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Abstract

A common approach to evaluate dynamic stochastic general equilibrium (DSGE)
models is to compare the impulse responses functions from the DSGE model to impulse
responses obtained from identi�ed vector autoregressions (VARs). This paper uses
Monte Carlo techniques to address the question: Are impulse responses of prices to a
UIP shock a useful tool to evaluate DSGE models with incomplete exchange rate pass-
through? The data generating process is a small open economy DSGE. The results
suggest that (i) the estimates obtained from a VAR estimated in �rst di�erences exhibit
a systematic downward bias, even when the VAR is speci�ed with a large number of
lags; (ii) by contrast, estimates derived from a low order vector equilibrium correction
model are fairly accurate; but (iii) standard cointegration tests have low power to
detect the cointegration relations implied by the DSGE model.
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1 Introduction

A common approach to evaluate dynamic stochastic general equilibrium (DSGE) models
is to compare the impulse responses functions from the DSGE model to impulse responses
obtained from identi�ed vector autoregressions (VARs). The VAR responses, which rely
only on minimal theoretical restrictions, are interpreted as `stylised facts' that empirically
relevant DSGE models should reproduce. Prominent examples are Rotemberg & Woodford
(1997) and Christiano et al. (2005a) who estimate the parameters of their DSGE models
by minimising the distance between the impulse responses to a monetary policy shock
generated by an identi�ed VAR and the responses to the monetary policy shock in the
DSGE model. Choudhri et al. (2005) and Faruqee (2005), employ the same strategy to
estimate NOEM of exchange rate pass-through, de�ning exchange rate pass-through as the
impulse responses of a set of prices (import prices, export prices, producer prices, consumer
prices) to a shock to the uncovered interest rate parity (UIP) condition.

Recently, several papers have examined the reliability of the structural VAR approach
using Monte Carlo simulations. The basic idea in this literature is to generate arti�cial
data from a DSGE model, construct impulse responses from a VAR estimated on the
arti�cial data and ask whether the VAR recovers the DSGE model's responses. Chari et al.
(2005), Erceg et al. (2004) and Christiano et al. (2005b) assess the ability of a structural
VAR to recover the impulse responses to a technology shock in an RBC model. Chari
et al. (2005) conclude that a very large number of lags is needed for the VAR to well
approximate their log-linearised RBC model. Erceg et al. (2004) �nd that, while the VAR
responses have the same sign and shape as the true responses, quantitatively, the bias in
the estimated responses could be considerable. Christiano et al. (2005b) reach a more
optimistic conclusion. They �nd that the VAR does a good job in recovering the responses
from the RBC model, particularly if the technology shock is identi�ed using short-run
restrictions. Kapetanios et al. (2005) estimate a �ve variable VAR on data generated from
a small open economy model and derive impulse responses to productivity, monetary policy,
foreign demand, �scal and risk premium shocks. The results suggest that the ability of the
VAR to reproduce the theoretical shock responses varies across shocks. In particular, a
high lag order is required for the VAR to recover the responses to a risk premium shock
and a domestic �scal shock.

My paper extends this literature to assess the reliability of the structural VAR ap-
proach to estimating exchange rate pass-through. The motivating question is: Are impulse
responses of prices to a UIP shock a useful tool to evaluate and estimate DSGE models
with incomplete exchange rate pass-through? To address this question I generate a large
number of arti�cial datasets from a small open economy DSGE model, estimate a VAR on
the arti�cial data and compare the responses of prices to a UIP shock in the VAR and the
DSGE model. The DSGE model that serves as the data generating process resembles the
model considered by Choudhri et al. (2005), and incorporates many of the mechanisms for
generating imperfect pass-through that have been proposed in the NOEM literature.

The speci�cation of the DSGE model implies that the nominal exchange rate and nomi-
nal prices are non-stationary unit root process, but that relative prices and the real exchange
rate are stationary. Given that exchange rate pass-through is usually de�ned in terms of
levels of prices and the nominal exchange rate, a conjecture is that the magnitude of the
bias in the estimated VAR responses will depend on whether the correct cointegration rank
has been imposed during estimation. To test this conjecture I compare the performance of
two di�erent VAR speci�cations: A pure �rst di�erenced VAR and a VAR that includes
the cointegration relations implied by the DSGE model. The former is by far the most
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common speci�cation in the structural VAR literature on exchange rate pass-through.1 As
a second exercise, I investigate whether an econometrician would be able to infer the true
cointegration rank and identify the cointegration relations using Johansen (1988) maxi-
mum likelihood procedures. My �ndings can be summarised as follows: The estimates of
exchange rate pass-through obtained from a VAR estimated in �rst di�erences are biased
downwards. This is true even when the VAR is speci�ed with a large number of lags. The
bias is attributable to the fact that the �nite order VAR is not a good approximation to the
in�nite order VAR implied by the DSGE model. By contrast, a low order vector equilibrium
correction model (VEqCM) that includes the cointegration relations implied by the DSGE
model is a good approximation to the data generating process. However, the results from
the cointegration analysis raise doubts about whether in practice, an econometrician would
able to infer the cointegration properties implied by the DSGE model.

The paper is organised as follows. Section 2 lays out the DSGE model that serves as the
data generating process in the Monte Carlo exercise. Section 3 discusses the mapping from
the DSGE model to a VAR, and the results of the simulation experiments are presented in
section 4. Section 5 concludes the paper.

2 The model economy

The model economy is a small open economy that produces two goods: a �nal consumption
good and an intermediate good. The �nal good is non-tradable, while the intermediate
good is sold both in the domestic and foreign markets. International goods markets are
segmented and so intermediate goods �rms have the option to price discriminate across
markets. Both goods are produced using domestic labour and a basket of domestic and
foreign intermediate goods as inputs. The model thus de�nes four di�erent price indices:
consumer prices, export prices, producer prices and import prices. The model derivation
focuses on assumptions and mechanisms a�ecting the degree of exchange rate pass-through
to these price indices.

2.1 Firms

The production structure is the same as considered by Choudhri et al. (2005). The home
economy produces two goods: a non-tradable �nal consumption good and a tradable in-
termediate good. Firms in both sectors use domestic labour and a basket of domestic and
imported intermediate goods as inputs. The assumption that imports do not enter directly
into the consumption basket of households is consistent with the notion that all goods in the
consumer price index contain a signi�cant non-traded component. It follows that the direct
e�ect of import prices on consumer prices will be muted, and this acts to limit the degree
of exchange rate pass-through to consumer prices. The assumption that imported goods
are used as inputs in the production of domestic goods implies a direct link between import
prices and the production costs of domestic �rms. The latter is potentially an important
transmission channel for exchange rate changes in a small open economy.

2.1.1 Final goods �rms

Technology and factor demand There is a continuum of �rms indexed by c ∈ [0, 1]
that produces di�erentiated non-tradable �nal consumption goods. The market for �nal
goods is characterised by monopolistic competition. The consumption good is produced

1See e.g., McCarthy (2000), Hahn (2003), Choudhri et al. (2005), and Faruqee (2005).
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using the following Cobb-Douglas technology

Ct(c) = Qt(c)φcHc
t (c)

1−φc

where Ct is �nal good output at time t, φc ∈ [0, 1] is the weight on intermediate goods, and
Ht is a constant elasticity of substitution (CES) aggregate of di�erentiated labour inputs

Ht =
[∫ 1

0
Ht(j)

θh−1

θh dj

] θh
θh−1

, (1)

where θh > 1 is the elasticity of substitution between labour types. Qt is a composite
intermediate good

Qt =
[
α

1
ν

(
Qd

t

) ν−1
ν + (1− α)

1
ν (Qm

t )
ν−1

ν

] ν
ν−1

(2)

where α ∈ [0, 1] is a parameter related to the degree of home bias in preferences, and ν > 0
denotes the elasticity of substitution between domestic and imported goods. Qd

t and Qm
t

are quantity indices of di�erentiated domestic and foreign intermediate goods indexed by
i ∈ [0, 1] and m ∈ [0, 1] respectively:2

Qd
t =

[∫ 1

0
Y dq

t (i)
θ
y
t −1

θ
y
t di

] θ
y
t

θ
y
t −1

(3)

Qm
t =

[∫ 1

0
Y mq

t (m)
θm
t −1

θm
t dm

] θm
t

θm
t −1

(4)

where θy
t > 1 and θm

t > 1 are the elasticities of substitution between varieties of domestic
and intermediate goods in the domestic market. The elasticities of substitution are equal
to the elasticities of demand for individual goods. Following e.g., Smets & Wouters (2003)
and Adolfson et al. (2005), the demand elasticities are assumed to be time-varying.

Price setting The aggregate consumption index is de�ned as

Ct =
[∫ 1

0
Ct(c)

θc
t−1

θc
t dc

] θc
t

θc
t−1

(5)

where θc
t is the time-varying elasticity of substitution between individual goods. The cor-

responding price index is

P c
t =

[∫ 1

0
P c

t (c)1−θc
t dc

] 1
1−θc

t

(6)

The demand for a single variety of the consumption good is

Ct(c) =
(
P c

t (c)
P c

t

)−θc
t

Ct (7)

Nominal price stickiness is modelled using the quadratic adjustment cost framework of Ro-
temberg (1982).3 Following Hunt & Rebucci (2005), I assume that there are costs associated
both with changing the level of prices and with changing the in�ation rate relative to past

2The corresponding price indices and demand functions are given in table 1.
3The list of NOEM papers which model price stickiness by assuming quadratic costs of price adjustment

includes Bergin (2004), Corsetti et al. (2005), Laxton & Pesenti (2003), and Hunt & Rebucci (2005).
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observed in�ation. Speci�cally, adjustment costs are be given by

Υc
t+l(c) ≡

φc1

2

(
P c

t+l(c)
πcP c

t+l−1(c)
− 1

)2

+
φc2

2

(
P c

t+l(c)/P
c
t+l−1(c)

P c
t+l−1/P

c
t+l−2

− 1

)2

(8)

where πc is the steady-state gross in�ation rate.
Since all �rms in the economy are owned by households, future pro�ts are valued accor-

ding to the households' stochastic discount factor Dt,t+l (to be de�ned below). Firms set
prices to maximise the expected discounted value of future pro�ts subject to adjustment
costs, that is they maximise

Et

 ∞∑
l=0

Dt,t+l

(
P c

t+l(c)− ξc
t+l

)(P c
t+l(c)
P c

t+l

)−θc
t+l

Ct+l

(
1−Υc

t+l(c)
) (9)

subject to (8), and where ξc
t denotes nominal marginal costs. Note that the aggregate

in�ation dynamics implied by this model are similar to the in�ation dynamics implied by
the ?? model when �rms index non-optimised prices to lagged in�ation. If there were no
costs associated with changing the rate of in�ation (i.e., φc2 = 0), the linearised in�ation
equation would be purely forward-looking. If φc2 > 0 lagged in�ation enters the in�ation
equation. In the absence of costs of changing the price level (i.e., φc1 = 0) the in�ation
equation becomes a forward-looking equation in the �rst di�erence of in�ation, similar to
the Calvo model with full dynamic indexation considered by Christiano et al. (2005a) If
prices were �exible (i.e., φc1 = φc2 = 0) �rms would set the prices according to the familiar
mark-up rule:

P c
t =

θc
t

θc
t − 1

ξc
t (10)

2.1.2 Intermediate goods �rms

Technology and factor demand There is a continuum of intermediate goods �rms
indexed by i ∈ [0, 1] operating in a monopolistically competitive market. Intermediate
goods are produced with the following technology

Yt(i) = Zt(i)φyHy
t (i)1−φy (11)

where Zt(i) are units of the composite intermediate good used in the production of variety
i of the domestic intermediate good

Zt =
[
α

1
ν

(
Zd

t

) ν−1
ν + (1− α)

1
ν (Zm

t )
ν−1

ν

] ν
ν−1

(12)

where Zd
t and Zm

t are quantity indices of di�erentiated domestic and foreign intermediate
goods, that is,

Zd
t =

[∫ 1

0
Y dz

t (i)
θ
y
t −1

θ
y
t di

] θ
y
t

θ
y
t −1

(13)

Zm
t =

[∫ 1

0
Y mz

t (m)
θm
t −1

θm
t dm

] θm
t

θm
t −1

(14)
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Price setting International goods markets are assumed to be segmented. Intermediate
goods �rms thus have the option to set di�erent prices in the domestic and foreign markets.

