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Abstract
Ordinal responses can be generated, in a time-series context, by different latent

regimes or, in a cross-sectional context, by different unobserved classes of popula-
tion. We introduce a new command swopit that fits a switching ordered probit
model with either exogenous or endogenous class assignment to two latent regimes
(classes). Switching is endogenous if the unobservables in the regime-switching
(class-assignment) model are correlated with the unobservables in the outcome
models. We provide a battery of postestimation commands, assess by Monte Carlo
experiments the finite-sample performance of the maximum likelihood estimator of
the parameters, choice and regime probabilities and their standard errors (both the
asymptotic and bootstrap ones), and apply the new command to model the policy
interest rates and health status responses.

Keywords: swopit, ordinal responses, ordered probit, mixture models, latent
class, regime switching, endogenous switching
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1 Introduction

Ordinal responses can be generated, in a cross-sectional context, by different latent classes
of the population or, in a time-series context, by different latent states (regimes) of the
underlying process. We introduce a new command swopit that fits a mixture of ordered
probit (OP) models for ordinal outcomes with either exogenous or endogenous assign-
ment to two latent classes (or regimes). The decision-making process, which determines
an outcome in each class (regime), is represented by a separate OP model. The class-
assignment (regime-switching) mechanism is represented by a binary probit model. En-
dogenous regime switching implies that the unobservables in the class-assignment model
are correlated with the unobservables in the outcome models. The three latent equa-
tions from the class-assignment model and two outcome models, each with its own set
of observables (control variables) and unobservables (disturbance terms), are estimated
simultaneously by full information maximum likelihood (ML), providing the probabilities
of both the discrete choices and the latent classes for each observation. In this way, ob-
served explanatory variables can have different marginal effects on the choice probabilities
in different classes.
The idea of endogenous switching can be traced to Roy’s discussion of earnings dis-

tribution and self-selection between two professions (Roy 1951). Numerous variants of
endogenous switching models are often concerned with sample selection or treatment ef-
fects. In the sample selection models (the first econometric implementations belong to
Gronau 1974; Heckman 1974; Lewis 1974; and Maddala and Nelson 1975), which are
similar in structure to the regime-switching and mixture models, the outcomes from one
regime are never observed (not selected to the sample), whereas in the regime-switching
models the observed outcomes can be generated by any regime but the regimes may not
be known. A two-regime switching model can be thus viewed as two selection models
merged together.
The typical treatment-effects (or program-evaluation) models contain a selection-into-

treatment equation and a single outcome equation, which in addition to the control vari-
ables also contains one or sometimes several dummy variables (treatment indicators). The
rest of the parameters in the outcome equation is the same for both treated and untreated
individuals, who are observed. In this literature, endogenous switching refers to a pos-
sible correlation of treatment dummies with the unobservables in the outcome equation.
For example, Geweke et al. (2003) consider unordered multiple treatment and binary
outcomes; Munkin and Trivedi (2008) consider unordered multiple treatment and multi-
ple ordered outcomes; Miranda and Rabe-Hesketh (2006) provide a "wrapper" program,
ssm, that calls the Stata’s command gllamm to fit the binary treatment (or selection)
model for multiple ordered (or count) outcomes; and the Stata command eoprobit fits
an ordered probit regression model with endogenous treatment assignment (or sample
selection).
In contrast to the typical treatment-effects regression models, in the switching regres-

sion models (also known as finite mixture models) the regimes may not be observed, and
the outcomes in each regime are handled separately with the regime-specific values of all
parameters in each outcome model (see McLachlan (2019) for a recent survey). In this lit-
erature, endogenous switching refers to a possible correlation between the unobservables
in the class-assignment (regime-switching) model and the unobservables in the outcome
models. The existing endogenous switching mixture models deal mainly with continuous
or binary outcomes. Models with ordinal or count outcomes have received considerably
less attention and are mostly limited to observed regimes or known sample separation
(e.g., Carneiro et al. 2003; Chib and Hamilton 2000; Gregory 2015; Hasebe 2018; Hill
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1990). In particular, Gregory (2015) and Hasebe (2020) develop the Stata commands
switchoprobitsim and escount that fit, respectively, a two-regime endogenous switch-
ing OP model and a Poisson (or negative binomial) model separately for two observed
classes of treated and untreated individuals.
The model for ordinal outcomes with endogenous assignment to two latent classes is

proposed by Greene et al. (2008). It can be seen as a generalization of the zero-inflated
OP model of Harris and Zhao (2007), in which the outcomes in one latent class are
modeled by the OP model, and the outcomes in the other latent class have a density
mass at a single point (a zero), generating “inflated”zeros. The endogenous switching
OP model in Greene et al. (2008) allows all outcomes, not only the zeros, to be generated
in two regimes.
A mixture of OP models with exogenous assignment to latent classes, when the un-

observables in the class-assignment and output models are independent of each other,
can be also fitted by the Stata command for finite mixture models fmm: oprobit. In
contrast to the commands with the fmm prefix, which use the multinomial logistic dis-
tribution to model the probabilities of the latent classes, the swopit command uses the
probit model. The fmm commands can fit mixtures of models for different types of out-
comes (censored, ordinal, count, categorical, zero-inflated, etc.), but do not allow for
interdependence among the unobservables in the class-assignment and output models as
the swopit command does.
In the next section, we describe the mixture of two OP models with endogenous

assignment to latent classes and its estimation via full information ML, and discuss the
identification issues. In Section 3 we present the new Stata command. In Section 4 we
describe and report the results of the Monte Carlo experiments to assess the finite-sample
properties of the ML estimator of the parameters and probabilities, and to compare
the asymptotic and bootstrap estimators of the standard errors. We illustrate the new
command in Section 5 by modeling the policy interest rates and health status responses.
Section 6 concludes.

2 Model

We let i (t = 1, 2, ..., N) be one of the available N observations, and yi be an observed
dependent variable that can take on a finite number J of ordinal values coded by j (j =
1, 2, ..., J). We let the latent unobserved (or only partially observed) variables be denoted
by “∗”. The observed outcome yi can be generated in one of two states, coded by an index
r∗i (r

∗
i = 1, 2) and interpreted as the latent classes of population in the cross-sectional

context or as the latent regimes in the time-series context. The realized states are not
observed. The latent state r∗i is determined by the observed data zi and unobservables
νi according to the class-assignment model in the usual binary probit fashion with an
unobserved threshold µ. For each i, only one out of two potential realizations of yi is
observed. The observed outcome yi is determined conditionally on the regime r∗i by the
observed data xr∗i ,i and unobservables εr∗i ,i according to the OP outcome models in the
usual ordered-response fashion with the unobserved thresholds αr∗i . The unobservables
in the class-assignment model can be correlated with those in each outcome model.
We let: zi, x1,i and x2,i be the ith rows of the observed data matrices; γ, β1 and

β2 be the column vectors of unknown slope parameters; µ, α1 and α2 be the unknown
thresholds; ρ1 and ρ2 be the correlation coeffi cients; νi, ε1,i and ε2,i be the error terms
that are independently and identically distributed (iid) across i according to the normal
distributions with the zero means and the variances σ2, σ21 and σ

2
2, respectively; Φ(gi;σ

2
i )
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be the normal cumulative distribution function (CDF) of the random variable gi with zero
mean and variance σ2i ; and Φ2(g1;g2; ζ) be the CDF of the bivariate normal distribution
of the two random variables g1 and g2 with the zero means, variances σ21 and σ

2
2, and the

correlation coeffi cient ζ.
The mixture of OP models with endogenous assignment to two latent classes (regimes)

can be summarized by the following system:

Class assignment
(regime switching):

r∗i =

{
1 if ziγ + νi ≤ µ,
2 if µ < ziγ + νi.

