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Abstract

In this paper an AK growth model is fully analyzed under the time to build assumption.
The existence and uniqueness of the balance growth path and the oscillatory convergence of
detrended capital while detrended consumption is constant over time is proved. Moreover
the role of transversality conditions and the assumption of capital utilization, make these
results hold for any value of the delay.
Keywords: AK Model; Time-to-Build; D-Subdivision method.
JEL Classification: E00, E3, O40.

1 Introduction

Recently Boucekkine & al. [9], have studied the dynamics of an AK-type endogenous growth
model with vintage capital. They find that the inclusion of vintage capital leads to oscillatory
dynamics governed by replacement echo. Thus, vintage capital is a possible source of aggregate
fluctuations in the economy [8]. In this paper, we propose an AK endogenous growth model
[4] when capital takes time to became productive. In the literature this assumption is often
referred as "time to build". Jevons [16], was one of the first economists which underlined the
important property of capital to be concerned with time: "A vineyard is unproductive for at
least three years before it is thoroughly fit for use. In gold mining there is often a long delay,
sometimes even of five or six years, before gold is reached"1. The time dimension of capital was
further studied by Hayek [14], who identified in the structure of production and precisely in the
time of production one of the possible sources of aggregate fluctuation. The Hayek’s insight was
formally confirmed for the first time by Kalecki [17], and afterward by Kydland and Prescott
[18], who showed that it contributes to the persistence of business cycle. In this paper, the time
to build assumption is introduced by a delay differential equation for capital. Delay differential
equations, and in general functional differential equations are very interesting but, at the same
time, quite complicated mathematical objects. Since the first contributions of Kalecki [17],
Frisch and Holme [11], and Belz and James [6], very few authors have used this mathematical
instrument for modelizing the time structure of capital. To our knowledge, the only two works
in growth theory introducing time to build in this way, are Rustichini [21], and Asea and Zak
[1]. Both of these contributions show that time to build is responsible of the oscillatory behavior
of the main variables and that exists parametrization under which the dynamics of the economy
can be a cycle. However, even if sometimes implicitly, it is also true that these models predict the

∗The author thanks Raouf Boucekkine, Franco Gori, Omar Licandro, Aldo Rustichini and Paul Zak for their
useful advice and comments. Correspondence address: European University Institute (Florence), tel. +39-055-
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1 Jevons [16], Chapter VII: Theory of Capital, page 225.
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existence of capital divergence regions, for different parametrizations, namely for values of the
time to build coefficient sufficiently high. This result is very difficult to explain from an economic
point of view and in our opinion has reduced the interest on this specific source of aggregate
fluctuations. After introducing the so-called D-Subdivision method, we show in this paper how
this implausible prediction can be eliminated by assuming a more complex structure of capital
depreciation. The existence of a unique balance growth path and the dynamic behaviors of the
detrendized variables is also fully analyzed and a comparison between the results obtained with
the new structure of depreciation and the standard one are reported.

The paper is organized as follows. We first present the model setup in Section 2 and we
derive the first order conditions by applying a variation of the Pontrjagin’s maximum principle.
In Section 3, we introduce some mathematical results on the theory of functional differential
equations and the D-Subdivision method is fully described. Taking into account this theoretical
background, the existence and uniqueness of the balance growth path is proved and the influence
of a variation of the delay coefficient on the magnitude of the growth rate is fully analyzed and
reported also in a picture. The transitional dynamics of the economy is reported in Section
5. The next section makes a comparison between the possible different results which can be
obtained according to the choice of the structure of the depreciation of capital. An example
showing the dynamic behavior of the economy is reported in Section 6. Finally, in Section 7
some concluding remarks are made.

2 Problem Setup

We analyse a standard one sector AK model with time to build. To be precise we assume from
now on that capital takes d years to become productive. Then the social planner want to solve
the following problem

max

∞Z
0

c(t)1−σ − 1
1− σ

e−ρtdt

subject to
k̇ (t) = Ãk (t− d)− c (t) (1)

given initial condition k (t) = k0 (t) for t ∈ [−d, 0] with d > 0. All the variables are per capita.
The variable Ã = (A− δ) e−φd > 0 depends on A which is the productivity level, δ which is the
usual capital depreciation, and on φ which is the level of depreciation of capital before starting
to become productive. A unit of capital at time t will be depreciated of e−φd with φ ≥ 0 at
t + d; the term e−φd describes the so-called capital utilization [12]. Intuitively, the intensity
of use depends inversely by the time to build parameter: the larger is d, the lower will be the
utilization of capital in the interval of time (t, t+ d). Finally, observe that with no time to build
the intensity of use will be maximum and the problem become a standard AK model. Following
Kolmanovskii and Myshkis [19] it is possible to extend the Pontrjagin’s principle to this optimal
control problem. Then, the Hamiltonian for this system can be construct:

H (t) = c(t)1−σ − 1
1− σ

e−ρt + µ (t)
h
Ãk (t− d)− c (t)

i
and its optimality conditions are

c (t)−σ e−ρt = µ (t) (2)

µ (t+ d) Ã = −µ̇ (t) (3)

with the standard transversality conditions

lim
t→∞µ (t) ≥ 0 and lim

t→∞µ (t) k (t) = 0
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From equations (2) and (3) we can get the forward looking Euler-type equation

ċ (t)

c(t)
=
1

σ

·
Ã

µ
c(t)

c(t+ d)

¶σ

e−ρd − ρ

¸
(4)

Exactly as in the standard AK model, consumption growth does not depend on the stock of
capital per person. However in our context the positive constant growth rate is not explicitely
given by the Euler equation which is a nonlinear advanced differential equation in consumption.

