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Abstract. We show that the most popular index for measuring productivity growth with plant-level
data has two major shortcomings: it adds a “reallocation” term to the theoretically grounded
growth accounting measure, and it fails to use the correct weights (from Hulten (1978)) in the
aggregation. Empirically, even when the correct weights are used, the “reallocation” term is sub-
stantial, leading to a weak relationship between the popular measure and the growth accounting
measure for almost every manufacturing industry in both Chile from 1987-1996 and Columbia from
1981-1991. These findings are robust to many different estimation approaches for plant-level pro-
ductivity, and they call into question the literature’s interpretation of the “reallocation” term as
productivity growth. We provide a new method for separating real productivity growth from real-
location effects that is entirely based on decomposing changes in the traditional growth accounting
measure. In contrast to current findings that reallocation effects vary in sign and magnitude across
time and sector, our new measure suggests that reallocation effects are reasonably stable within in-
dustries and almost always positively impact the productivity growth rate, even in instances where
aggregate productivity falls.
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1. Introduction

As recently as a decade ago, most estimates of industry-level productivity growth were obtained
from industry-level data. With the increasing availability of plant-level data, there is a large and
rapidly growing body of research that estimates plant-level productivity and then aggregates to
the industry level.! There are of course many benefits to the plant-level data. From a practical
viewpoint, plant-level data facilitate investigation of just why industry productivity changes as
well as inquiries into correlates of higher plant-level productivity (e.g. export status, labor force
size, plant vintage.) From a theoretical viewpoint, the plant-level data allow researchers to avoid
assuming the existence of an industry-level production function, where any redistribution of inputs
across plants must result in the same level of industry output.

Typically, plant-level productivity is measured using the total factor productivity (TFP) residual

(Inw), computed as (log) output (Iny) minus the contribution of inputs (8'Inx), or

Inwit = Inyir — B'lnz;,

A predecessor to this paper appeared as “When Industries Become More Productive, Do Firms?: Investigating
Productivity Dynamics,” and is available as NBER Working Paper 6893. Ivan Kandilov, Wendy Petropoulos and
Jagadeesh Sivadasan provided splendid research assistance and many good ideas. We are grateful to the Russell Sage
Foundation for support and for suggestions from NBER Productivity, Susanto Basu and John Haltiwanger. Stata
code for all computations is available from the authors by request.

1 The data sets used include U.S. data from the Longitudinal Research Database (LRD) of the U.S. Census, French
data from the Declarations Annuelles des Salaires (DAS) collected by INSEE (Institut National de la Statistique et
des Etudes Economiques), and several plant-level manufacturing censes from developing countries, to name but a
few. Examples of papers using the U.S. data include Bailey, Hulten, and Campbell (1992), Olley and Pakes (1996),
Bernard and Jensen (1999), Bernard, Eaton, Jenson, and Kortum (2000), and Foster, Haltiwanger, and Krizan
(2001). Abowd, Kramarz, and Margolis (1999) and Eaton, Kortum, and Kramarz (2001) use the French data while
the several papers in Roberts and Tybout (1996) use the LDC data. These are but examples. A careful bibliography
would include dozens of papers using plant-level data.



where the production function coefficients 8 can be estimated in a variety of ways. In this paper,
we ask (and answer) “What is an appropriate way to aggregate these residuals to the industry
level?” The literature almost exclusively employs some variant of the Bailey et al. (1992) index
(the “BHC Index”), where the growth rate of industry productivity from period ¢ — 1 to period ¢

is measured as
E Sitlnw;s — E Sit—1lnw; 1, (1),
i i

with s;; usually denoting the plant’s share in either gross output or employment (see Foster et al.
(2001), and the extensive literature summarized therein).?

Without an underlying model, it is difficult to directly interpret the magnitude of changes in
a productivity index. Some practitioners have pointed to the growth accounting framework to

motivate (1);3 these numbers are interpretable in many familiar circumstances, making them more

readily comparable across time, industries, and countries.* One formulation gives instantaneous
productivity growth as
N
dw = Z Sy, dwi, (2)
i=1

where dw; denotes the instantaneous change in the residual from the value added production func-
tion, and share weights s,, are in terms of a plant’s contribution to industry value added (see Hulten
(1978)). Some approximation with (discrete) data is needed, and many in the growth accounting
literature have advocated the use of the Tornquist approach,® which multiplies the change in pro-
ductivity growth from ¢ — 1 to ¢, as approximated by Alnw; = Inw; — Inw; +—1, by the average

“share” from the beginning and ending period, or

dw = Z (SU”ZM * Alnwiy. (3)

%

2 Olley and Pakes (1996) suggest the use of a related form where productivity enters in levels so the index is

Zi SitWit — Z Si,t—1Wi,t—1-

3 Bailey et al. (1992) report that “industry growth rates calculated... (using (1)) agree reasonably well with the
growth rates calculated by Wayne Gray from aggregate industry data”. Similarly, Foster et al. (2001) report that (1)
“yields industry-level growth rates in productivity that correspond closely to industry-level growth rates constructed
using industry-level data”. The absence of some other established definition of productivity growth leads us to
assume these references are to the growth accounting measure.

