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Abstract

In many traditional financial models, economic agents are assumed

to make decisions using expected lifetime utility under rational expecta-

tions, where rational expectations are assumed to be formed on the basis

of sufficient knowledge of the data generating process. But the mere ex-

istence of econometricians modeling and estimating (risky) data gener-

ating processes already indicates the presence of ambiguity on the ’true’

(possibly even non-risky) data generating process. There might be ambi-

guity because of sampling error or misspecification, but there might also

be ambiguity due to the fact that on the basis of the available information,

one may not be able to discriminate between models. Rational agents will

(try to) incorporate ambiguity when making their decisions. In this paper

we first investigate the implications for modeling asset prices in finan-

cial markets under the assumption of no arbitrage when there is ambi-

guity. We argue that coherence, as introduced by Shafer and Vovk (2001),

becomes an alternative guiding principle in modeling financial markets

without arbitrage opportunities. Next, we illustrate that artificial finan-

cial markets are a natural way to study coherent financial markets under

ambiguity.
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1 Introduction

In many traditional financial and economic models, economic agents are as-

sumed to make decisions using expected lifetime utility under rational expec-

tations, where rational expectations are assumed to be formed on the basis of

sufficient knowledge of the data generating process. But the mere existence

of econometricians modeling and estimating (risky) data generating processes

already indicates the presence of ambiguity on the ’true’ (possibly even non-

risky) data generating process. There are various sources for this ambiguity. For

instance, there might be ambiguity because of sampling error, arising due to the

fact that one has to estimate a model, but there might also be ambiguity result-

ing from potential modelling error, due to a too restrictive choice of model class

describing the data generating process. In this case, the model class might not

fully describe all possible data generating processes, yielding possibly model

misspecification. Moreover, ambiguity might arise due to the possibility that

different models in a model class might describe the same data generating pro-

cesses, so that, on the basis of data from a data generating process, one might

not be able to discriminate between such models.

Rational agents will (try to) incorporate ambiguity when making their deci-

sions. In this paper we investigate the implications for modelling asset prices

in financial markets under the assumption of no arbitrage when there is ambi-

guity. Without ambiguity, i.e., when the data generating process is fully known

in terms of a probability distribution describing the probabilities of the future

scenarios (which we call the risky case), an arbitrage opportunity arises when

a zero investment today has a nonnegative payoff tomorrow (or some other fu-

ture date) with probability one, together with a strictly positive probability on

a strictly positive payoff. The first fundamental theorem then yields equiva-

lent descriptions of the assumption that there are no arbitrage opportunities

that have to be satisfied by price processes in order to be arbitrage-free (see

Delbaen and Schachermayer (2005)). However, when there is ambiguity on the

data generating process, i.e., the probability distribution describing the prob-

abilities of the future scenarios is ambiguous, it makes sense to redefine the

concept of an arbitrage opportunity in such a context: only zero investments

that yield an arbitrage opportunity according to all models (about which there

is ambiguity) are really arbitrage opportunities. Zero investments that are ar-

bitrage opportunities according to some models, but not to other ones, might

not be real arbitrage opportunities, since the models that classify these zero in-

vestments as arbitrage opportunities might simply be incorrect. Thus, as long

as there are models (about which there is ambiguity) according to which a zero

investment is not an arbitrage opportunity, such an investment strategy might

not be classified as an arbitrage opportunity.
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Modeling the future as being described by a known probability distribu-

tion −which we call the unambiguous risky view− might alternatively be in-

terpreted as a parsimonious description of a future that is actually behaving in

a complicated, and possibly deterministic way. Perhaps such a deterministic

description is so complicated, that one is unable to figure out which determin-

istic process −if there is one−is generating the future. In this alternative view,

the used probability distribution to describe the future is just one’s prior over

(the outcomes of) the possible deterministic processes generating the future.

If, in this view, it is assumed that some deterministic process is generating the

future, there is no risk, but, if at the same time it is assumed to be unknown

which deterministic process is generating the future, there is clearly ambiguity.

Thus, as alternative to an unambiguous risky future we also have an ambiguous

non-risky view on the future. Notice that, particularly, when the non-risky de-

terministic description corresponds to a dynamic system that is time-varying,

it is unlikely that on the basis of data alone one will be able to distinguish (un-

ambiguously) between the two views.

In this paper we shall consider the situation where, due to ambiguity, both

the ambiguous non-risky and the unambiguous risky cases are considered as

potential descriptions of the future. The ’intermediate’ ambiguous risky cases

are then included as well.

The assumption of no arbitrage opportunities when the ambiguous non

risky cases are included as possible description of the future, corresponds to

the concept of coherence, as introduced by Shafer and Vovk (2001). These au-

thors provide a description of a financial market without probabilities. Instead

of assuming that the future is predetermined up to a probability distribution,

these authors view the future as an open system. In our paper we model such

an open system by means of ambiguity, including at least the ambiguous non-

risky case (to be included if the system is really open), but possibly also the am-

biguous risky cases. To deal with an open system, Shafer and Vovk (2001) model

a financial market as a game between an investor and the "market", where the

"market" sets the prices, then the investor makes a portfolio investment choice,

followed by new prices, set by the market, and so on. The absence of arbi-

trage opportunities is then translated into the requirement that the "market",

as a player, and not necessarily governed by a probability distribution, sets the

prices such that there are no price zero-investments generating unlimited pay-

offs to the investor, or stated alternatively, the "market" should always be able

to guarantee a non-positive payoff for each price zero-investment. We show

that the exclusion of arbitrage opportunities in an ambiguous non-risky world

leads to this coherence concept.

