bw2t ; A1 = B1 >

0; A2 = B2 < 0; bwt = Et[wt]; and covt[wt � bwt; bwt] = 0:
Since A2 < 0; choosing the signal to minimize the above expected loss function above is equiv-

alent to choosing the signal to minimize Et[(wt� bwt)2]: Hence, minimizing this loss function under
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the IPC can be characterized by the following optimization problem85

min
f(wt; bwt)Et[(wt � bwt)2]
subject to:

�H(wt; bwt) +H( bwt) +H(wt) � �

where H is entropy and � is channel capacity on the mutual information between wt and bwt:
We could reformulate the above optimization problem as follows

min
f(wt; bwt)

Z Z
(wt � bwt)2f(wt; bwt)dwtd bwt (9.4)

subject to: (9.5)Z Z
log(f(wt; bwt))f(wt; bwt)dwtd bwt � Z log g0(wt)g0(wt)dwt (9.6)

�
Z
[log(

Z
f(wt; bwt)dwt) � Z f(wt; bwt)dwt]d bwt � �;Z

f(wt; bwt)d bwt = g0(wt) (9.7)

where g0(wt) is the prior pdf of the true state, which is assumed to be Gaussian, f(wt; bwt) is the
joint pdf of the true state and the observed signal.

The Lagrangian multipliers for the above two constraints are � and �(wt); respectively. The

Lagrangian function is then

L =

Z Z
(wt � bwt)2f(wt; bwt)dwtd bwt (9.8)

+ �f
Z
log g0(wt)g0(wt)dwt +

Z
[log(

Z
f(wt; bwt)dwt) � Z f(wt; bwt)dwt]d bwt

�
Z Z

log(f(wt; bwt))f(wt; bwt)dwtd bwtg � �(wt)[Z f(wt; bwt)d bwt � g0(wt)]
Since there are no derivatives of f(wt; bwt) involved here, we can solve this problem point by

point. Di¤erentiating the Lagrangian function with respect to the pdf f(wt; bwt) gives us the �rst
order condition

(wt � bwt)2 � �[log f(wt; bwt)� log(Z f(wt; bwt)dwt)]� �(wt) = 0 (9.9)

85The following derivations are largely based on Sims�s notes on �Optimality of Gaussian Observation Error�that
is available from http://sims.princeton.edu/yftp/AdvMacro03/GaussianOptNotes.pdf.
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We de�ne the pdf of the signal observed through the limited channel as

q( bwt) = Z f(wt; bwt)dwt;
then the above FOC implies that

f(wtj bwt) = f(wt; bwt)
q( bwt)

= expf 1
�
[�(wt)� (wt � bwt)2]g = A(wt) exp[B(wt � bwt)2]

where A(wt) = exp[ 1��(wt)] and B = �
1
� : By setting the simple function A and B, it is clear that

the right-hand side is a Gaussian pdf. Note that given w0 � N( bw0;�0); bwt summarizes all current
and past observed signals fw�s ; s = 1; � � �; tg.

Hence, if the signals fw�s ; s = 1; � � �; tg is Gaussian distribution, then the joint distribution of
wt and bwt is also Gaussian.
9.3. Appendix C Deriving the Expression of Consumption Growth

Adding RI in the CCAPM model yields a modi�ed consumption rule (2.22), ct = b0 + bwt, wherebwt can be characterized by the Kalman �ltering equation (2.23). Combining these two equations
with the log-linearized budget constraint (2.5) yields

� bwt+1 = (�=�)(wt � bwt) + (��ut+1 + ��t+1) + �[rp +  + (1� 1=�)b0]
where wt � bwt = (1��)�ut���t

1�((1��)=�)�L +
1 because
86

wt+1 � bwt+1 = ((1� �)=�)(wt � bwt) + [(1� �)�ut+1 � ��t+1] + (1� �)[rp +  + (1� 1=�)b0]
where L is the lag operator, rp = (1��)rf +��; and 
1 = (1��)[rp+ +(1�1=�)b0]

1�(1��)=� is a constant term.

Hence, consumption growth can now be written as

�ct+1 = � bwt+1 = [��ut+1 + �� ((1� �)=�)ut
1� ((1� �)=�) � L ] + [��t+1 � �

(�=�)�t
1� ((1� �)=�) � L ] + 
2 (9.10)

86 It is easy to show when 
 is close to 1; � is close to � and then 
1 is close to 0:

52



where 
2 is the constant term


2 = �[rp +  + (1� 1=�)b0] + (�=�)
(1� �)[rp +  + (1� 1=�)b0]

1� (1� �)=� (9.11)

Note that the endogenous noise terms in the second bracket of the above expression are totally

idiosyncratic since they are generated from individual channel, they would be cancelled out when

aggregating over all consumers.