4 For example, under perfect competition productivity as measured by growth accounting standards gives the
change in the production possibilities frontier holding primary inputs constant, which in turn equals the change
in welfare that arises as society’s ability to consume and invest increases in response to the plant-level technology
shocks.

5 For example, Diewert (1976) shows that it provides a second order approximation to an arbitrary linear homoge-
neous function, and is exact for homogeneous translog functions. More generally, Trivedi shows that the Tornquist
approach has an approximation error on the order of the square of the time interval.



A major theme of this paper is that the BHC index, (1), poorly approximates the growth
accounting index (3) for two reasons. First, (1) is equal to (3) (i.e. dw) plus an additional
“reallocation”-type term — a point illustrated below. When the extra term is empirically important,
the two indexes will not approximately equal one another. Second, in practice, (1) is rarely used
with the correct aggregation share weights. These results have implications for the many literatures
that use productivity growth estimates to guide policy, including (for example) macroeconomics,
trade, industrial organization, and regulation. In particular, the collective wisdom of the effects
of policy change on productivity growth comes from aggregating comparable results across many
studies, and this requires common units, something the growth accounting framework provides, but
(1) does not.

On the first point, (1) can be decomposed as

. Inwip + Inw; ¢—
Z sitlnwis — Z Sig—1lnw; i1 = dw + Z (Inwiy it=1) * (it — Sij—1)
i i

, 2
e (4)
=dw + Z Inw; * As;y,

i
where Inw; is the average Inw;. (as noted in Fox (2003), who uses Bennet (1920)). The confounding
term, ), Inw; * As;, resembles what is often characterized as a “reallocation” effect; it is the sum
across plants of the change in plant share (however defined), multiplied by the geometric average
of plant productivity.®

How much error to the productivity growth estimate can this “reallocation” term add?” We
consider the basic case given in Hulten (1978), with perfect competition and no entry or exit. Here,
one cannot sign » . Inw; * As;, nor is there any apparent bound on its value, as movements in the
shares and productivity levels are not restricted by the underlying growth accounting framework.

In any data, Y., Inw; * As;; must be negligible if (1) is to track (3) closely.® One way to

ascertain whether (1) tracks (3) closely is to examine whether . Inw; * As;; is about equal to zero

6 Thus, defining productivity growth as (1), breaking out ZZ Inw;* As;, and attributing a “growth” interpretation
to it is misleading without a model that tells us what it is this quantity measures. Similarly, it is also misleading to
compare its magnitude to the magnitude of the productivity term to infer the roles of productivity and reallocation
in productivity growth.

7 The second reason (1) incorrectly calculates productivity growth is that it uses labor shares or gross output
shares in the weighting during aggregation. If the residual is estimated using the gross output production function,
the correct weight is plant gross output divided by industry value added. If the residual is estimated using the value
added production function, the correct weight is plant value added divided by industry value added (as in (2)). In
neither case is labor share or gross output share the appropriate weight. For example, productivity growth is biased
towards zero by using gross output shares with gross output residuals, as one effectively multiplies through by the
ratio of industry value added to industry gross output, a ratio that is often equal to 1/2 in manufacturing data.

8 Anecdotally, the volatility in value added shares generally observed in plant-level data suggests that this term
could be quite substantial.



for those plants that are present in both period ¢ and period ¢ — 1.° We test the null hypothesis
> Inw; * As;; = 0 for these plants, which constitute approximately 95% of the observations in the
data on Chilean and Columbian manufacturing plants that we use.'°

The evidence is striking. In almost every 3-digit Chilean and Columbian manufacturing industry
the BHC index and the growth accounting index differ dramatically, as sz x As; is large
and volatile. Industry-by-industry regressions of (1) on (3) yield slope estimates that are almost
entirely less than 0.5, with most being in the range of 0.2 to 0.4, meaning that (1) typically
overstates (3) by several orders of magnitude. Furthermore, it is not just a matter of rescaling this
mismeasured index; most of the r-squareds from these regressions range from between 0.2 to 0.4.
Overall, these findings are robust to a number of different methods of estimating plant-level TFP,
including ordinary least squares, Solow’s approach, and a proxy approach, and to using discrete
time approximations other than (3) to approximate (2), including using the base period (Laspeyres)
shares or ending period (Paasche) shares as weights.