Domestic market The demand facing �rm i in the domestic market is

Y d
t (i) =

(
P y

t (i)
P y

t

)−θy
t

Y d
t (15)

where Y d
t = Qd

t +Z
d
t is the total demand for domestic intermediate goods from domestic �nal

goods �rms and intermediate goods �rms. Firm i's price setting problem in the domestic
market is

max
P y

t (i)
Et

 ∞∑
l=0

Dt,t+l

(
P y

t+l(i)− ξy
t+l

)(P y
t+l(i)
P y

t+l

)−θy
t+l

Y d
t+l

(
1−Υy

t+l(i)
) (16)

where ξy
t+l denote marginal costs, and the form of adjustment costs Υy

t+l(i) is

Υy
t+l(i) ≡

φy1

2

(
P y

t+l(i)
πyP y

t+l−1(i)
− 1

)2

+
φy2

2

(
P y

t+l(i)/P
y
t+l−1(i)

P y
t+l−1/P

y
t+l−2

− 1

)2

(17)

where πy is gross in�ation rate in the steady-state.

Foreign market In the Obstfeld & Rogo� (1995) Redux model, international goods
markets are integrated, and the law of one price holds continuously. Moreover, because
prices are set in the currency of the producer (so-called producer currency pricing or PCP),
exchange rate pass-through to import prices is immediate and complete. Betts & Devereux
(1996) extended the Redux to allow for market segmentation and to allow a share of prices
to be sticky in the currency of the buyer (so-called local currency pricing or LCP). Local
currency pricing implies that import prices will respond only gradually in response to ex-
change rate changes, a feature consistent with the �ndings of a large empirical literature on
exchange rate pass-through.4 In this paper I follow Choudhri et al. (2005) and assume a
proportion $ of domestic intermediate goods �rms engages in PCP, and a proportion 1−$
engages in LCP. Both PCP and LCP �rms have the option to price discriminate between
foreign and domestic markets.5

Following Choudhri et al. (2005) the distribution of one unit of the domestic traded good

to foreign �rms requires the input of δf units of foreign labour.6 Let P
xp
t (i) and P xl

t (i) be
the (wholesale) prices set by a representative PCP �rm and LCP �rm respectively. The
Leontief production technology and the zero pro�t condition in the perfectly competitive
distribution sector implies that the (retail) prices paid by foreign �rms for a type i domestic
good satisfy

P xp
t (i)
et

=
P

xp
t (i)
et

+ δfW
f
t (18)

P xl
t (i) = P

xl
t (i) + δfW

f
t (19)

4See Campa & Goldberg (2005) for a recent study.
5In this paper $ is treated as an exogenous parameter. Several recent papers have examined the optimal

choice of invoicing currency in the context of NOEM models (e.g., Devereux et al. (2004), Bacchetta &
Wincoop (2005), and Goldberg & Tille (2005)). The choice is found to depend on several factors, including
the exporting �rm's market share in the foreign market, the degree of substitutability between foreign and
domestic goods and relative monetary stability.

6Corsetti & Dedola (2005) were the �rst to introduce distribution costs in the NOEM framework.
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where et is the nominal exchange rate and W f
t is the foreign wage level. The existence of

distribution sector thus implies that there will be a wedge between the wholesale and the
retail price of imports in the foreign economy.

Letting θx
t > 1 denote the elasticity of substitution between domestic intermediate goods

in the foreign economy, the aggregate export price index (in domestic currency) is

P x
t =

[
$ (P xp

t )1−θx
t + (1−$)(etP xl

t )1−θx
t

] 1
1−θx

t (20)

where P xp
t and P xl

t are the export price indices obtained by aggregating over PCP �rms
and LCP �rms respectively. A representative PCP �rm sets P

xp
t (i) to maximise

Et

[ ∞∑
l=0

Dt,t+l

(
P

xp
t+l(i)− ξy

t+l

)
Y xp

t+l(i)
(
1−Υxp

t+l(i)
)]

(21)

subject to demand7

Y xp
t+l(i) =

(
P

xp
t+l(i)/et+l + δfW

f
t+l

P x
t+l/et+l

)−θx
t+l

Y x
t+l, (22)

and adjustment costs

Υxp
t+l(i) ≡

φx1

2

(
P

xp
t+l(i)

πxpP
xp
t+l−1(i)

− 1

)2

+
φx2

2

(
P

xp
t+l(i)/P

xp
t+l−1(i)

P
xp
t+l−1/P

xp
t+l−2

− 1

)2

, (23)

where πxp is the steady state in�ation rate. The wedge between prices at the wholesale and
retail levels implies that the price elasticity of demand as perceived by the exporter, will
be a function of the exchange rate. To see this note that in the absence of price stickiness
(i.e., if φx1 = φx2 = 0) the optimal export price is

P
xp
t =

θx
t

θx
t − 1

ξy
t +

δf
θx
t − 1

etW
f
t (24)

In the case of no distribution costs (δf = 0), the export price in domestic currency is
independent of the exchange, and the price setting rule collapses to the standard mark-up
rule. Moreover, if the elasticities of demand are the same across countries (i.e.,θx

t = θy
t ) the

�rm sets identical prices to the home and foreign markets. The existence of distribution
costs creates a motive for price discrimination across markets. With distribution costs the
optimal mark-up varies positively with the level of the exchange rate. This can be seen
more clearly by rewriting (24) as

P
xp
t =

θx
t

θx
t − 1

ξy
t

(
1 +

δf
θx
t

etW
f
t

ξy
t

)
(25)

In the face of an exchange rate depreciation, the exporter will �nd it optimal to absorb part
of the exchange rate movement in her mark-up. From the point of view of the importing
country, exchange rate pass-through to import prices at the docks is incomplete even in the
absence of nominal rigidities.

7See table 1 for de�nitions of the sectoral price and quantity indices.
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A representative LCP �rm sets P
xl
t (i) to maximise

max
P

xl
t (i)

Et

[ ∞∑
l=0

Dt,t+l

(
et+lP

xl
t+l(i)− ξy

t+l

)
Y xl

t+l(i)
(
1−Υxl

t+l(i)
)]

(26)

subject to demand

Y xl
t+l(i) =

(
P

xl
t+l(i) + δfW

f
t+l

P x
t+l/et+l

)−θx
t+l

Y x
t+l (27)

and adjustment costs

Υxl
t+l(i) ≡

φx1

2

(
P

xl
t+l(i)

πxlP
xl
t+l−1(i)

− 1

)2

+
φx2

2

(
P

xl
t+l(i)/P

xl
t+l−1(i)

P
xl
t+l−1/P

xl
t+l−2

− 1

)2

(28)

where πxl is the steady state in�ation rate. In the absence of adjustment costs (i.e., if
φx1 = φx2 = 0) the optimal price is

P
xl
t =

θx
t

θx
t − 1

ξy
t

et
+

δf
θx
t − 1

W f
t (29)

Thus when prices are �exible, LCP and PCP �rms set the same price. The choice of
price-setting currency only matters in a situation where nominal prices are rigid.

Finally, aggregate export demand is assumed to be given by

Y x
t = αf

(
P x

t /et

P f
t

)−νf

Y f
t (30)

where αf is (approximately) the share of home goods and νf the elasticity of substitution
between home and foreign goods in the composite index of intermediate goods in the foreign
economy, P f

t is the foreign price level , and Y f
t denotes aggregate demand for domestic

intermediate goods in the foreign economy.

2.1.3 Foreign �rms

Foreign intermediate goods �rms are treated symmetrically. The distribution of one unit
of the imported goods to domestic �rms requires the input of δ units of foreign labour.
A subset proportion $f of �rms engages in PCP, and a subset 1 − $f engages in LCP.
The zero pro�t condition in the distribution sector implies that the prices paid by domestic
�rms for a type m imported good will be

etP
mp
t (m) = etP

mp
t (m) + δWt (31)

Pml
t (m) = P

ml
t (m) + δWt (32)

where Wt is the domestic wage rate. The aggregate import price index (in domestic cur-
rency) is

Pm
t =

[
$f (etP

mp
t )1−θm

t + (1−$f )(Pml
t )1−θm

t

] 1
1−θm

t (33)

where P
mp
t and P

ml
t are the price indices obtained by aggregating over PCP �rms and LCP

�rms respectively8

8See table 1 for de�nitions of the sectoral price and quantity indices.
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Let Df
t,t+l denote the stochastic discount factor of foreign households. A representative

foreign LCP �rm sets P
ml
t (m) to maximise

Et

[ ∞∑
l=0

Df
t,t+l

(
P

ml
t+l(m)
et+l

− ξf
t+l

)
Y ml

t+l(m)
(
1−Υml

t+l(m)
)]

(34)

subject to demand

Y ml
t+l(m) =

(
P

ml
t+l(m) + δWt+l

Pm
t+l

)−θm
t+l

Y m
t+l (35)

where Y m
t = Qm

t + Zm
t and adjustment costs are

Υml
t+l(m) ≡ φm1

2

(
P

ml
t+l(m)

πmlP
ml
t+l−1(m)

− 1

)2

+
φm2

2

(
P

ml
t+l(m)/Pml

t+l−1(m)

P
ml
t+l−1/P

ml
t+l−2

− 1

)2

(36)

If φm1 = φm2 = 0, the �rst-order condition reduces to

P
ml
t =

θm
t

θm
t − 1

etξ
f
t +

δ

θm
t − 1

Wt (37)

The foreign �rm's optimal mark-up is a function of the exchange rate. Conditional on wages
and foreign prices, exchange rate pass-through to domestic currency import prices at the
wholesale level is incomplete, even if prices are perfectly �exible.

A representative foreign PCP �rm sets P
mp
t (m) to maximise

Et

[ ∞∑
l=0

Df
t,t+l

(
P

mp
t+l(m)− ξf

t+l

)
Y mp

t+l (m)
(
1−Υmp

t+l(m)
)]

(38)

subject to demand

Y mp
t+l (m) =

(
et+lP

mp
t+l(m) + δWt+l

Pm
t+l

)−θm
t+l

Y m
t+l (39)

and adjustment costs

Υmp
t+l(m) ≡ φm1

2

(
P

mp
t+l(m)

πmpP
mp
t+l−1(m)

− 1

)2

+
φm2

2

(
P

mp
t+l(m)/Pmp

t+l−1(m)
P

mp
t+l−1/P

mp
t+l−2

− 1

)2

(40)

where πmp is the steady-state in�ation rate.