Thus, coherence, as introduced by Shafer and Vovk (2001), might be seen

as an alternative guiding principle in modelling financial markets without ar-
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bitrage opportunities, particularly when viewing the world as ambiguous and

(possibly) non-risky. A natural way to model such an economy, where probabil-

ities might not play a role, is by means of an artificial financial market, that can

be investigated using microscopic simulation techniques. We describe such an

artificial financial market in the tradition of, among others, Levy et al. (2000),

Arthur et al. (1996), LeBaron (1999), LeBaron et al. (1999) and LeBaron (2001),

but our artificial financial market explicitly allows for ambiguity with or with-

out risk, and is constructed such that it is also coherent in the sense of Shafer

and Vovk (2001).

The remainder of this paper is organized as follows. In the next section we

introduce the concept of ambiguity from an econometric perspective. In par-

ticular, we describe the potential sources of ambiguity, from the viewpoint of

econometric modeling. In Section 3 we illustrate ambiguity from the point of

view of an individual investment problem, focussing in particular on the non-

ambiguous risky case and the ambiguous non-risky case, although the ambigu-

ous risky cases will be considered as well. We consider both "expected utility"-

and mean-variance-preferences. In Section 4 we link the concept of ambiguity

with arbitrage opportunities, comparing particularly the exclusion of arbitrage

opportunities in the non-ambiguous risky case and the ambiguous non-risky

case. Here, we also make a link with the concept of a coherent market, as in-

troduced by Shafer and Vovk (2001). In Section 5 we introduce and describe

our benchmark artificial market, which is a natural tool to investigate financial

markets when there is ambiguity. Finally, Section 6 concludes.

2 Ambiguity: An Econometric Perspective

In this section we introduce ambiguity from an econometric perspective. Here,

ambiguity refers to lack of knowledge concerning the data generating process.

First, we introduce the concept of an econometric model, following Heckman

(2000). An econometric model consists of a model class aiming at describing

both data generating processes, represented by sample probability distribu-

tions, and targets, where, in our case, the targets will be probability distribu-

tions over future outcomes. Sample data is used to make a model selection,

and, subsequently, to choose the appropriate target value.

In the context of econometric models we introduce the concepts of exact

and overidentification at the data side and exact and underidentification at the

model side. The typical econometric case is underidentification at the model

side and overidentification at the data side. Both overidentification at the data

side and underidentification at the model side will be sources of ambiguity:

overidentification at the data side, because it might result in model misspeci-
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fication, requiring a larger model class; underidentification at the model side,

because it does not allow to make a data-based model choice, so that one has to

deal with more than one model describing the same data, but potentially differ-

ent target values. An important ingredient of an econometric model is also the

selection of potential models on the basis of sample data. Particularly, when

this is conducted using estimation, the presence of estimation inaccuracy will

also introduce ambiguity.

Data Generating Processes

We assume that the available data is given by

(z1, z2, ..., zT )

where each zt is a k-dimensional vector containing the relevant data at time t .

The data is generated by a data generating process, i.e., a (kT -dimensional)

probability distribution P
a
T

, where the superscript a stands for actual. The

set of potential probability distributions is denoted by DT . We assume that

(z1, z2, ..., zT ) is a realization of (Z1, Z2, ..., ZT ), where

(Z1, Z2, ..., ZT ) ∼P
a
T ∈DT .

The set DT should be large enough to include P
a
T

.1

Econometric Models

Next, we introduce an econometric model. This is given by the quadruple

ET = (M ,dT , tT ,∆T ) .

Here M denotes the model class containing various models m, for instance,

depending on unknown parameter values. The models m in M describe po-

tential data generating processes in DT . This is captured by the transformation

dT :

dT : M →DT .

In addition, the models m in M also describe the target of scientific interest, as

captured by the transformation tT :

tT : M →TT

Here, TT is called the target set. In our case, we shall consider as target values

potential probability distributions of the payoffs of J assets at some future time

1Notice that DT might contain degenerate probability distributions.
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T +1, say, conditional upon the (model specific) available information at time

T . Finally, ∆ T is a data selection procedure, given by

∆T =∆T (z1, ..., zT ) ⊂DT .

Usually, ∆T is the outcome of an estimation procedure, for instance, a point

estimate or a confidence interval around some point estimate in case of esti-

mation inaccuracy. But alternative data selection procedures, like calibration

based ones, are, of course, also possible. Figure 1 illustrates the set-up.

M

TT

DT

tT

dT

Figure 1: Ambiguity

Identification

Given an econometric model class, we have identification at the data side when

dT (M )=DT ,

and we have overidentification at the data side when

dT (M )ÚDT .

Thus, model class M is identified at the data side in case it is large enough to

describe all possible data. Otherwise, when the model class M is overidentified

at the data side, the model class does not describe all possible data, so that there

is the possibility of misspecification, i.e., we might have that

P
a
T ∈DT \dT (M ) .

We have identification at the model side, when

dT is one-to-one (injective),
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and we have underidentification at the model side when

dT is not one-to-one.

Thus, model class M is identified at the model side when for each data point

in PT ∈ dT (M ), there is exactly one model m ∈M , such that dT (m) =PT . Oth-

erwise, when the model class M is underidentified at the model side, there

are data points PT ∈ dT (M ) which cannot be described by a single model m ∈

M . Instead, we have models m1,m2 ∈ M , with m1 6= m2, such that dT (m1) =

dT (m2) = PT . In this case the data does not allow us to discriminate between

models m1 and m2.