Outcome
models:

yi =

{
j if r∗i = 1 and α1,j−1 < x1,iβ1 + ε1,i ≤ α1,j,
j if r∗i = 2 and α2,j−1 < x2,iβ2 + ε2,i ≤ α2,j,

(1)

Endo/exogeneity of
class assignment:

[
νi
εs,i

]
iid∼ N

(
0
0
,

[
σ2 ρsσσs

ρsσσs σ2s

])
, s = 1, 2,

where j = 1, 2, ..., J, −∞ = α1,0 ≤ α1,1 ≤ ... ≤ α1,J = ∞, and −∞ = α2,0 ≤ α2,1 ≤ ... ≤
α2,J =∞.
Conditional on the values of all independent variables in the model xalli = (zi,x1,i,x2,i),

the probability of the choice j is given by

Pr(yi = j|xalli )

=
∑s=2

s=1 Pr(r∗i = s and αs,j−1 < xs,iβs + εs,i ≤ αs,j|xalli )
= Pr(νi ≤ µ− ziγ and α1,j−1 − x1,iβ1 < ε1,i ≤ α1,j − x1,iβ1|xalli )
+ Pr(µ− ziγ < νi and α2,j−1 − x2,iβ2 < ε2,i ≤ α2,j − x2,iβ2|xalli )
= Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)
+Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)− Φ2(−µ+ ziγ;α2,j−1 − x2,iβ2;−ρ2).

(2)

More specifically, these probabilities can be computed for each choice as

Pr(yi = 1|xalli ) = Φ2(µ− ziγ;α1,1 − x1,iβ1; ρ1) + Φ2(−µ+ ziγ;α2,1 − x2,iβ2;−ρ2);

Pr(yi = j|xalli ) = Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)
+Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)−Φ2(−µ+ ziγ;α2,j−1− x2,iβ2;−ρ2) for 1 < j < J ;

Pr(yi = J |xalli ) = Φ2(µ − ziγ;−α1,J−1 + x1,iβ1;−ρ1) + Φ2(−µ + ziγ;−α2,J−1 +
x2,iβ2; ρ2).

In the case of exogenous class assignment (when ρ1 = ρ2 = 0), these probabilities
simplify to

Pr(yi = j|xalli , ρ1 = ρ2 = 0) = Φ(µ− ziγ;σ2ν)[Φ(α1,j − x1,iβ1;σ21)− Φ(α1,j − x1,iβ1;σ21)]
+[1− Φ(µ− ziγ;σ2ν)][Φ(α2,j−1 − x2,iβ2;σ22)− Φ(α2,j−1 − x2,iβ2;σ22)].

2.1 ML estimation and identification

The simultaneous estimation of the switching model and both outcome models can be
performed using a full information ML estimator that maximizes the log-likelihood func-
tion l(θ):

max
θεΘ

l(θ|xalli ) =max
θεΘ

i=N∑
i=1

j=J∑
j=1

Iij ln[Pr(yi = j|xalli ,θ)],
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where θ is a vector of all parameters, including γ, µ, β1, β2, α1, α2, ρ1 and ρ2; Θ is
a parameter space; Iij is an indicator function such that Iij = 1 if yi = j, and Iij = 0

otherwise. The asymptotic standard errors of θ̂ can be computed from the Hessian
matrix. There are three issues with the identification of the parameters: the first issue
is typical for the models with limited dependent variables, the second is typical for the
multiple-equation models, and the third issue is typical in the estimation of the mixture
models.
First of all, the intercept components of the slope parameters γ, β1 and β2 are

identified up to scale and location, that is, only jointly with the corresponding threshold
parameters µ, α1 and α2, and variances σ2, σ21 and σ

2
2. Following the standard approach

in the identification of discrete-choice models, we fix the variances σ2, σ21 and σ
2
2 to 1,

and the intercept components of γ, β1 and β2 to 0. Importantly, the probabilities in (2)
are absolutely invariant to these (arbitrary) identifying assumptions.
Secondly, we can actually identify all parameters in θ (again, up to scale and loca-

tion) because of the nonlinearity of OP models, i.e. via the functional form (Heckman
1978; Wilde 2000). However, the ML estimation may be subject to a weak identification
problem (a low precision of the estimates) if the class-assignment model and outcome
models contain the same or similar sets of covariates.
The third issue is a well-known label-switching phenomenon, caused by the invariance

of the likelihood function with respect to the switching of the latent regime labels (Redner
and Walker 1984; Jasra et al. 2005). Since labeling of latent regimes is arbitrary, if both
outcome models contain the same set of regressors (x1,i = x2,i) we can say neither that
β̂1 and α̂1 indeed estimate β1 and α1 (but not β2 and α2), nor that β̂2 and α̂2 estimate
β2 and α2 (but not β1 and α1). The model has two identical likelihood maxima because

Pr(yi = j|xalli ,−γ,− µ,β2,α2,β1,α1,−ρ2,−ρ1)
= Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)− Φ2(−µ+ ziγ;α2,j−1 − x2,iβ2;−ρ2)
+Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)
= Pr(yi = j|xalli ,γ,µ,β1,α1,β2,α2, ρ1, ρ2).

Hence, changing the signs of the parameters in the class-assignment model and the signs
of the correlation coeffi cients switches the regime labels, and results in two identical like-
lihood values. Thus, the correlation coeffi cients and the slope and threshold parameters
in the class-assignment model are identified up to sign only, and the latent class labels
are interchangeable.
In mixture models, the likelihood function may have multiple local maxima. To avoid

the locally optimal solutions the developed command performs several estimation at-
tempts (five by default) with different initializations by randomly assigning observations
to each class (regime). After each random initialization, the command obtains the start-
ing values for the slope and threshold parameters using the independent estimations of
binary probit class-assignment model and OP output models. Further, in the case of
endogenous class assignment, the command obtains the starting values for ρ1 and ρ2 by
maximizing the likelihood functions over a grid search from −0.95 to 0.95 in increments
of 0.05 holding the other parameters fixed at their estimates in the exogenous switching
case, following Sirchenko (2020) and Dale and Sirchenko (2021)1. Using these starting
values the command then performs ML estimation. The estimation results with the
highest obtained likelihood are reported. The Monte Carlo simulations show that the
ML estimator arrives at the global maximum and is consistent.