There is no separate “reallocation” component to productivity growth in (3), yet reallocation of
inputs from less to more productive plants can surely occur. The absence of a separate term reflects
the way that the productivity residual is calculated in the growth accounting literature and not a
refutation of the concept itself. As discussed below, one can show that the changes in inputs across
plants that might be expected to comprise a reallocation term are themselves netted out of the
productivity calculation. This is why a separate reallocation term does not appear in (3). For the
base case model with perfect competition, we show that it is possible to decompose the change in
the growth accounting measure of productivity into three terms, one term representing the change
in industry growth from changes in plant-level productivity growth, one term representing change
in growth from the reallocation of value added across plants with differing productivity levels, and
one term representing a net entry effect. Our empirical results suggest that a reallocation effect
so defined is almost always present, economically important, reasonably stable, and almost always
works to increase the growth rate in industry productivity, even in the instances where the growth
rate in industry productivity falls. These findings stand in stark contrast to the literatures’ findings
that, using (1), “reallocation” varies dramatically in magnitude and sign both over time and across
sectors when measured by some variant of ), Inw; * As;.

The remainder of this paper is organized as follows. In the next section, we discuss the growth

accounting framework. Section 3 illustrates how one can implement the growth accounting approach

9 The Tornquist approximation is not defined for plants that enter or exit in the year they enter or exit.

10 We use value added share weights with value added residuals for both measures to control for the second problem.



using plant-level data. Section 4 introduces a new decomposition for changes in productivity growth.

Section 5 describes the data and estimation, and Section 6 discusses the results.

2. Growth Accounting Theory

Historically, TFP growth has been defined as the change in output holding primary inputs
constant.!! A first order approximation to the rate of growth of output at plant i, dy;, is given by
the differential equation

dyi = By, dl; + Br,dk; + B, dmi + dt;, (5);

where 3;, denotes the elasticity of output with respect to input j, dj; is the rate of growth of input
J, and the Hicks neutral technology shock is given by dt;. Following Solow (1957), in a competitive

environment optimizing behavior allows the growth in output to be reexpressed equivalently as
dyi = Slidli + Skidki + smidmi + dti (6),

with s;; denoting the input’s revenue share. With plant-level data, there are many observations on
dt; and principles for aggregation across plants become important.

One guiding principle of the growth accounting method for aggregating plant-level technology
shocks was advocated by Domar (1961):

We should be free to take the economy apart, to aggregate one industry with another,
to integrate final products with their inputs, and to reassemble the economy once more and
possibly over different time units without affecting the magnitude of the Residual.

A second related principle, described in Hulten (1978), is that productivity growth should measure
the impact on final demand of increasing (or decreasing) a plant’s factor efficiency. In particular,
when some of plant ¢’s output is used as intermediate input at other plants, an increase in dt; leads
both to an increase in final demand for ¢ and to an increase in ¢’s intermediate deliveries. These new
intermediate input deliveries then increase output at the plants to which they go (where they are
used in production). This new output will both increase final demand and fulfill more intermediate
deliveries elsewhere. The process continues. In the end, the greater the role of intermediate
deliveries in the economy, the larger the impact of any increase in plant TFP on final demand.
When this latter point is taken together with the aggregation/disaggregation condition from
Domar, the aggregate impact on final demand dw brought about by changes in plant-level technical

efficiency is given by:

N
P,Q;

dw =
Vv.

dtia

11 Hulten (2001) provides a thoughtful and detailed history of this index.



where each dt; is weighted by 4’s gross output divided by industry value added. 2—7 >
reflecting the effect of the additional intermediate input on final consumption and/or investment.
So defined, dw is the rate of productivity growth as defined by the growth accounting literature.
It measures the rate of change of the social production possibility frontier, holding primary inputs
constant. In a competitive environment with constant returns to scale this measure of aggregate
technical change is exactly equal to the change in welfare that arises as society’s ability to consume
and invest increases in response to the plant-level technology shocks.

As noted earlier, dw can also be expressed in terms of value added shares and value added resid-
uals, given as Zivzl Sy, dw;. Hulten calls the growth rate of the value added residual the “effective”
rate of productivity growth because - when weighted by the share of plant-level value added in the
aggregation - it directly measures the aggregated impact on final demand of changes in technical
efficiency occurring at the plant-level. The derivation of this index begins at the plant-level, where
value added is defined as

the contribution of intermediate input growth to output growth is first deducted, and the remaining

d’l)i =

output growth is grossed up by l—ém‘ to account for the additional intermediate input available

from the increased factor efficiency (Hulten (1978)).!2 So defined, the rate of growth of industry
value added is given as Zivzl Sy;dv;. The primary input index for the value added function is given

as

v _ P _ B,
dz;, = l_ﬁmidkz—l- = B

and the effective rate of productivity growth dw; is the difference between the growth in value

dlia

added and the growth in the primary input index,

dt;
dw; = dv; —dz) = —2—.
w v z; 1= B,

and aggregate productivity growth is the difference in

(7)

v

7

The aggregate input is then Zivzl Sy, dT
the rate of growth of industry output and aggregated primary inputs:

N N N
_ _ \%
dw = E Sy, dw; = E Sy, dv; — E Sy, dx; .
i=1 i=1 i=1

12 An alternative way to view the grossing up is that it ensures when the growth in output and intermediate
inputs are equal, the growth in value added equals this rate. For this approach to be applicable, a “value-added”
production function must exist. Bruno (1978) shows that this requires that intermediate inputs are separable (in
the gross output production function) from capital, labor, and the productivity shock. While value added is the
appropriate measure for growth accounting, “Real value added is an artificial construct - bread without flour; books
without paper or ink; shoes lacking leather,” as (Basu and Fernald (2002)) describe it.




Reallocation Effects

An important feature of the Hulten growth accounting setup is that there is no “reallocation
effect” present in the rate of productivity growth. The growth accounting measure does recognize
that inputs and outputs are reallocated in response to technology shocks, and that these realloca-
tions do affect final demand, but the change in final demand that arises because the distribution of
primary and intermediate inputs changes is controlled for in the computation of the productivity
residual. Alternatively, the aggregate productivity residual dw, to be consistent with the guiding
principles listed above, is defined so that these effects are absent. In Section 4 we show that an
alternative is to look at changes in the rate of productivity growth, which decompose exactly into
a reallocation term that is based on changes in value added shares, and a real productivity and net
entry term.

In imperfectly competitive markets, the productivity residual no longer just measures technical
efficiency, as shown in Hall (1990) and Basu and Fernald (2002). Under cost minimization plant-

level value added is given as

dt;
dv; = p) dz) + ———
1- HiSmy;

where p) = m% is the “value added markup”, an increasing function of the markup u; =

P;/MC;. The productivity residual is then

dw; = dv; — d:vz‘-/
dt;

Sm;
= () — Vday + (g —1)—""—(dm; — dy;) + T s

1— 5,

The final term is the effective rate of technical progress under imperfect competition, and is in-

creasing in the plant-specific markup; the higher the markup, the more valuable the output. Two

new terms are also present. The first term arises because only dz} is deducted from dv; (instead

of u)dz)). The second term arises because the productive contribution of intermediate inputs

exceeds the revenue share (or f3,,,) by the markup, and the revenue share is what is used to deduct

intermediates from gross output in the move to value added. Note that, in the case when markets
dt;

are competitive, p; and Y both equal one, and dw; = the effective rate of productiv-
p ) M ey q ) )

l—smi

ity for growth accounting under perfect competition, which is a special case of this more general
framework.

Aggregate productivity growth under imperfect competition can be written as

N
dw =Y sy,dw; + R + Ry,

=1



where

N
R = ; S0 _‘”lSm PliPl,- 2y’
with P}, defined as the shadow value of labor at ¢ (P, is the average across i), and Ry, is symmetrically
defined for capital. The two new terms reflect differences across plants in the shadow values of the
primary inputs labor and capital (from the average shadow value in the economy). Again, if
markets were competitive, dw would reduce to (2), because the shadow values would be identical
across plants and exactly equal to wages and rental rates, so R; and R would equal zero.

In total there are four types of “reallocation” effects, that is, four types of changes in measured
productivity that reflect reallocations of inputs across plants (and not direct changes in technical
efficiency). We describe them each in turn. Holding aggregate inputs constant, productivity in-
creases if there is a reallocation of inputs from low markup plants to high markup plants. Similarly,
holding plant-level inputs constant, if the technology shocks cause intermediate inputs to be used
more intensively at plants with markups, this too leads to an increase in aggregate productivity. R;
and Ry, relate directly to the reallocation of labor and capital across plants with differing shadow
values. Generally, productivity increases if there is a reallocation of inputs from plants with lower
shadow values to plants with higher shadow values.

Hulten (1978) shows, under perfect competition, that the increase in the value of output from
changes in technical efficiency exactly equals the change in welfare. Basu and Fernald show, under
imperfect competition, that even when productivity growth does not exclusively measure the change
in output from changes in technology, aggregate productivity change still exactly equals the change
in welfare if a representative consumer model is a reasonable approximation to the expenditure side
of the economy. The intuition for the result is that the ratio of market prices reflects consumers
marginal rate of substitution between goods, so changes in value added reflect (to first order) the
change in consumer well-being, even though the marginal rate of transformation between goods is

not exactly equal to this ratio.