This difference is due to the fact that the real interest rate r = Ã
³

c(t)
c(t+d)

´σ
e−ρd, which the

household gets investing in capital, is weighted by the marginal elasticity of substitution between
consumption at time t and consumption at time t + d. Before proceeding with the analysis of
the BGP of our economy, we present in the next section the mathematical instruments which
will be used for proving the main results and characteristic of the economy under studying.

3 Some Preliminary Results

Before proceeding, let us evoke some theoretical results on functional differential analysis. Con-
sider the general linear delay differential equation with forcing term f(t) :

a0u̇(t) + b0u(t) + b1u(t− d) = f(t) (5)

subject to the initial or boundary condition

u(t) = ξ(t) with t ∈ [−d, 0] . (6)

Theorem 1 (Existence and Uniqueness) Suppose that f is of class C1 on [0,∞) and that
ξ is of class C0 on [−d, 0]. Then there exists one and only one continuous function u(t) which
satisfies (6), and (5) for t ≥ 0. Moreover, this function u is of class C1 on (d,∞) and of class
C2 on (2d,∞). If ξ is of class C1 on [−d, 0], u̇ is continuous at τ if and only if

a0ξ̇(d) + b0ξ(d) + b1ξ(0) = f(d) (7)

If ξ is of class C2 on [−d, 0], ü is continuous at 2d if either (7) holds or else b1 = 0, and only
in these cases.

Proof. See Bellman and Cooke [5], , Theorem 3.1, page 50-51.

The function u singled out in this theorem is called the continuous solution of (5) and (6).
Then in order to see the shape of this continuous solution the following theorem is useful:

Theorem 2 Let u(t) be the continuous solution of (5) which satisfies the boundary condition
(6). If ξ is C0 on [−d, 0] and f is C0 on [0,∞) , then for t > 0,

u(t) =
P
r
pre

zrt +
R t
d f(s)

P
r pre

zr(t−s)ds (8)

where {zr}r and {pr}r are respectively the roots and the residue coming from the characteristic
equation, h(z), of the homogeneous delay differential equation

a0u̇(t) + b0u(t) + b1u(t− d) = 0 (9)

Note: pr =
p(zr)
h0(zr) where

p(zr) = a0ξ(d)e
−zrd + (a0zr + b0)

R 0
−d ξ(s)e

−zrsds
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Proof. See Bellman and Cooke [5], Theorem 3.7, page 75, and Theorem 4.2 and Corollary 4.1,
page 109-110. See also El’sgol’ts and Norkin [10],page 80-82.

Since in our context it shall be fundamental to have real continuous general solution, we
present here other two theoretical results.

Theorem 3 The unique general continuous solution of problem (5) with boundary condition
ξ : I ⊂ R→ R and forcing term f : I → R, has a unique representation of the form

u (t) =
kP

r=0
ςre

xrt+
∞P
r=k

¡
are

zrt + āre
z̄rt
¢
+

tZ
d

f(s)

·
kP

r=0
ςre

xr(t−s) +
∞P
r=k

³
are

zr(t−s) + āre
z̄r(t−s)

´¸
ds

(10)
where {xr} are real roots, {zr} are complex conjugate roots2, {ςr} are real constants, and {ar}
are complex conjugate constants.

Proof. See Appendix.

From this theorem follows immediately the Corollary

Corollary 1 The general continuous solution (10) can also be written in the form

u (t) =
kP

r=0
ςre

xrt + 2
∞P
r=k

(ςr cos yrt− ωr sin yrt) e
xrt + (11)

+

tZ
d

f(s)

·
kP

r=0
ςre

xr(t−s) + 2
∞P
r=k

(ςr cos yr (t− s)− ωr sin yr (t− s)) exr(t−s)
¸
ds

where ςr = Re (ar) and ωr = Im(ar) with {ar} residues.

Proof. See Appendix.