1We are thankful to David Dale, whose Stata command ziop2 for the zero-inflated OP model from
Dale and Sirchenko (2021) we adopted and modified.
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2.2 Partial effects

We assemble the partial effects (PE) of each covariate on the probability of each choice
into a matrix PEi, in which rows are linked with covariates and columns are linked with
choices. The PE of a continuous-valued covariate on the choice j is computed as follows:

PEk,j,i =

+

[
Φ

(
µ−ziγ−ρ1(α1,j−1−x1,iβ1)√

1−ρ21

)
f(α1,j−1 − x1,iβ1)

−Φ

(
µ−ziγ−ρ1(α1,j−x1,iβ1)√

1−ρ21

)
f(α1,j − x1,iβ1)

]
βall1,k

+

[
Φ

(
α1,j−x1,iβ1−ρ1(µ−ziγ)√

1−ρ21

)
− Φ

(
α1,j−1−x1,iβ1−ρ1(µ−ziγ)√

1−ρ21

)]
f(µ− ziγ)γallk

+

[
Φ

(
ziγ−µ+ρ2(α2,j−1−x2,iβ2)√

1−ρ22

)
f(α2,j−1 − x2,iβ2)

−Φ

(
ziγ−µ+ρ2(α2,j−x2,iβ2)√

1−ρ22

)
f(α2,j − x2,iβ2)

]
βall2,k

+

[
Φ

(
α2,j−x2,iβ2+ρ2(ziγ−µ)√

1−ρ22

)
− Φ

(
α2,j−1−x2,iβ2+ρ2(ziγ−µ)√

1−ρ22

)]
f(ziγ − µ)γallk ,

where f is the probability density function of the standard normal distribution, and γallk ,
βall1,k and β

all
2,k are the coeffi cients on the kth covariate in x

all
i in the class-assignment model,

the outcome model conditional on r∗i = 1 and the outcome model conditional on r∗i = 2,
respectively (γallk , β

all
1,k or β

all
2,k is zero if the kth covariate in x

all
t is not included into the

corresponding model). For a discrete-valued covariate, the PE can be computed as the
change in the probabilities when this variable changes by one increment and all other
variables are held fixed. The asymptotic standard error of PEk,j,i is computed using the
delta method as a square root of ∇θ(PEk,j,t)Var(θ)∇θ(PE

′

k,j,i).

3 The swopit command

The accompanying software includes the swopit command, postestimation commands
and supporting help files.

3.1 Syntax

The following command fits a mixture of OP models with either exogenous or endogenous
assignment to two latent classes (regimes):

swopit depvar [indepvars] [if] [in] [, options]

The dependent variable depvar may take on two or more discrete ordered values. The
independent variables listed in indepvar will be, by default, included in each model. The
alternative (and possibly not the same) lists of independent variables to be included in
the class-assignment model and each outcome model can be specified in options. The
following options are available.

Options

The underlying denotes the shortest acceptable abbreviation.
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regindepvars(varlist) specifies the list of independent variables included in the class-
assignment model. By default, it is equal to all independent variables listed in
indepvars.

outoneindepvars(varlist) specifies the list of independent variables included in the
first outcome model. By default, it is equal to all independent variables listed in
indepvars.

outtwoindepvars(varlist) specifies the list of independent variables included in the
second outcome model. By default, it is equal to all independent variables listed in
indepvars.

endogenous specifies that the endogenous class-assignment (regime-switching) is to be
used instead of the default exogenous switching.

guesses(scalar)specifies the number of estimation attempts with different random
starting values using the command optimize(). The default is guesses(5). At
each attempt, the following optimization techniques are applied one after another
until convergence is achieved or all four of them are used: modified Newton-Raphson
(NR), Berndt-Hall-Hall-Hausman (BHHH), Davidson-Fletcher-Powell (DFP), and
Broyden-Fletcher-Goldfarb-Shanno (BFGS). The estimation output with the high-
est likelihood is reported. If starting values are specified in initial() then the
estimation attempts are stopped after the first converged one (if any).

limit(scalar) specifies the limit for the maximum absolute value of each parameter in
the ML estimation. The default is limit(0), and no constraints are applied.

maxiter(scalar) specifies the maximum number of iterations before the optimization
algorithm quits. The default is maxiter(500).

ptol(scalar) specifies the tolerance for parameters. The default is ptol(1e− 6).

vtol(scalar) specifies the tolerance for log-likelihood. The default is vtol(1e− 7).

nrtol(scalar) specifies the tolerance for scaled gradient. The default is nrtol(1e− 5).

initial(string) specifies a space-delimited list of the starting values for the parameters
in the following order: γ, µ, β1, α1, β2, α2, ρ1 and ρ2. The elements of α1 and α2
should be provided in ascending order.

change(scalar) specifies the interval for randomly selecting new starting values (SV)
for the next estimation attempt if the user has specified the starting values in
initial(). The estimation attempts are stopped after the first converged one or
until all attempts specified in guesses() are performed. The SV for all coeffi cients
with the exception of the correlation coeffi cients are adjusted for each estimation
attempt according to the formula: SV = SV + change ∗ U(−|SV |, |SV |), where
U() represents a uniformly distributed random variable. In the case of endogenous
switching, the SV for the correlation coeffi cients ρ1 and ρ2 are determined by max-
imizing the likelihood function over a grid search from −0.95 to 0.95 in increments
of 0.05 holding the other parameters fixed. The default is change(0.5). The option
is ignored if the initial() option is not used. However, it is always applied for
the bootstrap.
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bootstrap(scalar) specifies the number of bootstrap replications to be performed to
estimate the standard errors. Bootstrapping uses the initial values of estimated pa-
rameters as the starting ones. The default is bootstrap(0), and no bootstrapping
is performed.

bootguesses(scalar) specifies the maximum number of attempts with different random
starting values in the bootstrap estimations. At each new attempt, the starting val-
ues are selected as described in change() and the following optimization techniques
are applied one after another until convergence is achieved or all four of them are
used: NR, BHHH, DFP, and BFGS. The estimation attempts are stopped after the
first converged one or until all attempts specified in bootguesses() are performed.
The default is bootguesses(3).

bootiter(scalar) specifies the maximum number of iterations in the bootstrap esti-
mations before the optimization algorithm quits. The default is bootiter(50).

Stored results

The descriptions of the stored results can be found in the help files.

3.2 Postestimation commands

The following postestimation commands are available after swopit.

The swopitpredict command

swopitpredict varname [, regimes output(string)]

This command provides the predicted probabilities of the observed choices (by default)
or latent classes for each observation. It creates the variables named varname_i where
i is the label of the observed choice or latent class. varname can only consist of letters
and underscores. If an invalid name is given an error message is displayed. The options
regimes and output(string)are defined as:

regimes calculates the predicted probabilities of the latent classes (regimes) instead of
the choice probabilities (by default).

output(string) specifies the different types of predictions. The possible options for
string are: choice for reporting the predicted outcome (the choice or regime with
the largest predicted probability); mean for reporting the expected value of the
dependent variable computed as a summation of j ∗ Pr(yi = j) across all choices
j = 1, 2, .., J ; and cum for predicting the cumulative choice probabilities such as
Pr(yi <= 1),Pr(yi <= 2), ...,Pr(yi <= J). If output() is not specified, the usual
choice probabilities such as Pr(yi = 1),Pr(yi = 2), ...,Pr(yi = J) are predicted.

The swopitprobabilities command

swopitprobabilities [, at(string) regimes]

This command provides the predicted probabilities of the observed choices (by default)
or latent classes with their standard errors for the specified values of the independent
variables. The options at(string) and regimes are defined as follows:

8



at(string) specifies the values of the independent variables, at which the probabilities
are estimated. By default, the probabilities are computed at the median values of
the independent variables. The syntax of this command is varname = value for
each variable, separated by a blank space. varname is the name of the variable
listed in indepvars. If an independent variable from indepvars is excluded from
this option, the probabilities are estimated at the median value of this variable.

regimes calculates the predicted probabilities of the latent classes (regimes) instead of
the choice probabilities (by default).

The swopitmargins command

swopitmargins [, at(string) regimes]

This command provides the marginal (partial) effects on the predicted probabilities
of the observed choices (by default) or latent classes with their standard errors for the
specified values of the independent variables. The options at(string) and regimes are
defined as follows:

at(string) specifies the values of the independent variables to estimate the marginal
effects. By default, the marginal effects are computed at the median values of the
independent variables. The syntax of this command is varname = value for each
variable, separated by a blank space. varname is the name of the variable listed in
indepvars. If an independent variable from indepvars is excluded from this option,
the marginal effects are estimated at the median value of this variable.

regimes calculates the marginal effects on the probabilities of the latent classes (regimes)
instead of the choice probabilities (by default).