2.2 Households

The economy is inhabited by a continuum of symmetric, in�nitely lived households indexed
from j ∈ [0, 1] that derive utility from leisure and consumption of the �nal good. Households
get income from selling labour services, from holding one-period domestic and foreign bonds,
and they receive the real pro�ts from domestic �rms. The adjustment costs incurred by
domestic �rms are also rebated to households. Each household is a monopoly supplier of a
di�erentiated labour service and sets the wage rate subject to labour demand

Ht(j) =
(
Wt(j)
Wt

)−θh

Ht, (41)
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and quadratic costs of wage adjustment. Following Hunt & Rebucci (2005) the adjustment
costs are measured in terms of the total wage bill. The costs of adjusting wages are

Υw
t (j) ≡ φw1

2

(
Wt(j)

πwWt−1(j)
− 1
)2

+
φw2

2

(
Wt(j)/Wt−1(j)
Wt−1/Wt−2

− 1
)2

(42)

where πw is the steady-state (gross) growth rate of nominal wages.

The return on the foreign bond is given by κtR
f
t , where R

f
t is the gross nominal interest

rate on foreign bonds, and κt is a premium on foreign bond holdings. The premium is
assumed to be a function of the economy's real net foreign assets position

κt = exp

(
−ψetB

f
t

P c
t

+ ut

)
(43)

where Bf
t is the aggregate holding of nominal foreign bonds in the economy, and ut is a

time-varying `risk premium' shock.9 The risk premium shock is assumed to follow an AR(1)
process

lnut = ρu lnut−1 + εu,t (44)

where 0 ≤ ρu < 1, and εu,t is a white noise process. The speci�cation of the risk premium

implies that if the domestic economy is a net borrower (Bf
t < 0), it has to pay a premium on

the foreign interest rate. This assumption ensures that net foreign assets are stationary.10

Household j's period t+ l budget constraint is

P c
t+lCt+l(j) +

Bt+l(j)
Rt+l

+
et+lB

f
t+l(j)

κt+lR
f
t+l

(45)

= (1−Υw
t+l(j))Wt+l(j)Ht+l(j) +Bt+l−1(j) + et+lB

f
t+l−1(j) + Πt+l

where Rt+l is the (gross) nominal interest rate on domestic bonds, Bt+l(j) and B
f
t+l(j) are

household j's holdings of nominal domestic and foreign bonds, and the variable Πt+l includes
all pro�ts accruing to domestic households and the revenue from nominal adjustment that
is rebated to households.

The household chooses a sequence
{
Ct+l(j), Bt+l(j), B

f
t+l(j),Wt+l(j)

}∞
l=0

to maximise

Et

{ ∞∑
l=0

βl

(
ln
(
Ct+l(j)− ζCt+l−1

1− ζ

)
− η

h1+χ
t+l

1 + χ

)}
(46)

subject to the budget constraint (45). The parameter ζ ∈ [0, 1) re�ects the assumption of
habit formation in consumption, and χ ∈ (0,∞) is the inverse of the Frisch elasticity of
labour supply (i.e., the elasticity of labour supply with respect to real wages for a constant
marginal utility of wealth). The parameter η > 0 is a scale parameter and β ∈ (0, 1] is the

9As discussed by Bergin (2004) the mean-zero disturbance term ut can be interpreted as a proxy for a
time-varying risk premium omitted by linearisation, or as capturing the stochastic bias in exchange rate
expectations in a noise trader model.

10See Schmitt-Grohe & Uribe (2003) for a discussion of alternative ways to ensure stationary net foreign
assets in a small open economy. In the standard small open economy model with incomplete international
asset markets, equilibrium dynamics have a random walk component. That is, transitory shocks have
permanent e�ects on wealth and consumption.
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subjective discount factor. The stochastic discount factor Dt,t+l is de�ned as

Dt,t+l = βl Ct − ζCt−1

Ct+l − ζCt+l−1

P c
t

P c
t+l

(47)

2.3 Monetary authorities

The central bank sets short-term interest rates according to the following simple feedback
rule

Rt = ρRRt−1 + (1− ρR) (R+ ρπ (πc
t − πc)) (48)

where R is the steady-state level of the nominal interest rate, and the parameter 0 < ρR < 1
measures the degree of interest rate smoothing.

2.4 Market clearing

The market clearing conditions for the domestic labour market and the intermediate goods
market are

Ht = Hy
t +Hc

t +Hm
t (49)

Yt = Y d
t + Y x

t (50)

where Hm
t = δY m

t . Only foreign bonds are assumed to be traded internationally, and hence
the domestic bond is in zero net supply at the domestic level (i.e. Bt = 0). Net foreign
assets evolve according to

etB
f
t

κtR
f
t

= etB
f
t−1 + P

x
t Y

x
t − P

m
t Y

m
t (51)

2.5 Mark-up shocks

The model derived above only has one shock; the risk premium or UIP shock ut. If the
purpose is to estimate the DSGE model by matching impulse responses to a UIP shock,
there is no need to introduce additional shocks. In fact, one of the advantages of the impulse
response matching approach is that allows the researcher to leave most of the exogenous
shocks unspeci�ed (see Lubik & Schorfeide, 2005). However, if the dimension of the VAR is
greater than the number of shocks, a VAR �tted to data generated from the DSGE model
will have a singular variance-covariance matrix. This is the stochastic singularity problem
discussed by e.g. Ingram et al. (1994). One strategy for dealing with this problem is to
add shocks until the number of shocks is at least as great as the number of variables in
the VAR. This is the approach taken in this paper. Speci�cally, I introduce four mark-ups
shocks: the elasticities of substitution between varieties of goods are characterised by the
following processes

ln θc
t = (1− ρc) ln θc + ρc ln θc

t−1 + εc,t (52)

ln θy
t = (1− ρy) ln θy + ρy ln θy

t−1 + εy,t (53)

ln θx
t = (1− ρx) ln θy + ρx ln θx

t−1 + εx,t (54)

ln θm
t = (1− ρm) ln θm + ρm ln θm

t−1 + εm,t (55)

where 0 ≤ ρi < 1 and the εi,t are independent white noise processes, i = {c, y, x,m}.
The motivation for adding this particular set of shocks is that the mark-up shocks have
a direct e�ect on the price setting equations in the structural model and hence, on the
variables included in the VAR. This turned out to be important to avoid a (near) singular

11



variance-covariance matrix. However, I do not attach a strong structural interpretation
to the mark-up shocks. An alternative would be to add serially correlated errors to the
observation equations in the state space representation. Such `measurement errors' could
be interpreted as capturing the e�ects of structural shocks that are omitted from the model
or other forms of misspeci�cation of the DSGE model.

2.6 Calibration

The calibration is guided by the following principles: First, the parameters should be
within the range suggested by the literature.11 Second, the model should loosely match the
standard deviations and �rst-order autocorrelations of UK prices and exchange rates over
the period 1980�2003.

Table 2 lists the values of the parameters in the baseline calibration of the model. The
subjective discount factor is set to 1.03−0.25 to yield a steady-state annualised real interest
rate of 3%. The habit persistence parameter (ζ) is set to 0.85, which is close to the value
chosen by Kapetanios et al. (2005) for the UK. There appears to be little consensus in
the literature about the appropriate value for the inverse of the Frisch elasticity of labour
demand (χ). Choudhri et al. (2005) choose an initial value of 0.5 for this parameter, but
later allow it to vary between zero and in�nity. In the baseline calibration in this paper,
the inverse Frisch elasticity is set to 3, which is the same value used in Hunt & Rebucci
(2005) in a version of the IMF's Global Economy Model. The weight on leisure in the utility
function (η) is chosen to yield a steady-state level of labour supply equal to unity (H = 1).

Based on the data for revenue shares of intermediate goods reported in Choudhri et al.
(2005), the Cobb-Douglas shares of intermediate goods in the production functions for �nal
goods and intermediate goods (φc, φy) are set to 0.42 and 0.77 respectively. The share of
domestic intermediate goods in the aggregate intermediate good (α) is set to 0.85, and
the elasticity of substitution between domestic and foreign intermediate goods (ν) is 1.5.
The range considered by the literature for the latter is quite large. Groen & Matsumoto
(2004) use the value 1.5 in their calibrated model of the UK economy. The distribution
cost parameters (δ, δf ) are set to 0.4, slightly higher than the 0.3 used by Hunt & Rebucci
(2005).

The steady-state values of the elasticities of substitution between varieties of goods sold
in domestic markets are set to 6. This implies a steady-state mark-up of 20% for �nal goods
and domestic intermediate goods. Again these numbers are comparable to what has been
used in other studies. Benigno & Thoenissen (2003) assume that the substitution elasticity
between traded goods is 6.5, and Kapetanios et al. (2005) set the elasticity of substitution
between varieties of domestic goods sold in domestic markets to 5. The elasticity of sub-
stitution between types of labour services is also set to 6, in line with the values in Hunt
& Rebucci (2005) and Benigno & Thoenissen (2003). Finally, the elasticity of substitution
between varieties of foreign goods sold in foreign markets is set to 15. This is based on the
argument in Kapetanios et al. (2005) that domestic �rms face more competitive demand
conditions in foreign markets.

The annual domestic in�ation target is 2%. The parameters in the monetary policy
rule are taken from Kapetanios et al. (2005). The weight on interest rate smoothing in the
monetary policy rule (ρr) is 0.65 and the weight on in�ation (ρπ) is 1.8.

In the baseline calibration the parameters determining the costs of changing the level
of prices or wages (φc1, φy1, φm1, φx1, φw1) are set to zero. This implies that the weight on
lagged in�ation in the log-linearised equations for price and wage in�ation is 1/(1+β) ≈ 0.5
which is the maximum degree of structural in�ation persistence achievable in this set-up.

11Reference to literature. DSGE models calibrated on UK data. GEM.
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The adjustment costs parameters associated with changing the rates of change in prices
and wages (φc2, φy2, φm2, φx2, φw2) are set to 400.

The share of PCP �rms in the foreign economy (ωf ) is set to 0.4 while the share of PCP
�rms in exports (ω) is 0.6. Data on invoicing currency in UK trade from the years 1999 to
2002 show that the share of UK imports and exports that are invoiced in sterling is around
40% and 50% respectively.12 To get short-run pass-through to import prices more in line
with the empirical estimates I had to use a somewhat higher value for the share of PCP
�rms in the foreign economy than what is suggested by the data on invoicing currency.
Admittedly, this is not entirely satisfying.

The steady-state levels of foreign output yf and real wages wf are normalised to unity.
The implicit in�ation target in the foreign economy (πf ) is identical to the domestic in�ation
target. This implies that the rate of exchange rate depreciation is zero in the steady-state.
Moreover, assuming that domestic and foreign households have the same subjective discount
rates, the steady-state interest rates will be the same. This is consistent with a zero risk
premium (κ = 1) and zero net foreign assets (Bf = 0) in the steady-state. The elasticity of
substitution between foreign and domestic goods in the foreign economy (νf ) is set to 1.5,
the same as in the domestic economy.

The sensitivity of the risk premium to net foreign assets is set to 0.02. During the
calibration process I found that setting this parameter too low caused the model to become
non-invertible (see section 3). The parameters in the processes for the risk premium and
the demand elasticities were chosen to make the standard deviation and autocorrelation of
the in�ation rates and exchange rate depreciation roughly match those in the data. Table
3 reports the standard deviations and the �rst-order autocorrelations from the model and
UK data 1980q1�2003q4.

2.7 Model solution and properties

The model is solved using Dynare, which is a collection of Matlab routines for solving non-
linear rational expectations models (see Juillard, 2005). As a �rst step Dynare computes
a �rst order approximation (in logs) to the equilibrium conditions around a deterministic
steady-state. The log-linearised equations are listed in appendix A

2.8 Is the model empirically relevant?

As a check on the calibration I examined whether the DSGE model is empirically relevant in
the sense that the estimation of a VAR on arti�cial data generated from the DSGE model
yields comparable results to those obtained when estimating a VAR on actual UK data
using the same sample size, the same set of variables and the same identi�cation scheme.