Some considerations on these theorems are needed. We start with the last two results. The
important message of Theorem 3 and Corollary 1 is the following: if we assume a boundary
condition and a forcing term which are real functions then also the general continuous solution
must be real. Other considerations regard the proofs of Theorem 1 and 2: Both of them are
strictly related to the fact that all the roots of h(z) lie in the complex z-plane to the left of some
vertical line. That is, there is a real constant c such that all roots z have real part less then
c. This consideration is in general no more true for advanced differential equation which are
characterized by CE with zeros of arbitrarily large real part. However as explained by Bellman
and Cooke[5],3 it is possible to write the solution of any advanced differential equation as a sum
of exponentials using the finite Laplace transformation technique. Moreover observe that the
characteristic equation of (5),

h(z) ≡ z + a+ be−zd = 0 (12)

with a = b0
a0
and b = b1

a0
, is a trascendental function with infinitely many finite roots. Sometimes

h(z) is also called the characteristic quasi-polynomial. Asymptotic stability requires that all
of these roots have negative real part. In order to help in the stability analysis we introduce
two important mathematical results: the Hayes theorem and the D-Subdivision method or D-
Partitions method. Hayes Theorem [15] in its more general formulation states the following:

2We have indicated the conjugate of a complex number a with ā.
3Look at Chapter 6 page 197-205.
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Theorem 4 The roots of equation pez + q− zez = 0 where p, q ∈ R lies to the left of Re (z) = k
if and only if

(a) p− k < 1

(b) (p− k) ek < −q < ek
q
a21 + (p− k)2

where a1 is the root of a = p tan a such that a ∈ (0, π). If p = 0, we take a1 = π
2 .

One root lies on Re (z) = k and all the other roots on the left if and only if p − k < 1 and
(p− k) ek = −q.

Two roots lies on Re (z) = k and all the other roots on the left if and only if −q =

ek
q
a21 + (p− k)2

Proof. See Hayes [15], page 230-231.

However this Theorem doesn’t tell anything about the sign of the real part of the roots
of the trascendental function when the conditions (a) and (b) are not respected. For this
reason the D-Subdivision method is now introduced (for more details on this method, El’sgol’ts
and Norkin [10], or Kolmanovskii and Nosov [20]). Given a trascendental function like for
example (12), this method is able to determine the number of roots having positive real part
(for now on p-zeros) in accordance with the value of its parameters (a and b in our specific
case). This is possible since the zeros of a trascendental function are continuous functions of
their parameters. A D-Subdivision can be obtained by dividing the space of coefficients into
regions by hypersurfaces, the points of which correspond to quasi-polynomials having at least
one zero on the imaginary axis (the case z = 0 is not excluded). For continuous variation of the
trascendental function parameters the number of p-zeros may change only by passage of some
zeros through an imaginary axis, that is, if the point in the coefficient space passes across the
boundary of a region of the D-Subdivision. Thus, to every region Γk of the D-Subdivision, it
is possible to assign a number k which is the number of p-zeros of the trascendental function,
defined by the points of this region. Among the regions of this decomposition are also found
regions Γ0 (if they exist) which are regions of asymptotic stability of solutions. Finally in order
to clarify how the number of roots with positive real parts changes as some boundary of the D-
Subdivision is crossed, the differential of the real part of the root is computed, and the decrease
or increase of the number of p-zeros is determined from its algebraic sign. It turns very useful in
the proceeding of the paper to study with the D-Subdivision method the trascendental function
(12).

First of all, observe that this equation has a zero root for a+ b = 0. This straight line (see
Figure 1) is one of the lines forming the boundary of the D-Subdivision. It is also immediate to
derive that the trascendental function (12) have purely imaginary root iy if and only if

a+ b cos dy = 0, y − b sin dy = 0 (13)

or

b =
y

sin dy
, a =

−y cos dy
sin dy

(14)

The equations in parametric form (13) or (14) identify all the other D-Subdivision boundaries. To
be precise there is one boundary for any of the following interval of y:

¡
0, πd

¢
,
¡
π
d ,
2π
d

¢
,
¡
2π
d ,

3π
d

¢
, . . ..

Moreover it is possible (and useful) to find the values of b for which the boundaries intercept
the b-axis. The sequence of such b is

©
. . . ,−7π2d ,−3π2d , 0, π

2d ,
5π
2d , . . .

ª
. Finally we show how p-zeros

rises. In particular we show how crossing Cl from Γ0 to Γ2 two p-zeros appear (that is, we focus
on the interval 0 < y < π

d ). From (12) applying the implicit function theorem, we have that on
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Cl

dx = −Re da

1− bde−diy

= −Re da

1− bd (cos dy − i sin dy)

=
(1− bd cos dy) da

(1− bd cos dy)2 + b2d2 sin2 dy

We find that cos yd < 0 for bd > 1. Therefore, upon crossing the boundary Cl from region Γ0
into Γ2, the pair of complex conjugate roots gain positive real parts. The analysis on the other
boundaries of the D-Subdivision is completely analogous. Taking into account all of these result,
we are now ready to study completely our model.

