
Welfare Gains from Monetary Commitment in a

Model of the Euro-Area∗

Paul Levine

University of Surrey

Peter McAdam

European Central Bank

Joseph Pearlman

London Metropolitan University

January 30, 2006

Abstract

This paper sets out first, to quantify the stabilization gains from commitment in

terms of household welfare and second, to examine how commitment to an optimal

or approximately optimal rule can be sustained as an equilibrium in which reneging

hardly ever occurs. We utilize an influential empirical micro-founded DSGE model,

the Euro-Area model of Smets and Wouters (2003), and a quadratic approximation

of the representative household’s utility as the welfare criterion. We impose the effect

of a lower zero nominal interest rate bound. In contrast with previous studies we find

substantial stabilization gains from commitment – as much as a 5 − 6% permanent

increase in consumption. We also find that a simple optimized commitment rule with

the nominal interest rate responding to current inflation and the real wage closely

mimics the optimal rule.
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1 Introduction

Following the pioneering contributions of Kydland and Prescott (1977) and Barro and

Gordon (1983), the credibility problem associated with monetary policy has stimulated a

huge academic literature that has been influential with policymakers. The central message

underlying these contributions are the existence of significant macroeconomic gains, in

some sense, from ‘enhancing credibility’ through formal commitment to a policy rule or

through institutional arrangements for central banks such as independence, transparency,

and forward-looking inflation targets, that achieve the same outcome.

In the essentially static model used in these seminal papers and in much of the huge

literature they inspired, the loss associated with a lack of credibility takes the form of a

long-run inflationary bias. For a dynamic models of the New Keynesian genre, such as the

DSGE Euro-Area model employed in this paper, the influential review of Clarida et al.

(1999) emphasizes the stabilization gains from commitment which exist whether or not

there is a long-run inflationary bias. But what are the size of these stabilization gains

from commitment? If they are small then the credibility problem is solely concerned with

the credibility of long-run low inflation.

This paper sets out first, to quantify the stabilization gains from commitment in terms

of household welfare and second, to examine how commitment to an optimal or approx-

imately optimal rule can be sustained as an equilibrium in which reneging hardly ever

occurs. Previous work has addressed these issues (see, for example, Currie and Levine

(1993) and Dennis and Söderström (2005)), but only in the context of econometric models

without micro-foundations and using an ad hoc loss function, or both. The credibility issue

only arises because the decisions of consumers and firms are forward looking and depends

on expectations of future policy. In the earlier generation of econometric models lack-

ing micro-foundations, many aspects of such forward-looking behaviour were lacking and

therefore important sources of time-inconsistency was missing. Although for simple New

Keynesian models a quadratic approximation of the representative consumer’s coincides

with the standard ad hoc loss that penalizes variances of the output gap and inflation, in

more developed DSGE models this is far from the case. By utilizing an influential empiri-

cal micro-founded DSGE model, the Euro-Area model of Smets and Wouters (2003), and

using a quadratic approximation of the representative household’s utility as the welfare

criterion, we remedy these deficiencies of earlier estimates of commitment gains.

An important consideration when addressing the gains from commitment is the exis-

tence of a zero lower nominal interest rate bound. In an important contribution to the

credibility literature, Adam and Billi (2005) show that ignoring this constraint on the
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setting of the nominal interest rate can result in considerably underestimating the stabi-

lization gain from commitment. The reason for this is that under discretion the monetary

authority cannot make credible promises about future policy. For a given setting of future

interest rates the volatility of inflation is driven up by the expectations of the private sec-

tor that the monetary authority will re-optimize in the future. This means that to achieve

a given low volatility of inflation the lower bound is reached more often under discretion

than under commitment. Unlike these authors we stay within a more tractable linear-

quadratic (LQ) framework1 and follow Woodford (2003), chapter 6, in approximating the

effects of a lower bound by imposing the requirement that the interest rate volatility in a

discretionary equilibrium is small enough to ensure that the violations of the zero lower

bound are very infrequent.

The rest of the paper is organized as follows. Section 2 begins by using a simple

New Keynesian model to show analytically how a stabilization bias arises in models with

structural dynamics. It goes on to generalize the treatment to any linear DSGE model

with a quadratic loss function and to also take into account the lower interest rate bound.

We derive closed-form expressions for welfare under optimal commitment, discretion and

simple commitment rules and use these to derive a ‘no-deviation condition’ for commitment

to exist as an equilibrium in which reneging on commitment takes place very infrequently.

Section 3 sets out a version of the Smets-Wouter model (henceforth SW) with two

additional features: we incorporate external habit formation in labour supply in addition

to that in consumption and we add distortionary taxes. A linearization of the model

about a zero-interest steady state and a quadratic approximation of the representative

household’s utility (provided in section 5) sets up the optimization problem facing the

monetary authority in the required LQ framework. Section 4 estimates the modified SW

model and provides a comparison with the original.

In section 5 we examine a relatively neglected aspect of New Keynesian models that

arises with the inclusion of external habit in consumption, namely that the natural rate of

output and employment can actually be below the social optimum making the inflationary

bias negative and taxes welfare-enhancing. In section 6 we address the central questions in

the paper: how big are stabilization gains and how can the fully optimal commitment rule

or a simple approximation be sustained as an equilibrium given the time-inconsistency

problem? Section 7 concludes the paper.

1A LQ framework is convenient for a number of reasons: it allows closed-form expressions for the

welfare loss under optimal commitment, discretion and simple commitment rules that enable us to study

the incentives to renege on commitment. A linear framework allows us to characterize saddle-path stability

and the possible indeterminacy of simple rules. A further benefit is that for very simple models we can

express the all these rules as analytic solutions.
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2 The Time Inconsistency Problem

2.1 The Stabilization Bias in Two Simple DSGE Models

We first demonstrate how a stabilization bias in addition to the better known long-run

inflationary bias can arise using two simple and now very standard DSGE models. The

first popularized notably by Clarida et al. (1999) and Woodford (2003) is ‘New Keynesian’

and takes the form.

πt = βEtπt+1 + λyt + ut (1)

yt = Etyt+1 −
1

σ
(rt − Etπt+1) (2)

In (1) and (2), πt is the inflation rate, β is the private sector’s discount factor, Et(·) is

the expectations operator and yt is output measured relative to its flexi-price value, the

‘output gap’, which equals consumption measured relative to its flexi-price value in this

closed-economy model without capital stock or government spending. (1) is derived as a

linearized form of Calvo staggered price setting about a zero-inflation steady state and (2)

is a linearized Euler equation with nominal interest rate rt and a risk aversion parameter σ.

ut is a zero-mean shock to marginal costs. All variables are expressed as deviations about

the steady state, πt and rt as absolute deviations, and yt as a proportional deviation.

The second model simply replaces (1) with a ‘New Classical Phillips Curve’ (see Wood-

ford (2003), chapter 3):

πt = Et−1πt + λyt + ut (3)

This aggregate supply curve can be derived by assuming some firms fix prices one period

in advance and others can adjust immediately.

Kydland and Prescott (1977) and Barro and Gordon (1983) employed the ‘New Clas-

sical Phillips Curve’ (3) and showed that a time-inconsistency or credibility problem in

monetary policy arises when the monetary authority at time 0 sets a state-contingent

inflation rate πt to minimize a loss function

Ω0 = E0

[
(1 − β)

∞∑

t=0

βt
[
wy(yt − k)2 + π2

t

]
]

(4)

Having set the inflation rule, the Euler equation (2) then determines the nominal interest

rate that will put the economy on a path with the implied interest rate trajectory. The

constant k in the loss function arises because the steady state is inefficient owing to

imperfect competition and other distortions. For this simple, essentially static model of

the economy (it is really SGE rather than DSGE), optimal rules must take the form of a

constant deterministic component plus a stochastic shock-contingent component. These
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rules depend on whether the policymaker can commit, or she exercises discretion and

engages in period-by-period optimization. The standard results in these two cases are

respectively:

πt =
wy

wy + λ2
ut = πC(ut) (5)

πt =
wuk

λ
+

wy

wy + λ2
ut = πD(ut) (6)

Thus the optimal inflation rule with commitment, πC(ut) consists of zero average infla-

tion plus a shock-contingent component which sees inflation raised (i.e., monetary policy

relaxed) in the face of a negative supply shock. The discretionary policy, πD(ut), can

be implemented as a rule with the same shock-continent component as the ex ante op-

timal rule. The only difference is now that it includes a non-zero average inflation or

inflationary bias equal to wuk
λ which renders the rule time-consistent. The credibility

or ‘time-inconsistency’ problem, first raised by Kydland and Prescott, was simply how to

eliminate the inflationary bias whilst retaining the flexibility to deal with exogenous shocks.

We have established that there are no stabilization gains from commitment in a model

economy characterized by the New Classical Philips Curve. This is no the case when

we move to the New Keynesian Phillips Curve, (1). Then using general optimization

procedures described below in section 2.2.2 and in Appendix A, (5) and (6) now become

πC
t = πC

t (ut, ut−1) = δπC
t−1 + δ(ut − ut−1) (7)

πD
t = πD

t (ut) =
wuk

λ
+

wu

wu + λ2
ut (8)

where δ =
1−
√

1−4βb2

2bβ .2 Comparing these two sets of results we see that the discretionary

rule is unchanged, but the commitment rule now is a rule responding to past shocks (i.e.,

is a rule with memory) and therefore the stabilization component of the commitment rules

now differs from that of the discretionary rule. Since the commitment rule is the ex ante

optimal policy it follows that there are also now stabilization gains from commitment. The

time-inconsistency problem facing the monetary authority in a New Keynesian economic

environment now becomes the elimination of the inflationary bias whilst retaining the

flexibility to deal with exogenous shocks in an optimal way.

2.2 The Stabilization Bias in General DSGE Models

The stabilization bias arose in our simple DSGE model by replacing a Phillips Curve

based on one-period ahead price contracts with one based on Staggered Calvo-type price

2See also Clarida et al. (1999)
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setting. In the DSGE model of the Euro Area presented in the next section there are a

number of additional mechanisms that create price, wage and output persistence. The

model also incorporates capital accumulation. All these features add structural dynamics

to the model and these, together will forward-looking behaviour involving consumption,

investment, price-setting and wage- setting add further sources of stabilization gains from

commitment.

To examine this further a general linear state-space model

[
zt+1

Etxt+1

]
= A

[
zt

xt

]
+ Brt + Cǫt+1 (9)

ot = E

[
zt

xt

]
(10)

where zt is a (n − m) × 1 vector of predetermined variables at time t with z0 given, xt, is

a m × 1 vector of non-predetermined variables and ot is a vector of outputs. A, C and A

are fixed matrices and ǫt as a vector of random zero-mean shocks. Rational expectations

are formed assuming an information set {zs, xs, ǫs}, s ≤ t, the model and the monetary

rule. The linearized euro-area model set out in the next section can be expressed in

this form where zt consists of exogenous shocks, lags in non-predetermined and output

variables and capital stock; xt consists of current inflation, the real wage, investment,

Tobin’s Q, consumption and flexi-price outcomes for the latter two variables, and outputs

ot consist of marginal costs, the marginal rate of substitution for consumption and leisure,

the cost of capital, labour supply, output, flexi-price outcomes, the output gap and other

target variables for the monetary authority. Let st = M [zT
t x

T
t ]T be the vector of such

target variables. For both ad hoc and welfare-based loss function discussed below, the

inter-temporal loss function (4) generalizes to

Ω0 = E0

[
(1 − β)

∞∑

t=0

βtLt

]
(11)

where the single-period loss function is given by Lt = s
T
t Q1st = y

T
t Qyt where yt = [zT

t x
T
t ]T

and Q = MT Q1M .

2.2.1 Imposing a Lower Interest Rate Bound Constraint

In the absence of a lower bound constraint on the nominal interest rate the policymaker’s

optimization problem is to minimize (11) subject to (9) and (10). Then complete stabi-

lization of the output gap and inflation is possible, but if shocks are their variances are

sufficiently large this will lead to a large nominal interest rate variability and the possibility
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of it becoming negative. To rule out this possibility and to remain within the convenient

LQ framework of this paper, we follow Woodford (2003), chapter 6, and approximate the

lower interest rate bound effect by introducing constraints of the form

E0

[
(1 − β)

∞∑

t=0

βtrt

]
≥ 0 (12)

E0

[
(1 − β)

∞∑

t=0

βtr2
t

]
≤ K

[
E0

[
(1 − β)

∞∑

t=0

βtrt

]]2

(13)

Then Woodford shows that the effect of these extra constraints is to follow the same

optimization as before except that the single period loss function is replaced with

Lt = y
T
t Qyt + wr(rt − r∗)2 (14)

where wr > 0 if (13) binds (which we assume) and r∗ > 0 if monetary transactions frictions

are negligible, but r∗ < 0 is possible otherwise (i.e., the interest rate must be lower that

that necessary to keep inflation zero in the steady state). In what follows we put r∗ = 0.