The swopitclassification command

swopitclassification

This command constructs a confusion matrix (classification table) for the dependent
variable. The classification table shows the observed choices in the rows and the predicted
ones (the choices with the highest predicted probability) in the columns. The diagonal
elements give the numbers of correctly predicted choices. The command also reports the
accuracy (the percentage of correct predictions), the Brier probability score (Brier 1950),
the ranked probability score (Epstein 1969), the precisions, the recalls, and the adjusted
noise-to-signal ratios (Kaminsky and Reinhart 1999).

4 Monte Carlo experiments

We have performed the Monte Carlo experiments to assess the finite-sample performance
of the proposed ML estimator of the parameters and the probabilities of choices and
latent classes as well as of their standard errors (both the asymptotic and bootstrap
ones). The performance is measured by the bias (the absolute difference between the
estimated and true values), the root mean square error (RMSE), and the coverage rate
(the percentage of times the estimated 95% confidence intervals cover the true values)2.

2The “true values”of the standard errors are computed as the standard deviations of the parameters’
estimates in Monte Carlo replications.
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The results of the experiments show that as the sample size grows the biases and the
RMSEs decrease, and the coverage rates approach the nominal level. The results suggest
that the proposed ML estimator is consistent and quite reliable in small samples (with
only 250—500 observations).

4.1 Monte Carlo design

We generated five independent variables gj
iid∼ 4 ∗ N (0, 1), j ∈ {1, ..., 5} and simulated

the following three different scenarios for the overlap among the covariates in the two
outcome models, “no overlap”, “partial overlap”, and “complete overlap”:

no overlap partial overlap complete overlap
Class-assignment model g1 g1, g3 g1
Outcome model 1 g2, g3 g2, g3 g2, g3
Outcome model 2 g4, g5 g3, g4 g2, g3

In the “partial overlap” case, there is a covariate that belongs to all three latent
equations. We simulated six data-generating processes according to system (1), using
three overlap scenarios and two types of class assignment: exogenous (when ρ1 = ρ2 = 0)
and endogenous (when ρ1 = 0.3 and ρ2 = 0.5). The dependent variable y was generated
with three ordinal choices. The values of the parameters used in the simulations are
shown in Table A1 of the Appendix. These values were calibrated in such a way that
both latent classes have the same theoretical probability, and each of the three choices
is equally likely. The variances of the error terms were fixed to one. 10,000 repeated
samples with 250, 500, 1, 000, and 2, 000 observations were independently generated for
each process, and estimated using its true specification.
In addition, to study the performance of the bootstrap estimator of the standard

errors, we simulated two processes with “no overlap”specification, one with exogenous
and the other with endogenous class assignment, and estimated the parameters of each
process using both the asymptotic and bootstrap estimators of the standard errors. We
generated 3,000 replications independently with 250 and 500 observations. To compute
a nonparametric stratified bootstrap estimator of standard errors, we drew with replace-
ment 300 bootstrap samples for each Monte Carlo iteration, and computed the standard
deviations of the replicated statistics. For each bootstrap sample, the observations were
re-sampled separately for each choice, so the number of observations in each choice in
every bootstrap sample was the same as in the original one.

4.2 Monte Carlo results

Table 1 reports the finite-sample performance of the estimator of the parameters. The
slope parameters γ, β1 and β2 are estimated better than the threshold parameters µ, α1
and α2 and much better than the correlation coeffi cients ρ1 and ρ2. As the sample sizes
increase eight times from 250 to 2,000:
(i) the coverage rates move toward the nominal 95% level: for the slope and threshold

parameters from 87% to 94% in the endogenous switching models and from 97% to 95%
in the exogenous switching ones, whereas for the correlation coeffi cients from 28%—30%
to 75%—79% only;
(ii) for the slope parameters the biases decrease 14—16 times, the RMSEs decrease

9—13 times, and the biases of the standard error estimates decrease 143—257 times;

10



Table 1. The finite-sample performance of the estimator of parameters

none partial complete none partial complete

250 5.5 5.6 5.4 4.8 4.5 4.7
500 1.7 1.7 1.7 1.6 1.6 1.6

1000 0.8 0.7 0.8 0.7 0.7 0.7
2000 0.3 0.3 0.3 0.3 0.3 0.3

250 18.2 18.6 16.6 13.3 12.0 12.9
500 4.6 4.3 4.6 4.3 4.1 4.4

1000 2.3 2.2 2.3 2.3 2.2 2.3
2000 1.5 1.4 1.5 1.4 1.4 1.5

250 97.3 97.3 97.4 87.6 86.1 87.2
500 96.3 96.5 96.4 89.9 87.9 89.8

1000 95.5 95.6 95.4 92.3 90.9 92.6
2000 95.3 95.3 95.4 94.3 93.7 94.1

250 95.6 111.8 69.5 46.7 55.9 59.7
500 10.5 8.6 9.7 8.2 8.5 9.9

1000 1.7 1.5 1.6 1.9 1.8 1.5
2000 0.4 0.4 0.4 0.3 0.3 0.4

250 26.7 25.0 27.1 22.4 21.5 23.0
500 13.3 12.7 13.2 12.6 11.7 12.3

1000 8.4 8.2 8.3 8.2 7.9 8.2
2000 5.7 5.5 5.6 5.7 5.5 5.7

250 27.7 27.0 26.6 24.2 22.8 25.5
500 9.3 8.4 9.0 8.8 8.3 8.9

1000 4.9 4.7 4.8 4.8 4.7 4.8
2000 3.1 3.0 3.0 3.0 3.0 3.0

250 97.2 97.0 97.4 86.0 87.5 85.3
500 96.2 95.9 96.3 88.2 88.4 88.1

1000 95.6 95.3 95.4 91.4 91.0 91.6
2000 95.2 95.1 95.3 94.0 93.5 93.6

250 120.2 123.5 106.5 108.4 100.3 119.1
500 18.2 12.5 15.5 17.1 17.4 20.0

1000 3.1 2.7 3.0 4.0 4.3 3.5
2000 0.9 0.7 0.7 0.6 0.8 0.8

250 8.4 9.3 8.8
500 6.9 6.7 7.1

1000 6.5 6.5 6.9
2000 5.4 5.4 5.7

250 8.8 8.9 8.7
500 7.4 7.5 7.3

1000 5.6 5.8 5.6
2000 3.9 4.0 3.9

250 28.2 28.1 32.4
500 43.4 40.2 46.1

1000 60.9 58.9 64.5
2000 75.0 72.8 78.6

250 41.8 36.6 39.1
500 37.8 39.7 36.2

1000 22.7 24.3 20.9
2000 11.3 12.6 10.0

RMSE, x10

Coverage rate
(at 95% level), %

Bias of standard
error estimator,

x100

Correlation coefficients ρ1 and ρ2

Bias of standard
error estimator,

x100

Bias, x10

Bias, x10

RMSE, x10

Coverage rate
(at 95% level), %

Threshold parameters μ, α1 and α2

Coverage rate
(at 95% level), %

Bias of standard
error estimator,

x100

Slope parameters γ, β1 and β2

Bias, x10

RMSE, x10

size Covariates' overlap:
Sample Class assignment: Exogenous Endogenous
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(iii) the biases of the slope parameter estimator relative to those of the threshold
and correlation estimators decrease, respectively, around three and a half times and nine
times;
(iv) the RMSEs of the slope parameter estimator relative to those of the threshold