Figure 1: D-Subdivision for the trascendental function (12) assuming d = 5.
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4 Balance Growth Path Analysis

In order to show the existence and uniqueness of the BGP we present before some results
regarding the roots of the characteristic equation of the law of motion of capital, of its shadow
price, and of consumption. These results are presented and proved in Lemma 1 and Lemma 2,
respectively. Some pictures are also provided in order to help the reader in getting the main
message behind the math. After that, the continuous solution of capital is rewritten as a sum
of weighted exponential (Proposition 1) and then, following a very similar strategy as that used
in the standard AK model, a unique balance growth path for consumption and capital is proved
by checking the transversality condition. Very similar is also the requirement that for any
exogenously given choice of the delay coefficient, the production function has to be sufficiently
productive to ensure growth in consumption, but not so productive as to yield unbounded utility:
A ∈ (Amin, Amax). On the other hand, it is possible to express the same requirement, given a
certain level of technology, in term of the delay coefficient: d ∈ (dmin, dmax). Finally as in the
standard case if σ > 1, then Amax is equal to plus infinity, while dmin to zero.

As anticipated in Lemma 1 we report some information on the roots of the CE of the law of
motion of capital and its shadow price:

Lemma 1 For any φ sufficiently high the following results hold:
1) z̃ is the unique root with positive real part of the CE of the law of motion of capital;
2) s̃ is the unique root with negative real part of the CE of the law of motion of shadow price.

Proof. The characteristic equation of the law of motion of capital (1) is equal to the character-
istic equation of its homogeneous part4, namely

z − Ãe−zd = 0 (15)

It immediate to show that this equation has a unique positive real root zṽ = z̃ which is also the
highest among its roots. In particular, through the D-Subdivision method it is possible to prove
that the trascendental equation (15) has an increasing number of p-zeros as d rises. On the
other hand if we assume φ = φ̂ sufficiently high,5 it happens that Ã < 3π

2d for any choice of d and
then a unique p-zero exists6. These facts can be easily observed in Figure 2. Finally, z̃ > Re(zv)
for any v 6= ṽ since all the roots of the CE of (1) in the detrended variables x̂(t) = x(t)e−z̃t are
negative. This is sufficient to prove result 1). Now observe that the CE of the shadow price law
of motion (3) is

−s− Ãesd = 0 (16)

then we can put in correspondence the roots of (15) and (16) through the transformation z = −s.
From this consideration follows immediately that Re(s) = −Re(z) and s̃ = −z̃ is the root with
lowest real part of the characteristic equation of the law of motion of shadow price.

4The part of equation (1) not considering the forcing term −bC(t).
5 In the numerical simulation we may assume for example φ̂ close to δ.
6This is also a consequence of the fact that Ã converges to zero faster than 3π

2d
as d→∞.
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Figure 2: Number of p-zeros of (15) according to the choice of the delay coefficient.

Lemma 1 tells us that if we assume a sufficiently high depreciation φ̂, then z̃ is the constant
growth rate of capital and the unique p-zero of (15). Now it will be useful for proving a common
growth rate of consumption and capital to show the following Lemma:

Lemma 2 A positive and constant growth rate of consumption, gc, always exists for A > Amin =

δ + ρe(ρ+φ̂)d.

Proof. First of all observe that since the Euler equation (4) is a nonlinear ADE we cannot
write directly its continuous general solution (Theorem 2 doesn’t apply). However it is possible
to overcome this fact by observing that the general continuous solution of consumption can be
obtained indirectly by the first order condition (2). Considering that the general solution of the
shadow price of capital is µ (t) =

P
m
ame

−zmt we have that

c(t) =
1µP

m
ame−σλmt

¶ 1
σ

(17)

where we have called
λ =

1

σ
(z − ρ) (18)

From equation (17) we can derive that the basic solutions of (4) have exponential form, namely
the basic solutions are

©
eλm

ª
m
; moreover taking into account (15) and (18) we can derive

indirectly the characteristic equation of (4)

h (λ) = σλ+ ρ− Ãe−(σλ+ρ)d (19)

Using the Hayes theorem or the D-Subdivision method, a unique positive real root, λm̃ = gc exists
for A sufficiently large, namely A > Amin = δ + ρe(ρ+φ)d. This is exactly the same condition of
the standard AK model when the assumption of time to build is introduced. Observe also that in
this context the same requirement can be expressed in term of the delay, d < dmax =

1
ρ+φ log

A−δ
ρ .

Exactly as before, a unique p-zero exists if Ãe−ρd < 3π
2d . It is obvious that for φ = φ̂ the inequality

is always respected (see Figure 3) since φ̂ was sufficient to force Ã to stay below 3π
2d and given
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that (A− δ) e−φ̂de−ρd is a product of functions which are positive and monotonic decreasing in
d. As it will appear clear in Section 6 for any φ ∈

h
0, φ̂

´
, some economic implausible prediction

may rise. Then from now on we focus on the case φ ≥ φ̂. Now endogenous growth implies
that consumption and capital have to growth at a positive rate over time. This implies that
limt→∞ c (t) = +∞; then given (17), we have to impose that

lim
t→∞

1Ã
am̃e−σgct +

P
m/∈m̃

ame−σλmt

! 1
σ

= +∞ (20)

Using the properties of the limits7, it is possible to rewrite (20) as

1 limt→∞am̃e
−σgct| {z }

→0

+
P
m/∈m̃

lim
t→∞ ame

−σλmt

| {z }
→∞


1
σ

= +∞

Then it results that the relation (20) is satisfied if and only if am = 0 for any m 6= m̃. Taking
into account this fact, the general continuous solution of consumption is

c (t) = a
− 1
σ

m̃ egct
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Figure 3: Number of p-zeros of (19) according to the choice of the delay coefficient.