Ambiguity

Given ∆T , we select as models

d−1
T (∆T ) = {m ∈M : dT (m) ∈DT } ⊂M ,

resulting in the selected target values

(
tT ◦d−1

T

)
(∆T ) =

{
tT (m) ∈TT : m ∈ d−1

T (∆T )
}

.

There is no ambiguity when this set of selected target values consists of a single-

ton. Otherwise, when the set of target values contains more than one element,

there is ambiguity.

Sources of Ambiguity

There are many sources of ambiguity. The standard econometric approach

consists of choosing a model class M , that is usually exactly identified at the

model side, but overidentified at the data side. For instance, one models the

asset returns as independent over time and identically distributed according to

a normal distribution, parameterized by the mean vector and covariance ma-

trix. Then, given a possible normal distribution function in DT , one is able to

retrieve the model in the model class, i.e., there is identification at the model

side. But, likely, asset returns are not normal, or not independent and iden-

tically distributed, so that at the data side we might possibly have misspeci-

fication, i.e., overidentification. Based on the model class, one selects some

estimation procedure, like Maximum Likelihood, that generally does not only

result in a single point estimate in DT but also in a confidence set around this

point estimate. In this case it makes sense to choose for ∆T the confidence set

in DT . Due to this estimation inaccuracy we cannot be sure about the model

in the model class M , and we are dealing with ambiguity (unless all models in

d−1
T (∆T ) would have the same target value, which is not very likely).
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Misspecification, due to overidentification at the data side, is an additional

source of ambiguity. Generally, to be sure that DT really includes P
a
T

we have

to choose DT so large, that the typical econometric model does not provide a

description for the whole set DT . If we are not sure that we exclude potential

misspecification, then we might want to enlarge the model class M , resulting

in a more extensive description of the data generating processes in DT . But,

generally, this also leads to a larger data selection set ∆T , so that, as a conse-

quence, the set of target values might become larger, and, thus, increasing the

ambiguity. Misspecification tests might be of some help in deciding whether

the chosen model class M is large enough to yield a sufficiently broad descrip-

tion of the set DT to avoid misspecification.

Underidentification at the model side is an often overlooked source of am-

biguity. Although usually one chooses a model class that is exactly identified at

the model side, since otherwise estimation of a model in such a model class

is not feasible, this does not exclude the possibility that there are other model

classes that describe the same data generating processes, but that result in dif-

ferent sets of target values than the original model class, one starts with. When

such alternative model classes indeed do exist, econometrics cannot provide

−by definition− data based methods to make a choice between these alterna-

tive model classes. But, of course, such alternative model classes would intro-

duce ambiguity.

3 Illustration: Investment Decisions

Consider an investor who wants to choose in an optimal way his or her port-

folio, consisting of an investment in J +1 assets, numbered from 0 to J , where

asset 0 always has price 1 and dividend payoff 0 ("money" or the risk free asset

with interest payment equal to zero). Let X t = St +D t stand for the vector of

total payoff of the J assets at time t , with St the vector of asset prices at time t ,

and with D t the corresponding vector of dividend payoffs at time t . For sim-

plicity, we consider a one-period ahead portfolio choice problem at time t = T .

Let XT+1 ⊂ R
J+1 denote the set of all possible values of the assets’ payoff vec-

tor XT+1 at time T +1. We shall assume that this set XT+1 is finite. A portfolio

at time T is given by a vector hT ∈ R
J+1, with time T portfolio price given by

hT ·ST , and its total payoff at time T +1 equal to

hT ·XT+1 = hT · (ST+1 +DT+1)

(where a · means taking an inner product). We assume that the investor will

make the investment decision hT given some econometric model and given

some preference ordering. We shall first illustrate three cases in the context of
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expected utility: the unambiguous case, the ambiguous case due to estimation

inaccuracy, and the ambiguous case due to underidentification, but without

estimation inaccuracy. Then we also briefly illustrate in the context of mean-

variance preferences.

1. The unambiguous risky case

The unambiguous case corresponds to the situation in which the investor has

an econometric model

ET = (M ,dT , tT ,∆T ) .

such that for some m0 ∈M

{m0} = d−1
T (∆T ) ,

with target value

Pm0 ≡ tT (m0) ,

where the target value Pm0 ≡ tT (m0) is the conditional probability distribution

of XT+1, given the available model m0 specific information up to and including

time T , with support contained in XT+1. Assume that the investor has utility

index UT+1 : XT+1 → R, and is an expected utility optimizer. Then the optimal

investment problem can be formulated as

max
hT

Em0 (UT+1 (hT ·XT+1)) = max
hT

∫

XT+1

UT+1 (hT ·x) dPm0 (x)

s.t . hT ·ST = WT ,

with Em0 denoting taking expectations with respect to Pm0 , and with WT the

wealth available for investment. In the sequel, we shall refer to this case as the

unambiguous risky case.

2. Ambiguity due to estimation inaccuracy

Ambiguity arises as soon as

M0 = d−1
T (∆T )

is a subset of the model class M , containing more than one element, such that

there exist m1, m2 ∈M0 satisfying

Pm1 ≡ tT (m1) 6= tT (m2) ≡Pm2 .

As discussed in the previous section, ambiguity might arise due to estimation

inaccuracy in which case ∆T is not a point estimate but, for instance, a confi-

dence interval around some point estimate. To deal with such a case, we can

follow Klibanoff et al. (2005). Let π denote a "prior" distribution over M , with
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support contained in M0, and suppose that the investor is not only character-

ized by the utility index UT+1, but also by an ambiguity index

φT+1 : R→R.