estimator decrease by 23%—33% in the exogenous switching models and by 6%—13% in the
endogenous switching ones, and relative to those of the correlation coeffi cient estimator
decrease around four times; and
(v) the biases of the standard error estimator for the slope parameters relative to

those for the thresholds decrease by 10%—59% (but increase by 26% for “no overlap”case
with endogenous switching), and relative to those for the correlation coeffi cients decrease
39—58 times.
The standard errors are underestimated for all parameters, all models, and all sample

sizes. The coverage rates for all parameters are below the nominal level in the endogenous
regime-switching case, but nevertheless above the nominal level in the exogenous case due
to the right-skewed distribution of the standard error estimates.
Table 2 reports the small-sample performance of the estimator of the probabilities of

choices and latent classes. In the endogenous switching models, the estimator of class
probabilities demonstrates better accuracy and certainty than the estimator of choice
probabilities, while in the exogenous switching models the estimator of the class proba-
bilities provides better accuracy but slightly less certainty than the estimator of choice
probabilities. As the sample sizes grow from 250 to 2,000:
(i) the coverage rates of the class probability estimator move toward the nominal 95%

level from 86%—92% to 94%—95%, whereas those of the choice probability estimator move
from 86%—90% to 94%—95% in the exogenous switching models, but only slightly move
in the interval 80%—85% in the endogenous switching ones;
(ii) the biases of the class probability estimator are smaller by 44%—99% than those

of the choice probabilities for all overlap scenarios, all sample sizes, and both switching
types;
(iii) the RMSEs of the class probability estimator are smaller by 23%—56% than those

of the choice probability estimator in the endogenous switching models, but are more or
less similar in the exogenous switching models (smaller by 17% in the “no overlap”case,
larger by 28% in the “partial overlap“ case and larger by 15% in the “complete overlap”
case than those of the choice probability estimator for all sample sizes);
(iv) the biases of the class probability estimator relative to those of the choice proba-

bility estimator change in different directions for different overlap scenarios, sample sizes
and types of switching, and no clear patterns are observed;
(v) the RMSEs of the class probability estimator relative to those of the choice prob-

ability estimator decrease slightly by 1%-15% in the exogenous switching models, and
more substantially by 34%—37% in the endogenous switching ones; and
(vi) the biases of the standard error estimator for the class probabilities are on average

larger by more than 60% in the exogenous switching models but lower by about 95%
(with 1000 and 2000 observations) in the exogenous switching models; in the exogenous
switching models, the biases of the standard error estimator for the class probabilities
relative to those for the choice probabilities change in different directions for different
overlap scenarios and different sample sizes, and no clear patterns are observed; in the
endogenous switching models, the relative biases of the standard error estimator for the
class probabilities decrease 37—47 times.
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Table 2. The finite-sample performance of the estimator of probabilities

none partial complete none partial complete

250 9.79 3.25 11.12 36.20 47.56 35.95
500 4.57 3.06 6.04 13.13 24.71 13.74

1000 3.15 1.78 2.76 5.77 6.58 5.31
2000 1.19 0.53 1.34 9.65 3.49 8.01

250 1.57 1.63 1.25 2.01 2.06 2.00
500 1.04 1.04 0.77 1.64 1.65 1.67

1000 0.73 0.69 0.51 1.27 1.24 1.30
2000 0.50 0.47 0.35 0.88 0.85 0.90

250 85.6 86.9 89.7 82.5 82.9 80.9
500 90.5 91.5 92.9 80.4 84.2 79.4

1000 92.5 93.6 94.0 77.3 83.2 78.7
2000 94.0 94.3 94.8 80.7 85.3 84.0

250 1.68 1.86 1.49 1.63 1.20 1.33
500 0.52 0.64 0.43 3.70 3.26 3.88

1000 0.21 0.14 0.11 3.69 3.00 3.42
2000 0.03 0.07 0.03 2.29 1.77 2.01

250 2.93 0.97 1.68 1.29 8.60 6.58
500 0.76 0.68 0.27 0.30 5.80 2.07

1000 0.21 0.83 0.28 0.48 3.05 1.01
2000 0.67 0.18 0.04 0.02 0.86 0.34

250 1.45 2.10 1.45 1.43 1.59 1.41
500 0.87 1.34 0.87 0.87 0.97 0.87

1000 0.58 0.88 0.58 0.58 0.63 0.58
2000 0.39 0.61 0.40 0.39 0.43 0.40

250 91.3 85.6 91.8 90.2 88.7 89.9
500 94.2 91.3 94.1 93.2 92.7 93.1

1000 94.6 93.4 94.3 94.1 93.9 94.1
2000 94.9 94.0 94.8 94.8 94.1 94.2

250 2.48 3.80 2.39 1.99 2.47 1.88
500 0.61 1.26 0.56 0.51 0.72 0.52

1000 0.17 0.31 0.18 0.18 0.27 0.17
2000 0.05 0.20 0.06 0.06 0.10 0.08

Bias, x1000

RMSE, x10

Coverage rate
(at 95% level), %

Bias, x1000

RMSE, x10

Coverage rate
(at 95% level), %

Bias of standard
error estimator,

x100

Probabilities of choices

Probabilities of latent classes (regimes)

Bias of standard
error estimator,

x100

Sample Class assignment: Exogenous Endogenous
size Covariates' overlap:

Table 3 reports the small-sample performance of the asymptotic and bootstrap esti-
mators of standard errors. The slope and threshold parameters’estimates do not benefit
from bootstrapping: the biases of the bootstrap estimator are 1.5—13 times larger than
those of the asymptotic estimator, and the coverage rates of the bootstrap estimator are
close to 99%. However, the estimates of correlation coeffi cients do benefit from bootstrap-
ping: the coverage rates move drastically toward the nominal level (from 28% and 42%
to 88% for both sample sizes), and the biases of the standard error estimator decrease by
75%.
More importantly, the probabilities’estimates in general benefit from bootstrapping

as well: the coverage rates move closer to the nominal level (by 1—3 percentage points
for class probabilities and by 2—10 percentage points for choice probabilities), and the
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biases of standard error estimator decrease by 53%—95% for class probabilities for both
types of switching, and by 40%—47% for choice probabilities in the exogenous switching
model. In the endogenous switching model, the bias of the standard error estimator of
choice probabilities decreases by 46% with 500 observations but increases by 43% with
250 observations.