2.2.2 Commitment Versus Discretion

To derive the ex ante optimal policy with commitment following Currie and Levine (1993)

we maximize the the Lagrangian

L0 = E0

[
(1 − β)

∞∑

t=0

βt
[
y
T
t Qyt + wrr

2
t ) + pt+1(Ayt + Brt − yt+1)

]
]

(15)

with respect to {rt}, {yt} and the row vector of costate variables, pt, given z0. From

Appendix A where more details are provided, this leads to a optimal rule of the form

rt = D

[
zt

p2t

]
(16)

where [
zt+1

p2t+1

]
= H

[
zt

p2t

]
(17)

and the optimality condition3 at time t = 0 imposes p20 = 0. In (16) and (17) p
T
t =

[
p

T
1t p

T
2t

]

is partitioned so that p1t, the co-state vector associated with the predetermined variables, is

of dimension (n−m)×1 and p2t, the co-state vector associated with the non-predetermined

variables, is of dimension m × 1. The loss function is given by

ΩOP
t = −(1 − β)tr

(
N11

(
Zt +

β

1 − β
Σ

)
+ N22p2tp

T
2t

)
(18)

3Optimality from a ‘timeless perspective’ imposes a different condition at time t = 0 (see Appendix

A.1.2), but this has no bearing on the stochastic component of policy, the focus of this paper.
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where Zt = ztz
T
t , Σ = cov(ǫt),

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(19)

and S is the solution to the steady-state Ricatti equation. In (19) matrices S and N

are partitioned conformably with yt = [zT
t x

T
t ]T so that S11 for instance has dimensions

(n − m) × (n − m).

Note that in order to achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that N22

is negative definite, so the incentive to renege exists at all points along the trajectory of

the optimal policy. This essentially is the time-inconsistency problem facing stabilization

policy in a model with structural dynamics.

To evaluate the discretionary (time-consistent) policy we write the expected loss Ωt at

time t as

Ωt = Et

[
(1 − β)

∞∑

τ=t

βτ−tLτ

]
= (1 − β)(yT

t Qyt + wrr
2
t ) + βΩt+1 (20)

The dynamic programming solution then seeks a stationary solution of the form rt = −Fzt,

Ωt = z
T Sz and x = −Nz where matrices S and N are now of dimensions (n − m) × (n −

m) and m × (n − m) respectively, in which Ωt is minimized at time t subject to (1) in

the knowledge that a similar procedure will be used to minimize Ωt+1 at time t + 1.4

Both the instrument rt and the forward-looking variables xt are now proportional to the

predetermined component of the state-vector zt and the equilibrium we seek is therefore

Markov Perfect. In Appendix A we set out an iterative process for Ft, Nt, and St starting

with some initial values. If the process converges to stationary values independent of these

initial values,5 F, N and S say, then the time-consistent feedback rule is rt = −Fzt with

loss at time t given by

ΩTC
t = (1 − β)tr

(
S

(
Zt +

β

1 − β
Σ

))
(21)

2.2.3 Simple Commitment Rules

There are two problems with the optimal commitment rule. First in all but very simple

models it is extremely complex, with the interest rate feeding back at time t on the full

state vector zt and all past realizations of zt back to the initiation of the rule at t = 0.6

4See Currie and Levine (1993) and Söderlind (1999).
5Indeed we find this is the case in the results reported in the paper.
6See Appendix A.1.1.
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The second problem arises from this latter feature: although the optimal commitment rule

achieves a low volatility of key target variables such as inflation it does so at the expense

of a larger volatility of the interest rate than for discretion. For these reasons we seek to

mimic the optimal commitment rule with simpler rules of the form

rt = Dyt = D

[
zt

xt

]
(22)

where D is constrained to be sparse in some specified way. In Appendix A we show that

the loss at time t is given by

ΩSIM
t = (1 − β)tr

(
V

(
Zt +

β

1 − β
Σ

))
(23)

where V = V (D) satisfies a Lyapanov equation. ΩSIM
t can now be minimized with respect

to D to give an optimized simple rule of the form (22) with D = D∗. A very important

feature of optimized simple rules is that unlike their optimal commitment or optimal

discretionary counterparts they are not certainty equivalent. In fact if the rule is designed

at time t = 0 then D∗ = D∗((Z0 + β
1−β Σ)) and so dependent on the displacement z0 at

time t = 0 and on the covariance matrix of innovations Σ = cov(ǫt). From non-certainty

equivalence it follows that if the simple rule were to be re-designed at ant time t > 0, since

the re-optimized D∗ will then depend on Zt the new rule will differ from that at t = 0.

This feature is true in models with or without rational forward-looking behaviour and it

implies that simple rules are time-inconsistent even in non-RE models.

2.3 Sustaining the Commitment Outcome as An Equilibrium

Suppose that there are two types of monetary policymaker, a ‘strong’ type who likes to

commit and perceives substantial costs from reneging on any such commitment, and a

‘weak’ type who optimizes in an opportunistic fashion on a period-by-period basis. The

‘strong type’ could be a policymaker with a modified loss function as in Rogoff (1985),

Walsh (1995), Svensson and Woodford (1999), though for the case of Rogoff-delegation the

outcome is second-best. In a complete information setting, these types would be observed

by the public and the strong type would pursue the optimal commitment monetary rule

or a simple approximation, and the weak type would pursue the discretionary policy. We

assume there is uncertainty about the type of policymaker and the weak type is trying to

build a reputation for commitment. The game is now one of incomplete information and

we examine the possibility that commitment rules can be sustained as a Perfect Bayesian

Equilibrium.

Consider the following strategy profile.
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1. A strong type follows an optimal or simple commitment rule.

2. In period t a weak type acts as strong and follows the commitment rule with proba-

bility 1 − qt, if it has acted strong (qt = 0) in all previous periods. Otherwise it has

revealed its type and must pursue the discretionary rule.

3. Let ρt the probability assigned by the private sector to the event that the policymaker

is of the strong type. We can regard ρt as a measure of reputation. At the beginning

of period 0 the private sector chooses its prior ρ0 > 0. In period t the private

sector receives the ‘signal’ consisting of the regulated price or the inflation set by

the policymaker. At the end of the period it updates the probability ρt, using Bayes

rule, and then forms expectations of the next period’s regulated price or inflation

rate.

In principle there are three types of equilibria to these games. If both strong and weak

governments send the same message (i.e. implement the same interest rate) we have a

pooling equilibrium. If they send different messages this gives a separating equilibrium. If

one or more players randomizes with a mixed strategy we have a hybrid equilibrium. Thus

in the above game, qt = 0 gives a pooling equilibrium, qt = 1 a separating equilibrium and

0 < qt < 1 a hybrid equilibrium. If qt = 0 is a Perfect Bayesian Equilibrium to this game,

we have solved the time-inconsistency problem.

To show qt = 0, it is sufficient to show that given beliefs by the private sector there

is no incentive for a weak government to ever deviate from acting strong. To show this

we must compare the welfare if the policymaker continues with the optimal commitment

policy at time t with that if it reneges, re-optimizes and then suffers a loss of reputation.

Consider the optimal commitment rule first. At time t the single period loss function

is L(zt, p2t) and the intertemporal loss function can be written

ΩOP
t (zt, p2t) = (1 − β)L(zt, p2t) + βΩOP

t+1(z
OP
t+1, p2,t+1) (24)

where (zOP
t+1, p2,t+1) is given by (17). If the policymaker re-optimizes at time t the corre-

sponding loss is

ΩR
t (zt, 0) = (1 − β)L(zt, 0) + βΩTC

t+1(z
R
t+1) (25)

where from (17) we now have that z
R
t+1 = H11zt.

The condition for a perfect Bayesian pooling equilibrium is that for all realizations of

shocks to (zt, p2t) at every time t the no-deviation condition

ΩOP
t (zt, p2t) < ΩR

t (zt, 0) (26)
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holds. If the condition holds, then the weak authority always mimics the strong author-

ity and follows the commitment rule thus sustaining average zero inflation coupled with

optimal stabilization.

Using (24), (31), (18) and (21) the no-deviation condition (26) can be written as

L(zt, p2t) − L(zt, 0) − βEt

[
tr(SZR

t+1 + N11Z
OP
t+1 + N22p

T
2,t+1p2,t+1)

]

<
β2

1 − β
tr((S + N11)Σ) (27)

The first term on the left-hand-side of (27) is the single-period gain from reneging and

putting p2t = 0. The second term on the left-hand-side of (27) are the possible one-off

stabilization gains since the state of the economy after reneging reflected in z
R
t+1 will be

closer to the long-run than that along the commitment policy reflected in z
OP
t+1, p2t+1. These

two terms together constitute the temptation to renege. Since tr((S +N11) > 0, the right-

hand-side is always positive and constitutes the penalty in the shape of the stabilization

loss when dealing with future shocks following a loss of reputation.

If the time-period is small then the single-period gains are also relatively small and

we can treat the loss of reputation as if it were instantaneous. Then the no deviation

condition becomes simply

ΩOP
t < ΩTC

t (28)

for all realizations of exogenous stochastic shocks. From (18) and (21) this condition

becomes

tr((N11 + S)(Zt +
β

1 − β
Σ) > −tr(N22p2tp

T
2t) (29)

Note that both −N22 and (N11 + S) are positive see Currie and Levine (1993), chapter

5 for a continuous-time analysis on which the discrete-time analysis here is based). It

follows that both the right-hand-side and the left-hand side are positive, so (29) is not

automatically satisfied.

Finally we consider the no-deviation condition for a simple rule. Consider the optimized

rule set at t = 0 which we take to be the steady state. Then Z0 = 0 and D∗ = D∗(Σ).

If the policymaker continues with this policy then in state zt at time t the welfare loss is

given by

ΩSIM
t (zt, D

∗) = (1 − β)L(zt, D
∗) + βΩSIM

t+1 (zSIM
t+1 , D∗) (30)

where z
SIM
t+1 = H(D∗)zt and H is given in Appendix A. If the policy deviates she does to a

re-optimized reneging rule DR = DR((Zt + β
1−β Σ)) which now depends on the realization

of zt at Time t. The welfare loss is then

ΩR
t (zt, D

R) = (1 − β)L(zt, D
R) + βΩTC

t+1(z
R
t+1) (31)
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where z
SIM
t+1 = H(DR)zt. Proceeding as before the no-deviation condition now becomes

L(zt, D
∗) − L(zt, D

R) − βEt

[
tr(SZR

t+1 − V ZSIM
t+1

]

<
β2

1 − β
tr((S − V )Σ) (32)

The intuition behind this condition is very similar to that of (27). In these three no-

deviation conditions (27), (29) and (32), since Zt or p2t are unbounded stochastic variables

there will inevitably be some realizations for which they are not satisfied. In other words

the Bayesian equilibrium must be of the mixed-strategy type with qt > 0. What we

must now show that qt is very small so we will only experience very occasional losses of

reputation. This we examine in section 6.6.

3 The Model

3.1 The Smets-Wouters Model

The Smets-Wouters (SW) model in an extended version of the standard New-Keynesian

DSGE closed-economy model with sticky prices and wages estimated by Bayesian tech-

niques. The model features three types of agents: households, firms and the monetary

policy authority. Households maximize a utility function with two arguments (goods and

leisure) over an infinite horizon. Consumption appears in the utility function relative to

a time-varying external habit-formation variable. Labor is differentiated over households,

so that there is some monopoly power over wages, which results in an explicit wage equa-

tion and allows for the introduction of sticky nominal Calvo-type wages contracts (Calvo

(1983)). Households also rent capital services to firms and decide how much capital to

accumulate given certain capital adjustment costs. Firms produce differentiated goods,

decide on labor and capital inputs, and set Calvo-type price contracts. Wage and price

setting is augmented by the assumption that those prices and wages that can not be freely

set are partially indexed to past inflation. Prices are therefore set as a function of current

and expected real marginal cost, but are also influenced by past inflation. Real marginal

cost depends on wages and the rental rate of capital. The short-term nominal interest

rate is the instrument of monetary policy. The stochastic behavior of the model is driven

by ten exogenous shocks: five shocks arising from technology and preferences, three cost-

push shocks and two monetary-policy shocks. Consistent with the DSGE set up, potential

output is defined as the level of output that would prevail under flexible prices and wages

in the absence of cost-push shocks.

We incorporate three modifications to the SW model. First, we introduce external

habit in labour supply in addition to consumption. As we will see this has an important

11



bearing on the existence of an inflationary bias. This is also true of our second modification,

the addition of distortionary taxes. Finally we adopt a ratio rather than the difference

form for habit more usual in the literature (and in SW). The reason for this is a technical

one discussed in section 2.5 below. In fact, as we show in section 2.7, the two forms of

habit are observationally equivalent.