Our objective is to prove that the growth rate of consumption and capital are the same g =
gc. However before proving it, we introduce the following Corollary of Theorem 2 which let us
to rewrite the continuous solution of capital as a sum of weighted exponentials.

7The following properties have been used: limx→a
f(x)
g(x)

= limx→a f(x)
limx→a g(x)

, limx→a [f (x)]
n = [limx→a f (x)]

n, and

limx→a i fi (x) = i limx→a fi (x)
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Proposition 1 The solution of the law of motion of capital can be written as

k(t) =
X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt (21)

where Pm̃,v =

Ã
−a

− 1
σ

m̃ nv
gc−zv

!
and Nm̃,v = nv

Ã
a
− 1
σ

m̃
gc−zv e

(gc−zv)d + 1

!
.

Proof. According to Theorem 2 and Lemma 2, the continuous general solution of consumption
and capital are respectively

c(t) = a
− 1
σ

m̃ egct (22)

k(t) =
X

v
nve

zvt −
Z t

d
c (s)

X
v
nve

zv(t−s)ds (23)

Now the integral part of equation (23) is equal toZ t

d
a
− 1
σ

m̃ egcs
X

v
nve

zv(t−s)ds =
X

v

nva
− 1
σ

m̃

gc − zv

³egct − ezvt+(gc−zv)d
´

and substituting in (23) after some algebra we get (21).

Some comments on equations (22) and (21) are needed. These equations are very close to
the general solution form for consumption and capital in the usual framework, with ordinary
differential equation; in particular k(t) is a weighted sum of exponentials; however, this similarity
can be found for system of mixed functional differential equations only in the particular case of
a single equation with forced term. In the most general case it doesn’t exist a theorem which
let us to write the solution in this way8. Moreover, the continuous solution of the law of motion
of consumption (22) and capital (21), are not the optimal solution exactly as it happens in the
ordinary case. Before getting optimality, transversality conditions have to be checked. Using this
corollary and TVC we prove now the existence of a unique balance growth path for consumption
and capital.

Proposition 2 Consumption and capital have the same balanced growth path g = gc. This
growth rate is positive and yield bounded utility if A ∈ (Amin, Amax).
Proof. As shown in Lemma 2, the growth rate of consumption gc is a positive constant if
A > Amin. Given that, we have to distinguish two cases: z̃ ≤ gc and z̃ > gc. The first case is
never possible. In fact, assume that z̃ ≤ gc then gc is also the growth rate of capital as follows
immediately by looking at equation (21). Then we can rewrite the characteristic equation of
capital, after the transformation k̂(t) = k(t)e−gct, as

−wew − gcde
w + Ãde−gcd = 0 (24)

where w = zd. Since gc is the root having greater positive real part all the roots of (24) must
have negative real part which, from Hayes Theorem, it implies also that gc > Ãe−gcd. However,
this is never possible since it contradicts the positive sign of the consumption to output ratio at
the balanced growth path

c(t)

k(t)
= Ãe−gcd − gc > 0

8Recently Asl and Ulsoy [2] have proved that a general solution form can be written for system of delay
differential equations using Lambert function.
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which can be obtained by dividing the law of motion of capital (1) by k(t). Then the only
possible case is z̃ = σgc + ρ > gc. This is exactly the requirement for having no unbounded
utility: (1− σ) gc < ρ. Then before passing to the TVC we observe that if σ > 1, the utility
is always bounded; on the other hand if 0 < σ < 1 we need a condition on A such that
the utility is bounded. Taking into account the CE (19) after some algebra this condition is

A < Amax = δ+ ρ
1−σe

ρ+φ(1−σ)
1−σ d

which is exactly the same condition for the standard AK model
when the time to build parameter is equal to zero. Observe also that such condition can be
rewritten also in term of the delay, d > dmin =

1−σ
ρ+(1−σ)φ log

(A−δ)(1−σ)
ρ . Now we show that the

TVC
lim
t→∞µ (t) k(t) = 0 (25)

implies necessary a unique BGP which is gc. In order to see this, we substitute the general
continuous solutions of µ(t) and k(t), into the TVC (25) and we get:

lim
t→∞ am̃e

−z̃t
³X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt
´
= 0 (26)

which is equal to

lim
t→∞

h
am̃Nm̃,ṽ +

X
v 6=ṽNm̃,ṽe

(zv−z̃)t +
X

v
Pm̃,ve

(gc−z̃)t
i
= 0

now for am̃ 6= 0, the second and third term in the parenthesis converge to zero since zv − z̃ < 0
for any v and gc − z̃ < 0. Then the TVC are respected if and only if

Nm̃,ṽ ≡ a
− 1
σ

m̃

gc − z̃
e(gc−z̃)d + 1 = 0 (27)

which implies

am̃ =

µ
1

z̃ − gc
e(gc−z̃)d

¶σ

(28)

Concluding TVC holds if and only if condition (27) is verified. Given this condition, gc is also
the growth rate of capital since the continuous general solution of capital (23) can be rewritten
as follows

k(t) =
X

v
Pm̃,ve

gct +
X

v 6=ṽNm̃,ve
zvt (29)

Then the optimal solution of capital (29) is asymptotically driven by gc which implies a common
growth rate with consumption.