3. Estimating Productivity Growth

Many approaches are available for estimating plant-level TFP. We discuss two prominent and
complementary methods. Each one requires the existence of a plant-level production function for the
measurement of productivity growth to be a well-defined exercise. Each uses different restrictions
to estimate the parameters of the production function.

One method begins with an assumed functional form for the production function and then

directly estimates its parameters (;; using (monotonic transformations of) levels. One can use

8



ordinary least squares or one of many alternatives that attempt to address the simultaneity of
input choices and productivity raised by Marschak and Andrews (1944). 13

The second approach uses the Solow (1957) insight that optimizing behavior implies observed
revenue shares are a consistent estimator for the elasticity of output with respect to any input.
While this approach is sometimes pointed to as being non-parametric for estimating the production
function parameters, Hulten (1973) shows that (6) is useful for productivity analysis only if there
exists an underlying production function. Otherwise, the line integral that defines productivity
growth is not necessarily unique.'*
Both the plant-level productivity measure and the aggregate industry growth measure are de-

fined in terms of instantaneous changes (they are Divisia indexes). Generically, we can write them

as
E a;dlnz;,
i

where «; are the weights in the aggregation of growth rates (of either input levels or productivity
levels).'® Some approximation with the (discrete) data is necessary, and the most popular for
Divisia indexes are given by log-change indexes, which in these cases apply the log-change in either

inputs or productivity levels to a share weight («;) and then aggregate:
Z a;i(lnziy — Ing; 4—1).
i

This is the integral from ¢ —1 to ¢ of the Divisia index ), a;dlnz; if o is constant.'® Most often the

share weights are given as the average of the beginning period share s; ;—; and the ending period

13 Alternatives include (for example) instrumental variables, fixed effects, and the proxy methods of Olley and
Pakes (1996) and Levinsohn and Petrin (2003).

14 Line integrals typically depend on the path of integration. Hulten develops the link between path independence
and the theory of aggregation. For the measurement of plant-level TFP growth to be uniquely defined a linear
homogenous plant-level production function must exist (the aggregate of the plant inputs), and each input price
vector must correspond to a unique input vector. The consequence of failing path independence is that the index
value for a plant that started and ended a period with the same output, revenue shares, and input levels, could have
a non-zero change in measured productivity growth (instead of zero productivity growth). In this case this path
could be cycled over, yielding arbitrarily large (or small) values of the index.

15 In the case of measuring plant-level productivity dw; the input index is constructed with «; as the production
function parameter, dlnz; denoting the growth rates of input, and the sum is then taken over all inputs used
in production. In the case of aggregating productivity growth the «; are the value added shares, dinz; denotes
productivity growth at plant ¢, and the sum is taken across all N plants.

16 This does not address the more fundamental question of when the Divisia index of productivity growth is path
independent, which is explored in Petrin (2004), who extends the conditions in Hulten (1973) to micro-level data.
Productivity growth from time 0 to time T is given by the line integral of dw¢ from 0 to T, or

N
D(T) = exp{/ stitdwit},
=1

9



share s;;, s0 @; = (s;t + $;,t—1)/2 (Tornquist), although ending period shares o; = s;;+ (Paasche),
and starting period shares a; = s;+—1 (Laspeyres) are also used in the literature.

Tornquist (1936), Theil (1967), Hulten (1973), Diewert (1976), Star and Hall (1976), and Trivedi
(1981) have all argued for use of the Tornquist approximation to Divisia indexes. Specifically, Diew-
ert (1976) shows that the Tornquist approximation to the Divisia index is exactly correct if the

17 When the underlying function is not

underlying function has the homogeneous translog form.
of this form, the Tornquist approximation remains attractive because the translog provides a rea-
sonable second order approximation to many other functions. Trivedi (1981) generalizes Diewert’s
findings, developing approximation results without specifying an assumption about the underlying
form of the function. Using numerical analysis he shows that the approximation error is on the order
of the square of the length of the time interval, a result not available for other approximations like

Paasche or Layspeyres. For these reasons, our preferred results use the Tornquist approximation.!8

One important issue that does arise with the move from industry- to plant-level data is that
industries do not enter and exit, while plants do. This raises one difficulty in calculating any
index that is based on using lnw;; — Inw;:—1 to approximate the average percentage change in
productivity; for a plant that enters (exits), inw; +—1 (Inw;;) is not measurable in the year that they
enter (exit). For data observed at higher frequencies (e.g. annual), the truncation problem that

arises may not be that severe, because entrants or exiters in any one year are likely to make up

where T is the curve traced by w(t) = (wit,w2t,...,wnt), 0 < t < T. Line integrals are not typically path
independent, so a researcher starting with Zivzl Sv; (dvit — da,) and integrating from 0 to 7' will not generally

recover the change in aggregate output resulting from plant-level TFP shocks (holding primary inputs fixed). One
must establish that the choice of the path I' does not affect the value of the index, or the index may suffer from
cycling, where arbitrarily large or small values of the index can be associated with any point.