Table 3. Comparison of the asymptotic and bootstrap estimators of standard errors

250 500 250 500

Asymptotic 97.3 96.6 87.3 89.2
Bootstrap 98.9 99.1 98.8 98.9

Asymptotic 1.44 0.07 0.34 0.09
Bootstrap 16.26 1.03 4.18 0.34

Asymptotic 96.9 96.0 85.3 87.6
Bootstrap 98.9 99.2 98.8 98.7

Asymptotic 1.01 0.15 0.65 0.19
Bootstrap 5.19 0.60 1.10 0.27

Asymptotic 28.0 42.0
Bootstrap 88.6 88.1

Asymptotic 0.47 0.40
Bootstrap 0.12 0.10

Asymptotic 91.2 93.3 90.5 92.0
Bootstrap 93.2 95.3 91.3 94.6

Asymptotic 2.34 0.99 1.70 0.99
Bootstrap 0.73 0.25 0.79 0.05

Asymptotic 85.5 90.2 82.8 80.3
Bootstrap 89.9 92.0 86.4 90.5

Asymptotic 1.58 0.72 2.14 4.09
Bootstrap 0.95 0.38 3.05 2.20

Bias of standard
error estimator, x100

Class assignment:
Sample size:

Bias of standard
error estimator

Class (regime) probabilities

Coverage rate
(at 95% level), %

Bias of standard
error estimator, x100

Choice probabilities

Coverage rate
(at 95% level), %

Bias of standard
error estimator

Threshold parametrs μ, α1 and α2

Coverage rate
(at 95% level), %

Bias of standard
error estimator

Correlation coefficients ρ1 and ρ2

Coverage rate
(at 95% level), %

Exogenous Endogenous

Slope parameters γ, β1 and β2

Coverage rate
(at 95% level), %

5 Examples

5.1 Policy interest rate

We apply the new command to model the decisions of the U.S. Federal Open Market
Committee (FOMC) to decrease, leave unchanged or increase the federal funds rate tar-
get. In the sample of 279 observations from 1989 to 2019, the FOMC decisions (both
scheduled and unscheduled ones) are matched with the values of the explanatory vari-
ables as they were observed one day before each FOMC decision. We employ the fol-
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lowing explanatory variables: house (the Greenbook projection of the total number of
new privately-owned housing units started for the current quarter)3; gdp (the Greenbook
projection of quarterly growth in the nominal gross domestic (before 1992: national)
product for the current quarter, annualized percentage points)4; spread (the difference
between the one-year treasury constant maturity rate and the effective federal funds rate,
three-business-day moving average)5; and bias (the indicator that we constructed from
the “policy bias” statements at the previous FOMC meeting: it equals 1 if the state-
ment was asymmetric toward tightening, 0 if the statement was symmetric, and -1 if the
statement was asymmetric toward easing)6.
First, we fit the standard OP model using the oprobit command:

. use "policy_rate.dta", clear

. oprobit y house gdp bias spread, nolog

Ordered probit regression Number of obs = 279
LR chi2(4) = 189.38
Prob > chi2 = 0.0000

Log likelihood = -153.35319 Pseudo R2 = 0.3818

------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
house | .7062818 .2644774 2.67 0.008 .1879157 1.224648
gdp | .1737146 .0457331 3.80 0.000 .0840793 .2633499
bias | .5146708 .1300754 3.96 0.000 .2597277 .7696138

spread | 1.906444 .2110997 9.03 0.000 1.492697 2.320192
-------------+----------------------------------------------------------------

/cut1 | .2311623 .3433395 -.4417708 .9040954
/cut2 | 3.422302 .4426521 2.55472 4.289884

------------------------------------------------------------------------------

. estat ic

Akaike´s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------
. | 279 -248.0452 -153.3532 6 318.7064 340.4937

-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.

Next, we let the outcomes be generated in two latent regimes, and we fit the mixture of
OP models with exogenous switching. The swopit command yields the following results7:

. swopit y house gdp bias spread, reg(house gdp) outone(spread bias) outtwo(spread bias)
(output omitted)

Two-regime switching ordered probit regression
Regime switching: Exogenous
Number of observations = 279
Log likelihood = -132.6306
McFadden pseudo R2 = 0.4653
LR chi2( 9) = 230.8291
Prob > chi2 = 0.0000
AIC = 287.2612
BIC = 327.2046
-----------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------------+----------------------------------------------------------------

3Data source: RTDSM (Real-Time Data Set for Macroeconomists), available at
https://www.philadelphiafed.org.

4Data source: RTDSM.
5Data source: ALFRED (ArchivaL Federal Reserve Economic Data), available at

https://alfred.stlouisfed.org/.
6Raw data source: the FOMC statements and minutes, available at

https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm.
7An identical value of the likelihood can be obtained with the opposite signs of the parameters in the

class assignment model and switched labels of the latent regimes.
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Regime equation |
house | 4.911731 1.386307 3.54 0.000 2.19462 7.628842
gdp | .6790069 .2028345 3.35 0.001 .2814585 1.076555

/cut1 | 11.96884 2.980508 4.02 0.000 6.127154 17.81053
------------------+----------------------------------------------------------------
Outcome equation 1 |

spread | 1.819521 .2403311 7.57 0.000 1.348481 2.290561
bias | .6798781 .1525716 4.46 0.000 .3808432 .9789129
/cut1 | -1.251123 .1463508 -8.55 0.000 -1.537965 -.9642805
/cut2 | 2.318764 .2520933 9.20 0.000 1.82467 2.812858

------------------+----------------------------------------------------------------
Outcome equation 2 |

spread | 14.12316 3.43147 4.12 0.000 7.397605 20.84872
bias | 3.954395 1.183196 3.34 0.001 1.635374 6.273416
/cut1 | -16.28817 4.239138 -3.84 0.000 -24.59672 -7.979607
/cut2 | 1.448363 .6056882 2.39 0.017 .2612362 2.63549

-----------------------------------------------------------------------------------

The empirical evidence in favor of regime switching is convincing: the switching OP
model substantially improves the likelihood, and is preferred to the standard OP model
according to both AIC and BIC.
Next, we let the unobservables in the regime-switching model be correlated with the

unobservables in the outcome models. The swopit command with endogenous switching
yields the following results8:

. swopit y house gdp bias spread, reg(house gdp) outone(spread bias) outtwo(spread bias) endo
(output omitted)

Two-regime switching ordered probit regression
Regime switching: Endogenous
Number of observations = 279
Log likelihood = -132.2678
McFadden pseudo R2 = 0.4668
LR chi2(11) = 231.5549
Prob > chi2 = 0.0000
AIC = 290.5355
BIC = 337.7413
------------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
Regime equation |

house | -4.804476 1.412871 -3.40 0.001 -7.573652 -2.0353
gdp | -.6180352 .1823049 -3.39 0.001 -.9753462 -.2607243

/cut1 | -11.48332 2.989303 -3.84 0.000 -17.34225 -5.624396
-------------------+----------------------------------------------------------------
Outcome equation 1 |

spread | 12.40142 4.229464 2.93 0.003 4.111827 20.69102
bias | 3.389226 1.50522 2.25 0.024 .4390492 6.339402
/cut1 | -14.70935 4.594482 -3.20 0.001 -23.71437 -5.704335
/cut2 | 1.092356 1.04458 1.05 0.296 -.9549827 3.139694

-------------------+----------------------------------------------------------------
Outcome equation 2 |

spread | 1.771607 .2478844 7.15 0.000 1.285763 2.257451
bias | .6495292 .1555852 4.17 0.000 .3445878 .9544707
/cut1 | -1.199481 .1591716 -7.54 0.000 -1.511452 -.8875102
/cut2 | 2.316014 .2597303 8.92 0.000 1.806952 2.825076

-------------------+----------------------------------------------------------------
Correlations |

rho1 | .4467066 1.151927 0.39 0.698 -1.811028 2.704441
rho2 | .4063907 .5008222 0.81 0.417 -.5752028 1.387984

------------------------------------------------------------------------------------

Both AIC and BIC favor exogenous switching. We report the selected output of
the postestimation commands, performed after the swopit command with exogenous
switching. The predicted choice probabilities at the specified values of the independent
variables can be estimated using the swopitprobabilities command:

. swopit y house gdp bias spread, reg(house gdp) outone(spread bias) outtwo(spread bias)

8An identical value of the likelihood can be obtained with the opposite signs of the correlation coef-
ficients and of the parameters in the class assignment model, and switched labels of the latent regimes.
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(output omitted)
. swopitprobabilities, at(house=1.65 gdp=4.1 bias=0 spread=0.55)
Evaluated at:
house gdp bias spread
1.6500 4.1000 0.0000 0.5500