This proposition puts in evidence how a unique balance growth path for consumption and
capital can be proved to exist also in the case of time to build by checking to the transversality
conditions. In fact through the conditions (27) it is possible to rule out the eigenvalue coming
from the characteristic equation of the law of motion of capital, having positive real part greater
than gc. Observe also that this fact and the assumption on the structure of capital depreciation
make all of these results valid for any choice of the delay in the interval (dmin, dmax) which
guarantees presence of endogenous growth and no unbounded utility.

Once we have shown that g = gc is the unique balanced growth path of consumption and
capital it is also interesting to see the variation of it to different choices of the delay coefficient, d,
and of the level of technology A. These considerations are reported in the the following corollary
of Proposition 2:

Corollary 2 Under A ∈ (Amin, Amax), ∂g
∂d is negative while

∂g
∂A is positive.
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Proof. Under A ∈ (Amin, Amax), we have shown that g is the unique positive balance growth
path for consumption and capital. The effect of a variation of d or A on g can be easily computed
by applying the Implicit Function Theorem on the trascendental equation (19) which is always
satisfied for λ = g. After some algebra we obtain that

∂g

∂d
= −(A− δ) (σg + ρ+ φ) e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
< 0

∂g

∂A
=

e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
> 0

In Figure 5, we have reported the behavior of g as d rises (the decreasing curve) and the standard
case with d = 0 for the following parametrization: σ = 8, ρ = 0.02, A = 0.30, δ = 0.04, and
φ̂ = δ. Given these values, d has to be in the interval (0, 42.74) in order to have a positive
balance growth path.

Figure 4: Behavior of the balance growth path, g, to variations of d.

5 Consumption and Capital Dynamics

In the previous section, we have proved the existence and uniqueness of the balance growth
path. We have also shown the influence of the delay coefficient on the growth rate for a given
level of technology. In this section, we focus on the dynamic behavior of the optimal detrended
consumption and capital which let us to derive indirectly the behavior of detrended income and
detrended investment.

12



Proposition 3 Optimal detrended consumption is constant over time while optimal detrended
capital path is unique and oscillatory converges to a constant.

Proof. The optimal detrended solution of capital and consumption can be obtained by multi-
plying both sides of equations (29) and (22) by e−gct obtaining

ĉ(t) = a
− 1
σ

m̃ (30)

k̂(t) =
X

v
Pm̃,v +

X
v 6=ṽNm̃,ve

(zv−gc)t (31)

After calling z = x+ iy and n = α+ iβ,.the detrended solution for capital can be rewritten, as
shown in the Appendix, in the following way

k̂(t) =
X

v
Ψ0,v +

X
v
[(αv +Ψ1,v) cos yvt− (βv +Ψ2,v) sin yvt] e(xv−gc)t (32)

where Ψ0,v,Ψ1,v,Ψ2,v ∈ R. Finally, consider the limit for t going to infinity we find that

lim
t→∞ k̂(t) =

X
v
Ψ0,v (33)

Expressions (32) and (33) tell us that the transition to the BGP is oscillatory since the presence of
the cosine and sine term, and that the convergence is guarantee by the fact that xv = Re (zv) < gc
for any v 6= ṽ. Finally the uniqueness of the path is due to the fact that the residue {nv}v are
fixed by the boundary condition of capital while the residue am̃ by the transversality condition
through the expression (28).

In the following section, we introduce some technical reasons which in our opinion are con-
vincing in the choice of a φ ≥ φ̂. However , as it appears clear soon, all the results obtained
until now remain valid even for the extreme case φ = 0 when an appropriate sub-interval of d is
appropriately chosen.

6 Some considerations on the role of φ

(...)

7 Numerical Exercise

We show now very briefly a numerical exercise. Table

σ ρ δ φ d A Amin Amax
0.8 0.02 0.05 0.03 15 0.3 0.092 0.753

Given this value we can report here the following two graphs
and

8 Conclusion

This paper fully analyzed a neoclassical endogenous growth model when the time to build
assumption is introduced through a delay differential equation for capital. It has been proved
that a unique BGP exists and that exists a unique optimal path of the detrended capital which
oscillatory converge to the BGP while detrended consumption jumps directly on it as the usual
case without delay. These results have been obtained through a careful analysis of the role of
transversality conditions and the introduction of the assumption of a more complex structure of

13



the depreciation of capital. This last assumption appears to be crucial in avoiding implausible
economic predictions which always appears in this type of model for choice of the time to build
coefficient sufficiently high. Finally the analysis of the model let us to confirm that time to build
can be considered a source of aggregate fluctuation for capital and output exactly as the vintage
capital assumption. An interesting topics for future research should be to measure how much of
the cyclical behavior can be explained by the different hypothesis on the structure of capital.
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A Appendix

A.1 Proof of Theorem 3.