Then we can formulate the optimal investment problem as

max
hT

Eπ

(
φT+1 (Em (UT+1 (hT ·XT+1)))

)

= max
hT

∫

M0

φT+1

(∫

XT+1

UT+1 (hT ·x) dPm (x)

)
dπ (m)

s.t . hT ·ST =WT ,

where Eπ denotes taking expectations with respect to π . We shall summarize

this optimal investment problem by

(
UT+1,φT+1,π

)
,

and refer to it as the estimation-ambiguous risky case.

The unambiguous case, as discussed under 1, corresponding to a specific

model m0 ∈M , can then be summarized as

(
UT+1, I ,δm0

)
,

where the prior π = δm0 is the one-point mass distribution that assigns unit

mass to model m0, and where the ambiguity index φT+1 = I is the identity

transformation from R to R.

3. Ambiguity due to underidentification without estimation inaccuracy

Ambiguity need not result from estimation inaccuracy. An important reason

why econometric models −describing probability distributions in DT − are em-

ployed, seems to be lack of knowledge. Instead of considering the risky unam-

biguous case, as in 1., we might consider as alternative the possibility that a de-

scription of the economy is obtained by assuming that the economy is driven

by a (possibly) complicated, but deterministic process in terms of some vec-

tor of state variables wt , governed by dynamics described by wt = Φ
m
t (wt−1),

while we observe zt = f m
t (wt ), t = 1, ...,T , and we are interested in XT+1 =

g m
T+1 (wT+1), where the functions Φ

m
t , f m

t , and g m
T+1

are model m specific, for

some given model m. The data is then postulated to be generated by the one-

point mass distribution δm
(z1 ,...,zT )

, as induced by model m, in case (Z1, ..., ZT ) =

(z1, ..., zT ). However, we might not know which deterministic process is gener-

ating the economy. So, we might want to allow for all such possibilities. If we

allow for such a deterministic description of the economy, and we want to avoid
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potential misspecification, we need to allow for the possibility that DT includes

the set PT of one-point mass distributions, and we have to assume that the

model class M is rich enough to include as subset a subclass MP describing

all one-point mass distributions of

(Z1, Z2, ..., ZT , XT+1) .

Let

dT : MP →PT ⊂ DT

assign to each m ∈MP the one-point mass distribution δm
(z1,z2 ,...,zT )

of

(Z1, Z2, ..., ZT )

according to model m. Assume ∆T =
{
δ(z1 ,z2,...,zT )

}
, i.e., we select as data the

one-point mass distribution corresponding to the observed data (z1, z2, ..., zT ).

Obviously, there is no estimation inaccuracy in this data selection. Next, let

M0 = d−1
T

({
δ(z1,z2 ,...,zT )

})
,

then M0 ⊂ M includes those models in the subclass MP of one-point mass

distributions of (Z1, Z2, ..., ZT , XT+1) that satisfy (Z1, Z2, ..., ZT ) = (z1, z2, ..., zT ).

Clearly, if M is so rich that it includes the subclass MP , then we are dealing

with the case of underidentification. When determining the target values of

M0 we find

tT (M0) ⊃ {δx : x ∈ XT+1} ,

i.e., target values include at least the set of all one-point mass distributions over

XT+1. There is clearly ambiguity, but due to underidentification, and not due

to estimation inaccuracy.

To model the optimal investment problems, we can still use Klibanoff et al.

(2005). Suppose that M0 ⊂ Mp and tT (M0) = {δx : x ∈ XT+1}, so that we can

identify to each x ∈ XT+1, corresponding to the one-point mass distribution

δx , a model m ∈ M0 ⊂ Mp . Using this identification of each x ∈ XT+1 with

some model m ∈ M0 ⊂ Mp , we can consider the prior distribution π also as

being defined over XT+1. To indicate this, we write πXT+1 . In addition, given

a model m ∈ M0 ⊂ Mp , there is no risk, so we could take a linear utility index.

Thus, in case of Klibanoff et al. (2005), we have as objective function

EπXT+1

(
φT+1

(
Eδx (hT ·XT+1)

))
=

∫

XT+1

φT+1 (hT ·x) dπXT+1 (x) .

The optimal investment problem becomes

max
hT

∫

XT+1

φT+1 (hT ·x) dπXT+1
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s.t . hT ·ST =WT .

We can summarize this optimization problem as

(
I ,φT+1,πXT+1

)
.

where the prior distribution πXT+1 only assigns (positive or zero) probability

mass to models m ∈M0 ⊂Mp that correspond to one-point mass distributions

δx , x ∈ XT+1. In the sequel we shall refer to this case as the ambiguous non-

risky case.

The ambiguous risky case can be obtained by integrating cases 2. and 3.

We are then dealing with random dynamic systems, as studied, for instance, in

Arnold (2003). In the sequel, we shall mainly focus on the unambiguous risky

case and the unambiguous non-risky case.

4. Comparison of nonambiguous risk and ambiguous non-risk

Comparing cases 1, the unambiguous risky case, and 3, the ambiguous non-

risky case, we see that these become indistinguishable (from the point of view

of the investment decision) as soon as we make the identification

φT+1 ↔UT+1, πXT+1 ↔Pm0 ,

i.e., (
UT+1, I ,δm0

)
⇐⇒

(
I ,UT+1,Pm0

)
.