Predicted probabilities of different outcomes
Pr(y=-1) Pr(y=0) Pr(y=1)
0.0448 0.8257 0.1295

Standard errors of the probabilities
Pr(y=-1) Pr(y=0) Pr(y=1)
0.0194 0.0705 0.0717

The predicted choices (those with the largest predicted probability) for each observa-
tion can be estimated using the command swopitpredictwith the option output(choice):

. swopitpredict choice, output(choice)

. tab choice

choice | Freq. Percent Cum.
------------+-----------------------------------

-1 | 37 13.26 13.26
0 | 206 73.84 87.10
1 | 36 12.90 100.00

------------+-----------------------------------
Total | 279 100.00

The predicted probabilities of two latent regimes for each observation can be estimated
using the command swopitpredict with the option regimes:

. swopitpredict pregim, regimes

. tabstat pregim*, stat(mean)

stats | pregim_0 pregim_1
---------+--------------------

mean | .8362734 .1637266
------------------------------

The average predicted probabilities of two latent regimes in the sample are 0.84 and
0.16.
The marginal effects of the covariates on the choice probabilities at the specified values

of the covariates can be estimated using the swopitmargins command:

. swopitmargins, at(house=1.65 gdp=4.1 bias=0 spread=0.55)
Evaluated at:
house gdp bias spread
1.6500 4.1000 0.0000 0.5500

Marginal effects of all variables on the probabilities of different outcomes
| Pr(y=-1) Pr(y=0) Pr(y=1)

-----------+------------------------------------
house | -0.0569 -0.7523 0.8092
gdp | -0.0079 -0.1040 0.1119
bias | -0.1667 -0.5331 0.6998

spread | -0.0623 -0.1425 0.2048

Standard errors of marginal effects
| Pr(y=-1) Pr(y=0) Pr(y=1)

-----------+------------------------------------
house | 0.0384 0.3861 0.4096
gdp | 0.0044 0.0383 0.0399
bias | 0.0576 0.5999 0.5836

spread | 0.0135 0.1583 0.1528
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Finally, the swopitclassification command computes different measures of the
accuracy of probabilistic predictions:

. swopitclassification
| Precision Recall Adj. noise-to-signal

-----------+-------------------------------------------------
y=-1 | 0.7568 0.5091 0.0789
y=0 | 0.7961 0.9061 0.4730
y=1 | 0.7778 0.6512 0.0521

Accuracy = 0.7885
Brier score = 0.2952
Ranked probability score = 0.1483

Confusion matrix
True | y=-1 y=0 y=1

-----------+------------------------
Predicted |

y=-1 | 28 9 0
y=0 | 27 164 15
y=1 | 0 8 28

5.2 Health status

We also apply the new command to model the health status responses using the cross-
sectional data on 3203 individuals. The dependent variable health takes on five ordinal
categories: “pure”, “fair”, “average”, “good”, and “excellent”. There are four explana-
tory variables: area (sq. km), weight (kg), female (1=female, 0=male) and rural
(1=rural, 0=urban).
The standard OP model provides the following output:

. use "fmm_health.dta", clear

. oprobit health area weight female rural, nolog

Ordered probit regression Number of obs = 3,203
LR chi2(4) = 470.17
Prob > chi2 = 0.0000

Log likelihood = -4641.5835 Pseudo R2 = 0.0482

------------------------------------------------------------------------------
health | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
area | -.025212 .0011947 -21.10 0.000 -.0275536 -.0228704

weight | -.0029607 .0013401 -2.21 0.027 -.0055871 -.0003342
female | -.1144565 .040577 -2.82 0.005 -.1939859 -.0349271
rural | -.101257 .0387958 -2.61 0.009 -.1772954 -.0252186

-------------+----------------------------------------------------------------
/cut1 | -2.58716 .1189811 -2.820358 -2.353961
/cut2 | -1.740583 .1148413 -1.965668 -1.515498
/cut3 | -.9011639 .1126798 -1.122012 -.6803156
/cut4 | -.1430569 .1121749 -.3629157 .0768018

------------------------------------------------------------------------------

. estimates stat

Akaike´s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------
. | 3,203 -4876.67 -4641.584 8 9299.167 9347.742

-----------------------------------------------------------------------------

The mixture of OP models significantly improves the likelihood, and is preferred to
the ordinary OP model according to AIC. The swopit command with exogenous class
assignment yields the following results:
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swopit health weight female rural, reg(area weight female rural) outone(area weight female rural)
> outtwo(area weight female rural)
Two-regime switching ordered probit regression
Regime switching: Exogenous
Number of observations = 3203
Log likelihood = -4603.413
McFadden pseudo R2 = 0.0560
LR chi2(17) = 546.5138
Prob > chi2 = 0.0000
AIC = 9248.8256
BIC = 9376.3344
------------------------------------------------------------------------------------

health | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
Regime equation |

area | -.0451184 .0057608 -7.83 0.000 -.0564094 -.0338274
weight | -.0225067 .0036099 -6.23 0.000 -.029582 -.0154313
female | -1.19694 .2025826 -5.91 0.000 -1.593995 -.7998858
rural | 1.059583 .2180968 4.86 0.000 .6321211 1.487045
/cut1 | -3.088778 . . . . .

-------------------+----------------------------------------------------------------
Outcome equation 1 |

area | -.0294304 .0029473 -9.99 0.000 -.0352069 -.0236539
weight | -.0153952 .001554 -9.91 0.000 -.0184409 -.0123495
female | -.6963554 .094571 -7.36 0.000 -.8817112 -.5109996
rural | .2951696 .1488002 1.98 0.047 .0035265 .5868126
/cut1 | -4.564172 .0975106 -46.81 0.000 -4.755289 -4.373055
/cut2 | -3.400328 . . . . .
/cut3 | -2.478094 .0500958 -49.47 0.000 -2.57628 -2.379908
/cut4 | -1.710041 .06242 -27.40 0.000 -1.832382 -1.5877

-------------------+----------------------------------------------------------------
Outcome equation 2 |

area | -.0498046 .005135 -9.70 0.000 -.059869 -.0397402
weight | .0000911 .0031486 0.03 0.977 -.0060801 .0062623
female | -.1699151 .0992853 -1.71 0.087 -.3645108 .0246805
rural | .0904578 .0955062 0.95 0.344 -.0967309 .2776464
/cut1 | -2.587944 .2633434 -9.83 0.000 -3.104088 -2.071801
/cut2 | -1.733168 .2467896 -7.02 0.000 -2.216866 -1.249469
/cut3 | -.817695 .2394527 -3.41 0.001 -1.287014 -.3483764
/cut4 | .0332917 .2384071 0.14 0.889 -.4339776 .500561

------------------------------------------------------------------------------------

The swopit command with endogenous class assignment yields the following results:

. swopit health weight female rural, reg(area weight female rural) outone(area weight female rural)
> outtwo(area weight female rural) endo
Two-regime switching ordered probit regression
Regime switching: Endogenous
Number of observations = 3203
Log likelihood = -4597.9364
McFadden pseudo R2 = 0.0572
LR chi2(19) = 557.4667
Prob > chi2 = 0.0000
AIC = 9241.8727
BIC = 9381.5251
------------------------------------------------------------------------------------

health | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
Regime equation |

area | .0610783 .0053706 11.37 0.000 .050552 .0716046
weight | .0329797 .0025214 13.08 0.000 .0280378 .0379215
female | 1.574811 .178264 8.83 0.000 1.22542 1.924202
rural | -1.293424 .1899111 -6.81 0.000 -1.665643 -.9212053
/cut1 | 3.942168 . . . . .