3.2 Households

There are ν households of which a representative household r maximizes

E0

∞∑

t=0

βtUC,t




(Ct(r)/HC,t)
1−σ

1 − σ
+ UM,t

(
Mt(r)

Pt

)1−ϕ

1 − ϕ
− UL,t

(Lt(r)/HL,t)
1+φ

1 + φ
+ u(Gt)




(33)

where Et is the expectations operator indicating expectations formed at time t, β is the

household’s discount factor, UC,t, UM,t and UL,t are preference shocks Ct(r) is an index

of consumption, Lt(r) are hours worked, HC,t and HL,t represents the habit, or desire

not to differ too much from other households, and we choose HC,t = ChC

t−1, where Ct =
1
ν

∑ν
r=1 Ct(r) ≃

∫ 1
0 Ct(r)dr (normalizing the household number ν at unity) is the average

consumption index, HL,t = LhL

t−1, where Lt is aggregate labour supply defined after (37)

below and hC , hL ∈ [0, 1). When hC = 0, σ > 1 is the risk aversion parameter (or the

inverse of the intertemporal elasticity of substitution)7. Mt(r) are end-of-period nominal

money balances and u(Gt) is the utility from exogenous real government spending Gt.

The representative household r must obey a budget constraint:

Pt(Ct(r) + I(r)) + Et(PD,t+1Dt+1(r))Mt(r) = (1 − Tt)PtYt(r) + Dt(r) + Mt−1(r) (34)

where Pt is a price index, It(r) is investment, Dt+1(r) is a random variable denoting the

payoff of the portfolio Dt(r), purchased at time t, and PD,t+1 is the period-t price of an

asset that pays one unit of currency in a particular state of period t + 1 divided by the

probability of an occurrence of that state given information available in period t. The

nominal rate of return on bonds (the nominal interest rate), Rt, is then given by the

relation Et(PD,t+1) = 1
1+Rt

. Finally Tt is a tax on total income, PtYt(r) where the latter

given by

PtYt(r) = Wt(r)Lt(r) + (RK,tZt(r) − Ψ(Zt(r))PtKt−1(r) + Γt(r) (35)

where Wt(r) is the wage rate, RK,t is the real return on beginning-of period capital stock

Kt−1 owned by households, Zt(r) ∈ [0, 1] is the degree of capital utilization with costs

7When hC 6= 0, σ is merely an index of the curvature of the utility function.
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PtΨ(Zt(r))Kt−1(r) where Ψ′, Ψ′′ > 0, and Γt(r) is income from dividends derived from

the imperfectively competitive intermediate firms plus the net cash inflow from state-

contingent securities. We first consider the case of flexible wages and introduce wage

stickiness at a later stage.

Capital accumulation is given by

Kt(r) = (1 − δ)Kt−1(r) + (1 − S (Xt(r))) It(r) (36)

where Xt(r) =
UI,tIt(r)
It−1(r)

, UI,t is a shock to investment costs and we assume the investment

adjustment cost function, S(·), has the properties S(1) = S′(1) = 0.

As set below, intermediate firms employ differentiated labour with a constant CES

technology with elasticity of supply η. Then the demand for each consumer’s labor is

given by

Lt(r) =

(
Wt(r)

Wt

)
−η

Lt (37)

where Wt =
[∫ 1

0 Wt(r)
1−ηdr

] 1
1−η

is an average wage index and Lt =
[∫ 1

0 Lt(r)
η−1

η dr
] η

η−1

is average employment.

Household r chooses {Ct(r)}, {Mt(r)}, {Kt(r)}, {Z(r)} and {Lt(r)} (or {Wt(r)}) to

maximize (C.2) subject to (34)– (37), taking habit HC,t, HN,t, RK,t and prices and as given.

Imposing symmetry on households (so that Ct(r) = Ct, etc) and putting PB,t = 1
1+Rt

yields, by the standard Lagrangian method, the results:

1 = β(1 + Rt)Et

[
MUC

t+1

MUC
t

Pt

Pt+1

]

= β(1 + Rt)Et

[(
UC,t+1C

−σ
t+1H

σ−1
C,t+1

UC,tC
−σ
t Hσ−1

C,t

)
Pt

Pt+1

]
(38)

(
Mt

Pt

)
−ϕ

=
(Ct − HC,t)

−σ

χPt

[
Rt

1 + Rt

]
(39)

Qt = Et

[
β

(
C−σ

t+1H
σ−1
C,t+1

C−σ
t Hσ−1

C,t

)
(Qt+1(1 − δ) + RK,t+1Zt − Ψ(Zt+1))

]
(40)

1 = Qt[1 − (1 − S(Xt) − S′(Xt)Xt]

+ βEtQt+1

(
C−σ

t+1H
σ−1
C,t+1

C−σ
t Hσ−1

C,t

)
S′(Xt)

UI,t+1I
2
t+1

I2
t

(41)

RK,t = Ψ′(Zt) (42)

Wt(1 − Tt)

Pt
= − 1

(1 − 1
η )

MUL
t

MUC
t

=
UL,t

(1 − 1
η )

Lφ
t H−1−φ

L,t Cσ
t H1−σ

C,t (43)

where MUC
t and MUL

t are the marginal utilities of consumption and work respectively.

(38) is the familiar Keynes-Ramsey rule adapted to take into account of the consumption
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habit. In (39), the demand for money balances depends positively on consumption relative

to habit and negatively on the nominal interest rate. Given the central bank’s setting of the

latter, (39) is completely recursive to the rest of the system describing our macro-model.In

(40) and (41), Qt is the real value of capital (Tobin’s Q) and these conditions describe

optimal investment behaviour. (42) describes optimal capacity utilization. In (43) the real

disposable wage is proportional to the marginal rate of substitution between consumption

and leisure (equal to -
MUL

t

MUC
t

) this constant of proportionality reflecting the market power

of households arising from their monopolistic supply of a differentiated factor input with

elasticity η.

3.3 Firms

Competitive final goods firms use a continuum of intermediate goods according to a con-

stant returns CES technology to produce aggregate output

Yt =

(∫ 1

0
Yt(f)(ζ−1)/ζdm

)ζ/(ζ−1)

(44)

where ζ is the elasticity of substitution. This implies a set of demand equations for each

intermediate good m with price Pt(f) of the form

Yt(f) =

(
Pt(f)

Pt

)
−ζ

Yt (45)

where Pt =
[∫ 1

0 Pt(f)1−ζdm
] 1

1−ζ
. Pt is an aggregate intermediate price index, but since

final goods firms are competitive and the only inputs are intermediate goods, it is also the

domestic price level.

In the intermediate goods sector each good m is produced by a single firm m us-

ing differentiated labour and capital with another constant returns Cobb-Douglas-CES

technology:

Yt(f) = At(Zt(f)Kt−1(f))αLt(f)1−α − F (46)

where F are fixed costs and

Lt(f) =

(∫ 1

0
Lt(r, f)(η−1)/ηdr

)η/(η−1)

(47)

is an index of differentiated labour types used by the firm, where Lt(r, f) is the labour

input of type r by firm m, and At is an exogenous shock capturing shifts to trend total

factor productivity (TFP) in this sector. Minimizing costs PtRK,tZt(f)Kt−1(f)+WtLt(f)

gives
WtLt(f)

ZtPtRK,tKt−1(f)
=

1 − α

α
(48)
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Then aggregating over firms and denoting
∫ 1
0 Lt(r, f)dm = Lt(r) leads to the demand for

labor as shown in (37). In an equilibrium of equal households and firms, all wages adjust

to the same level Wt and it follows that Yt = At(ZtKt−1)
αL1−α

t . For later analysis we

need the firm’s minimum real marginal cost:

MCt =

(
Wt

Pt

)1−α
Rα

K

At
α−α(1 − α)1−α (49)

Turning to price-setting, we assume that there is a probability of 1− ξP at each period

that the price of each good mf is set optimally to P 0
t (f). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.8 With indexation

parameter γP ≥ 0, this implies that successive prices with no re-optimization are given by

P 0
t (f), P 0

t (f)
(

Pt

Pt−1

)γP

, P 0
t (mf)

(
Pt+1

Pt−1

)γP

, ... . For each producer m the objective is at

time t to choose P 0
t (f) to maximize discounted profits

Et

∞∑

k=0

ξk
HDt+kYt+k(f)

[
P 0

t (f)

(
Pt+k−1

Pt−1

)γP

− Pt+kMCt+k

]
(50)

where Dt+k is the discount factor over the interval [t, t+k], subject to a common downward

sloping demand given by (45). The solution to this is

Et

∞∑

k=0

ξk
P Dt+kYt+k(f)

[
P 0

t (f)

(
Pt+k−1

Pt−1

)γP

− ζ

(ζ − 1)
Pt+kMCt+k

]
= 0 (51)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξP

(
Pt

(
Pt

Pt−1

)γP
)1−ζ

+ (1 − ξP )(P 0
t+1(f))1−ζ (52)

3.4 Staggered Wage-Setting

We introduce wage stickiness in an analogous way. There is a probability 1− ξW that the

wage rate of a household of type r is set optimally at W 0
t (r). If the wage is not re-optimized

then it is indexed to last period’s CPI inflation. With a wage indexation parameter γW

the wage rate trajectory with no re-optimization is given by W 0
t (r), W 0

t (r)
(

Pt

Pt−1

)γW

,

W 0
t (r)

(
Pt+1

Pt−1

)γW

, · · ·. The household of type r at time t then chooses W 0
t (r) to maximize

Et

∞∑

k=0

(ξW β)k


W 0

t (r)(1 − Tt+k)

(
Pt+k−1

Pt−1

)γW

Lt+k(r)
MUC

t+k(r)

Pt+k
−

(
Lt+k(r)/LhL

t+k−1

)1+φ

1 + φ




(53)

8Thus we can interpret 1
1−ξP

as the average duration for which prices are left unchanged.
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where MUC
t (r) is the marginal utility of consumption income and Lt(r) is given by (37).

The first-order condition for this problem is

Et

∞∑

k=0

(ξW β)k W η
t+k

(
Pt+k−1

Pt−1

)
−γW η

Lt+kΛt+k(r)
[
W 0

t (r)(1 − Tt+k)

(
Pt+k−1

Pt−1

)γW

− η

(η − 1)

Lφ
t+k(r)/L

hL(1+φ)
t+k−1

Λt+k(r)

]
= 0 (54)

Note that as ξW → 0 and wages become perfectly flexible, only the first term in the

summation in (B.10) counts and we then have the result (43) obtained previously. By

analogy with (52), by the law of large numbers the evolution of the wage index is given by

W 1−η
t+1 = ξW

(
Wt

(
Pt

Pt−1

)γW
)1−η

+ (1 − ξW )(W 0
t+1(r))

1−η (55)

3.5 Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating

the supply and demand of the consumer good we obtain

Yt = At(ZtKt−1)
αL1−α

t = Ct + Gt + It + Ψ(Zt)Kt−1 (56)

Assuming the same tax rate levied on all income (wage income plus dividends) a balanced

budget government budget constraint

PtGt = PtTtYt + Mt − Mt−1 (57)

completes the model. Given the interest rate Rt (expressed later in terms of an optimal or

IFB rule) the money supply is fixed by the central banks to accommodate money demand.

By Walras’ Law we can dispense with the bond market equilibrium condition and therefore

the government budget constraint that determines taxes τt. Then the equilibrium is defined

at t = 0 by stochastic processes Ct, Bt, It, Pt, Mt, Lt, Kt, Zt, RK,t, Wt, Yt, given past

price indices and exogenous shocks and government spending processes.

In what follows we will assume a ‘cashless economy’ version of the model in which both

seigniorage in (57) and the utility contribution of money balances in (C.2) are negligible.

Then given the nominal interest rate, our chosen monetary instrument, we can dispense

altogether with the money demand relationship (39).
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3.6 Zero-Inflation Steady State

A deterministic zero-inflation steady state, denoted by variables without the time sub-

scripts, Et−1(UC,t) = 1 and Et−1(UN,t) = κ is given by

1 = β(1 + R) (58)

Q = β(Q(1 − δ) + RKZ − Ψ(Z)) (59)

RK = Ψ′(Z) (60)

Q = 1 (61)

W (1 − T )

P
=

κ

1 − 1
η

Lφ−hL(1+φ)Cσ+hC(1−σ) (62)

Y = AKαL1−α − F (63)
WL

PZRKK
=

1 − α

α
(64)

1 =
P 0

P
=

MC(
1 − 1

ζ

) (65)

MC =

(
W
P

)1−α
Rα

K

A
α−α(1 − α)1−α (66)

Y = C + (δ + Ψ(Z))K + G (67)

T =
G

Y
(68)

giving us 11 equations to determine R, Z, Q, W
P , L, K, RK , MC, C, Y , and T . In our

cashless economy the price level is indeterminate.