From Theorem 2, the unique general solution of (5) with boundary condition (6) is

u(t) =
P
r
pre

zrt +

tZ
d

f(s)
P
r
pre

zr(t−s)ds (34)

where the roots {zr} and the residues {vr} come respectively by the characteristic equation of
the homogeneous part of (5)

h (z) = a0z + b0 + b1e
−zd (35)

and by the relation

pr =
p (zr)

h0 (zr)
=

a0ξ(d)e
−zrd + (a0zr + b0)

0Z
−d

ξ(s)e−zrsds

a0 − b1de−zrd
(36)

Moreover from the D-Subdivisions method we know that (35) has at most two real roots and an
infinite number of complex conjugate roots. From (36), it appears also clear that the residues
related to real roots are real while those related to complex roots are complex. Taking into
account these results it is possible to split (34) as follows

u (t) =
kP

r=0
ςre

xrt+
∞P
r=k

¡
are

zrt + cre
z̄rt
¢
+

tZ
d

f(s)

·
kP

r=0
ςre

xr(t−s) +
∞P
r=k

³
are

zr(t−s) + cre
z̄r(t−s)

´¸
ds

where z = x + iy and z̄ = x − iy. We now show that cr = ār is always the case. This is
equivalent to show that, given the expressions of ar and cr, the Im (cr + ar) = 0 and that the
Re (cr − ar) = 0. We start showing the first relation. In order to simplify a bit the notation we
omit the r:

a+ c =

a0ξ(d)e
−zd + (a0z + b0)

0Z
−d

ξ(s)e−zsds

a0 − b1de−zd
+

a0ξ(d)e
−z̄d + (a0z̄ + b0)

0Z
−d

ξ(s)e−z̄sds

a0 − b1de−z̄d

=

ξ(d)e−zd + ³z + b̃0

´ 0Z
−d

ξ(s)e−zsds

 £a0 − b1de
−z̄d¤

1
a0
[a0 − b1de−zd] [a0 − b1de−z̄d]

+ (37)

+

ξ(d)e−z̄d + ³z̄ + b̃0

´ 0Z
−d

ξ(s)e−z̄sds

 £a0 − b1de
−zd¤

1
a0
[a0 − b1de−zd] [a0 − b1de−z̄d]

(38)

where b̃0 = b0
a0
. The denominator is always real since:h

a0 − b1de
−zd
i h

a0 − b1de
−z̄d
i
= a20 − a0b1d

³
e−zd + e−z̄d

´
+ b21d

2e−zd−z̄d =

= a20 − a0b1de
−xd

³
e−iyd + eiyd

´
+ b21d

2e−2xd
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and taking into account that eiy + e−iy = 2cos y while eiy − e−iy = 2i sin y we have thath
a0 − b1de

−zd
i h

a0 − b1de
−z̄d
i
= a20 − 2a0b1de−xd cos yd+ b21d

2e−2xd

which is real. Then we have to show that also the numerator of relation (37) is real.

Num = A+B

where

A = ξ(d)e−zd
h
a0 − b1de

−z̄d
i
+ ξ(d)e−z̄d

h
a0 − b1de

−zd
i

= a0ξ(d)e
−xd

³
eiyd + e−iyd

´
+ 2b1dξ(d)e

−2xd

= 2ξ(d)e−xd
h
a0 cos yd+ b1de

−xd
i

which is real. On the other hand

B =
h
z + b̃0

i h
a0 − b1de

−z̄d
i 0Z
−d

ξ(s)e−zsds+
h
z̄ + b̃0

i h
a0 − b1de

−zd
i 0Z
−d

ξ(s)e−z̄sds (39)

Now observe that

0Z
−d

ξ(s)e−zsds =
0Z
−d

ξ(s)e−xs cos ys ds

| {z }
α

−i
0Z
−d

ξ(s)e−xs sin ys ds

| {z }
β

while

0Z
−d

ξ(s)e−z̄sds =

α+ iβ. Taking into account this relation (39) is equivalent to

B =
h
z + b̃0

i h
a0 − b1de

−z̄d
i
[α− iβ] +

h
z̄ + b̃0

i h
a0 − b1de

−zd
i
[α+ iβ]

= a0α (z + z̄)− αb1d
³
ze−z̄d + z̄e−zd

´
− ia0β (z − z̄) + iβb1d

³
ze−z̄d − z̄e−zd

´
+

+2b̃0αa0 − αb̃0b1d
³
e−z̄d + e−zd

´
− ib̃0b1βd

³
e−z̄d − e−zd

´
= 2a0αx+ 2a0βy + 2b̃0αa0 − αb1de

−xd
h
x
³
eiyd + e−iyd

´
+ iy

³
eiyd − e−iyd

´i
+

+iβb1de
−xd

h
x
³
eiyd − e−iyd

´
+ iy

³
eiyd + e−iyd

´i
− αb̃0b1de

−xd
³
eiyd + e−iyd

´
+

−ib̃0b1βde−xd
³
eiyd − e−iyd

´
= 2a0αx+ 2a0βy + 2b̃0αa0 − 2αb1de−xd [x cos yd− y sin yd]− 2βb1de−xd [x sin yd+ y cos yd]