This yields the following possible interpretation, particularly, when in case of

1 one uses for model m0 an estimated model, say m̂, and one does not em-

ploy 2, explicitly taking into account estimation inaccuracy, but one ignores

estimation inaccuracy. Then, instead of dealing with the optimization prob-

lem summarized by (UT+1, I ,δm̂), one could equivalently claim to be dealing

with (I ,UT+1,Pm̂), where the empirically based probability distribution Pm̂ is

not used to describe one’s expected utility (which is indeed hard to defend if

there is estimation ambiguity), but, instead, Pm̂ −based on historical data− is

used to describe one’s prior over ambiguous models m ∈M0 ⊂Mp correspond-

ing to one point mass distributions over XT+1. Which case makes most sense

is obviously quite ambiguous.

4. Mean-Variance Preferences

The two cases 1. and 3. can also be compared in terms of mean-variance pref-

erences. In case 1., with model m0, the investor’s optimal investment problem

can be formulated as

max
hT

Em0 (hT ·XT+1)−
γ

2
V arm0 (hT ·XT+1)
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s.t . hT ·ST =WT ,

where Em0 and V arm0 denote taking the expectation and variance using Pm0 ,

respectively, and where γ represents the risk aversion parameter of the investor.

Suppose that the investor employs some estimated model: m0 = m̂. Then an al-

ternative interpretation is to interpret the investor’s preferences as a variational

preference under ambiguity, following Maccheroni et al. (2004). Translated to

the current context, these authors assume the presence of an ambiguity index

function

c (· ∥Pm̂) : P (XT+1) →R,

where P (XT+1) stands for the set of all probability distributions over XT+1,

defined by

c (Pm ∥Pm̂) =

∫(
dPm

dPm̂

)2

dPm̂ −1,

if Pm is absolutely continuously with respect to Pm̂ , and

c (Pm ∥Pm̂) =+∞,

otherwise. Let

VT (hT ) = min
Pm∈P σ(Pm̂)

(
Em (hT ·XT+1)−

1

2γ
c (Pm ∥Pm̂)

)
,

where P
σ (Pm̂) denotes the set of probability distributions over XT+1 that are

absolutely continuous with respect to Pm̂ . Preferences that can be represented

this way, are called variational preferences (under ambiguity) by Maccheroni

et al. (2004). These authors present preference axioms leading to such a rep-

resentation (and more general ones, than the one presented here). Moreover,

under appropriate regularity conditions, these authors show the equivalence

Em̂ (hT ·XT+1)−
γ

2
V arm̂ (hT ·XT+1) ≥ Em̂

(
gT ·XT+1

)
−
γ

2
V arm̂

(
gT ·XT+1

)

⇐⇒

VT (hT ) ≥ VT

(
gT

)
.

Thus, mean variance preferences can also be viewed as variational preferences,

explicitly dealing with ambiguity.

4 Ambiguity and No Arbitrage

In this section we investigate various types of arbitrage opportunities. For sim-

plicity, we focus on the single-period context, where the present is time T , and
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the next period is time T + 1, and where we have available an econometric

model

ET = (M ,dT , tT ,∆T ) .

Similar to the previous section, let X t = St + D t stand for the vector of total

payoff of the J + 1 assets at time t , with St ∈ R
J+1 the vector of asset prices at

time t , and with D t ∈R
J+1 the corresponding vector of dividend payoffs at time

t . Again, let XT+1 ⊂ R
J+1 denote the set of all possible values of the assets’

payoff vector XT+1 at time T + 1, which we also in this section assume to be

finite. A portfolio at time T is given by a vector hT ∈ R
J+1, so that short-selling

is allowed, with time T portfolio price given by hT ·ST , and its total payoff at

time T +1 equal to

hT ·XT+1 = hT · (ST+1 +DT+1) .

For a specific m ∈ M , let the target Pm = tT (m) be the conditional probability

distribution of XT+1, given the available −model m specific− information up to

and including time T , with support contained in XT+1.

We shall distinguish between the following types of arbitrage opportunities.

Definition 1 Portfolio hT (with price hT ·ST = 0) represents a model m specific

arbitrage opportunity at time T in case

Pm (hT ·XT+1 ≥ 0) = 1 and Pm (hT ·XT+1 > 0) > 0.

Definition 2 Portfolio hT (with price hT · ST = 0) represents a model subclass

N ⊂M specific arbitrage opportunity at time T , in case portfolio hT represents

a model m specific arbitrage opportunity at time T for all m ∈N .

Definition 3 Portfolio hT (with price hT ·ST = 0) represents a data ∆T specific

arbitrage opportunity at time T , in case portfolio hT represents a model subclass

d−1
T (∆T ) ⊂M specific arbitrage opportunity at time T .

Definition 1 is the usual definition of no arbitrage opportunities in an un-

ambiguous risky setting (see Delbaen and Schachermayer (2005)). However, as

soon as there is ambiguity in the sense that all we now is that a model in N

results in an appropriate description of the next period, it makes sense to con-

sider definition 2. In case one makes use of an econometric model, it makes

sense to exclude arbitrage opportunities according to definition 3.

Assuming that there are no arbitrage opportunities, means that particular

prices ST have to be excluded. To illustrate that definition 1 and 2 generally do

not result in the same restrictions on possible prices ST when arbitrage oppor-

tunities are excluded, consider the following very simple, but illustrative exam-

ple.
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Example 4 Let J = 2 with

XT+1 =

{(
1

2

)
,

(
1
1
2

)}

and with

ST =

(
1

S2,T

)
.

Consider as models

Pmp

{(
1

2

)}
= p, Pmp

{(
1
1
2

)}
= 1−p.