The solution for steady state values decomposes into a number of independent calcu-

lations. First from (58) the natural rate of interest is given by

R =
1

β
− 1 (69)

which is therefore pinned down by the household’s discount factor. Equations (59) to (61)

give

1 = β[1 − δ + ZΨ′(Z) − Ψ(Z)] (70)

which determines steady state capacity utilization. SW further assume that Z = 1 and

Ψ(1) = 0 so that (70) and (60) imply that RK = Ψ′(Z) = 1
β − 1 + δ = R + δ meaning that

perfect capital market conditions apply in the deterministic steady state.

From (64) to (66) a little algebra yields the capital-labour ratio and the real wage W
P :

K

L
=

[
A

(
1 − 1

ζ

)
α

RK

] 1
1−α

(71)

W

P
=

(1 − α)RK

α

K

L
(72)
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Then (62), (63) and (67) give

Y (1+φ)(1−hL)+(σ−1)(1−hC)

(
1 − δ K

L

(A
(

K
L

)α − F )
− G

Y

)σ+hC(1−σ)

=
(1 − α)(1 − T )

(
1 − 1

η

) (
1 − 1

ζ

)
A(1+φ)(1−hL)

(
K
L

)α(1+φ)(1−hL)

κ
(73)

For σ > 1, which empirically proves to be the case, and given he capital-labour ratio K
L ,

the left-hand-side of (73) is increasing in output Y . Thus given government spending

as a proportion of GDP, and given the capital-labour ratio, the natural rate of output

falls as market power in output and labour markets increases (with decreases in ζ and

η respectively), distortionary taxes T increase. Market power, distortionary taxes and

external habit persistence are all sources of inefficiency, but as we shall now see, they do

not impact in the same direction.

3.7 Linearization about the Zero-Inflation Steady State

We now linearize about the deterministic zero-inflation steady state. Define all lower case

variables as proportional deviations from this baseline steady state except for rates of

change which are absolute deviations.9 Then the linearization takes the form:

(σ + (σ − 1)hC)ct = (σ − 1)hCct−1 + σEtct+1

− (rt − Etπt+1 + EtuC,t+1 − uC,t) (74)

qt = β(1 − δ)Etqt+1 − (rt − Etπt+1) + βZEtrK,t+1 + ǫQ,t (75)

zt =
rK,t

ZΨ′′(Z)
=

ψ

RK
rK,t where ψ =

Ψ′(Z)

ZΨ′′(Z)
(76)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

S′′(1)(1 + β)
qt +

βuI,t+1 − uI,t

1 + β
(77)

πt =
β

1 + βγP
Etπt+1 +

γP

1 + βγP
πt−1 +

(1 − βξP )(1 − ξP )

(1 + βγP )ξP
mct + ǫP,t(78)

kt = (1 − δ)kt−1 + δit (79)

9That is, for a typical variable Xt, xt = Xt−X
X

≃ log
(

Xt

X

)
where X is the baseline steady state. For

variables expressing a rate of change over time such as rt, xt = Xt − X.
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mct = (1 − α)wrt +
α

RK
rK,t − at (80)

wrt =
β

1 + β
Etwrt+1 +

1

1 + β
wrt−1 +

β

1 + β
Etπt+1 −

1 + βγW

1 + β
πt +

γW

1 + β
πt−1

+
(1 − βξW )(1 − ξW )

(1 + β)ξW (1 + ηφ)
(mrst − wrt + tt) + ǫW,t (81)

mrst = σct − hC(σ − 1)ct−1 + φlt − hL(1 + φ)lt−1 + uL,t (82)

lt = kt−1 +
1

RK
(1 + ψ)rK,t − wrt (83)

yt = cyct + gygt + iyit + kyψrK,t (84)

yt = φF [at + α(
ψ

RK
rK,t + kt−1) + (1 − α)lt] where φF = 1 +

F

Y
(85)

gt − yt = tt (86)

uC,t+1 = ρCuC,t + ǫC,t+1 (87)

uL,t+1 = ρLuL,t + ǫL,t+1 (88)

uI,t+1 = ρIuI,t + ǫI,t+1 (89)

gt+1 = ρggt + ǫg,t+1 (90)

at+1 = ρaat + ǫa,t+1 (91)

where “inefficient cost-push” shocks ǫQ,t, ǫP,t and ǫW,t have been added to value of capital,

the marginal cost and marginal rate of substitution equations respectively. Variables yt, ct,

mct, uC,t, uN,t, at, gt are proportional deviations about the steady state. [ǫC,t, ǫN,t, ǫg,t, ǫa,t]

are i.i.d. disturbances. πt, tt, rK,t and rt are absolute deviations about the steady state.10

For later use we require the output gap the difference between output for the sticky price

model obtained above and output when prices and wages are flexible, ŷt say. Following

SW we also eliminate the inefficient shocks from this target level of output. The latter,

obtained by setting ξP = ξW = ǫQ,t+1 = ǫP,t+1 = ǫW,t+1 = 0 in (78) to (84), is in deviation

10Note that in the SW model they define r̂K,t =
rK,t

RK
. Then zt = Ψ′(Z)

ZΨ′′(Z)
r̂K,t = ψr̂K,t. In our set-up

zt = ψ

RK
rK,t has been eliminated.
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form given by11

(σ + (σ − 1)hC)ĉt = (σ − 1)hC ĉt−1 + σEtĉt+1

− (r̂t − Etπ̂t+1 + EtuC,t+1 − uC,t) (92)

q̂t = β(1 − δ)Etq̂t+1 − (r̂t − Etπ̂t+1) + βZEtr̂K,t+1 (93)

ît =
1

1 + β
ît−1 +

β

1 + β
Etît+1 +

1

S′′(1)(1 + β)
q̂t +

βuI,t+1 + uI,t

1 + β
(94)

k̂t = (1 − δ)k̂t−1 + δît (95)

m̂ct = 0 = (1 − α)ŵrt +
α

RK
r̂K,t − at (96)

m̂rst = ŵrt − t̂t = σĉt − hC(σ − 1)ĉt−1 + φl̂t − hL(1 + φ)l̂t−1 + uL,t(97)

l̂t = k̂t−1 +
1

RK
(1 + ψ)r̂K,t − ŵrt (98)

ŷt = cy ĉt + gygt + iy ît + kyψr̂K,t (99)

ŷt = φF [at + α(
ψ

RK
r̂K,t + k̂t−1) + (1 − α)l̂t] (100)

gt = t̂t (101)

In this system (92) determines the trajectory for the natural real rate of interest r̂t−Etπ̂t+1

given the potential consumption ĉt. Then the remaining equations determine q̂t, ît, k̂t,

r̂K,t, ŵrt, l̂t, ĉt, ŷt and t̂t, given gt. Eliminating superfluous variables, we can write the

combined sticky and flexi price-wage model in the required state space form (9) and (10),

where zt = [uC,t, uL,t, uI,t, at, gt,ǫQ,t, ǫP,t, ǫW,t, ct−1, ĉt−1,ct−1, ĉt−1,lt−1, l̂t−1,kt−1, k̂t−1, rt−1,

πt−1, wrt−1, lt−1] is a vector of predetermined variables at time t and xt = [ct, πt, wrt, it, qt,

ît, q̂t], are non-predetermined variables. Thus the output gap, ŷt − yt is obtained. Table 1

provides a summary of our notation.

11Note that the zero-inflation steady states of the sticky and flexi-price steady states are the same.
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πt producer price inflation over interval [t − 1, t]

rt nominal interest rate over interval [t, t + 1]

wrt = wt − pt real wage

mct marginal cost

mrs marginal rate of substitution between work and consumption

lt employment

zt capacity utilization

kt end-of-period t capital stock

it investment

rK,t return on capital

qt Tobin’s Q

ct consumption

yt, ŷt output with sticky prices and flexi-prices

ot = yt − ŷt output gap

tt tax rate

uC,t+1 = ρauC,t + ǫC,t+1 AR(1) process for utility preference shock, uC,t

uL,t+1 = ρauL,t + ǫL,t+1 AR(1) process for utility preference shock, uL,t

uI,t+1 = ρauI,t + ǫI,t+1 AR(1) process for investment cost shock, uI,t

at+1 = ρaat + ǫa,t+1 AR(1) process for factor productivity shock, at

gt+1 = ρggt + ǫg,t+1 AR(1) process government spending shock, gt

β discount parameter

γP , γW indexation parameters

hC , hL habit parameters

1 − ξP , 1 − ξW probability of a price, wage re-optimization

σ risk-aversion parameter

φ disutility of labour supply parameter

Table 1. Summary of Notation (Variables in Deviation Form).

3.8 Habit, Observational Equivalence and Identification of Parameters:

Although it proves convenient for the linearization and quadratic approximation, there is

an observational equivalence between the two linearized forms. If we denote the two forms

by the superscripts D, R, then the relationship between the key parameters that differ is
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as follows:

σR =
σD

1 − hD
C

(σR − 1)hR
C =

hD
C σD

1 − hD
C

φR =
φD

1 − hD
L

(1 + φR)hR
L =

hD
L φD

1 − hD
L
(102)

There is an additional identification issue that has been addressed by Smets and Wouters.

This relates to the parameter η. This parameter only occurs in the linearization within the

context of the marginal utility of labour. Thus the three parameters η, hL, φ can only be

obtained from estimation of two parameters. Note that η also occurs within the definition

of the steady state of the system, but this is the only equation that can be used for pinning

down the parameter κ. This is the reason that Smets and Wouters pin down η in order

to be able to identify hL, φ.

4 Estimation

The Bayesian approach itself combines the prior distributions for the individual parameters

with the likelihood function to form the posterior density. This posterior density can then

be optimized with respect to the model parameters through the use of the Monte-Carlo

Markov Chain sampling methods. The model is estimated using the Dynare software,

Juillard (2004).12 Table 13 reports the posterior mean and the 5th and 95th confidence

interval of the posterior distribution obtained through the Metropolis-Hasting (MH) sam-

pling algorithm (using 100,000 draws from the posterior and an average acceptance rate of

around 0.25) for the various model variants as well as the marginal likelihood (LL). Note,

in re-estimating we use identical priors to those used in SW.

In the table we report results for five models: the unaltered SW model, then the SW

model without indexing in wages, γW = 0, without indexing in prices, γP = 0, with neither

and finally the SW model with habit in labour supply.13. From the LL values we can see

that the model without any indexing performs the best, followed by the unaltered SW

mode, followed by the model with only price indexing with the habit in labour supply

model well behind the others. In the following sections we provide results for the straight

SW model, but a future version will conduct sensitivity analysis drawing upon all these

model variants.