17 Diewert (1976) uses the quadratic approximation lemma to single out the Tornquist-Divisia index as most
preferred for general applications of productivity measurement. Diewert characterized an index that was exact for
a underlying translog (e.g. production) function as “superlative.” With constant returns to scale this Tornquist
approximation to the Divisia index is the only superlative index. With non-constant returns to scale, it remains
superlative, but other superlative indexes may exist (although to our knowledge none are known).

18 Similarly, when production function parameters are changing over time at the plant level, plant-level productivity
growth is given as

K
sy
it
Inwit — Inw; ¢ 1 = Invg — Inw; ¢ 1 — E

=1

+ s
2

Tit-l (Inzse — Inz; 1) (8),

where z;; is the level of input 7 used at time ¢, K is the number of inputs, and the * denotes the value added share

or coeflicient, which can be equivalently expressed replacing the shares s} with the elasticities 87 In terms of the
Bi

1—Bim ’

original shares or production function coefficients, s} = 1_5;‘ and B =
m

10



only a small fraction of value added (this is true in our annual data). For data observed at lower
frequencies, like every five or ten years, the truncation problem can be more severe, and some form
of imputation for these values may be desirable. This type of a correction ultimately requires one
to directly model the simultaneous productivity and entry/exit process. In all of these cases, the
fraction of value added that is ignored in aggregation is directly computable, so inspection of the
data gives some sense of the problem’s magnitude.

Many economic questions relate to the performance of entrants or exiters. The truncation
problem does not affect the ability to track entrants/exiters in higher frequency data. Except for
the entering/exiting year, one can compute these plants contribution to aggregate productivity
growth.'® In fact, one principle of the growth accounting measures is that we are free to group
plants in any subaggregates that we desire without affecting the measure of aggregate productivity

growth.

4. Decomposing Productivity Growth

In Section 2 we described how, under perfect competition, there is no “reallocation” term
associated with the growth accounting measure of productivity. In this section, we show that
decomposing the change in the growth rates introduces a reallocation term. We also review the
BHC decomposition.

The approximation to the change in the growth rate uses data from three juxtaposed time

periods, which we denote as ¢, ¢ + 1, and ¢ 4+ 2. The change in the growth rate is given by:

Nz Nl

Sv; 142 +S'U',t+1 Svi 1 + Sy,
E %(lnwi,t+2 — Inwj ¢41) — E %(lnwi,t+l — lnwiy). (10)
=1 =1

Equation (10) decomposes into a “productivity” term, a “reallocation” term, and a “net entry”
term. The set of plants that exist in ¢, t + 1, and ¢ + 2 is denoted C (for continuers), and each of
these plants contributes a productivity component and a reallocation component to the growth in
aggregate productivity. Plants that exist in ¢ and ¢+ 1, or t 4+ 1 and ¢ + 2, contribute to the overall
change in (10), but only through a net entry term.

One term is the productivity term. Aggregated across plants it is written as

2 : Svi7t+2 + 2 * S'Ui,t+1 + S’Uit % lnwi,t+2 _ lnw’b,t-'rl)

icC 4 Wi t+1 Wit

19 Categories for recent entrants and/or upcoming exiters can be defined separate from continuing plants, their
fraction of productivity growth being then directly comparable to continuing plants.

11



Each continuer contributes the change in the rate of their productivity growth (the term on the
right). The weight in the aggregation to the industry level is an average over the three time periods
of the plant’s share in value added with period ¢+ 1 getting twice the weight as period ¢ and period

t+ 2. A second term is the reallocation term, given as

E : Wi,t4-2 Wi 141
(ln 7:t+ + ln - t,+ )/2 * (svi,t+2 - svit)/2-
ieC Wi t+1 Wit

At the plant level the term on the right gives the change in the share of value added from period
t to period ¢ + 2, and the weight in the aggregation is the average rate of growth in productivity
over the two time periods for the plant (i.e. ln(w;—jz)/Z) The third term is the net entry term
and is given as
Sy, + Sy, Sy, + Sy,
Z —RE TR (Inw; g — Inwipqr) — Z —E— 2 (Inwi 41 — Inwie).

. 2 ) 2
i€t+1,t+2 i€t t+1

The sum of these terms yields (10).