−2αb̃0b1de−xd cos yd+ 2b̃0b1βde−xd sin yd

which is real. This is sufficient to prove that a+ c is real given that is a ratio of real numbers.
Now we have to show that Re (ar − cr) = 0.

a−c =

ξ(d)e−zd + ³z + b̃0

´ 0Z
−d

ξ(s)e−zsds

 £a0 − b1de
−z̄d¤−

ξ(d)e−z̄d + ³z̄ + b̃0

´ 0Z
−d

ξ(s)e−z̄sds

 £a0 − b1d

1
a0

£
a20 − 2a0b1de−xd cos yd+ b21d

2e−2xd
¤

the denominator as before is real. Then we have to show that the numerator is purely imaginary.
As before we split the numerator

Num = C +D
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where

C = ξ(d)e−zd
h
a0 − b1de

−z̄d
i
− ξ(d)e−z̄d

h
a0 − b1de

−zd
i

= a0ξ(d)e
−xd

³
eiyd − e−iyd

´
= 2ia0ξ(d)e

−xd sin yd

which is purely imaginary, and

D =
h
z + b̃0

i h
a0 − b1de

−z̄d
i 0Z
−d

ξ(s)e−zsds−
h
z̄ + b̃0

i h
a0 − b1de

−zd
i 0Z
−d

ξ(s)e−z̄sds

=
h
z + b̃0

i h
a0 − b1de

−z̄d
i
[α− iβ]−

h
z̄ + b̃0

i h
a0 − b1de

−zd
i
[α+ iβ]

= a0α (z − z̄)− αb1d
³
ze−z̄d − z̄e−zd

´
− ia0β (z + z̄) + iβb1d

³
ze−z̄d + z̄e−zd

´
− 2ib̃0a0β +

−αb̃0b1d
³
e−z̄d − e−zd

´
− ib̃0b1βd

³
e−z̄d + e−zd

´
= 2i

h
a0αy − a0βx− b̃0a0β − αb1de

−xd (x sin yd+ y cos yd) + βb1de
−xd (x cos yd− y sin yd)+

−αb̃0b1de−xd sin yd− b̃0b1βde
−xd cos yd

i
which is purely imaginary too. Then Re (ar − cr) = 0 since it is a ratio of a sum of purely
imaginary numbers and of a real number. This is sufficient to prove expression (10).

A.2 Proof of Corollary 1.

Consider the general continuous solution of the homogeneous part of problem (5) with boundary
condition (6)

u (t) =
kP

r=0
ςre

xrt +
∞P
r=k

¡
are

zrt + āre
z̄rt
¢

(40)

Calling a = ς + iω we have that

are
zrt + āre

z̄rt = (ς + iω) exteiyt + (ς − iω) exte−iyt =
= ext [(ς + iω) (cos yt+ i sin yt) + (ς − iω) (cos yt− i sin yt)]

= 2ext (ς cos yt− ω sin yt)

and then (40) becomes

u (t) =
kP

r=0
ςre

xrt + 2
∞P
r=k

ext (ς cos yt− ω sin yt)

Taking into account the forcing term the expression (11) follows. For this reason the general
solution (10) or equivalently (11) is a real function u : I → R.

A.3 How to get expression (32) from (31).

First of all observe that from Theorem 3 we can rewriteX
v
Pm̃,v = −a−

1
σ

m̃

X
v

µ
nv

gc − zv
+

n̄v
gc − z̄v

¶
=

X
v

µ
−2a−

1
σ

m̃

αvgc − αvxv − βvyv
g2c + x2v + y2v − 2gcxv

¶
=

X
v
Ψ0,v
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and X
v 6=ṽNm̃,ve

(zv−gc)t =
X

v
[(αv +Ψ1,v) cos yvt− (βv +Ψ2,v) sin yvt] e(xv−gc)t

where

Ψ1,v = −a−
1
σ

m̃

·
nv

gc − zv
e(gc−zv)d +

n̄v
gc − z̄v

e(gc−z̄v)d
¸

= −2a−
1
σ

m̃

egc−xvd [(αvgc − αvxv − βvyv) cos yd+ (βvgc + αvyv − βvxv) sin yd]

g2c + x2v + y2v − 2gcxv
and

Ψ2,v = −a−
1
σ

m̃ i

·
nv

gc − zv
e(gc−zv)d − n̄v

gc − z̄v
e(gc−z̄v)d

¸
= 2a

− 1
σ

m̃

egc−xvd [(αvyv − βvxv + βvgc) cos yd+ (βvyv + αvxv − αvgc) sin yd]

g2c + x2v + y2v − 2gcxv
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