12We are grateful to Gregory De Walque and Raf Wouters for providing the SW model in dynare code.
13Since we use the SW priors we estimate habit here in difference form. Our welfare calculations use the

ratio form and the transformations (102) to convert these estimates. A model with tax distortions will be

reported in the next version of the paper
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SW γw = 0 γp = 0 γw = γp = 0 hL

ρa 0.89 [0.81:0.96] 0.89 [0.82:0.97] 0.87 [0.80:0.95] 0.88 [0.81:0.96] 0.90 [0.83:0.99]

ρpb 0.84 [0.68:0.99] 0.84 [0.68:0.99] 0.86 [0.71:0.99] 0.86 [0.70:0.99] 0.85 [0.70:0.99]

ρb 0.83 [0.77:0.89] 0.83 [0.77:0.90] 0.84 [0.78:0.90] 0.84 [0.77:0.89] 0.81 [0.74:0.89]

ρg 0.95 [0.90:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99]

ρl 0.91 [0.84:0.97] 0.93 [0.89:0.98] 0.92 [0.88:0.98] 0.93 [0.89:0.98] 0.86 [0.75:0.97]

ρi 0.91 [0.87:0.97] 0.92 [0.86:0.97] 0.92 [0.86:0.97] 0.92 [0.87:0.98] 0.92 [0.86:0.97]

φi 6.79 [5.08:8.55] 6.70 [5.04:8.44] 6.77 [4.96:8.50] 6.78 [5.13:8.65] 6.83 [5.02:8.70]

σ 1.40 [0.94:1.86] 1.44 [0.96:1.88] 1.43 [0.97:1.91] 1.45 [0.97:1.90] 1.47 [1.05:1.95]

hC 0.57 [0.45:0.68] 0.57 [0.45:0.68] 0.57 [0.45:0.68] 0.56 [0.45:0.68] 0.60 [0.48:0.73]

ξw 0.73 [0.66:0.81] 0.71 [0.64:0.77] 0.74 [0.66:0.81] 0.71 [0.65:0.78] 0.75 [0.67:0.82]

φ 2.40 [1.37:3.35] 2.31 [1.29:3.23] 2.39 [1.44:3.39] 2.38 [1.39:3.33] 2.11 [1.13:3.15]

ξp 0.91 [0.89:0.92] 0.91 [0.89:0.92] 0.89 [0.87:0.91] 0.90 [0.88:0.92] 0.91 [0.89:0.93]

ξe 0.54 [0.47:0.61] 0.54 [0.45:0.60] 0.53 [0.46:0.61] 0.53 [0.46:0.60] 0.53 [0.45:0.61]

γw 0.69 [0.44:0.94] - 0.66 [0.40:0.93] - 0.72 [0.49:0.98]

γp 0.44 [0.26:0.60] 0.42 [0.25:0.59] - - 0.46 [0.30:0.63]

ψ−1 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.33 [0.23:0.43]

φF 1.56 [1.39:1.73] 1.57 [1.40:1.74] 1.55 [1.37:1.72] 1.55 [1.39:1.72] 1.59 [1.40:1.75]

θrpi 1.69 [1.54:1.86] 1.70 [1.53:1.86] 1.69 [1.53:1.84] 1.69 [1.52:1.85] 1.69 [1.50:1.85]

θ∆π 0.15 [0.07:0.23] 0.17 [0.09:0.24] 0.17 [0.08:0.25] 0.17 [0.09:0.26] 0.17 [0.08:0.25]

ρ 0.96 [0.94:0.98] 0.96 [0.94:0.98] 0.96 [0.95:0.98] 0.96 [0.95:0.98] 0.96 [0.94:0.99]

θy 0.11 [0.04:0.18] 0.10 [0.03:0.17] 0.11 [0.04:0.19] 0.11 [0.04:0.18] 0.11 [0.03:0.18]

θ∆y 0.15 [0.11:0.19] 0.15 [0.12:0.19] 0.15 [0.12:0.19] 0.16 [0.13:0.20] 0.14 [0.10:0.18]

sd(ǫa) 0.50 [0.39:0.59] 0.49 [0.38:0.58] 0.50 [0.38:0.61] 0.49 [0.39:0.59] 0.47 [0.36:0.57]

sd(ǫπ̄) 0.01 [0.00:0.06] 0.02 [0.00:0.02] 0.02 [0.00:0.03] 0.05 [0.00:0.03] 0.02 [0.00:0.03]

sd(ǫC) 0.38 [0.20:0.56] 0.38 [0.20:0.54] 0.38 [0.19:0.56] 0.37 [0.21:0.54] 0.52 [0.23:0.72]

sd(ǫg) 1.99 [1.73:2.26] 1.99 [1.74:2.26] 1.98 [1.73:2.25] 1.97 [1.73:2.23] 1.99 [1.73:2.26]

sd(ǫL) 3.33 [1.80:4.88] 2.92 [1.58:4.17] 3.22 [1.93:4.55] 3.01 [1.77:4.13] 4.23 [1.49:6.66]

sd(ǫI) 0.07 [0.03:0.10] 0.07 [0.03:0.10] 0.07 [0.03:0.11] 0.07 [0.03:0.10] 0.07 [0.04:0.11]

sd(ǫR) 0.08 [0.04:0.11] 0.09 [0.06:0.13] 0.08 [0.04:0.11] 0.08 [0.05:0.12] 0.08 [0.05:0.13]

sd(ǫQ) 0.61 [0.50:0.70] 0.61 [0.50:0.70] 0.61 [0.52:0.72] 0.61 [0.52:0.73] 0.62 [0.52:0.73]

sd(ǫP ) 0.16 [0.13:0.18] 0.16 [0.14:0.19] 0.21 [0.18:0.25] 0.22 [0.18:0.26] 0.16 [0.14:0.19]

sd(ǫW ) 0.29 [0.24:0.33] 0.27 [0.23:0.31] 0.29 [0.25:0.34] 0.27 [0.23:0.31] 0.29 [0.25:0.34]

hL - - - - 0.52 [0.38:0.66]

LL -298.72 -298.96 -299.02 -298.17 -303.78

Table 2. Bayesian Estimation of Parameters for the Smets-Wouters Euro

Area Model
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5 Is There a Long-Run Inflationary Bias?

As we have seen a long-run inflationary bias under discretion arises only if the steady

state associated with zero inflation, about which we have linearized, is inefficient lo To

examine the inefficiency of the steady state we consider the social planner’s problem for

the deterministic case obtained by maximizing

Ω0 =
∞∑

t=0

βt

[
(Ct/ChC

t−1)
1−σ

1 − σ
− κ

(Lt/LhL

t−1)
1+φ

(1 + φ)

]
(103)

with respect to {Ct}, {Kt}, {Lt} and {Zt} subject to

Yt = At(ZtKt−1)
αL1−α

t = Ct + Gt + Kt − (1 − δ)Kt−1 + Ψ(Zt)Kt−1 (104)

To solve this optimization problem define a Lagrangian

L = Ω0+
∞∑

t=0

βtµt

[
At(ZtKt−1)

αL1−α
t − Ct − Gt − Kt + (1 − δ)Kt−1 − Ψ(Zt)Kt−1

]
(105)

First order conditions are:

Ct : C−σ
t C

hC(σ−1)
t−1 − βhCC1−σ

t+1 C
hC(σ−1)−1
t − µt = 0 (106)

Kt : −µt +

[
(1 − δ)β + αβAtZt+1

(
Lt+1

Zt+1Kt

)1−α

− βΨ(Zt+1)

]
µt+1 = 0 (107)

Lt : −κ
[
Lφ

t L
−hL(1+φ)
t−1 − βhLL1+φ

t+1 L
−hL(1+φ)−1
t

]

+ (1 − α)At

(
ZtKt−1

Lt

)α

µt = 0 (108)

Zt : Ψ′(Zt) − αAt

(
Lt

ZtKt−1

)1−α

= 0 (109)

The efficient steady-state levels of output Yt+1 = Yt = Yt−1 = Y ∗, say, is therefore

found by solving the system:

C−σ+hC(σ−1)(1 − βhC) − µ = 0 (110)

−1 + (1 − δ)β + αβAZ

(
L

ZK

)1−α

− βΨ(Z) = 0 (111)

−κ(1 − βhL)Lφ−hL(1+φ) + (1 − α)A

(
ZK

L

)α

µ = 0 (112)

Ψ′(Z) − αA

(
L

ZK

)1−α

= 0 (113)

Solving as we did for the natural rate and denoting the social optimum by Z∗, Y ∗ etc

we arrive at

1 = β[1 − δ + Z∗Ψ′(Z∗) − Ψ(Z∗)] (114)
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Hence Z∗ = Z = 1 and R∗

K = RK = R + δ. Thus the natural rate of capacity utilization

is efficient. However,

K∗

L∗
=

[
Aα

RK

] 1
1−α

>
K

L
(115)

and the natural capital-labour ratio is below the social optimum. The socially optimal level

of output is now found from

Y ∗(1+φ)(1−hL)+(σ−1)(1−hC)

(
1 − δ K∗

L∗

(A
(

K∗

L∗

)α − F )
− G

Y

)σ+hC(1−σ)

=
(1 − α)(1 − βhC)A(1+φ)(1−hL)

(
K∗

L∗

)α(1+φ)(1−hL)

κ(1 − βhL)
(116)

The inefficiency of the natural rate of output can now be found by comparing (73) with

(116). The case of a model without capital is straightforward. Putting α = K
L = K∗

L∗
= 0

(and 00 = 1) in these two results, since the left-hand-side of (116) is an increasing function

of Y , we arrive at

Proposition 1

In a model without capital, the natural level of output, Y , is below the efficient

level, Y ∗, if and only if

(1 − T )

(
1 − 1

ζ

) (
1 − 1

η

)
<

1 − hCβ

1 − hLβ
(117)

In the case where there is no habit persistence for both consumption and labour effort,

hC = hL = 0, then (117) always holds. In this case tax distortions and market power

in the output and labour markets captured by the elasticities η ∈ (0,∞) and ζ ∈ (0,∞)

respectively drive the natural rate of output below the efficient level. If T = 0 and

η = ζ = ∞, tax distortions and market power disappear and the natural rate is efficient.

Another case where (117) always holds is where habit persistence for labour supply exceeds

that for consumption; i.e., hL ≥ hC . In the SW model, hC > hL = 0 which leads to the

possibility that the natural rate of output can actually be above the efficient level (see

Choudhary and Levine (2005)). But to arrive at that conclusion we need to consider the

full model with capital.

Now the analysis is not so straightforward. Denote the left-hand-sides of (73) and

(116) by f(Y ) and f∗(Y ∗) respectively and the intercept terms on the right-hand-side by

c and c∗ respectively. Then we have

f(Y ∗)

f(Y )
=

c∗

c
≡ (1 − βhC)

(1 − βhL)(1 − T )(1 − 1
η )(1 − 1

ζ )

[
K∗

L∗

K
L

]α(1+φ)(1−hL)

(118)
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Figure 1: The Inefficiency of the Natural Rate: hL = 0
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Figure 2: The Inefficiency of the Natural Rate: hL = 0.5
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Then because the K
L < K∗

L∗
we have that f(Y ) > f∗(Y ), given Y and habit causes the

upward-sloping f(Y ) curve to shift to the left. We can now see two opposite effects on the

efficiency of the natural rate. If habit in consumption is much larger than habit in labour

supply (as in the SW model) then despite other distortions it is possible that c > c∗ which

has the effect of making the natural rate of output above the efficient level. On the other

hand the capital-labour ratio is inefficient which has the opposite effect on output. Figures

1 and 2 below show two cases: hL = 0 where the first effect dominates and hL = 0.5 where

the second dominates.

6 Optimal Monetary Stabilization Policy

6.1 Formulating the Policymaker’s Loss Function

Much of the optimal monetary policy literature has stayed with the ad hoc loss function

(4) which with a lower interest rate bound constraint becomes

Ω0 = E0

[
(1 − β)

∞∑

t=0

βt
[
(yt − ŷt − k)2 + wππ2

t + wrr
2
t

]
]

(119)

Indeed Clarida et al. (1999) provide a stout defence of a hybrid research strategy that

combines a loss function based on the stated objectives of central banks with a micro-

founded macro-model. A normative assessment of policy rules requires welfare analysis

and for this, given our linear-quadratic framework,14 we require a quadratic approximation

of the representative consumer’s utility function.

A common procedure for reducing optimal policy to a LQ problem is as follows. Lin-

earize the model about a deterministic steady state as we have already done. Then expand

the consumer’s utility function as a second-order Taylor series after imposing the econ-

omy’s resource constraint. In general this procedure is incorrect unless the steady state

is not to far from the efficient outcome (see Woodford (2003), chapter 6 and Benigno

and Woodford (2003)). This we assume and for this case we show in Appendix C that a

quadratic single-period loss function that approximates the utility takes the form

L = wc(ct − hCct−1)
2 + wl(lt − hLlt−1)

2 + wπ(πt − γP πt−1)
2 + w∆w(∆wt − γW ∆wt−1)

2

+ wlk(lt − kt−1 − zt −
1

α
at)

2 + wz(zt + ψ(1 − α)at)
2 − wakatkt−1 (120)

14Recent developments in numerical methods now allow the researcher to go beyond linear approxima-

tions of their models and to conduct analysis of both the dynamics and welfare using higher-order (usually

second-order) approximations (see, Kim et al. (2003) and for an application to simple monetary policy

rules, Juillard et al. (2004)). However as we have argued above there are costs as well as benefits from

going down this path.
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where weights wc etc are defined in Appendix C. All variables are in log-deviation form

about the steady state as in the linearization.15 The first four terms in (120) give the

welfare loss from consumption, employment, price inflation and wage inflation variability

respectively. The remaining terms are contributions from arise from the resource constraint

in our quadratic approximation procedure.

In what follows we provide numerical results for both the ad hoc and welfare-based

loss functions with k = 0 so our focus now is exclusively on stabilization gains from

commitment.