Ignoring the net entry term, if there is no change in the growth rate of productivity at any
plant, the productivity term is zero, and the aggregate rate of productivity growth can only increase
(decrease) if there is reallocation of the share in value added from period ¢ to period t + 2 towards
(away from) plants with higher average productivity growth rates. Similarly, if there is no change
in the shares of value added from the start (¢) to the end (¢ + 2), the reallocation term is zero,
and aggregate productivity growth can only increase if the (share-weighted) average growth rate of
productivity increases. Net entry contributes a term that is positive (negative) if the share weighted
sum of the growth rates of entrants exceeds (falls below) the share weighted sum of the growth
rates of the exiters.2°
The BHC Decomposition

The most popular measure of reallocation is based on decomposing changes in the BHC index.

One can decompose (1) as

Z Sitr1lnwgpy1 — Z sitlnw; = Z it Alnw; + Z Inw;t As;; + Z As;i Alnw;s+
i i

i€C i€C ieC (11)
g Si,t+1lnwi,t+1 - g Sitlnwgy
i€EB i€D

where C' is the set of continuing plants, B the set of entrants, and D the set of exiters, and the

difference operator, A, denotes the difference between year ¢+ 1 and ¢. The first term is interpreted

20" Note that, with no entry and some exit, for example, this term will necessarily be negative.
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as a measure of the productivity effect. Although not described as such when used, if s;; were
to denote the value added share, this term could be viewed as a Laspeyres approximation to an
underlying Divisia index of the growth accounting measure of productivity. The second term is
designed to measure reallocation; if plants with larger total factor productivity residuals in the
base period have a higher share in the end period, this term increases. The third term is the
product of the change in the share and the change in productivity and as such is a measure of both
productivity changes and reallocation effects (it measures how tied together the productivity and
reallocation cases are in this metric). It is sometimes referred to as a covariance term. The impact
of net entry is given by the sum of the fourth and fifth terms.?!

As noted earlier, (1) is in part a measure of real productivity in the traditional growth accounting
sense only when the share weights are value added (and not gross output or input share weights).
If value added shares are employed, (1) in its entirety measures aggregate productivity growth

plus additional terms.?? In particular, the reallocation term in (11) is not a part of the growth

accounting definition of aggregate productivity, so attributing a literal “growth” interpretation to

21 Often in applied work not all four terms of this decomposition are reported. Instead, the typical approach reports
three terms, resolving the ambiguity of the covariance term by assigning some fraction of it to the real productivity
term, (say @), and the other (1 - @) to the reallocation term. The general expression is:

D sulinwi + @Y AspAlnwi | + [ Y inwihsi +(1- )Y AsiAlnwi | + NE, (12)
1€C 1€C 1€C 1€C

where NE; is the net entry term. For example, if one combines the covariance term with the rationalization term
(@ = 0), the resulting decomposition simplifies to:

Z it Alnw;g + Z Asilnw; 41 + NE;. (13)
ieC 1€C

Another commonly observed alternative folds the covariance term into the rationalization term (i.e. ® = 1):

Z 85 t+1Anws + Z Asiir1lnwi + NE; (14).
i€eC ieC

22 If one were to choose the Laspeyres approximation, aggregate productivity is given as

Z 84,61 (Inwig — lnwi ¢ 1) (18)
[
and (1) adds
Z(sit — 8i,e—1)lnwg (19)
7

to the Laspeyres index. Similarly, if the Paasche approximation is used, one can show that the additional reallocation
term is the plant-level change in share times the previous period’s productivity level.
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it is misleading. Similarly, comparing its magnitude to the magnitude of the productivity term to
determine the relative roles of productivity and reallocation in aggregate productivity growth is

not an exercise defined specifically in growth accounting terms.

5. Data and Estimation

We turn to two manufacturing censuses to explore the empirical issues that we raise. One census
is from Chile’s Instituto Nacional de Estadistica (INE), and the second is from Columbia’s Depar-
tamento Administrativo Nacional de Estadistica (DANE.) The Chilean data span the period 1987
through 1996 and the Columbian data span the years 1981-1991. We focus on 3-digit industries
with more than 200 observations, of which there are 23 in Chile and 26 in Columbia. Here, we
provide a brief overview of these data. They have been used in numerous other productivity studies,
and we refer the interested reader to those papers for a more detailed data description.??

The data are unbalanced panels and cover all manufacturing plants with at least ten employees.
Plants are observed annually and they include a measure of output, two types of labor, capital,
and intermediate inputs. Real value-added is nominal value added adjusted by the 3-digit industry
price index. Labor is the number of man-years hired for production, and plants distinguish between
their blue- and white- collar workers (we include two labor types in the production function). The
method for constructing the real value of capital is documented in Lui (1991) for the Chilean data,
and a similar approach is adopted for the Columbian data.?* A data problem for the Chilean census
is that approximately 3% of the plant-year observations appear to be “missing”; a plant id number
is present in year ¢ — 1, absent in year ¢, and then present again in year t4 1. We impute the values
for these observations using ¢ — 1 and ¢ + 1 information (see the Appendix). Due to the way that
the data are reported, we treat plants as plants, although there are probably multi-plant plants in
the sample.