-------------------+----------------------------------------------------------------
Outcome equation 1 |

area | -.0354348 .0030747 -11.52 0.000 -.0414611 -.0294085
weight | .0055531 .0011537 4.81 0.000 .003292 .0078142
female | .1106933 .0651754 1.70 0.089 -.0170481 .2384347
rural | -.1204076 .065746 -1.83 0.067 -.2492674 .0084522
/cut1 | -2.090245 . . . . .
/cut2 | -1.307607 .0528805 -24.73 0.000 -1.411251 -1.203964
/cut3 | -.4411496 .0631265 -6.99 0.000 -.5648753 -.3174239
/cut4 | .3563662 .0763013 4.67 0.000 .2068183 .505914

-------------------+----------------------------------------------------------------
Outcome equation 2 |

area | -.0257581 .002044 -12.60 0.000 -.0297642 -.021752
weight | -.0096472 .0012137 -7.95 0.000 -.0120261 -.0072683
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female | -.3782872 .0569361 -6.64 0.000 -.48988 -.2666944
rural | .0238924 .0772799 0.31 0.757 -.1275734 .1753581
/cut1 | -3.591378 . . . . .
/cut2 | -2.475482 .077368 -32.00 0.000 -2.62712 -2.323843
/cut3 | -1.590479 .0829777 -19.17 0.000 -1.753113 -1.427846
/cut4 | -.8499883 .085508 -9.94 0.000 -1.017581 -.6823957

-------------------+----------------------------------------------------------------
Correlations |

rho1 | .8853588 .0504253 17.56 0.000 .7865269 .9841906
rho2 | .5874218 .1548505 3.79 0.000 .2839204 .8909231

------------------------------------------------------------------------------------

The mixture of OP models with endogenous class assignment further improves the
likelihood, and is preferred to the exogenous class assignment according to AIC.

6 Concluding remarks

Certain important classifications of the cross-sectional data or the states of a time-series
process are often not observed. These latent classes or states can distort the inference in
a traditional single-equation model. Finite mixture or regime-switching models surmount
the problem of unobserved heterogeneity or clustering through their flexible form. The
available Stata command for finite mixture of ordered probit models, fmm: oprobit, does
not allow for endogenous switching, when the unobservables in the switching model are
correlated with the unobservables in the outcome models. This article described the ML
estimation of the switching ordered probit model with exogenous or endogenous switching
between two latent regimes or classes using the new Stata command swopit.

References

Brier, G. W. 1950. Verification of forecasts expressed in terms of probability. Monthly
Weather Review 78 (1): 1—3.

Carneiro, P., K. Hansen, and J. Heckman. 2003. Estimating distributions of treatment
effects with an application to the returns to schooling and measurement of the effects
of uncertainty on college choice. International Economic Review 44: 361—422.

Chib, S., and B. H. Hamilton. 2000. Bayesian analysis of cross-section and clustered
data treatment models. Journal of Econometrics 97 (1): 25—50.

Clarke, K. A. 2003. Nonparametric model discrimination in international relations. Jour-
nal of Conflict Resolution 47: 72—93.

Dale, D., and A. Sirchenko (2021). Estimation of nested and zero-inflated ordered probit
models. Stata Journal 21 (1): 1—36.

Epstein, E. S. 1969. A scoring system for probability forecasts of ranked categories.
Journal of Applied Meteorology 8: 985—987.

Geweke, J., G. Gowrisankaran, and R. J. Town. 2003. Bayesian inference for hospital
quality in a selection model. Econometrica 71 (4): 1215—1238.

Greene, W. H., M. Harris, B. Hollingsworth, and P. Maitra. 2008. A bivariate latent
class correlated generalized ordered probit model with an application to modeling
observed obesity levels. Working paper No. 08-18, New York University.

Gregory, C. A. 2015. Estimating treatment effects for ordered outcomes using maximum
simulated likelihood. Stata Journal 15 (3): 756—774.

Gronau, R. 1974. Wage comparisons – a selectivity bias. Journal of Political Economy
82 (6): 1119—1143.

20



Harris, M. N., and X. Zhao. 2007. A zero-inflated ordered probit model, with an applica-
tion to modelling tobacco consumption. Journal of Econometrics 141 (2): 1073—1099.

Hasebe, T. 2018. Treatment effect estimators for count data models. Health Economics
Letters 27: 1868—1873.

Hasebe, T. 2020. Endogenous switching regression model and treatment effects of count-
data outcome. Stata Journal 20 (3): 627—646.

Heckman, J. J. 1974. Shadow prices, market wages, and labor supply. Econometrica 42:
679—694.

Heckman, J. J. 1978. Dummy endogenous variables in a simultaneous equation system.
Econometrica 46: 931—959.

Hill, D. H. 1990. An endogenously-switching ordered-response model of information,
eligibility and participation in SSI. Review of Economics and Statistics 72 (2): 368—
371.

Jasra, A., C. Holmes, and D. Stephens. 2005. Markov Chain Monte Carlo Methods and
the Label Switching Problem in Bayesian Mixture Modeling. Statistical Science 20:
50—67.

Kaminsky, G. L., and C. M. Reinhart. 1999. The twin crises: the causes of banking and
balance-of-payments problems. American Economic Review 89 (3): 473—500.

Lewis, H. 1974. Comments on selectivity biases in wage comparisons. Journal of Political
Economy 82 (6): 1145—1155.

McLachlan, G. J., S. X. Lee, and S. I. Rathnayake. 2019. Finite mixture models. Annual
Review of Statistics and Its Application 6: 355—378.

Maddala, G. S. and F. Nelson. 1975. Switching regression models with exogenous and
endogenous switching. Proceedings of the American Statistical Association (Business
and Economics Section): 423—426.

Miranda, A., and S. Rabe-Hesketh. 2006. Maximum likelihood estimation of endogenous
switching and sample selection models for binary, ordinal, and count variables. Stata
Journal 6 (3): 285—308.

Munkin, M. K., and P. K. Trivedi. 2008. Bayesian analysis of the ordered probit model
with endogenous selection. Journal of Econometrics 143: 334—348.

Redner, R., and H. Walker. 1984. Mixture densities, maximum likelihood and the EM
algorithm. SIAM Review 26: 195—239.

Roy, A. D. 1951. Some thoughts on the distribution of earnings. Oxford Economic Papers
3: 135—146.

Sirchenko, A. 2020. A model for ordinal responses with heterogeneous status quo out-
comes. Studies in Nonlinear Dynamics & Econometrics 24 (1).

Wilde, J. 2000. Identification of multiple equation probit models with endogenous dummy
regressors. Economics Letters 69 (3): 309—312.

21



Appendix

Table A1. The true values of parameters in the Monte Carlo experiments

no overlap partial overlap complete overlap

2 2 2

1

0.2 0.2 0.2

2 2 2

1 1 1

­3.83 ­5.23 ­3.83

3.76 2.46 3.81

1

­2 ­2

1 1

­2

­3.97 ­6.17 ­3.83

3.97 0.97 3.93

0.3 0.3 0.3

0.5 0.5 0.5

α1,2

Overlap among covariates

Parameters

γ1

γ3

μ

β1,2

β1,3

α1,1

α2,2

ρ1

ρ2

β2,2

β2,3

β2,4

β2,5

α2,1

Note: The variances σ2, σ21 and σ
2
2 are fixed to one in all simulations.
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