The estimated VAR includes the following variables: UK import prices of manufactures
(Pm

t ), export prices of manufactures (P x
t ), producer prices of manufactures (P y

t ), consumer
prices (P c

t ), and a nominal e�ective exchange rate (et).
13 An increase in the exchange rate

et corresponds to a depreciation of sterling. The data are quarterly, covering the period
1980Q1�2003Q4, and all the price series are seasonally adjusted and measured in domestic
currency. Variable de�nitions and sources are provided in appendix B.

In line with common practice in the literature the variables are di�erenced prior to
estimation. The exchange rate shock is identi�ed by placing the exchange rate �rst in a
recursive ordering. Under this identi�cation scheme exchange rate shocks have a contem-
poraneous e�ect on the price indices, but shocks to the price equations a�ect the exchange

12These numbers can be found on http://customs.hmrc.gov.uk/
13This is the same set of variables as considered by Faruqee (2005), with the exception that he also

includes wages in the VAR. I have con�rmed that the pass-through estimates reported in this section are
robust to the inclusion of wages in the model.
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rate with at least a one-period lag. This assumption could be justi�ed by the existence of
time lags in the publication of o�cial statistics such as producer price and consumer price
indices (see Choudhri et al., 2005).14 Note that, if interest is only in the exchange rate
shock, the ordering of the variables placed before or after the exchange rate is irrelevant.

Figure 1 plots the accumulated impulse responses of import prices, export prices, pro-
ducer prices and consumer prices to a one standard deviation shock to the exchange rate.
The responses are normalised on accumulated responses of the exchange rate. Exchange
rate pass-through to import prices is 36% within the �rst quarter, increasing to 54% within
one year and stabilising at around 67% after two years. The immediate response of export
prices is somewhat lower; pass-through is 19% after one quarter, 47% after one year and
increasing to 59% in the long run. The response of producer prices is smaller and more gra-
dual; pass-through is 15% within one year and increases to 27% after �ve years. Long-run
pass-through to consumer prices about 7% after three years. These estimates appear to
be broadly in line with the estimates reported for the UK in other structural VAR studies
such as McCarthy (2000), .

As a next step, I conducted the following simulation experiment: Using the log-linearised
solution to the DSGE model as the data generating process, I simulated 5000 synthetic
datasets of length T = 100 for y′t = {∆ ln et,∆ lnPm

t ,∆ lnP x
t ,∆ lnP y

t ,∆ lnP c
t }. For each

synthetic dataset I estimated a VAR(4) and computed the impulse responses to an exchange
rate shock using the same recursive identi�cation as above.15 Figure 2 plots the pointwise
mean of the normalised responses to an exchange rate shock. Exchange rate pass-through
to import prices is 45% in the �rst quarter and stabilises at 75% after about 12 quarters.
Pass-through to export prices is lower; 32% in the �rst quarter and 40% in the long-run.
Short-run pass-through to producer and consumer prices is close to zero. After twenty
periods pass-through is 22% and 9% respectively. All these estimates are all broadly similar
to the estimates obtained using actual UK data.

3 Mapping from DSGE model to VAR

Adopting the notation in Fernández-Villaverde et al. (2005) the log-linear transition equa-
tions computed by Dynare can be expressed in state space form as

xt+1 = Axt +Bwt (56)

yt = Cxt +Dwt

where wt is an m × 1 vector of structural shocks satisfying E [wt] = 0, E [wtw
′
t] = I and

E [wtwt−j ] = 0 for j 6= 0, xt is an n × 1 vector of state variables, and yt is a k × 1 vector
of variables observed by the econometrician. The eigenvalues of A are all strictly less than
one in modulus, hence the model is stationary. In what follows I will focus on the case
where D is square (i.e., m = k) and D−1 exists. The impulse responses from the structural

14The assumption that the exchange rate does not react within period to shocks to the price equations
is not uncontroversial, however. As emphasised by Sarno & Thornton (2004), if foreign exchange markets
are e�cient, the exchange rate will by de�nition jump in response to news about fundamentals. The only
way to achieve this using a recursive identi�cation scheme is to order the exchange rate last.

15This identi�cation scheme is not consistent with the DSGE model. However, the point of this exercise
is to show that if I use a similar sample size and the same identi�cation scheme I get results that are not
too dissimilar from what was found using actual UK data. In the Monte Carlo experiments in section 4 I
use an identi�cation scheme which is compatible with the DSGE model.
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shocks wt to yt are given by

yt = d(L)wt =
∞∑

j=0

djL
jwt (57)

where d0 = D and dj = CAj−1B for j ≥ 1.

3.1 Invertibility

An in�nite order VAR is de�ned by

yt =
∞∑

j=1

Ajyt−j +Gνt (58)

here E [νt] = 0, E [νtν
′
t] = I, E [νtνt−j ] = 0 for j 6= 0. The covariance matrix of the

VAR innovations ut = Gνt is E [Gνtν
′
tG

′] = GG′ = Σu. Finally, the moving average
representation of (58) is

yt = c(L)vt (59)

where c(L) =
∑∞

j=0 cjL
j = (I −

∑∞
j=1AjL

j)−1G.
A potential source of discrepancies between the VAR impulse responses and the re-

sponses from the log-linearised solution to the DSGE model is that the moving average
representation (57) is non-invertible. By construction, the moving average representation
associated with the in�nite order VAR (58) is fundamental in the sense that the innova-
tions νt can be expressed as a linear combination of current and past observations of yt.
However, there exists an in�nite number of other non-fundamental moving average repre-
sentations that are observationally equivalent to (59), but that cannot be recovered from
the in�nite order VAR. These moving average representations are non-invertible, meaning
that they cannot be inverted to yield an in�nite order VAR. In general, we cannot rule out
the possibility that a DSGE model has a non-invertible moving average representation for
a given set of observables.16 That is, we cannot rule out the possibility that some of the
roots of the characteristic equation associated with (57) are inside the unit circle. If this
is the case, the impulse responses derived from an in�nite order VAR will be misleading
as the structural shocks cannot be recovered from the innovations of the VAR. Whether
the moving average components of a model are invertible or non-invertible will in general
depend on which variables are included in the VAR.17

Fernández-Villaverde et al. (2005) show that when D is square and D−1 exists, a ne-
cessary and su�cient condition for invertibility is that the eigenvalues of A − BD−1C are
strictly less than one in modulus. If this condition is satis�ed then yt has an in�nite order
VAR representation given by

yt =
∞∑

j=1

C(A−BD−1C)j−1BD−1yt−j +Dwt, (60)

The rate at which the autoregressive coe�cients converge to zero is determined by the
largest eigenvalue of A − BD−1C. If this eigenvalue is close to unity a low order VAR is

16Lippi & Reichlin (1994) and Fernández-Villaverde et al. (2005) provide examples of economic models
with non-invertible moving average components.

17Two special cases are worth noting. First, as can be seen from (56), if all the variables in xt are observed
by the econometrician (implying that A = C and B = D), the process for yt will be a VAR(1). Second,
if all the endogenous state variables are included in yt and the exogenous state variables follow a VAR(1)
then yt has a VAR(2) representation (see e.g. Kapetanios et al., 2005).
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likely to be a poor approximation to the in�nite order VAR. If one or more of the eigenvalues
of A − BD−1C are exactly equal to one in modulus, the model is still invertible, but yt

does not have a VAR representation. Fernández-Villaverde et al. (2005) refer to this as a
`benign borderline case'. Often, roots on the unit circle indicate that the variables in the
VAR have been overdi�erenced (see Watson, 1994).

3.2 Identi�cation

If the model is invertible, the impulse responses from the in�nite order VAR (58) with
Gνt = Dwt correspond to the impulse responses to the structural shocks in (57). In prac-
tice, however, D is unknown, and the econometrician is faced with an identi�cation problem.
As discussed in section ??, in the pass-through literature identi�cation has typically been
achieved by setting G = Γtr, where Γtr is the lower triangular Choleski factor of the esti-
mated variance-covariance matrix of the VAR residuals, Σ̂u. However, this identi�cation
scheme is not consistent with the DSGE model set out in section 2, hence G = Γtr will yield
biased estimates of the model's impulse responses.18 A prerequisite for estimating DSGE
models by matching impulse responses, is that the identi�cation restrictions imposed on
the VAR are compatible with the theoretical model. In the simulation experiments in this
paper I apply an identi�cation scheme suggested by Del Negro & Schorfheide (2004). Using
a QR decomposition of D, the impact responses of yt to the structural shocks wt can be
decomposed into (

∂yt

∂wt

)
DSGE

= D = Γ∗trΩ
∗ (61)

where Γ∗tr is lower triangular and Ω∗ satis�es (Ω∗)′Ω∗ = I. The VAR is identi�ed by setting
G = ΓtrΩ∗. With this identi�cation scheme the impact responses computed from the VAR
will di�er from D only to the extent that Γtr di�ers from Γ∗tr (that is, only to the extent
that the estimated variance-covariance matrix Σ̂u di�ers from DD′). Thus, in the absence
of misspeci�cation of the VAR, the identi�cation scheme succeeds in recovering the true
impact responses.

4 Simulation experiments

This section presents the results of the simulation experiments. I consider two di�erent
VARs: a VAR in �rst di�erences of nominal prices and the exchange rate, and a VAR
in relative prices and the �rst di�erence of consumer prices. The latter is equivalent to a
VEqCM that includes the cointegration relations implied by the DSGE model as regressors.
As a second exercise, I examine whether an econometrician who uses standard techniques
for determining cointegration rank and for testing restrictions on the cointegration relations
will be able to infer the cointegration properties of the DSGE model.

4.1 Monte Carlo design

I generate M = 5000 datasets of lengths T = 1100 and T = 1200 using the state space
representation of the log-linearised DSGE model as the data generating process.19 Each

18Canova & Pina (1998) show that when the DSGE model does not imply a recursive ordering of the
variables, the VAR responses to a monetary policy shock identi�ed with a recursive identi�cation scheme
can be very misleading.

19To examine the sensitivity of the results to the number of Monte Carlo replications I conducted preli-
minary experiments using M = {1000, 2000, . . . , 10000} and found that the pointwise mean and standard
deviations of the impulse responses obtained with M = 5000 and M = 10000 are essentially indistinguis-
hable.
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sample is initialised using the steady-state values of the variables. To limit the in�uence of
the initial conditions, I discard the �rst 1000 observations in each replication and leave T =
100 and T = 200 observations for estimation of the VAR. The simulations are performed in
Matlab, and the built-in function randn.m is used to generate the pseudo random normal
errors. I use the same random numbers in all experiments. This is achieved by �xing the
seed for the random number generator.

For each dataset I estimate a VAR and compute the accumulated responses of prices
to a UIP shock. The UIP shock is identi�ed using the Del Negro & Schorfheide (2004)
identi�cation scheme discussed in the previous section. The selection of lag order is an
important preliminary step in VAR analyses. I report results for four di�erent methods of lag
order selection: The Akaike information criterion (AIC), the Hannan-Quinn criterion (HQ),
the Schwarz criterion (SC) and the sequential likelihood-ratio test (LR) (see Lütkepohl,
1991 for a discussion). The LR test is implemented using the small sample correction
suggested in Sims (1980) and a 5% signi�cance level for the individual tests. In addition to
results obtained for the di�erent lag selection criteria, I report results for a �xed lag length
(L = 2 and L = 4 for the VAR in �rst di�erences, L = 3 and L = 5 for the VEqCM and
the VAR in levels).