6.2 Imposing the Lower Interest rate Bound

We first calibrate the weight wr so the 2sd(rt) < i under discretion where i = 1
β − 1 is

the zero-inflation steady nominal interest rate. For a normal distribution this would give

a probability of hitting the lower interest rate bound 0.025%. With β = 0.99 imposed

this condition becomes var(rt) < 0.25(%)2. Tables 2 and 3 show the effect on var(rt) of

increasing the weight under discretion. By reporting the expected intertemporal loss at

time t = 0 under both the time-consistent discretionary policy and optimal commitment,

ΩTC and ΩOP respectively, we can also assess the stabilization gains from commitment as

the lower interest rate bound takes greater effect. We compute these gains as equivalent

permanent percentage increases in consumption and inflation, ce and πe respectively. From

Appendix C these are given by

ce =
ΩTC − ΩOP

1 − hC
× 10−2 (121)

πe =

√
2(ΩTC − ΩOP )

wπ
(122)

For the ad hoc loss function the appropriate equivalent that repaces ce is a permanent

fall in the output gap given by

ye =
√

2(ΩTC − ΩOP ) (123)

Tables 3 and 4 report results for the ad hoc (with wπ = 16) and welfare-based (with

wπ and other weights functions of fundamental parameters given in Appendix C) loss

functions. A number of interesting points emerge from these tables. First, with the

welfare-based loss function, using (121) the minimal cost of consumption fluctuations

given by ΩOP lie between 1.07% and 1.75% and are much larger than the welfare cost

reported by Lucas (1987) which were of the order 0.05%. Our figures are of the order of

15Our quadratic approximation is along the lines of Onatski and Williams (2004) with some differences.

28



those reported in Levin et al. (2005) for a similar model and are much larger because of

the welfare costs of imposing the lower interest rate bound and of price and wage inflation

not included in the Lucas calculations. Our figure is also increased by the existence of

internal habit which reduces the utility increase from a increase in consumption. Thus in

our set-up the answer to the question posed by Lucas, “Is there a Case for Stabilization

Policy?” is in the affirmative.

Our second point is that a welfare-based assessment of the stabilization gains from

commitment leads to rather similar conclusions to those using the ad hoc formulation

with a balance choice of weights penalizing the variability of the output gap and inflation.

Choosing the latter without a lower interest rate bound (wr = 0.0001)16 and comparing

ye with ce and the inflation costs in the two cases we see that these gains are of roughly

of the same order and could be brought more into line by choosing a high weight wπ in

(119). However as we will see the simple commitment rules that approximate the optimal

rule are quite different in the two cases.

Finally the most important point from these tables endorses the conclusion reached by

Adam and Billi (2005) discussed in the introduction, namely that the lower bound con-

straint on the nominal interest rate increases the gains from commitment. Both in terms

of the output gap equivalent ye for the ad hoc loss function, and the consumption equiva-

lent for the welfare-based case ce we can see that the stabilization gain from commitment

rises dramatically until at the point where var(rt) < 0.25 these gains are ye = 4.03%,

ce = 5.8% and πe = 0.99, 1.49 for the 2 cases achieved when wr = 2.5, 30 respectively.

Weight wr var(rt) ΩTC
0 ΩOP

0 ye πe

0.0001 1.33 0.54 0.49 0.32 0.08

1.0 0.49 4.82 0.64 2.94 0.72

2.5 0.23 8.62 0.73 4.03 0.99

3.0 0.19 9.22 0.74 4.18 1.03

4.0 0.13 10.0 0.78 4.36 1.07

Table 3. Imposing the Lower Interest Rate Bound Using the Ad Hoc Loss

Function: wπ = 16.

16The solution procedures set out in Appendix A require a very small weight is needed on the instrument.

One can get round this without significantly changing the result by letting inflation be the instrument and

then setting the interest rate at a second stage of the optimization to achieve the optimal path for inflation.
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Weight wr var(rt) ΩTC
0 ΩOP

0 ce πe

0.0001 12 22 19 0.17 0.26

5 0.46 39 23 1.81 0.59

20 0.27 84 27 3.22 1.12

30 0.25 130 28 5.76 1.49

50 0.24 269 31 13.5 2.28

Table 4. Imposing the Lower Interest Rate Bound Using the Welfare-Based

Loss Function: wπ = 92.

6.3 Stabilization Gains with Simple Rules

Having calibrated the weight wr = 2.5, 30 for the two forms of loss function, we now report

results for simple commitment rules and discretionary policy. The general form of simple

rule examined is

it = ρit−1+ΘπEtπt+j+Θy(yt−ŷt)+Θ∆w∆wt+Θwrwrt ; ρ ∈ [0, 1], Θπ, Θy, Θ∆w, Θwr > 0 j ≥ 0

(124)

Putting Θ∆w = Θwr = 0 gives the Taylor rule where the interest rate only to current

price inflation and the output gap, Θ∆w = Θwr = Θy = 0 gives a price inflation rule,

Θpi = Θwr = Θy = 0 gives a wage inflation rule and finally Θ∆w = Θy = 0 gives a current

price inflation and real wage rule.

Results for these various simple are summarized in tables 5 and 6. There are two

notable results that emerge from the table and the figures. First we assess the effect

of using an arbitrary rather than an optimized simple commitment rule by examining

the outcome when a minimal rule ii = 1.001πt that just produces saddle-path stability.

This is the worse case for an arbitrary choice and we see that the costs are substan-

tial: ye = 2.84% and ce = 12.2%. Interestingly in the former case this outcome is still

better than that under discretion. Second, simple price inflation or wage inflation rules

perform reasonably well in that they achieve about three-quarters of the commitment

gains achieved by the optimal rule for the ad hoc loss function falling to about half for

the welfare-based loss.17The simple rule that closely mimicked optimal commitment for

the welfare-based case was the inflation and real wage rule. From table 4 almost all the

gains from commitment are achieved by this rule though simplicity still leaves a nt in-

significant cost of ce = 0.11 and πe = 0.21 or about π = 0.84% on an annual basis.

17This contrasts with the result in Levin et al. (2005) where the wage inflation rule performed a lot

better than the price inflation and closely mimicked optimal commitment.
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Rule ρ Θπ Θy Ω0 ye πe var(rt)

Minimal Feedback on πt 0 1.001 0 4.75 2.84 0.71 0.32

Price Inflation Rule 0.82 0.53 0 1.36 1.12 0.28 0.11

Taylor Rule 0.82 0.55 0.11 1.35 1.11 0.28 0.11

Optimal Commitment n.a. n.a. n.a. 0.73 0 0 82

Optimal Discretion n.a. n.a. n.a 8.62 3.97 0.99 0.24

Table 5. Optimal Commitment Rules Using the Ad Hoc Loss Function

Rule ρ Θπ Θ∆w Θwr Ω0 ce πe var(rt)

Minimal Feedback on πt 0 1.001 0 0 244 12.2 2.17 0.31

Price Inflation Rule 0.33 1.17 0 0 79 2.9 1.05 0.32

Wage Inflation Rule 0.95 0 0.59 0 80 2.9 1.07 0.22

Real-Wage/Price Inflation Rule 0.95 0.16 0 0.28 30 0.11 0.21 0.34

Optimal Commitment n.a. n.a. n.a. n.a. 28 0 0 0.99

Optimal Discretion n.a. n.a. n.a n.a. 130 5.76 1.49 0.26

Table 6. Optimal Commitment Rules Using the Welfare-Based Loss Func-

tion

6.4 Impulse Responses Under Commitment and Discretion

Figures 6-13 concentrate on the welfare-based results and compare the responses under

the optimal commitment, discretion and the optimized simple inflation/real wage rule

following an unanticipated government spending shock (g0 = 1) and an unanticipated

productivity shock (a0 = 1).

To interpret these graphs it is usefult to consider the three sources of the time-

inconsistency problem in our model; from pricing behaviour and consumption behaviour

together, from investment behaviour and from wage setting. Following a shock which

diverts the economy from its steady state, given expectations of inflation, the opportunist

policy-maker can increase or decrease output by reducing or increasing the interest rate

which increases or decreases inflation. Consider the case where the economy is below the

its steady state level of output. A reduction in the interest rate then causes consump-

tion demand rise. Firms locked into price contracts respond to an increase in demand

by increasing output and increasing the price according to their indexing rule. Those

who can re-optimize increase only increase their price. Given inflationary expectations,

a reduction in the interest rate sees Tobin’s Q rise, and with it investment and capital
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Figure 3: The No-Deviation Condition: Φ = tr((N11 +S)(Zt +
λ

1−λΣ)+ tr(N22p2tp
T
2t)

stock. This increases output on the supply side. Given inflationary expectations an infla-

tionary impulse results in a fall in the real wage and an increase in labour supply, adding

further to the supply side boost to output. All these changes are for given inflationary

expectations and illustrates the incentive to inflate when the output gap increases. In an

non-commitment equilibrium however the incentive is anticipated and the result is higher

inflation compared with the commitment case. This contrast between the commitment

and discretionary cases is seen clearly in the figures. Finally comparing the optimal com-

mitment and the simple inflation-real wage we see how the latter rule closely mimics the

former.

6.5 Sustaining Commitment as an Equilibrium

We examine empirically the no-deviation condition for commitment to be a perfect Bayesian

equilibrium. We confine ourselves to reporting results for the form of the condition given

by (29) which assume an instantaneous loss of reputation following deviation. Experiment

revealed this to give very similar results to those using (27), and this in turn implied that

the condition relevant for our simple inflation/real wage, (32), was satisfied.

Figure 3 plots a histogram from 10, 000 draws of the sector [zT
t pT

2,t]
T in the vicinity of
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the steady state of the economy under the optimal commitment rule. The probability of

the weak government deviating from the optimal rule, qt, is then the proportion of these

draws for which (29) does not hold; i.e., Φ = tr((N11 +S)(Zt + λ
1−λΣ)+tr(N22p2tp

T
2t) < 0.

For our model and sample of 10, 000 draws we see that in fact qt = 0 so that optimal

commitment for a weak government turns out to be a perfect Bayesian equilibrium.

6.6 Sensitivity Analysis

To conduct a sensitivity exercise we again confine ourselves to the central variant of the

SW model. We utilize the MCMC draws of underlying parameter values that are used in

the Bayesian estimation of this model to compute the posterior distribution of parameters.

For each draw the consumption and inflation equivalent gains from commitment, ce and πe

respectively, are computed as before using (121) and (122). The histograms for a random

sample of 100 draws are shown in figures 4 and 5. From these histograms we confirm the

existence of substantial gains of at least ce = 1
2% with over 80% of the draw giving gains

ce ≥ 4%. The corresponding lower bound for the quarterly inflation-equivalent gain is

πe = 0.75% and over 90% of draws given a gain πe ≥ 1.0%.

7 Conclusions

The main findings of this paper can be summarized as follows:

1. External habit in consumption reduces the inefficiency of the steady state, but exter-

nal habit in labour supply has the opposite effect. If the former dominates sufficiently

and labour market and product market distortions are not too big then in the ab-

sence of tax distortions the natural rate can be below the social optimum. This

would then render the long-run inflationary bias negative.

2. In terms of an equivalent permanent increase in consumption, ce for the welfare-

based loss function or an equivalent permanent increase in the output gap, ye for the

ad hoc loss function, and a permanent decrease in inflation πe, the stabilization gains

from commitment rise considerably if the lower bound effect is taken into account

and if there is habit in consumption. Using empirical estimates from the SW model

we find gains as much as ce = 6% and πe = 1.5%, the latter on a quarterly basis.

3. If the standard ad hoc loss function with ‘balanced (equal) weights’ on the output

gap and annual inflation variance is employed, then ye is of the same order as ce.

However the form of optimal simple rule differs substantially in these two cases.
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4. Given these large gains from commitment, the incentives for central banks to avoid

a loss of reputation for commitment is large. Consequently a commitment rule can

be sustained as a perfect Bayesian equilibrium in which deviation from commitment

hardly ever happens despite the possibility of large exogenous shocks.

5. The optimal commitment rule can be closely approximated in terms of its good

stabilization properties by a interest rate rule that responds positively to current

inflation and the current real wage.