If N =
{

mp : p ∈ (0,1)
}

then S2,T ∉
(

1
2

,2
)

result in model class N -specific arbi-

trage opportunities. However, if N also includes m1 and m0, then S2,T = 2 or

S2,T = 1
2

do no longer result in model class N -specific arbitrage opportunities.

Notice that model mp , with p ∈ (0,1) corresponds to an unambiguous risky

modelling of the future (see figure 2), while {m0,m1}, with m1 having prior p and

(
1

S2,T

)

(
1

2

)

(
1
1
2

)

p

1−p

Figure 2: Unambiguous, risky interpretation

m0 having prior 1−p corresponds to an ambiguous, non-risky view of the same

future (see figure 3). Modeling the future by means of risk, i.e., assuming that

m0

m1

(
1

S2,T

)

(
1

S2,T

)

(
1

2

)

(
1
1
2

)

Figure 3: Ambiguous, non-risky interpretation

the future is described by some mp , p ∈ (0,1), means that, in case one excludes

arbitrage opportunities, one has to exclude as possible prices S2,T = 2 or S2,T =
1
2

. Alternatively, if one models the future under ambiguity, i.e., one considers as

possible models m0 and m1, then, in case one excludes arbitrage opportunities,
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price S2,T = 2 is not excluded, but, instead, price S2,T = 2 will exclude model m0

in case one would investigate choosing a trading strategy aiming at exploiting

an arbitrage opportunity according to model m0. Similarly, price S2,T = 1
2

is not

excluded, but it might exclude model m1.

In terms of priors πXT+1 , consider an investor who is a price-taker. Then,

as long as S2,T ∈
(

1
2

,2
)
, any prior with support XT+1 makes sense. But when

S2,T = 2, the assumption that there are no arbitrage opportunities, implies that

only the prior πXT+1 = δ{2} makes sense as soon as the investor would investi-

gate a trading strategy aiming at exploiting an arbitrage opportunity according

to model m0. Similarly, when S2,T = 1
2

, only the prior πXT+1 = δ{
1
2

} makes sense

under the assumption that there are no arbitrage opportunities and the investor

would investigate a trading strategy aiming at exploiting an arbitrage opportu-

nity according to model m1.

As discussed in the previous section, the unambiguous risky case with prob-

ability distribution estimated, is indistinguishable from the ambiguous non-

risky case when we identify the utility index of the risky model with the ambi-

guity index of the ambiguous model, and use in the ambiguous case as prior the

estimated probability distribution. As illustrated in the previous example these

different interpretations might correspond to different classifications of arbi-

trage opportunities. The next theorem characterizes arbitrage opportunities in

the ambiguous non-risky case.

Theorem 5 Let model class M include as subset the subclass MP describing all

point mass distributions of

(Z1, Z2, ..., ZT , XT+1) .

Let

dT : MP →PT ⊂ DT

assign to each m ∈MP the point mass distribution δm
(z1 ,z2,...,zT )

of

(Z1, Z2, ..., ZT )

according to model m. Assume ∆T =
{
δ(z1,z2 ,...,zT )

}
, and let

M0 = d−1
T

({
δ(z1,z2 ,...,zT )

})
,

and

tT (M0) = {δx : x ∈ XT+1} ,
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i.e., the set of all point mass distributions over XT+1. Then portfolio hT (with

price hT ·ST = 0) represents a data ∆T specific arbitrage opportunity at time T if

and only if

hT ·x > 0

for all x ∈XT+1.

Proof. If hT · x > 0 for all x ∈ XT+1 then each model m corresponding to some

δx , with x ∈ X , generates an arbitrage opportunity. This shows that portfolio

hT (with price hT ·ST = 0) is a data ∆T specific arbitrage opportunity at time T .

Conversely, if portfolio hT (with price hT ·ST = 0) represents a data ∆T specific

arbitrage opportunity at time T +1, then each model m corresponding to some

δx , with x ∈XT+1, generates an arbitrage opportunity. But this is only possible

if hT ·x > 0 for all x ∈XT+1.

Thus, in order to avoid arbitrage opportunities in the ambiguous non-risky

case, we need to avoid prices ST in period T and payoffs XT+1 in period T +1

that allow for trading strategies with zero price in period T but always pos-

itive payoff in period T + 1. In other words, for any trading strategy that is

costless in period T , there should be at least one nonpositive payoff in pe-

riod T + 1. This latter interpretation corresponds to a financial market game,

as introduced by Shafer and Vovk (2001). These authors investigate an investor

playing against the "market", where, in period T , the market first sets ST , then

the investor chooses a portfolio strategy hT , while in the following period T +1,

the market selects ST+1 and DT+1, and, thus, XT+1 = ST+1 +DT+1. Then the

investor chooses portfolio hT+1, and so on. The assumption that there are no

arbitrage opportunities in the ambiguous non-risky case corresponds to the re-

quirement of market coherence as imposed by Shafer and Vovk (2001): the mar-

ket should be able to set the prices ST in period T and payoffs XT+1 in period

T + 1, such that there are no zero-investment strategies that would generate

unlimited gains to the investor, i.e., the market should be able to guarantee a

non-positive payoff for each zero-investment strategy.

As corollary of the theorem we present an easy sufficient condition by which

arbitrage opportunities under ambiguity but without risk will be excluded.

Corollary 6 Let ST ∈ XT+1, then there are no data ∆T =
{
δ(z1,z2 ,...,zT )

}
specific

arbitrage opportunities at time T .