Lütkepohl (1990) shows that, provided that the lag order goes to in�nity with the
sample size, orthogonalised impulse response functions computed from a �nite order VAR
are consistent and asymptotically normal, even if the true order of the process is in�nite.
In this sense, any discrepancies between the impulse responses from the VAR and the
log linearised DSGE model can be attributed to a small sample size. It is nevertheless
instructive to decompose the overall di�erence between the DSGEmodel's impulse responses
and the VAR impulse responses into i) bias arising from approximating an in�nite order
VAR with a �nite order VAR and ii) small sample estimation bias in the VAR coe�cients for
a given lag order. The �rst source of bias, which Chari et al. (2005) label the `speci�cation
error', is given by the di�erence between the DSGE model's responses and those obtained
from the population version of the �nite order VAR for a given lag order. The coe�cients
in the population version of a �nite order VAR can be interpreted as the probability limits
of the OLS estimators or, what the OLS estimates would converge to if the number of
observations went to in�nity while keeping the lag order �xed (Christiano et al., 2005b).
Fernández-Villaverde et al. (2005) provide formulas for these coe�cients as functions of the
matrices A,B,C and D in the state space representation (56). Hence, the magnitude of
the speci�cation error can be assessed without resorting to simulation exercises.20 For a
given lag order the bias arising from the speci�cation error persists even in large samples.
Regarding the small sample estimation bias, VAR impulse responses are non-linear functions
of the autoregressive coe�cients and the covariance matrix of the VAR residuals. It is well
known that OLS estimates of the autoregressive coe�cients in VARs are biased downward
in small samples.

4.2 VAR in �rst di�erences

The �rst model I consider is a VAR in �rst di�erences of nominal prices and the exchange
rate:

∆yt = A1∆yt−1 +A2∆yt−2 + . . .+Ap∆yt−p + εt (62)

where
∆y′t = {∆ lnPm

t ,∆ lnP x
t ,∆ lnP y

t ,∆ lnP c
t ,∆ ln et}.

20I am grateful to Jesús Fernández-Villaverde for providing the Matlab program ssvar.m which calculates
the coe�cients of the population version VAR.
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With this vector of observables, the matrix A−BD−1C has four roots equal to one, while
the remaining roots are all smaller than one in modulus. This implies that the model is
invertible, but technically, it does not have a VAR representation.

Table 4 reports the distribution of the lag orders chosen by the di�erent lag order
selection criteria for sample sizes T = 100 and T = 200. The maximum lag length is set to
�ve. As expected the SC is the most conservative and selects the lowest average lag order.
For sample size T = 100 the SC chooses lag order one in 71.5% of the replications. By
contrast, the AIC and the HQ select a lag order of two in 90% of the replications. With
a sample size of T = 200 the average lag order selected increases for all criteria. The SC
picks a lag order of two in 98% of the datasets, the AIC and the HQ select a lag order of
two in 89% and 100% of the replications respectively. For both sample sizes, the LR test
selects a somewhat higher lag order than the information criteria.

Figure 3 plots the outcome of the simulation experiment with T = 100 and a �xed lag
length L = 2. The solid lines represent the pointwise mean of the accumulated impulse
responses, and the shaded areas correspond to the pointwise mean plus/minus 1.96 times
the pointwise standard deviations. The starred lines correspond to a 95% interval for the
pointwise responses, calculated by reading o� the 2.5 and 97.5 percentiles of the ordered
responses at each horizon. Finally, the circled lines depict the impulse responses from the
DSGE model. Figure 4 plots the accumulated responses normalised on the exchange rate
response.

Looking at the normalised responses we see that the VAR estimates of exchange rate
pass-through are biased downwards. Whereas in the DSGE model exchange rate pass-
through is nearly complete after twenty quarters, the mean of the VAR estimates of long-
run pass-through is 72% for import prices, 35% for export prices, 15% for consumer prices
and 20% for producer prices. From the bottom panel of �gure 3 it is evident that the
downward bias to some extent re�ects that the exchange rate behaves almost like a random
walk in the VAR, whereas there is signi�cant reversion in the exchange rate towards the
original level following a UIP shock in the DSGE model. The bias in the nominal exchange
rate response is transmitted to import prices. By contrast, the estimated VAR responses
of consumer and producer prices are smaller than the true responses. This suggests that
the downward bias in the VAR estimates of pass-through to these prices would remain even
if the VAR had accurately captured the exchange rate response. Figures 5 and 6 plot the
outcome of an experiment with L = 2 and T = 200. The biases in the impulse responses
remain in the larger sample, the main e�ect of adding observations is to lower the standard
deviations of the simulated responses.

Figures 7 and 8 decompose the overall bias into small sample bias and bias arising
from approximating an in�nite order VAR with a VAR(2). The latter is measured as the
di�erence between the true impulse responses (circled lines) and the responses from the
population version of a VAR(2) (solid line). It is evident that the dominant source of bias
is the speci�cation error. For a given lag order this bias persists in large samples. The
small sample bias is measured as the di�erence between the responses from the population
VAR(2) and the mean responses from the Monte Carlo experiments for T = 100 (dotted
line) and T = 200 (crossed line). The impulse responses of exchange rate and import prices
are biased downward in small samples. For these variables, the small sample bias and the
speci�cation error bias are of opposite signs. Hence, the e�ect of adding more observations
is to increase the overall bias in the impulse responses. For consumer and producer prices,
the opposite is true. For these variables the small sample bias reinforces the downward bias
induced by the speci�cation error.

Next, I examine how many lags are needed for the VAR to be able to recover the true
impulse responses. Figures 9 and 10 show the impulse responses from the DSGE model
(circled lines), together with the responses from the population version of the VAR for lag
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orders L = {2, 4, 10, 20}. As expected, increasing the number of lags reduces the biases.
However, even with as many as twenty lags, the VAR does not accurately capture the
responses of prices to a UIP shock. Moreover, as we have seen, standard lag order selection
criteria do not detect the need for longer lags.

Erceg et al. (2004) suggest measuring the bias in the impulse responses by the average
absolute per cent di�erence between the mean response and the theoretical response for
each variable, that is

biasH
i =

1
H

H

j=1

∣∣∣∣∣rV AR
i,j − rDSGE

i,j

rDSGE
i,j

∣∣∣∣∣ (63)

where rDSGE
i,j and rV AR

i,j are the DSGE model's responses and the mean across datasets of
the VAR responses of variable i to a UIP shock at horizon j respectively. Tables 6 and 7
report the biases for H = 10 and H = 20 for di�erent lag order criteria and sample sizes
T = 100 and T = 200. The results con�rm that adding observations increases the bias in
the responses of exchange rates and import prices, but reduces the biases the responses of
consumer and producer prices. At both horizons and for both sample sizes the average bias
is minimised for L = 4. The average bias is largest when the lag order is chosen to minimise
the SC.

As a �nal point, note that a reduction in bias from estimating a higher order VAR may
come at the cost of higher variance. Using VARs estimated by leading practitioners as data
generating processes, Ivanov & Kilian (2005) �nd that underestimation of the true lag order
is bene�cial in very small samples because the bias induced by choosing a low lag order is
more than o�set by a reduction in variance. If the primary purpose of the VAR analysis is
to construct accurate impulse responses, the authors recommend using the SC for sample
sizes up to 120 quarters and the HQ for larger sample sizes. However, Ivanov & Kilian
(2005) do not explore the case where the data generating process is an in�nite order VAR
in which case the trade-o�s between bias and variance are likely to be di�erent.

4.3 VEqCM

The fact that the monetary policy rule is speci�ed in terms of in�ation and not the price
level induces a common stochastic trend in the nominal variables in the log-linearised DSGE
model.21 Hence, while nominal prices and the exchange rate contain a unit root, the real
exchange rate and relative prices are stationary. Estimating a VAR in �rst di�erences
implies a loss of e�ciency, and in this sense it is not surprising that a VAR that omits the
cointegration relations does a poor job in recovering the responses of the levels of prices
and the exchange rate. Here I examine whether I obtain a better approximation of the
DSGE model by estimating a VEqCM that includes the cointegration relations implied by
the theoretical model. That is, I consider the system

∆yt = αβ′yt−1 +A∗
1∆yt−1 +A∗

2∆yt−2 + . . .+A∗
p∆yt−p + εt (64)

with

β′yt−1 =


lnPm

t−1 − lnP c
t−1

lnP x
t−1 − lnP c

t−1

lnP y
t−1 − lnP c

t−1

ln et−1 + lnP f
t−1 − lnP c

t−1


21The foreign price level is stationary around a deterministic trend.
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Estimating (64) is (nearly) the same as estimating a VAR in the real exchange rate, relative
prices and consumer price in�ation22, that is,

y†t = A†
1y

†
t−1 +A†

2y
†
t−2 + . . .+A†

py
†
t−p+1 + ε†t (65)

where

(y†t )
′ =

{
∆ lnP c

t , ln (Pm
t /P

c
t ) , ln (P x

t /P
c
t ) , ln (P y

t /P
c
t ) , ln

(
etP

f
t /P

c
t

)}
When the observation vector is y†t all the roots of the matrix A − BD−1C are smaller

than one in modulus. Hence, the model is invertible, and y†t has a VAR representation.
Including the cointegration relations thus removes the unit roots in the moving average
components that appear in the VARMA representation for the �rst di�erences. This is a
common �nding in the literature (see e.g., Del Negro et al., 2005).

Table 5 reports the distribution of the lag orders chosen by di�erent selection criteria
for T = 100 and T = 200. The maximum lag length is six. The SC selects a lag length of
two for both sample sizes. On average, the AIC chooses a higher lag order: for sample size
T = 100 the AIC chooses L = 2 in 47.4% of the datasets and L = 3 in 46.2% of the datasets.
I have conducted simulation experiments for each of the selection criteria separately, but
in the presentation of the results I will focus on the case L = 3. Figures 11 and 12 plot
the outcome of the simulation experiment with T = 100. The VAR approximation to the
DSGE model is good even with a moderate number of lags. This is con�rmed in �gures 13
and 14 which plot the responses computed from the population version of the VAR for lag
orders L = {2, 3, 20}. There is some bias in the impulse responses for L = 2, but for L = 3
the estimated responses are close to the true responses.

Figures 15 and 16 plot the impulse responses from the population version of the VE-
qCM(3) together with the true responses and the mean responses from a VEqCM(3) esti-
mated on sample sizes T = 100 and T = 200. In this case the small sample estimation
bias is the dominant source of bias in the responses. For all prices except import prices
the estimate of exchange rate pass-through is biased upwards, implying that for a given
lag order, adding observations does not reduce the bias. This is con�rmed in tables 6 and
7 which report the average biases over the �rst ten and twenty quarters respectively, for
di�erent lag order criteria and sample sizes T = 100 and T = 200.

To summarise, provided the cointegration relations implied by the model are included as
additional regressors, the state space representation of the log-linearised DSGE models can
be approximated with a low order VAR. This raises the question of whether in practice the
econometrician would be able to infer the cointegration rank and identify the cointegration
relations using standard techniques.

4.4 Cointegration analysis

This section asks the question: Will an econometrician armed with standard techniques be
able to infer the correct cointegration rank and identify the cointegration relations implied
by the theory?

The experiment is constructed as follows. I generate synthetic 5000 datasets of lengths
T = 100 and T = 200 from the DSGE model. Series for the levels of the variables are
obtained by cumulating the series for the �rst di�erences.23 For a given synthetic dataset I

22The only di�erence is that an extra lag of ln P c
t is included in the latter from the inclusion of ∆ln P c

t−L ≡
ln P c

t−L − ln P c
t−L−1)

23The initial values of the (log) levels of the variables are set to zero. Since the levels series are unit root
processes and thus have in�nite memory, dropping observations at the beginning of the sample does not
reduce the dependence on the initial values.
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estimate an unrestricted VAR in levels of the variables and determine the cointegration rank
using the trace test for cointegration (see Johansen, 1988). Next, I test the restrictions on
the cointegration space implied by the DSGE model using the standard LR test for known
cointegration vectors (see Johansen, 1995).