9.4. Appendix D Deriving the Consumption Rule in the Presence of Labor Income

Risk

We �rst divide the �ow budget constraint (5.1) by Yt+1 and log-linearize it around steady state

c� y = E[ct � yt] and w � y = E[wt � yt] as follows

wt+1 � yt+1 ' � + �w(wt � yt)� �c(ct � yt)��yt+1 + rpt+1 (9.12)

where

�w =
exp(w � y)

1 + exp(w � y)� exp(c� y) > 0; �c =
exp(c� y)

1 + exp(w � y)� exp(c� y) > 0;

and � = �(1� �w + �c) log(1� �w + �c)� �w log(�w) + �c log(�c)

Second, to reduce this multivariate state case to the univariate state case, we need to de�ne a

new state variable that is a linear combination of wt and yt: Following the same procedure in Luo

(2005), we rewrite the log-linearized budget constraint as follows:

wt+1 + �yt+1 = � + �w(wt + �yt)� �cct + rpt+1 � g + �vt+1

where � = 1��w+�c
�w�1 . De�ne the new state mt = wt + �yt; we have

mt+1 = � + �wmt � �cct + rpt+1 � g + �vt+1 (9.13)

Third, the log-linearized Euler equation is as follows

0 = log � � 1

�
Et[ct+1 � ct] +Et[rpt+1] +

1

2
vart[r

p
t+1 �

1

�
(ct+1 � ct)]: (9.14)
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Furthermore, we guess that the optimal log consumption rule take the following form ct = b0+b1mt.

Hence, ct+1 � ct = b1(mt+1 �mt):

Combining it with the log-linearized budget constraint yields

Et[ct+1 � ct] = b1Et[mt+1 �mt]

= b1[� + (�w � 1� �cb1)mt � �cb0 +E[rpt+1]� g] (9.15)

The log-linearized Euler equation implies that

Et[ct+1 � ct] = �[log � +E[rpt+1] +
1

2
�] (9.16)

where � = vart[r
p
t+1 �

1

�
b1(mt+1 �mt)]

= (1� 1

�
b1)

2var[rpt+1] + (
1

�
b1)

2�var[vt+1]� 2
1

�
b1�(1�

1

�
b1)covt[r

p
t+1; vt+1]

Equalizing the right-hand side of equation (9.15) and (9.16) and identifying coe¢ cients, we

obtain two key coe¢ cients in the consumption function:

b1 =
�w � 1
�c

and b0 =
1

�c
f� � g � �

b1
log � + (1� �

b1
)E[rpt+1]�

1

2
�g

9.5. Appendix E Deriving the Expression of Consumption Growth with Labor Income

Risk

Adding RI in the above model yields the following modi�ed consumption rule

ct = b0 + b1 bmt (9.17)

and substituting it into (9.13) yields

mt+1 = � � g � �cb0 + (1� �)rf + �wmt � (�w � 1)bmt + �r
e
t+1 + �vt+1: (9.18)

Furthermore, the information state bmt is characterized by the following Kalman equation

bmt+1 = (1� �)bmt + �(mt+1 + �t+1) (9.19)
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Combining these three equations yields

�bmt+1 = ��w(mt � bmt) + �[�r
e
t+1 + �vt+1 ++�t+1] + �1

where �1 = �[� � g � �cb0 + (1� �)rf ]; and

mt � bmt =
(1� �)(�ret + �vt)� ��t
1� ((1� �)�w) � L

+
�2

1� (1� �)�w

since mt+1 � bmt+1 = ((1 � �)�w)(mt � bmt) + (1 � �)(�ret+1 + �vt+1) � ��t+1 + �2, where L is the

lag operator and �2 = (1 � �)[� � g � �cb0 + (1 � �)rf ]: Hence, consumption growth can now be

written as

�ct+1 = b1f[�(�ret+1 + �vt+1) + ��w
(1� �)(�ret + �vt)
1� ((1� �)�w) � L

]

+ [��t+1 �
��t

1� ((1� �)=�) � L ] + �g

where � is the constant term.

9.6. Appendix F Proof of Proposition 7

Proof. (1) it is straightforward from the expression (5.10).

(2)

cov[ lim
S!1

(ct+1+S � ct); ret+1] = covt[ lim
S!1

(
SX
s=0

�ct+1+s); r
e
t+1]

= H1� lim
S!1

[1 + (1� �)�w + � � �+ ((1� �)�w)S ]�!2u + b1��!uv

= b1
�

1� (1� �)�w
�!2u + b1��!uv:

(3) Since

� � 
covt[ lim
S!1

(ct+1+S � ct); ret+1]

= 
[b1
�

1� (1� �)�w
�!2u + b1��!uv];

we can easily obtain

� = #2[
�


b1!2u
� ��!uv


!2u
] (9.20)
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Table 1: Ultimate risk and optimal share in equities

RRA 
 = 1:01 RRA 
 = 1:5

channel capacity � (nats) ultimate risk optimal share �� ultimate risk optimal share ��

0:025 5:3383 0:3469 5:3383 0:2313

0:04 2:0011 0:9254 2:0011 0:6169

0:1 1:2318 1:5033 1:2318 1:0022

0:5 1:0249 1:8069 1:0249 1:2046

1 1:0066 1:8398 1:0066 1:2265

3 1:0001 1:8517 1:0001 1:2344

Note that the above results are based on the following baseline parameter values: � = 0:96; ��
rf + 1

2!
2
u = 6%; and !

2
u = 18%:
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Figure 1: the relationship between long-term consumption risk and channel capacity.
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64



0 1 2 3
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Relationship bw ∆ ln(C t) and ln(R t­ j)

period (3 quarters)

CEX Data (SH <$1000)
the CCAPM with κ=0.14

0 1 2 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

period (3 quarters)

Relationship bw ∆ ln(C t) and ln(R t­ j)

CEX Data (SH<$10000)
the CCAPM with κ=0.22

Figure 3

65



0 5 10 15 20 25
0

2

4

6
x 10­4 The Covariance of ln(Rt+1) and ln(Ct+s/Ct+s­ 1)

s (quarters)

κ=0.1
κ=0.2
κ=0.3
US
Countries with LSM

Figure 4

66