Proof. If hT · ST = 0, then hT · x = 0 for x = ST ∈ XT+1, and hT · x > 0 for all

x ∈XT+1 is excluded.

In the unambiguous risky case an arbitrage opportunity arises as soon as a

zero investment at time T has a positive payoff in only one future scenario in
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period T +1, with zero payoff otherwise. In the ambiguous non-risky case ar-

bitrage opportunities will already be excluded when a zero investment at time

T has a zero payoff in only one future scenario in period T +1. What this corol-

lary tells us, is that finding such a single scenario might not be hard. Indeed,

quite often today’s prices make sense as tomorrow’s potential payoffs. Particu-

larly, when stock prices and payoffs are modeled, this corollary indicates that,

generally speaking, the exclusion of arbitrage opportunities in the ambiguous

non-risky case is to be expected.

More generally, we have the following corollary.

Corollary 7 Suppose there exists some non-zero transformation m : XT+1 → R,

such that for all x ∈XT+1 we have m(x) ≥ 0, and such that for all hT ∈R we have

hT ·ST =
∑

x∈XT+1
m(x) (hT ·x). Then there are no data ∆T =

{
δ(z1,z2 ,...,zT )

}
specific

arbitrage opportunities at time T .

Notice that the existence of a transformation m : XT+1 → R actually follows by

the Law of One Price, which is implied by the theorem.

Proof. Given a non-zero m, satisfying m(x) ≥ 0 for all x ∈ XT+1, we also have

for some hT such that hT ·x > 0, for all x ∈XT+1,

hT ·ST =
∑

x∈XT+1

m(x) (hT ·x) > 0.

Thus, data ∆T =
{
δ(z1 ,z2,...,zT )

}
specific arbitrage opportunities at time T are ex-

cluded.

Excluding arbitrage opportunities on XT+1 in the unambiguous risky case

(assuming that each x ∈ XT+1 has a strictly positive probability) requires the

existence of some transformation m : XT+1 → R that is strictly positive every-

where. In the ambiguous non-risky case, a non-zero non-negative transforma-

tion m : XT+1 → R already suffices to exclude ∆T =
{
δ(z1 ,z2,...,zT )

}
specific arbi-

trage opportunities. The interpretation is that there exists a subset of the set of

potential outcomes XT+1, determined by the requirement m(x) > 0 such that

on this subset, when considered as an unambiguous non-risky modeling of the

future, arbitrage opportunities from that point of view are excluded.

In the next section we shall use the corollaries to construct a coherent artifi-

cial stock market model. Such coherent models can be studied using the theory

developed by Shafer and Vovk (2001).

5 A coherent artificial financial stock market model

In this section we illustrate how an ambiguous, possibly non-risky economy

can be modeled in a natural way as an artificial financial market. Adriaens et al.
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(2006b) contains a more extensive investigation. Since we will not be able to

solve the dynamics of this artificial financial market analytically, we will have to

use microscopic simulation to simulate the evolution of the market over time.

From that point of view, the set-up chosen here can be seen as an alternative

to the work by, among others, Levy et al. (2000), Arthur et al. (1996), LeBaron

(1999), LeBaron et al. (1999) and LeBaron (2001). In these microscopic simula-

tion models, economic agents are usually subdivided into various types, such

as technical analysts or believers of the Efficient Market Hypothesis, and so

on. In our economy, the agents are all equally "rational" in the sense of util-

ity maximization or mean-variance optimization (either unambiguous risky or

ambiguous non-risky), but different in the way they quantify the future, due to

different econometric models employed. In this section we present a bench-

mark version of such an economy.

We follow the economy during periods t ∈ {1,2, . . . ,T }. In this economy there

is one numeraire asset, "money" (or the "riskfree asset"), whose price (S0,t ) in

all periods equals 1, and whose dividend payoffs (D0,t ) always equals 0. In addi-

tion, there are J assets, where asset j is characterized by its dividend payoff D j t

and price S j t in period t . There are J "firms" in the economy, which decide on

the dividend payoffs, where "firm" j decides on D j t in period t . The economy

is inhabited by I investors, where each period t investor i chooses the portfolio

holdings

hi
t =

(
hi

0,t ,hi
1,t , ...,hi

J ,t

)

where hi
j ,t

denotes the portfolio holding of agent i in asset j as decided upon in

period t . When entering period t the portfolio holdings of investor i are given

by

hi
t−1 =

(
hi

0,t−1,hi
1,t−1, . . . ,hi

J ,t−1

)
,

i.e., the portfolio holdings as chosen in the previous period. These investors

trade at J +1 markets, one for each of the J +1 assets. At each market there are

a regulator and a market maker. The market maker’s task is to set the price of

asset j at time t such that the total supply equals the total demand, i.e., without

intervention of the regulator, the price S j t should be set such that

I∑

i=1

hi
j ,t =

I∑

i=1

hi
j ,t−1.

However, the regulators, responsible for an "orderly behavior" of the financial

markets might intervene in case the resulting price, as is to be set by the market

makers, is considered to be too "disorderly". The regulators might intervene

by active trading (buying or selling assets), in which case the market makers

also incorporate this additional demand or supply in the price setting, or the
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regulators might intervene by imposing a price change limit, in which case the

market makers take care of an appropriate rationing.

The timing is as follows. At time t first each of the firms j = 1, . . . , J decides

on its dividend payoff D j t , then the investors i = 1, . . . , I reveal their demands

for each of the assets j = 1, . . . , J , and the market maker of market j determines

the price, at which demand equals supply. Then the regulator of market j in-

tervenes or not, and, subsequently, the price S j t is set according to the market

rules and the new portfolio holdings hi
j t

of investor i in terms of asset j are

determined.