The VAR is �tted with an unrestricted constant term and a restricted drift term. The
speci�cation of the deterministic terms is consistent with the data generating process. To see
this, note that the monetary policy rule and the positive in�ation target imply that nominal
prices will have both a deterministic trend and a stochastic trend. Both trends are cancelled
in the cointegrating relations which implies that relative prices are stationary around a
constant mean. That is, lnPm

t −lnP c
t ∼ I(0), lnP x

t −lnP c
t ∼ I(0), and lnP y

t −lnP c
t ∼ I(0).

Since the in�ation target in the foreign economy is assumed to be the same as the domestic
in�ation target, the process for the foreign price level contains the same deterministic trend
as the domestic price level, and there is no linear trend in the nominal exchange rate.
However, since the foreign price level is not included in the VAR, the fourth cointegration
relation will be stationary around a deterministic trend. That is, ln et−lnP c

t +0.005t ∼ I(0).
Table 10 reports the distribution of lag orders chosen by the di�erent selection criteria

when the maximum lag length is set to six. The average lag order selected by the criteria
is two or three for both sample sizes, with SC being the most conservative criterion.

The trace test is derived under the assumption that the errors are serially uncorrelated
and normally distributed with mean zero. Good practice dictates that these assumptions be
checked before testing for cointegration. Table 13 reports the rejection frequencies across
5000 datasets for the single-equation and vector tests for non-normality in the residuals
described in Doornik & Hansen (1994). The rejection frequencies are close to the nominal
5% level for both sample sizes and across di�erent lag order criteria. Table 14 reports
the rejection frequencies for tests of no autocorrelation up to order �ve in the residuals.
The test is the F−approximation to the Lagrange Multiplier (LM) test for autocorrelation
described in Doornik (1996). For sample size T = 100 and lag length L = 3 the rejection
frequencies for the single-equation tests are around 10%. The vector test rejects the null
hypothesis in 23% of the datasets. Similar rejection frequencies are obtained for the AIC
and the sequential LR tests. However, when a conservative criterion like the SC or HQ is
used, the rejection frequencies are much higher. When the lag order is chosen to minimise
the SC, the vector test rejects the null of no autocorrelation in 59.1% of the datasets. For
all criteria except the SC, the rejection frequencies are lower in the larger sample T = 200.
Below I report the outcome of the cointegration tests for all the lag order selection criteria.
In practice, however, researchers often supplement the information criteria with tests for
residual autocorrelation, and when there is a contradiction, overrule the lag order selected
by the former. This suggests that less weight should be placed on the results obtained for
the SC or HQ.

Table 11 shows the frequencies of preferred cointegration rank for di�erent sample sizes
and di�erent methods of lag selection. The non-standard 5% critical values for the trace
test are taken from MacKinnon et al. (1999). The numbers in parentheses correspond
to the frequencies of preferred rank when the test statistic is adjusted using the small
sample correction suggested by Reinsel & Ahn (1988). When T = 100 and L = 3 the
correct cointegration rank is selected in only 2.7% of the datasets. In 17.5% of the datasets
the trace test suggests that the rank is zero, in which case a model in �rst di�erences is
appropriate. Using the small sample adjusted test statistics, the trace test chooses the
correct rank in only 0.3% of the datasets. In 61.2% of the datasets the trace test would lead
us to conclude that the variables are not cointegrated. The results are more encouraging
when a sample size of T = 200 is used. However, for L = 3 the trace test still picks the
true cointegration rank in only 31% of the replications.

When the lag order is endogenous, the correct rank is chosen most frequently when the
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lag order is determined using the SC. For T = 100 the correct rank is chosen in 20% of the
datasets. With a sample size of T = 200 the corresponding number is 53%. For the purpose
of choosing the correct cointegration rank, it appears that a low lag order is bene�cial.

As a second exercise, I examine how often the restrictions on the cointegration vector
implied by the DSGE model are rejected when using the standard LR test for known
cointegration vectors. Table 12 reports the rejection frequencies for the individual and joint
tests of the following hypotheses

lnPm
t −lnP c

t ∼ I(0), lnP x
t −lnP c

t ∼ I(0), lnP y
t −lnP c

t ∼ I(0) and ln et−lnP c
t +0.005t ∼ I(0)

The tests are conditional on the maintained hypothesis that the cointegration rank is 4
(r = 4). For T = 100 and L = 3, the rejection frequencies for the individual hypotheses are
20% when using a nominal test size of 5%. The rejection frequency for the joint hypothesis
is 88%. These results raise doubts about whether, in practice, the econometrician will be
able to identify the cointegration relations implied by the DSGE model.

Again it is instructive to see whether the results are driven by the speci�cation error or
by small sample estimation bias. In particular, it is of interest to see whether the frequent
rejections of the autocorrelation tests are due to the omission of moving average terms or
due to the fact that the autocorrelation tests are oversized in small samples. To assess
this I redo the above Monte Carlo experiments, this time using the population version of
a VEqCM(5) and a VEqCM(3) as the data generating processes. Table 16 reports the
outcome of the trace test in this case. The results are similar to the results obtained when
the log-linearised solution to the DSGE model is used as the data generating process. This
�nding suggests that the poor performance of the test is not due to approximating an in�nite
order VAR with a low order VAR, but is due to small sample problems. Interestingly, the
same seems to hold for the autocorrelation test. When the data generating process is a
VEqCM(3) and the estimated is a VAR(3) in levels of the data, the rejection frequencies of
the autocorrelation tests are 10% for the single-equation tests and 23% for the vector test
(see table 17) which suggests that the autocorrelation test is oversized in small samples.
This is consistent with the Monte Carlo evidence presented in Brüggemann et al. (2004).
Table 19 illustrates a well known result in the literature (see e.g. Gredenho� & Jacobson,
2001), namely that the LR tests for restrictions on the cointegration space are oversized in
small samples.

5 Concluding remarks

This paper has examined the ability of a structural VAR to recover the dynamic responses
of a set of prices to a risk premium shock. The main results can be summarised as follows:
The estimates of exchange rate pass-through obtained from a �rst di�erenced VAR are
systematically biased downwards. The bias in the estimated responses can largely be attri-
buted to the fact that a low order VAR is not a good approximation to the in�nite order
VAR implied by the DSGE model. Moreover, small sample estimation bias sometimes acts
to o�set the bias arising from the approximation error. When the cointegration relations
implied by the DSGE model are included in the VAR, even a VAR with a modest number
of lags is able to recover the true impulse responses. However, an econometrician using
standard tests for cointegration rank and for testing restrictions on the cointegration space
would in general not be able to infer the correct rank or identify the true cointegration
relations.
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A Equilibrium conditions of log-linearised DSGE model

Letting variables with a hat denote percentage deviations from the deterministic steady

state (i.e., X̂t = lnXt − lnX ) the log-linearised equilibrium conditions can be written

Ĉt = φcQ̂t + (1− φc)Ĥc
t (66)
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t = −νq (p̂y

t − p̂q
t ) + Q̂t (67)

Q̂m
t = −νq (p̂m

t − p̂q
t ) + Q̂t (68)
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t (69)

p̂q
t = ϑ̂c
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B Variable de�nitions and sources

P y PPI: All manufacturing excl. duty (SA). Source: O�ce of National Statistics (ONS)
[PVNQ]

e Nominal e�ective exchange rate index (qtr ave). Source: Bank of England Monetary
& Financial Statistics Interactive Database (BoE IADB) [XUQAGBG]

P c RPIX: Retail price index excl mortgage interest payments (linked back to 1975)24.
Source: ONS [CHMK]

P x De�ator exports of manufactures SITC 5�8 (SA). Source: ONS [BPAN/BOXS]

Pm De�ator imports of manufactures SITC 5�8 (SA). Source: ONS [BQBD/BPIS]

24As no o�cal seasonally adjusted RPIX exists this series was seasonally adjusted using the X12 method
as implemented in EVIEWS.
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Table 2: Baseline calibration

Parameter Value

Share of intermediate goods production of �nal goods φc 0.42
Share of intermediate goods production of intermediate goods φy 0.77
Elasticity of substitution varieties of domestic intermediate goods domestic market θy 6
Elasticity of substitution varieties of domestic intermediate goods foreign market θx 15
Elasticity of substitution varieties of domestic �nal goods θc 6
Elasticity of substitution varieties of imported intermediate goods θm 6
Elasticity of substitution di�erentiated labour services θh 6
Share of domestic intermediate goods production of domestic goods α 0.85
Share of domestic intermediate goods production of goods in foreign economy αf 0.064
Elasticity of substitution domestic and foreign goods domestic economy ν 1.5
Elasticity of substitution between domestic and foreign goods foreign economy νf 1.5
Habit persistence parameter ζ 0.85
Inverse of Frisch elasticity of labour supply χ 3
Weight on labour in utility function η 0.570
Discount factor β 1.030.25

In�ation target πc 1.005
Units of labour required to distribute one unit of imported intermediate good δ 0.4
Units of labour required to distribute one unit of imported intermediate good foreign economy δf 0.4
Adjustment cost parameter domestic �nal goods prices φc1 0
Adjustment cost parameter domestic �nal goods prices φc2 400
Adjustment cost parameter domestic intermediate goods prices φy1 0
Adjustment cost parameter domestic intermediate goods prices φy2 400
Adjustment cost parameter export prices φx1 0
Adjustment cost parameter export prices φx2 400
Adjustment cost parameter import prices φm1 0
Adjustment cost parameter import prices φm2 400
Adjustment cost parameter wages φw1 0
Adjustment cost parameter wages φw2 400
Proportion of PCP �rms domestic economy $ 0.6
Proportion of PCP �rms foreign economy $f 0.4
Sensitivity of premium on foreign bond holdings w.r.t. net foreign assets ψ 0.02
Coe�cient on lagged interest rates in interest rate rule ρR 0.65
Coe�cient on in�ation in interest rate rule ρπ 1.8
AR coe�cient in process for θy

t , ρθy 0.3
AR coe�cient in process for θx

t , ρθx 0.75
AR coe�cient in process for θc

t , ρθc 0.5
AR coe�cient in process for θm

t , ρθm 0.5
AR coe�cient in process for risk premium shock ρu 0.9
Standard deviation shock to θy

t , εθy ,t 0.2
Standard deviation shock to θx

t , εθx,t 0.35
Standard deviation shock to θc

t , εθc,t 0.2
Standard deviation shock to θm

t , εθm,t 0.35
Standard deviation risk premium shock εu,t 0.005
Foreign in�ation target πf 1.005
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Table 3: Second order moments: Model and UK data 1980Q1�2003Q4

Standard deviation Data Model
∆ ln et 0.031 0.035
∆ lnPm

t 0.017 0.019
∆ lnP x

t 0.013 0.018
∆ lnP y

t 0.004 0.006
∆ lnP c

t 0.003 0.006

First-order autocorrelation Data Model
∆ ln et 0.21 -0.07
∆ lnPm

t 0.36 0.29
∆ lnP x

t 0.29 0.30
∆ lnP y

t 0.76 0.86
∆ lnP c

t 0.79 0.81

Table 4: Distribution of chosen lag length for di�erent lag order selection criteria. VAR in �rst
di�erences. In per cent

