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Abstract

This notes proposes an approximation to the consumption function in
the buffer-stock model.
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1 Introduction

This paper provides a class of C∞ function to approximate the consumption
function in the buffer stock model of saving. The approximation is derived for
the Carroll’s (1992) incarnation of the buffer stock model, but equally applies
to the Deaton’s (1991) version of such model. It relies on the monotonicity of
the consumption function, on concavity, and on the fact that the consumption
function is bounded from above and from below and so is its derivative.

The paper is organized as follows. Notation is lied down in Section 2. Section
3 reviews two class methods for numerically solving the model: a class of stan-
dard methods and the endogenous gridpoints algorithm. The approximation is
derived and discussed in Section 4. Section 5 deals with two examples, one for
a US parametrized economy, the other for Italy, while section 6 concludes.

2 The notation

Consumers live from time 0 to time T . They maximize:

E0

T∑
t=0

βtu (Ct)
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with respect to consumption, Ct, under the dynamic budget constraint:

Wt+1 = R[Wt + Yt − Ct]

where β is the subjective discount factor, Wt+1 and Wt are, respectively, non-
human wealth at time t + 1 and at time t, R the interest factor and Yt labor
income at time t. The utility function is assumed to be of the CRRA type, i.e.:

u (Ct) =
C1−ρ

t

1− ρ

where ρ is the coefficient of relative risk aversion. Labor income shifts due to
transitory and permanent shocks:

Yt = PtΞt

Pt = GPt−1Ψt

where Pt is permanent income, Ξt is the transitory and Ψt the permanent income
shocks, G is the growth factor of permanent income. Income is zero with a small
probability p, i.e.:

Ξt+n =
{

0 with probability p > 0
Θt+n

q with probability q ≡ 1− p

Furthermore, following Carroll (1992) we assume that transitory and permanent
shocks are dawn from a log-normal distribution and that: Et[Θt+n] = 1 for n >
0, that var (log Θt+n) = σ2

θ , that Et[Ψt+n] = 1 and that var (log Ψt+n) = σ2
ψ.

Finally, it is assumed that consumer cannot die in debt, i.e.

CT ≤ WT + YT

This last assumption naturally leads to use the dynamic programming princi-
ple.1 The Bellman equation for the consumer problem is:

Vt (Wt, Pt) = max
Ct

{u (Ct) + βEtVt+1 (Wt+1, Pt+1)}
s.t.
Pt+1 = GPtΨt+1

Wt+1 = R[Wt − Ct + Yt]

In order to exploit the homogeneity of the utility function, one can define cash-
on-hand as:

Mt = Wt + Yt

This allows to rewrite the Bellman equation as:

vt (mt) = max
ct

{
u(ct) + βEtG

1−ρΨ1−ρ
t+1 vt+1(mt+1)

}

s.t.
mt+1 = R

GΨt+1
[mt − ct] + Ξt+1

(1)

1The non-stationary nature of the problem is not an issue in this context, thanks to the
homogeneity of the objective function.
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where mt = Mt/Pt and ct = Ct/Pt. Carroll (2004) shows that (1) defines a
contraction mapping under three restrictions: (i) G < R; (ii) (Rβ)

1
ρ < R; (iii)

RβEt[GΨ−ρ
t+n] < 1. The first condition guarantees that human capital does

not explode; the second that consumers are not too patient; the third that
consumers are impatient enough for cash-on-hand not to go to infinity. Carroll
(2004) also shows that the consumption function is increasing, concave and that
it is bounded from above and from below; moreover, that there exists a unique
and stable level of cash-on-hand, the target m∗, such that Etmt+1 = mt if
mt = m∗.

3 Standard solution methods and the endoge-
nous grid-point algorithm

Problem (1) has not a closed form solution. This means that its solution requires
employing numerical methods. The problem is naturally characterized as a
recursive one, which means that the solution can be found by value or policy
function iteration or using projection methods.2

A common solution strategy amounts to iterate Euler Equation for consump-
tion, starting from cT = mT :

u′ (ct) = βREt

{
G−ρΨ−ρ

t+1v
′
t+1[

R

GΨt+1
(mt − ct) + Ξt+1]

}

where, from the envelope condition, v′t (mt) = u′ (ct). In order to iterate the
Euler equation, one needs to discretize the state-space. This amounts to define
a grid for mt, i.e. {µ1, µ2, · · · , µI}, to discretize the distribution of permanent
and transitory income shocks. and solve:

u′ (χ1) = βREt

{
G−ρΨ−ρ

t+1v
′
t+1[

R
GΨt+1

(µ1 − χ1) + Ξt+1]
}

u′ (χ2) = βREt

{
G−ρΨ−ρ

t+1v
′
t+1[

R
GΨt+1

(µ2 − χ2) + Ξt+1]
}

...