The "firms" are responsible for issuing dividends. In financial models, the

dividend process is usually assumed to be exogenously given. We follow this

tradition. In the benchmark version of the economy, we simply assume that

each of the "firms" uses some (possibly deterministic) rule for determining the

dividend payment in each period. This rule might be varying over time and is

unknown to the other economic agents.

Investor i is assumed to employ in period t an econometric model

E
i ,t
T

=

(
M

i ,t ,d i ,t
T

, t i ,t
T

,∆i ,t
T

)
,

where T = T i ,t is the individual and time specific memory length. In the bench-

mark version of the economy the investors only consider a one-step ahead in-

vestment choice. Assuming "expected utility", investor i is characterized in pe-

riod t by (
U i ,t

t+1,φi ,t
t+1,πi ,t

)
.

with πi ,t having support contained in

M
i ,t
0 =

(
d i ,t

T

)−1 (
∆

i ,t
T

)
.

Thus, investor i is assumed to solve in period t

max
hi

t

∫

M
i ,t
0

φi ,t
T+1

(∫

Xt+1

U i ,t
T+1

(
hi

t ·x
)

dP
i ,t
m (x)

)
dπi ,t (m)

s.t . hi
t ·St =W i

t ≡ hi
t−1 · (St +D t ),

where

P
i ,t
m = t i ,t

T (m) .

In particular, we have the possibility that the investor is characterized by

(
I ,U i ,t

t+1,Pi ,t
m̂

)
,

20



i.e., the ambiguous non-risky case, where the prior distribution P
i ,t
m̂

is empir-

ically determined on the basis of an econometric model that is selected such

that arbitrage opportunities are excluded according to this model (and its esti-

mate), given the prevailing prices in period t .2 Arbitrage opportunities should

be excluded according to the (estimated) econometric model, given the prevail-

ing prices, to guarantee that the utility maximization does not yield unbounded

results. Similarly to the "firms", the econometric model employed by and the

preferences characterizing investor i might change over time, and are assumed

to be unknown to the other economic agents.

In this benchmark economy there might be no risk, when the "firms" use

deterministic rules, and the investors’ preferences can be described by the am-

biguous non-risky case. Price variations then occur solely due to ambiguity.

Ambiguity arises due to the fact that the economic agents do not know each

other’s strategies to determine the dividends (the "firms") or the portfolios (the

investors). Moreover, the exact way of intervention (the interaction between

market makers and regulators) might be unknown. The economic agents only

observe past data, consisting, for instance, of realized prices, trading volumes,

etcetera. Different economic agents will have different preferences and endow-

ments, but they also will use different econometric models. Together, this re-

sults in heterogeneity, causing trade and price fluctuations over time. Observ-

ing past data over a long period in order to recover the underlying determin-

istic system governing the economy will fail, due to time-varying preferences

and rules for dividend payments, as well as changes in the econometric models

employed over time.

To verify that the ambiguous non-risky variant of the benchmark model is

coherent we might use the corollaries of the previous section. In case the reg-

ulators do not intervene, or only intervene by trading, the market makers will

guarantee a temporary equilibrium, see, for instance, Grandmont (1988). In

such a temporary equilibrium, the investors will be able to maximize their util-

ity functions, subject to the budget constraint. It is not hard to see that the

first order conditions of these constrained maximization problems will result

in functions m : XT+1 → R, one for each investor, which are strictly positive on

the support of πi ,t
XT+1

↔ P
i ,t
m̂

, and zero otherwise. In case the regulators inter-

2Alternatively, in case the investor would be a one-period ahead mean-variance investor, we

can formulate the optimal investment problem as

max
hT

Em̂ (hT ·XT+1)−
γ

2
V arm̂ (hT ·XT+1)

s.t . hT ·ST =WT .
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vene by imposing a price change limit (relating period T −1 and T ), so that the

market makers have to ration, the model might still be coherent, if a future zero

price change (relating period T and T +1) combined with future zero dividend

(in period T +1) is a possible future outcome, so that XT+1 includes the time T

prices.

6 Conclusions

In this paper we investigated the relationship between ambiguity, no-arbitrage,

and coherence, and we linked, in particular, an unambiguous risky view of

the economy to an ambiguous non-risky view. Given an econometric model,

we first discussed the various sources of ambiguity. Then we illustrated in the

context of portfolio choice, making use of the recent literature, how ambiguity

might be translated into preference orderings. Particularly, we linked the un-

ambiguous risky and the ambiguous non-risky cases, both when dealing with

expected utility and when dealing with mean-variance preferences. Then we

introduced various ways of defining arbitrage opportunities, again focussing

particularly on the distinction between the unambiguous risky case and the

ambiguous non-risky case. We showed that absence of arbitrage opportuni-

ties in the ambiguous non-risky case corresponds to the concept of coherence,

as introduced by Shafer and Vovk (2001). Finally, we introduced a benchmark

artificial financial market, to show how an ambiguous non-risky (or, possibly

ambiguous risky), but coherent economy can be modeled. The dynamics of

such an economy can be investigated by combining the techniques of Shafer

and Vovk (2001) and microscopic simulation techniques.

Using coherence as a guiding principle in constructing financial models in-

stead of the assumption of no arbitrage opportunities broadens one’s modeling

possibilities considerably. In a companion paper Adriaens et al. (2006a) we fur-

ther illustrate this.
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