T = 100
L = 1 L = 2 L = 3 L = 4 L = 5

LR 0.00 67.34 11.86 11.50 9.30
AIC 0.16 90.56 6.72 1.78 0.78
HQ 8.82 91.16 0.02 0.00 0.00
SC 71.52 28.48 0.00 0.00 0.00

T = 200
L = 1 L = 2 L = 3 L = 4 L = 5

LR 0.00 43.08 19.34 20.28 17.30
AIC 0.00 89.42 8.32 1.92 0.34
HQ 0.00 100.00 0.00 0.00 0.00
SC 2.44 97.56 0.00 0.00 0.00

Table 5: Distribution of chosen lag length for di�erent lag-order selection criteria. VAR in relative
prices and �rst di�erences of consumer prices. In per cent

T = 100
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 27.1 49.9 7.3 7.1 8.5
AIC 0.0 47.4 46.2 3.7 1.4 1.2
HQ 0.0 95.3 4.7 0.0 0.0 0.0
SC 0.0 100.0 0.0 0.0 0.0 0.0

T = 200
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 0.4 80.7 7.0 5.5 6.4
AIC 0.0 3.4 95.0 1.6 0.1 0.0
HQ 0.0 62.1 37.9 0.0 0.0 0.0
SC 0.0 99.7 0.3 0.0 0.0 0.0
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Table 6: Absolute value of per cent di�erence between pointwise mean of estimated accumulated
responses and DSGE model's responses over �rst ten quarters

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 5.6 8.8 25.6 24.1 30.6
AIC 6.0 10.7 29.7 24.8 34.6
HQ 6.6 11.2 30.4 25.1 36.8
SC 11.0 11.9 33.3 24.8 42.9
L = 2 6.2 11.5 30.3 25.2 36.2
L = 4 6.0 5.4 25.5 22.2 21.7

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 8.9 10.2 24.3 20.9 34.8
AIC 10.3 13.4 27.1 23.5 42.4
HQ 10.5 14.1 27.7 24.1 43.8
SC 10.7 14.0 27.7 24.1 43.9
L = 2 10.5 14.1 27.7 24.1 43.8
L = 4 8.0 8.4 22.0 18.7 29.4

Table 7: Absolute value of per cent di�erence between pointwise mean of estimated responses and
DSGE model's responses over �rst twenty quarters

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 39.4 6.6 38.7 29.4 81.1
AIC 42.6 7.7 40.0 30.5 88.6
HQ 44.5 8.0 40.2 30.5 92.2
SC 54.3 9.1 38.6 26.7 100.6
L = 2 43.6 8.1 40.5 31.0 91.3
L = 4 33.0 5.1 35.4 26.9 63.8

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 45.9 7.3 34.7 25.4 88.9
AIC 51.0 9.5 38.1 28.5 101.4
HQ 51.7 9.9 38.7 29.1 103.6
SC 52.1 9.9 38.6 29.0 103.8
L = 2 51.7 9.9 38.7 29.1 103.6
L = 4 42.5 6.3 33.2 23.0 80.0

33



Table 8: Absolute value of per cent di�erence between pointwise mean of estimated accumulated
responses from VEQM and DSGE model's responses over �rst ten quarters

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 21.7 26.3 27.7 22.0 25.0
AIC 19.2 24.2 25.2 19.3 22.7
HQ 15.9 22.4 22.4 16.2 19.9
SC 15.5 22.2 22.0 15.9 19.6
L = 3 20.7 24.9 26.2 20.6 23.8
L = 5 27.9 31.9 33.2 27.8 30.8

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 7.7 12.6 16.1 11.4 8.7
AIC 7.0 12.0 15.5 10.8 8.1
HQ 4.8 12.3 14.3 9.1 7.0
SC 3.0 12.7 13.4 7.8 6.1
L = 3 7.0 11.9 15.5 10.8 8.1
L = 5 9.8 14.5 17.6 13.3 10.8

Table 9: Absolute value of per cent di�erence between pointwise mean of estimated accumulated
responses from VEQM and DSGE model's responses over �rst twenty quarters

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 20.0 25.6 27.3 23.8 20.2
AIC 17.7 22.8 24.5 21.0 17.8
HQ 15.3 18.9 20.9 17.4 14.9
SC 15.1 18.5 20.5 17.0 14.7
L = 3 18.4 24.6 25.9 22.5 19.3
L = 5 26.7 32.5 33.9 30.5 27.4

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et

LR 8.4 10.7 14.2 10.4 9.2
AIC 8.3 9.8 13.2 9.5 9.1
HQ 6.2 7.3 11.1 7.3 9.3
SC 4.9 7.5 9.6 5.7 9.7
L = 3 8.4 9.8 13.2 9.5 9.1
L = 5 8.5 13.5 17.0 13.3 9.3
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Table 10: Distribution of chosen lag length for di�erent lag-order selection criteria. 5% signi�cance
level in individual LR tests. Variables in (log) levels. In per cent

T = 100
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 13.8 55.4 8.9 9.4 12.4
AIC 0.0 27.7 59.3 6.3 3.1 3.6
HQ 0.0 86.5 13.4 0.0 0.0 0.0
SC 0.0 99.9 0.1 0.0 0.0 0.0

T = 200
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 0.0 78.1 8.2 6.4 7.2
AIC 0.0 0.1 97.6 2.2 0.1 0.0
HQ 0.0 14.2 85.8 0.0 0.0 0.0
SC 0.0 90.5 9.5 0.0 0.0 0.0

Table 11: Frequencies of chosen cointegration rank using Johansen's trace test for di�erent lag-order
selection criteria. Numbers in parenteheses denote the preferred rank when using a small sample
correction to the trace test

T = 100
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

LR 10.7 (51.7) 31.4 (28.6) 33.6 (11.8) 17.6 (6.1) 5.5 (1.5) 1.2 (0.4)
AIC 10.8 (42.2) 28.4 (26.1) 30.2 (16.9) 21.1 (11.3) 8.2 (3.2) 1.3 (0.5)
HQ 2.5 (8.1) 8.4 (14.5) 28.6 (36.5) 39.7 (30.9) 17.6 (8.7) 3.3 (1.3)
SC 0.0 (0.6) 3.8 (12.2) 29.0 (41.2) 43.8 (34.8) 19.8 (9.8) 3.6 (1.5)
L = 3 17.5 (61.2) 41.3 (29.7) 28.0 (7.2) 10.0 (1.6) 2.7 (0.3) 0.5 (0.0)
L = 5 13.7 (84.4) 40.1 (13.9) 32.2 (1.7) 10.5 (0.2) 2.5 (0.0) 0.5 (0.0)

T = 200
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

LR 0.3 (2.1) 3.9 (11.0) 19.0 (29.5) 43.5 (38.4) 28.1 (16.3) 5.2 (2.6)
AIC 0.1 (0.5) 2.1 (6.9) 16.2 (28.7) 45.5 (41.8) 30.5 (19.1) 5.7 (3.0)
HQ 0.0 (0.5) 1.9 (6.3) 14.4 (25.4) 42.4 (39.4) 33.6 (23.4) 7.6 (5.0)
SC 0.0 (0.1) 0.3 (1.0) 2.4 (4.2) 25.6 (31.0) 53.2 (48.7) 18.4 (15.1)
L = 3 0.1 (0.5) 2.0 (6.8) 16.1 (28.5) 45.5 (42.0) 30.6 (19.2) 5.7 (3.0)
L = 5 1.5 (12.3) 11.9 (32.9) 32.0 (32.7) 37.2 (16.9) 14.7 (4.3) 2.6 (0.1)
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Table 12: Rejection frequencies for LR tests of restrictions on cointegration space conditional on
r=4 for di�erent lag-order selection criteria. 5% signi�cance level. Numbers in parentheses are
rejection frequencies based on only the datasets for which the correct cointegration rank is chosen.

T = 100
ln(Pm

t /P c
t ) ∼ I(0) ln(P x

t /P
c
t ) ∼ I(0) ln(P y

t /P
c
t ) ∼ I(0) ln(et/P

c
t ) + 0.005t ∼ I(0) Joint

LR 27.9 24.8 24.4 26.5 81.6 (94.6)
AIC 29.1 24.2 23.9 27.3 79.2 (91.7)
HQ 38.8 29.4 28.4 35.8 83.3 (92.1)
SC 41.2 30.3 29.6 38.1 84.2 (91.0)
L = 3 22.4 20.2 19.7 21.1 73.4 (81.5)
L = 5 26.8 25.9 25.7 26.3 88.1 (94.4)

T = 200
ln(Pm

t /P c
t ) ∼ I(0) ln(P x

t /P
c
t ) ∼ I(0) ln(P y

t /P
c
t ) ∼ I(0) ln(et/P

c
t ) + 0.005t ∼ I(0) Joint

LR 19.4 13.5 15.4 15.4 40.6 (45.7)
AIC 18.2 13.4 14.7 14.5 37.2 (43.2)
HQ 20.0 15.1 16.4 16.6 40.3 (49.0)
SC 29.3 25.5 25.0 26.0 60.5 (64.5)
L = 3 18.2 13.2 14.5 14.3 36.7 (42.8)
L = 5 22.0 14.3 16.7 17.9 48.0 (57.9)

Table 13: Rejection frequencies for single-equation and vector tests for non-normality for di�erent
lag-order selection criteria. 5% signi�cance level

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 5.0 5.1 4.8 4.8 5.0 5.2
AIC 5.2 5.0 4.9 4.8 5.2 5.2
HQ 4.7 4.9 5.5 4.8 4.9 5.4
SC 4.8 5.0 5.1 4.8 5.1 5.4
L = 3 5.1 4.9 4.9 4.6 4.6 5.0
L = 5 5.4 4.8 5.1 5.5 5.4 5.2

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 5.2 4.9 5.3 4.9 5.3 5.6
AIC 5.0 4.9 5.4 5.1 5.2 5.5
HQ 5.4 4.9 5.5 5.0 5.3 5.5
SC 5.0 5.1 4.9 5.4 5.3 5.7
L = 3 5.0 5.0 5.5 5.2 5.2 5.5
L = 5 5.1 4.9 5.1 5.3 5.4 6.0
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Table 14: Rejection frequencies for single-equation and vector tests for residual autocorrelation. 5%
signi�cance level

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 10.2 9.5 13.0 11.6 9.4 19.5
AIC 9.5 9.0 16.6 11.7 8.9 22.5
HQ 10.5 14.5 46.5 21.0 8.8 50.0
SC 11.5 16.9 55.5 24.1 9.1 59.1
L = 3 11.0 9.6 10.5 11.4 10.3 23.2
L = 5 12.8 12.0 11.8 13.7 12.4 32.6

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 5.9 4.8 7.1 6.2 5.5 5.5
AIC 7.1 5.6 8.4 7.1 6.6 9.7
HQ 7.4 8.3 20.5 12.3 6.7 22.1
SC 11.1 33.7 89.5 53.2 7.6 89.6
L = 3 7.4 5.8 8.6 7.3 6.8 10.7
L = 5 6.1 5.3 7.1 6.9 6.1 8.6

Table 15: Distribution of chosen lag length for di�erent lag order selection criteria. Data generated
from VAR(5) [VAR(3)]. 5% signi�cance level in individual LR tests. Variables in (log) levels. In
per cent

T = 100
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 [0.0] 14.1 [36.3] 54.4 [32.8] 9.0 [8.6] 10.7 [10.0] 11.8 [12.3]
AIC 0.0 [0.0] 27.5 [61.8] 59.5 [29.5] 6.6 [3.9] 3.0 [2.0] 3.3 [2.8]
HQ 0.0 [0.0] 87.8 [98.4] 12.2 [1.5] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]
SC 0.0 [0.0] 99.9 [100.0] 0.1 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]

T = 200
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

LR 0.0 [0.0] 0.0 [6.9] 79.2 [75.3] 7.1 [5.8] 7.0 [5.3] 6.7 [6.7]
AIC 0.0 [0.0] 0.1 [24.5] 97.7 [74.3] 2.1 [1.1] 0.1 [0.0] 0.0 [0.0]
HQ 0.0 [0.0] 16.1 [93.0] 83.9 [7.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]
SC 0.0 [0.0] 92.0 [100.0] 8.0 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]
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Table 16: Frequencies of chosen cointegration rank using Johansen's trace test for di�erent lag-order
selection criteria. 5% signi�cance level. Data generated from VAR(5) [VAR(3)].