A Details of Policy Rules

First consider the purely deterministic problem. The most general policy starts with a

general model of the form

[
zt+1

x
e
t+1,t

]
= A

[
zt

xt

]
+ Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-

predetermined variables and x
e
t+1,t denotes rational (model consistent) expectations of

xt+1 formed at time t. Then x
e
t+1,t = xt+1 and letting y

T
t =

[
z
T
t x

T
t

]
(A.1) becomes

yt+1 = Ayt + Bwt (A.2)

Define target variables st by

st = Myt + Hwt (A.3)

and the policy-maker’s loss function at time t by

Ωt =
1

2

∞∑

i=0

βt[sTt+iQ1st+i + w
T
t+iQ2wt+i] (A.4)

which we rewrite as

Ωt =
1

2

∞∑

i=0

βt[yT
t+iQyt+i + 2y

T
t+iUwt+i + w

T
t+iRwt+i] (A.5)

where Q = MT Q1M , U = MT Q1H, R = Q2 + HT Q1H, Q1 and Q2 are symmetric

and non-negative definite R is required to be positive definite and β ∈ (0, 1) is discount

factor. The procedures for evaluating the three policy rules are outlined in the rest of this

appendix (or Currie and Levine (1993) for a more detailed treatment).
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A.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

Ω0 given by (A.5) subject to (A.2) and (A.3) and given z0. We proceed by defining the

Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yT

t Qyt + 2y
T
t Uwt + w

T
t Rwt) + µt+1(Ayt + Bwt − yt+1) (A.6)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑

t=0

Ht (A.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate column vector pt = β−tµT
t , the first-order conditions lead to

wt = −R−1(βBT
pt+1 + UT

yt) (A.8)

βAT
pt+1 − pt = −(Qyt + Uwt) (A.9)

Substituting (C.27) into (A.2)) we arrive at the following system under control

[
I βBR−1BT

0 β(AT − UR−1BT )

] [
yt+1

pt+1

]
=

[
A − BR−1UT 0

−(Q − UR−1UT I

] [
yt

pt

]
(A.10)

To complete the solution we require 2n boundary conditions for (A.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ’transversality condition’

lim
t→∞

µT
t = lim

t→∞

βt
pt = 0 (A.11)

and the initial condition

p20 = 0 (A.12)

where p
T
t =

[
p

T
1t p

T
2t

]
is partitioned so that p1t is of dimension (n − m) × 1. Equation

(A.3), (C.27), (A.10) together with the 2n boundary conditions constitute the system

under optimal control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

] [
zt

p2t

]
≡ D

[
zt

p2t

]
= −F

[
zt

x2t

]
(A.13)

where
[

zt+1

p2t+1

]
=

[
I 0

S21 S22

]
G

[
I 0

−N21 −N22

] [
zt

p2t

]
≡ H

[
zt

p2t

]
(A.14)
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N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(A.15)

xt = −
[

N21 N22

] [
zt

p2t

]
(A.16)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and

S =

[
S11 S12

S21 S22

]
(A.17)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q − UF − F T UT + F T RF + β(A − BF )T S(A − BF ) (A.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (A.19)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N11 < 0 and N22 < 0.18, so the incentive to renege exists at all points along the trajectory

of the optimal policy. This is the time-inconsistency problem.

A.1.1 Implementation

The rule may also be expressed in two other forms: First as

wt = D1zt + D2H21

t∑

τ=1

(H22)
τ−1

zt−τ (A.20)

where D = [D1 D2] is partitioned conformably with zt and p2t. The rule then consists

of a feedback on the lagged predetermined variables with geometrically declining weights

with lags extending back to time t = 0, the time of the formulation and announcement of

the policy.

The final way of expressing the rule is express the process for wt in terms of the target

variables only, st, in the loss function. This in particular eliminates feedback from the

exogenous processes in the vector zt. Since the rule does not require knowledge of these

processes to design, Woodford (2003) refers to this as “robust” in describing it as the

Robust Optimal Explicit rule.

18See Currie and Levine (1993), chapter 5.
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A.1.2 Optimal Policy from a Timeless Perspective

Noting from (A.16) that long the optimal policy we have xt = −N21zt − N22p2t, the

optimal policy “from a timeless perspective” proposed by Woodford (2003) replaces the

initial condition for optimality p20 = 0 with

Jx0 = −N21z0 − N22p20 (A.21)

where J is some 1 × m matrix. Typically in New Keynesian models the particular choice

of condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This

initial condition applies only at t = 0 and only affects the deterministic component of

policy and not the stochastic, stabilization component. Since our focus here is on the

latter, the timeless perspective has no bearing on the results of this paper.

A.2 The Dynamic Programming Discretionary Policy

The evaluate the discretionary (time-consistent) policy we rewrite the cost-to-go Ωt given

by (A.5) as

Ωt =
1

2
[yT

t Qyt + 2y
T
t Uwt + w

T
t Rwt + βΩt+1] (A.22)

The dynamic programming solution then seeks a stationary solution of the form wt =

−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar

procedure will be used to minimize Ωt+1 at time t + 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1

onwards, determined by subsequent re-optimisation, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (A.23)

The loss at time t for the ex ante optimal policy was from (A.19) found to be a

quadratic function of xt and p2t. We have seen that the inclusion of p2t was the source of

the time inconsistency in that case. We therefore seek a lower-order controller

wt = −F zt (A.24)

with the cost-to-go quadratic in zt only. We then write Ωt+1 = 1
2z

T
t+1St+1zt+1 in (A.22).

This leads to the following iterative process for Ft

wt = −Ftzt (A.25)
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where

Ft = (Rt + λB
T
t St+1Bt)

−1(U
T
t + βB

T
t St+1At)

Rt = R + KT
t Q22Kt + U2T Kt + KT

t U2

Kt = −(A22 + Nt+1A12)
−1(Nt+1B

1 + B2)

Bt = B1 + A12Kt

U t = U1 + Q12Kt + JT
t U2 + JT

t Q22Jt

J t = −(A22 + Nt+1A12)
−1(Nt+1A11 + A12)

At = A11 + A12Jt

St = Qt − U tFt − F T
t U

T
+ F

T
t RtFt + β(At − BtFt)

T St+1(At − BtF t)

Qt = Q11 + JT
t Q21 + Q12Jt + JT

t Q22Jt

Nt = −Jt + KtFt

where B =

[
B1

B2

]
, U =

[
U1

U2

]
, A =

[
A11 A12

A21 A22

]
, and Q similarly are partitioned

conformably with the predetermined and non-predetermined components of the state vec-

tor.

The sequence above describes an iterative process for Ft, Nt, and St starting with some

initial values for Nt and St. If the process converges to stationary values, F, N and S say,

then the time-consistent feedback rule is wt = −Fzt with loss at time t given by

ΩTC
t =

1

2
z
T
t Szt =

1

2
tr(SZt) (A.26)

A.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(A.27)

where D is constrained to be sparse in some specified way. Rule can be quite general. By

augmenting the state vector in an appropriate way it can represent a PID (proportional-

integral-derivative)controller.

Substituting (A.3) into (A.5) gives

Ωt =
1

2

∞∑

i=0

βt
y
T
t+iPt+iyt+i (A.28)

where P = Q + UD + DT UT + DT RD. The system under control (A.1), with wt given by

(A.3), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

y
T
t P yt = z

T
t T zt (A.29)
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where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (A.17) onwards

and

zt+1 = (G11 − G12N)zt (A.30)

where G = A + BD is partitioned as for P . Solving (A.30) we have

zt = (G11 − G12N)t
z0 (A.31)

Hence from (A.32), (A.29) and (A.31) we may write at time t

ΩSIM
t =

1

2
zT
t V zt =

1

2
tr(V Zt) (A.32)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (A.33)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (A.32) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

A.4 The Stochastic Case

Consider the stochastic generalization of (A.1)
[

zt+1

x
e
t+1,t

]
= A

[
zt

xt

]
+ Bwt +

[
ut

0

]
(A.34)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form z
T
t Xzt = tr(Xzt, Z

T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑

i=1

βt
ut+iu

T
t+i

)])
= tr

[
X

(
zT
t zt +

λ

1 − λ
Σ

)]
(A.35)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (A.19) becomes in the stochastic case

ΩOP
t = −1

2
tr

(
N11

(
Zt +

β

1 − β
Σ

)
+ N22p2tp

T
2t

)
(A.36)

For the time-consistent policy (A.26) becomes

ΩTC
t = −1

2
tr

(
S

(
Zt +

β

1 − β
Σ

))
(A.37)
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and for the simple rule, generalizing (A.32)

ΩSIM
t = −1

2
tr

(
V

(
Zt +

β

1 − β
Σ

))
(A.38)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (A.38).

Now we find that

D∗ = D∗

(
z0z

T
0 +

β

1 − β
Σ

)
(A.39)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ.

B Dynamic Representation as Difference Equations

The linearizations in the main text, especailly that for the real wage equation, requires

us to express the price and wage-setting first order conditions as stochastic non-linear

difference equations.19 To do this first define

Πt ≡ Pt

Pt−1
= πt + 1 (B.1)

Φt ≡ P 0
t /Pt (B.2)

Π̃t ≡ Πt

Πγ
t−1

(B.3)

and use Dt+k = βk MUC
t+1

Pt+k
where MUC

t = C−σ
t H1−σ

C,t is the marginal utility of consumption.

Then we can write the first order condition for optimal price-setting, (51) as

ΦtΞ = Λt (B.4)

where new variables Ξt and Λt are defined by

Ξt − ξβEt[Π̃
ζ−1
t+1 Ξt+1] = YtMUC

t (B.5)

Λt − ξβEt[Π̃
ζ
t+1Λt+1] =

UL,t(Lt/LhL

t−1)
1+φ

(1 − 1/ζ)(1 − 1/η)(1 − Tt)
(B.6)

(B.7)

From our definitions (B.2) and (B.3), (52) can now be written as

1 = ξP Π̃ζ−1
t + (1 − ξP )Φ1−ζ

t (B.8)

Five equations (B.2) to (B.8) in Πt, Φt, Π̃t, Ξt and Ωt now provide the dynamics of optimal

setting in a convenient form

19This is also necessary if one wants to set up and solve numerically in standard software the non-linear

DSGE model.
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Similarly we can carry out the same exercise for wage setting. We can now use

βkΛt+k(r) = Dt+k, obtained from (38), and Λt(r) =
MUC

t (r)
Pt

, and from (37) we have

Lt+k(r) = Lt+k




W 0
t (r)

(
Pt+k−1

Pt−1

)γW

Wt+k




−η

(B.9)

to write (54) as

(
W 0

t

Pt

)1+ηφ

Et

∞∑

k=0

(ξW β)k(1 − Tt+k)Lt+kMUCt+k

(
Wt+k

Pt+k

)η (
Pt+k−1

Pt−1

)γW (1−η) (
Pt

Pt+k

)1−η

=
η

(η − 1)
Et

∞∑

k=0

(ξW β)k

(
Lt+k

LhL

t+k−1

)1+φ (
Wt+k

Pt+k

)η(1+φ) (
Pt+k−1

Pt−1

)
−γW η(1+φ) (

Pt+k

Pt

)η(1+φ)

(B.10)

We can now see that for labour supply habit in ratio form20 we can proceed as for the

price dynamics. The following difference equations corresponding to (B.4) to (B.8) now

apply:

(
W 0

t

Pt

)1+ηφ

Υt = Γt (B.11)

Υt − ξW βEt[Π̃
η−1
t+1 Υt+1] =

(
Wt

Pt

)η

(1 − Tt)LtMUC
t (B.12)

Γt − ξW βEt[Π̃
η(1+φ)
t+1 Γt+1] =

(
Wt

Pt

)η(1+φ) UL,t(Lt/LhL

t−1)
1+φ

(1 − 1/η)
(B.13)

(
Wt+1

Pt+1

)1−η

= ξW

(
Wt

Pt

)1−η

Π̃η−1
t+1 + (1 − ξW )

(
W 0

t+1

Pt+1

)1−η

(B.14)

C Welfare Quadratic Approximation for the Case of An Ap-

proximately Efficient Steady State

We make a departure in notation from what appears in most of the literature in this area,

in order to avoid confusion over labour Nt(r) supplied by an individual r and the index of

differentiated labour Lt(f) employed by firm f . Defining Nt(f, r) as the labour supplied

to firm f by individual r, we have

Nt(r) =

∫
Nt(r, f)df Lt(r)

(η−1)/η =

∫
Nt(r, f)(η−1)/ηdr (C.1)

To clarify the exposition we first consider the case without capital.