...
u′ (χI) = βREt

{
G−ρΨ−ρ

t+1v
′
t+1[

R
GΨt+1

(µI − χI) + Ξt+1]
}

(2)

with respect to {χ1, χ2, · · · , χI}. The consumption function is then obtained by
interpolating the couples {(χ1, µ1), (χ2, µ2), · · · , (χI , µI)}. Solving system (2)
requires evaluating the expected value of the marginal utility of consumption
at each of the grid points. This entails a substantial amount of computer time,
for fine enough state-space grids.

2For an introductory treatment of the topic see Adda and Cooper, 2003; more advanced
readers might want to look at Judd, 1998
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The endogenous gridpoints algorithm improves on standard solution meth-
ods (see Carroll, 2005). Instead of defining a grid for mt, the algorithm requires
discretizing mt − ct, i.e. the end of period asset, and solving:

χ1 = u
′−1

{
βREt

[
G−ρΨ−ρ

t+1v
′
t+1(

R
GΨt+1

α1 + Ξt+1)
]}

χ2 = u
′−1

{
βREt

[
G−ρΨ−ρ

t+1v
′
t+1(

R
GΨt+1

α2 + Ξt+1)
]}

...

...
χI = u

′−1
{

βREt

[
G−ρΨ−ρ

t+1v
′
t+1(

R
GΨt+1

αI + Ξt+1)
]}

(3)

where {α1, α2, · · · , αI} is the grid for the end of period asset. The endoge-
nous gridpoints algorithm is more efficient than other standard methods since it
evaluates expectations only for points used in the interpolating functions. This
translates into non-negligible savings in the amount of computer time needed to
solve the consumers problem. We thus compare our approximate consumption
function with that obtained using the endogenous grid-point method.

4 The approximate consumption function

Carroll (2004) shows that the consumption function, c(m), satisfies the following
properties:

• c(m) is a C∞ function , from R+ to R+.

• c(0) = 0 and lim
m→∞

c(m) = ∞.

• c(m) is strictly increasing and concave, i.e c′(m) > 0 and c′′(m) < 0.

• lim
m→0

c′(m) = κ and lim
m→∞

c′(m) = κ with κ > κ > 0 and κ, κ ∈ R+.

Our approximate consumption function is given by:

c(m) = 2(κ− κ)[m− 1
b
(log(1 + exp(bm)− log(2))] + κm (4)

where:

κ = 1−R−1(Rβp)
1
ρ

κ = 1−R−1(Rβ)
1
ρ

where b is a strictly positive real. Differentiating (4) one obtains the Fermi-Dirac
distribution, i.e.:

c′(m) =
2(κ− κ)

1 + exp(bm)
+ κ (5)
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The parameter b governs the degree of concavity of the consumption function.
The higher b, the sooner the derivative of approximate consumption function
converges to its limit, κ. Carroll and Kimball (1996) show that uncertainty
reduces consumption for each level of cash-on-hand. So the higher is uncertainty,
the larger has to be b. Figure 1 plots the approximate consumption function
for various values of b and for G = 1.015, R = 1.025, ρ = 2, β = 0.96, and
p = 0.005.

Given the growth factor of income, the interest factor, the probability of
unemployment, the discount factor and the relative risk aversion, b is set to make
the approximate consumption function as much close to the true consumption
function. The next section compares the approximate consumption with the
consumption function obtained employing the endogenous grid point algorithm
to solve the consumers problem in a US and an Italy parametrized economy.
Since in the two economy agents face a very diverse degree of uncertainty, the
exercise will help to understand how the quality of the approximation varies
with uncertainty.

5 Two examples

To be written.

6 Conclusions

To be written.
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Figure 1: The approximate consumption function
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