T = 100
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

LR 11.5 [0.6] 33.2 [14.5] 31.6 [39.7] 17.5 [33.6] 5.3 [9.9] 0.8 [1.6]
AIC 11.5 [0.4] 30.6 [10.7] 28.6 [38.0] 20.5 [36.1] 7.6 [12.8] 1.2 [2.0]
HQ 2.1 [0.3] 8.7 [6.8] 29.0 [35.0] 39.8 [40.2] 18.1 [15.4] 2.5 [2.3]
SC 0.0 [0.3] 3.5 [6.7] 29.6 [34.9] 44.0 [40.3] 19.9 [15.5] 2.9 [2.3]
L = 3 18.9 [2.5] 42.1 [23.1] 27.2 [41.9] 9.5 [25.7] 1.9 [5.9] 0.3 [0.1]
L = 5 14.6 [5.2] 41.6 [30.1] 31.8 [40.3] 9.7 [19.4] 2.0 [4.4] 0.2 [0.6]

T = 200
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

LR 0.2 [0.0] 5.1 [0.3] 25.1 [6.8] 44.8 [52.3] 21.8 [37.1] 3.0 [3.5]
AIC 0.0 [0.0] 3.1 [0.0] 22.6 [3.3] 46.6 [48.5] 24.5 [43.5] 3.2 [4.7]
HQ 0.0 [0.0] 2.9 [0.0] 20.0 [1.4] 42.8 [37.2] 29.9 [54.5] 4.3 [6.9]
SC 0.0 [0.0] 0.3 [0.0] 2.5 [0.3] 27.3 [27.6] 57.5 [62.8] 12.4 [9.2]
L = 3 0.0 [0.0] 3.1 [0.0] 22.5 [4.1] 46.7 [54.0] 24.5 [38.6] 3.1 [3.3]
L = 5 1.5 [0.0] 16.2 [1.7] 37.1 [22.6] 33.2 [52.0] 10.2 [21.5] 1.7 [2.3]

Table 17: Rejection frequencies for single-equation and vector tests for residual autocorrelation for
di�erent lag-order selection criteria. Data generated by VAR(5) [VAR(3)]. 5% signi�cance level

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 10.1 [9.2] 9.8 [9.5] 13.1 [25.6] 11.6 [12.3] 9.7 [9.7] 18.5 [18.6]
AIC 9.3 [8.1] 8.9 [8.3] 16.5 [39.0] 12.5 [12.8] 8.6 [8.2] 21.7 [22.8]
HQ 9.7 [9.1] 14.4 [9.1] 48.2 [66.2] 22.3 [14.5] 7.8 [8.5] 50.2 [38.3]
SC 10.2 [9.1] 16.6 [9.1] 56.9 [67.6] 25.5 [14.4] 8.1 [8.4] 58.4 [39.1]
L = 3 10.5 [11.0] 8.7 [9.5] 9.8 [10.0] 11.3 [13.3] 10.1 [10.9] 23.3 [23.6]
L = 5 12.3 [13.0] 12.1 [13.2] 12.4 [13.2] 12.7 [14.4] 12.0 [12.5] 33.0 [32.8]

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 5.4 [4.9] 4.7 [4.8] 6.7 [11.0] 6.3 [6.2] 5.3 [5.1] 5.1 [4.6]
AIC 5.9 [5.2] 4.8 [4.9] 8.5 [27.7] 7.1 [6.6] 5.9 [5.6] 8.8 [11.7]
HQ 6.3 [5.8] 8.5 [5.4] 22.6 [92.2] 13.2 [7.9] 5.8 [7.1] 22.1 [51.2]
SC 10.9 [5.6] 36.3 [5.6] 90.9 [98.9] 55.8 [8.3] 6.8 [7.2] 90.2 [58.2]
L = 3 6.1 [5.7] 5.0 [5.7] 8.7 [6.1] 7.2 [6.8] 6.1 [5.9] 9.7 [7.9]
L = 5 5.5 [6.0] 5.7 [5.6] 5.1 [5.4] 6.2 [6.6] 6.0 [6.1] 7.3 [7.4]
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Table 18: Rejection frequencies for single-equation and vector tests for non-normality for di�erent
lag-order selection criteria. Data generated from VAR(5) [VAR(3)]. 5% signi�cance level

T = 100
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 4.9 [4.9] 5.0 [4.7] 5.0 [4.5] 5.0 [5.0] 4.9 [4.7] 5.4 [5.4]
AIC 5.1 [4.9] 5.0 [4.5] 4.9 [4.9] 4.7 [4.9] 5.0 [4.6] 5.2 [5.3]
HQ 5.0 [5.0] 4.9 [4.7] 5.1 [5.1] 5.0 [4.9] 4.8 [4.7] 5.2 [5.2]
SC 5.3 [5.1] 5.0 [4.8] 5.1 [5.0] 5.1 [4.9] 5.0 [4.8] 5.2 [5.3]
L = 3 5.0 [5.0] 4.9 [4.9] 4.7 [4.6] 4.9 [4.8] 4.9 [4.8] 5.3 [5.8]
L = 5 4.8 [4.7] 4.5 [4.5] 4.5 [4.6] 5.3 [5.1] 5.1 [5.2] 5.2 [5.4]

T = 200
lnPm

t lnP x
t lnP c

t lnP y
t ln et Vector test

LR 5.4 [5.5] 4.9 [4.8] 5.1 [4.5] 5.0 [4.9] 5.3 [5.0] 5.6 [5.2]
AIC 5.5 [5.5] 5.0 [4.9] 5.0 [4.6] 5.1 [4.8] 5.1 [4.9] 5.3 [5.2]
HQ 5.6 [5.5] 5.0 [5.1] 4.8 [5.3] 5.0 [5.4] 5.2 [5.1] 5.4 [5.7]
SC 5.5 [5.6] 4.5 [5.2] 5.4 [5.3] 5.1 [5.4] 5.3 [5.2] 5.8 [5.7]
L = 3 5.5 [5.4] 5.0 [4.9] 5.0 [4.7] 5.0 [4.9] 5.3 [4.9] 5.4 [5.4]
L = 5 5.2 [5.3] 5.2 [4.9] 5.1 [5.1] 5.0 [5.1] 5.4 [5.5] 5.8 [5.6]

Table 19: Rejection frequencies for LR tests of restrictions on cointegration space conditional on
r=4 for di�erent lag-order selection criteria. 5% signi�cance level. Data generated by VAR(5)
[VAR(3)]

T = 100
ln(Pm

t /P c
t ) ∼ I(0) ln(P x

t /P
c
t ) ∼ I(0) ln(P y

t /P
c
t ) ∼ I(0) ln(et/P

c
t ) + 0.005t ∼ I(0) Joint

LR 29.0 [34.4] 23.3 [22.3] 23.2 [25.3] 26.9 [35.5] 81.3 [74.6]
AIC 29.7 [33.7] 23.0 [20.5] 22.4 [23.8] 27.4 [8.2] 79.1 [69.7]
HQ 38.9 [33.8] 28.0 [18.9] 27.0 [23.5] 35.9 [35.5] 83.2 [67.1]
SC 17.1 [33.9] 30.0 [18.9] 8.4 [23.4] 26.5 [35.6] 58.4 [66.8]
L = 3 23.1 [29.3] 18.7 [18.3] 18.7 [20.1] 21.9 [29.9] 73.7 [65.9]
L = 5 28.1 [34.9] 24.9 [25.2] 25.1 [26.1] 27.6 [35.9] 87.8 [85.1]

T = 200
ln(Pm

t /P c
t ) ∼ I(0) ln(P x

t /P
c
t ) ∼ I(0) ln(P y

t /P
c
t ) ∼ I(0) ln(et/P

c
t ) + 0.005t ∼ I(0) Joint

LR 14.5 [16.4] 12.2 [11.8] 12.6 [12.6] 14.2 [16.8] 35.1 [28.6]
AIC 14.3 [18.0] 11.7 [12.6] 12.3 [14.2] 13.8 [18.0] 31.8 [28.1]
HQ 17.5 [24.0] 14.0 [16.2] 14.6 [20.9] 16.4 [24.3] 36.1 [34.0]
SC 31.4 [24.5] 25.8 [16.5] 26.4 [21.8] 27.7 [24.9] 60.7 [34.6]
L = 3 14.4 [15.3] 11.5 [10.9] 12.2 [11.4] 13.7 [15.3] 31.4 [25.2]
L = 5 15.4 [17.5] 12.4 [13.0] 13.3 [13.3] 15.0 [18.1] 40.9 [35.3]
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Figure 1: Normalised impulse responses to exchange rate shock. UK data. In per cent
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Figure 2: Normalised responses to exchange rate shock. Mean of 5000 datasets from DSGE model
using recursive identi�cation scheme. T = 100. In per cent
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Figure 3: Responses to a one standard deviation UIP shock. In per cent. T = 100, L = 2.
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Figure 4: Responses to UIP shock normalised on exchange rate response. In per cent. T = 100, L =
2.
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Figure 5: Accumulated responses to one standard deviation UIP shock. In per cent. T = 200, L = 2.
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Figure 6: Responses to UIP shock normalised on exchange rate response. In per cent. T = 200, L =
2.
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Figure 7: Accumulated responses to one standard deviation UIP shock. In per cent. L = 2.
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Figure 8: Normalised responses to one standard deviation UIP shock. In per cent. L = 2.
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Figure 9: Accumulated responses to one standard deviation UIP shock in population version of VAR
for di�erent lag orders. In per cent.
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Figure 10: Normalised impulse responses to one standard deviation UIP shock in population version
of VAR for di�erent lag orders. In per cent.
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Figure 11: Accumulated responses to one standard deviation UIP shock. In per cent. VEqCM.
T = 100, L = 3.
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Figure 12: Normalised responses to one standard deviation UIP shock. In per cent. VEqCM.
T = 100, L = 3.
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Figure 13: Accumulated responses to one standard deviation UIP shock from population version of
VEqCM for di�erent lag orders. In per cent.
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Figure 14: Normalised responses to one standard deviation UIP shock from population version of
VEqCM for di�erent lag orders. In per cent.
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Figure 15: Accumulated responses to one standard deviation UIP shock from population version
VEqCM(3) and mean responses from VEqCM(3) for T = 100 and T = 200. In per cent.
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Figure 16: Normalised responses to one standard deviation UIP shock from population version
VEqCM(3) and mean responses from VEqCM(3) for T = 100 and T = 200. In per cent.
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Figure 17: Accumulated responses to UIP shock from DSGE model (circled line) and mean of 95%
standard bootstrap interval (solid lines) and 95% bias-corrected bootstrap interval (pointed lines).
VAR in �rst di�erences.
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Figure 18: Accumulated responses to UIP shock from DSGE model (circled line) and mean of 95%
standard bootstrap interval (solid lines) and 95% bias-corrected bootstrap interval (pointed lines).
VEqCM
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