20This is reason we choose the ratio form over the difference form.
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C.1 Labour The Only Factor

Ignoring the welfare implications of monetary frictions, the consumer’s utility is given by

E0

∞∑

t=0

βt

[
(Ct(i)/ChC

t−1)
1−σ

1 − σ
− κ

(Nt(i)/N
hL

t−1)
1+φ

1 + φ

]
(C.2)

Since we assume complete risk-sharing within each bloc, we may regard each consumer

as being identical with every other. From the point of view of leisure, to obtain the

social welfare function, we need to sum over all workers. Before doing this, we obtain the

expected value of Nt(r)
1+φ. We note that

Nt(r) =

∫
Nt(r, f)df =

(
Wt(r)

Wt

)
−η ∫

Lt(f)df

=

(
Wt(r)

Wt

)
−η ∫

Yt(f)

At
df =

(
Wt(r)

Wt

)
−η Yt

At

∫ (
Pt(f)

Pt

)
−ζ

df (C.3)

Assuming that lnWt(r) ∼ N(µW
t , DW

t ) and lnPt(r) ∼ N(µP
t , DP

t ), from subsection C.4 we

have that

∫ (
Pt(f)

Pt

)
−ζ

df ≃ 1 +
1

2
ζDP

t

∫ (
Wt(r)

Wt

)
−η

dr ≃ 1 +
1

2
ηDW

t (C.4)

and in addition

∫ (
Wt(r)

Wt

)
−η(1+φ)

di ≃ 1 +
1

2
η(1 + φ)(1 + ηφ)DW

t (C.5)

It follows from this that summing over all r, we obtain the social welfare loss approximately

as

E0

∞∑

t=0

βt

[
(Ct/ChC

t−1)
1−σ

1 − σ
− κ

(Yt/Y hL

t−1)
1+φ(At/A

hL

t−1)
−(1+φ)

1 + φ

(
1 +

1

2
(1 + φ)(ζDP

t + η(1 + ηφ)DW
t − hL(ζDP

t−1 + η(1 + ηφ)DW
t−1))

)]
(C.6)

where

DP
t = ξpD

P
t−1 +

ξp

1 − ξp
(πt − γpπt−1)

2 (C.7)

and

DW
t = ξwDW

t−1+
ξw

1 − ξw
(∆wt−γw∆wt−1)

2 = ξwDW
t−1+

ξw

1 − ξw
(∆wrt+πt−γw(∆wrt−1+πt−1))

2

(C.8)

where for convenience we have written the log of the real wage relative to domestic pro-

ducer prices wrt = wt − pt, and πt is the inflation rate for domestic producer prices.
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We note that that the terms DP
t , DW

t occur in the utility terms at both t and t + 1.

From this it follows that the quadratic approximation to the welfare can be approximately

written as

−1

2
E0

∞∑

t=0

βt[σC(1−σ)(1−hC)(ct − hCct−1)
2 + κ

(
Y

A

)(1+φ)(1−hL) (

φ(yt − at − hL(yt−1 − at−1))
2 +

ζ(1 − βhL)ξp

(1 − βξp)(1 − ξp)
(πt − γpπt−1)

2

+
η(1 − βhL)(1 + ηφ)ξw

(1 − βξw)(1 − ξw)
(∆wrt + πt − γw(∆wrt−1 + πt−1))

2

)
] (C.9)

C.2 Labour, Capital and Fixed costs F

With capital and fixed costs, the previous analysis changes to

Yt(f) = AtZ
α
t Kα

t−1Lt(f)1−α−F Kt−1(f) =
1 − α

α

WtLt(f)

PtRK,t
RK,t = Ψ′(Zt) (C.10)

Hence we can write output as

Yt(f) =

(
α

1 − α

)α

Lt(f)

(
Wt

Pt

)α

AtZ
α
t R−α

K,t − F (C.11)

Hence we can calculate

Nt(i) =

∫
Nt(i, f)df =

(
Wt(i)

Wt

)
−η ∫

Lt(f)df

=

(
Wt(i)

Wt

)
−η ∫

Yt(f) + F

AtZα
t

(
1 − α

α

)α (
Pt

Wt

)α

Rα
K,tdf

=

(
Wt(i)

Wt

)
−η (

1 − α

α

)α (
Pt

Wt

)α Rα
K,t

AtZα
t

(F + Yt

∫ (
Pt(f)

Pt

)
−ζ

df) (C.12)

and after defining 1
Bt

=
(

1−α
α

)α Rα
K,t

AtZα
t

we deduce from this that

Nt =

∫
Nt(r)dr =

(
Pt

Wt

)α (
Yt

Bt
(1 +

1

2
(ηDW

t + ζDP
t )) +

F

Bt
(1 +

1

2
ηDW

t )

)
(C.13)

We also infer that when we sum over all individuals, we obtain

∫
Nt(i)

1+φdi =

(
Pt

Wt

)α(1+φ) (
1

Bt

)1+φ (
F + Yt(1 +

1

2
ζDP

t )

)1+φ

(1 +
1

2
η(1 + ηφ)(1 + φ)DW

t )

∼=
(

Pt

Wt

)α(1+φ) (
F + Yt

Bt

)1+φ (
1 +

Yt

F + Yt

1

2
ζ(1 + φ)DP

t

)
(1 +

1

2
η(1 + ηφ)(1 + φ)DW

t )(C.14)

Noting that

(
Pt

Wt

)α (
F + Yt

Bt

)
=

(
PtKt−1RK,t

WtLt

)α

Lt

(
1 − α

α

)α

= Lt (C.15)
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substituting for Bt and Yt from (C.10), and then using the second second minimum cost

condition in the same equation. It follows that the second-order terms in the Taylor-series

approximation of the welfare loss is given by

−1

2
C(1−hC)(1−σ)E0

∞∑

t=0

βt[σC(1−σ)(1−hC)(ct − hCct−1)
2 + κL(1+φ)(1−hL)

(

φ(lt − hLlt−1)
2 +

Y

F + Y

ζ(1 − βhL)ξp

(1 − βξp)(1 − ξp)
(πt − γpπt−1)

2

+
η(1 − βhL)(1 + ηφ)ξw

(1 − βξw)(1 − ξw)
(∆wrt + πt − γw(∆wrt−1 + πt−1))

2

)
] (C.16)

We can simplify this and eliminate κ using the steady state result
W (1−T )

P = κ
1− 1

η

Lφ−hL(1+φ)Cσ+hc(1−σ). Then writing

σC1−σ)(1−hC)

κL(1+φ)(1−hL)
=

σPC

(1 − 1
η )WL(1 − T )

=
σcy

(1 − 1
η )(1 − α)

(C.17)

Thus we arrive a welfare loss of

−1

2
C(1−hC)(1−σ)E0

∞∑

t=0

βt

[
σcy(ct − hCct−1)

2

︸ ︷︷ ︸
consumption variability

+ (1 − α)(1 − 1

η
)

(
φ(lt − hLlt−1)

2

︸ ︷︷ ︸
employment variability

+
Y

(F + Y )

ζ(1 − βhL)ξp

(1 − βξp)(1 − ξp)
(πt − γpπt−1)

2

︸ ︷︷ ︸
inflation variability

+
η(1 − βhL)(1 + ηφ)ξw

(1 − βξw)(1 − ξw)
(∆wt − γw∆wt−1)

2

︸ ︷︷ ︸
nominal wage variability

)]
(C.18)

noting that ∆wrt + πt = ∆wt is wage inflation.

However there are also some second-order terms in the quadratic approximation to the

welfare that have so far been omitted. On cannot assume that the first-order deviations

from the welfare sum to 0 even if the expansion takes place around the efficient steady

state (i.e. even if we assume that the NK equilibrium is at the efficient equilibrium). We

need to ensure that the first order deviations are evaluated about the resource constraints,

so that the first order effects of these can be regarded as 0. The natural variables about

which to expand to first order are L and K (and by implication investment I). Onatski

and Williams use Y and K, but it is much more straightforward to stick with L and K.

First note that we can write

Ct = Yt − Gt − It − Ψ(Zt)Kt−1 (C.19)

Now recall that Yt(f) = AtZ
α
t Lt(f)(Kt−1(f)/Lt(f))α − F . But as we have seen earlier,

Kt−1(f)/Lt(f) is the same for all firms, and is therefore equal to the ratio of total capital
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to total output Kt−1/Lt. Summing over all firms then yields Yt = AtZ
α
t Lt(Kt−1/Lt)

α−F ,

so we can rewrite (C.19) as

Ct = AtZ
α
t L1−α

t Kα
t−1 − F − Gt − It − Ψ(Zt)Kt−1 (C.20)

It follows that the contribution of second order terms to first-order terms from the con-

sumption part of the utility C(1−σ)(1−hC)ct are given by (excluding t.i.p. terms)

− 1

2
C(1−hC)(1−σ)E0

∞∑

t=0

βtcy

[
(Y + F )

C

(
α(1 − α)(lt − kt−1)

2 − 2[(1 − α)lt + αkt−1](at + αzt)

+ α(1 − α)z2
t

)
+

K

C
(Ψ′′(1)z2

t + 2Ψ′(1)ztkt−1)

]
(C.21)

Using the definition ψ = Ψ′(1)/Ψ′′(1) and the deterministic condition Ψ′(1) = RK , and

taking into account the habit effect of Ct at time t + 1, the total contribution to loss

function in the square brackets may be written as

cy(1 − βhC)

[
(Y + F )

C

(
α(1 − α)(lt − kt−1)

2 − 2[(1 − α)lt + αkt−1](at + αzt)

+ α(1 − α)z2
t

)
+

K

C
RK(

1

ψ
z2
t + 2ztkt−1)

]
(C.22)

Putting Y +F
C = φF

cy
and K

C =
iy
δcy

this can be written

(1 − βhC)

[
φF α(1 − α)(lt − kt−1)

2 +

(
φF α(1 − α) +

iyRK

δψ

)
z2
t

+2

(
iyRK

δ
− φF α2

)
kt−1zt

−2φF ((1 − α)ltat + α(1 − α)ltzt + αkt−1at)

]

= wk−l(kk−1 − lt)
2 + wzz

2
t + 2wkzkt−1zt

+2wlaltat + 2wlzltzt + 2wkakt−1at (C.23)

Note that this can be rewritten as:

(1 − βhC)cy

[
(Y + F )

C
α(1 − α)(lt − kt−1 − zt −

1

α
at)

2

+
RKK

ψC

(
zt + ψ(1 − α(Y + F )

RKK
)kt−1 +

ψ(1 − α)(Y + F )

RKK
at)

)2

− ψRKK

C

(
1 − α(Y + F )

RKK

)2

k2
t−1

− 2
Y + F

C

(
1 + (1 − α)ψ(1 − α(Y + F )

RKK
)

)
atkt−1

]
(C.24)

Since in the steady state of the social optimum α(Y +F ) = RKK this expression simplifies

considerably and we end up with (120). A number of points are worthy of note:
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1. Combining (C.18) and (C.24) owing to the last in (C.24) our quadratic approxima-

tion to the utility is not quite negative definite. However without capital this terms

disappears, so in that case the welfare function is positive definite.

2. There are of course no second order contributions from first order changes in Lt.

3. When there is no capital stock, habit, wage-stickiness and government spending we

have that ct = yt = lt + at. Then putting K = F = hC = hL = η = α = 0 the loss

function reduces to the familiar results from Woodford (2003):

Ω0 = E0

[
1

2

∞∑

t=0

βt
[
(yt − ŷt)

2 + wπ(πt − γP πt−1)
2
]
]

(C.25)

where ŷt = 1+φ
σ+φat is potential output achieved when prices are flexible and

wπ =
ζξ

(1 − ξ)(1 − βξ)(σ + φ)
(C.26)

4. Onatski and Williams (2004) express It in terms of Kt, Kt−1, It−1 but there is no

need to do this.

5. To work out the welfare in terms of a consumption equivalent percentage increase,

expanding U(C) = C(1−hC )(1−σ)

1−σ as a Taylor series, a 1% permanent increase in con-

sumption yields a first-order welfare increase (1 − hC)C(1−hC)(1−σ)−1∆C = (1 −
hC)C(1−hC)(1−σ) × 0.01. Since standard deviations are expressed in terms of per-

centages, the welfare loss terms which are proportional to the covariance matrix

(and pre-multiplied by 1/2) are of order 10−4. Letting X be these losses reported in

the paper. Then ce = X
(1−hC) × 0.01 as given in (121). The expressions (122) and

(123) are derived using only the quadratic terms.

C.3 Derivation of (C.4) and (C.5)

It is convenient though not essential to assume a normal distribution with lnWt(r) ∼
N(µ, σ2). By definition,

W 1−η
t =

∫
Wt(r)

1−ηdr = exp((1 − η)µ + (1 − η)2
1

2
σ2) (C.27)

Hence

Wt = exp(µ + (1 − η)
1

2
σ2) (C.28)

Thus it follows that
∫

Wt(r)
−ηdi = exp(−ηµ + η2 1

2
σ2) W−η

t = exp(−ηµ − η(1 − η)
1

2
σ2) (C.29)
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from which we obtain (C.4). Similarly

∫
Wt(r)

−η(1+φ)dr = exp(−η(1 + φ)µ + η2(1 + φ)2
1

2
σ2) (C.30)

W
−η(1+φ)
t = exp(−η(1 + φ)µ − η(1 + φ)(1 − η)

1

2
σ2) (C.31)

and hence (C.5).
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Figure 6: Price Inflation Rate Following a 1% Government Spending Shock
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Figure 7: Output Gap Following a 1% Government Spending Shock
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Figure 8: Wage Inflation Rate Following a 1% Government Spending Shock
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Figure 9: Interest Rate Following a 1% Government Spending Shock
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Figure 10: Price Inflation Rate Following a 1% Technology Shock
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Figure 11: Output Gap Following a 1% Technology Shock
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Figure 12: Wage Inflation Rate Following a 1% Technology Shock
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Figure 13: Interest Rate Following a 1% Technology Shock
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