We estimate value added production function parameters for each of the 3-digit industries and
use the parameters to estimate the plant-level TFP residuals. For any industry, the production

function coeflicients are assumed to be constant over time and across plants, although our findings

23 See Lui (1991), Lui (1993), Lui and Tybout (1996), Tybout, de Melo, and Corbo (1991), Pavcnik (2002),
Levinsohn (1998), and most recently Levinsohn and Petrin (2003).

24 It is a weighted average of the peso value of depreciated buildings, machinery, and vehicles, each of which is
assumed to have a depreciation rate of 5%, 10%, and 20% respectively. No initial capital stock is reported for some
plants, although investment is recorded. When possible, we used a capital series that was reported for a subsequent
base year. For a small number of plants, capital stock is not reported in any year. We estimated a projected initial
capital stock based on other reported plant observables for these plants. We then used the investment data to fill
out the capital stock data.
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are robust to loosening this assumption. We employ three different approaches to estimating the
coeflicients: ordinary least squares, revenue shares, and the proxy method from Levinsohn and
Petrin (2003), which includes controls to address the correlation of productivity with input choices.
For the revenue shares, we use the average over plants and time. Details on the Levinsohn and

Petrin (2003) estimator are relegated to the Appendix.

6. Results

We compare the growth accounting measure from (3) with the popular BHC index given in
(1) using 49 3-digit manufacturing industries from Chile and Colombia. In an attempt to keep
the analysis manageable, we start with a detailed description of results for the largest Chilean
manufacturing industries. We then describe how these findings generalize. The main result is that
the micro patterns observed in the largest industries in Chile are indicative of the findings for the
entire 49 3-digit industries from both countries.

Table 1 reports the annual estimates of growth rates in productivity for the two measures for
ISIC 311, the Food Products industry (the largest in Chile). The production function coefficients
are estimated using ordinary least squares, and the calculations are done using only plants that
exist in period ¢ — 1 and period #, which account for 94.4% of plant-year observations and 96.4% of
industry value added over the sample period. Column 1 is industry value added for 1988 to 1996,
column 2 is the growth accounting measure of productivity, column 3 is the BHC productivity
measure, and column 4 is the difference between these two terms, which is equal to the BHC
“reallocation” term described earlier.

The growth accounting measure averages 3.64% per annum, with standard deviation of 4.72%
across the nine years. The BHC index averages -2.93% per annum with a standard deviation of
13.48%. The divergence in these summary statistics arises because the two indexes themselves are
widely divergent, as is evident from a comparison of columns 2 and 3. Column 4 is the difference and
has a mean of -6.57%, with a standard deviation of 10.74%. Its volatility across the sample period
is consistent with the general findings in the literature that “reallocation” is large and volatile (the
literature has been using some form of this term to measure reallocation effects).

For ISIC 311, table 2 compares estimates of productivity growth across different estimators for
production function parameters. The top half of the table is the growth accounting measure and
the bottom half is the BHC index. For the top half, column 2 is the same as column 2 from table
1, which uses ordinary least squares to obtain production function estimates. Column 3 uses the

proxy approach from Levinsohn and Petrin (2003), and column 4 uses revenue shares. While the
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production function estimates (not reported here) do differ somewhat across the three approaches,
the productivity growth numbers using the growth accounting index are reasonably similar across
the three estimators. Only in 1995 does there seem to be some divergence between the revenue
share estimate and the two alternatives.

For the BHC aggregator, the signs tend to be common across the three sets of production
function estimates, but the magnitudes are quite different, with the LP and OLS estimates system-
atically the largest in absolute value terms. The main reason for the volatility is reflected in the
“reallocation” terms, which are systematically more volatile for LP and OLS relative to revenue
shares.

Table 3 summarizes the relationship between the growth accounting index and the BHC index
for the eight largest industries in Chile. The industries (along with their ISIC codes) are Food
Products (311), Metals (381), Textiles (321), Wood Products (331), Apparel (322), Plastics (356),
Non-electric Machinery (382), and Other Chemicals (352). The index numbers use only plants
that exist in ¢ — 1 and ¢, which account for between 94% and 98% of industry value added (in
the annual data, truncation due to entry and exit is not a problem). For each industry and each
estimator of production function coefficients, the appropriate row reports the intercept, slope, and
r-squared from a regression of the 9 annual growth rates using the growth accounting measure as
the dependent variable and the BHC aggregator as the explanatory variable. For example, the first
row for ISIC 311 is the regression of column 2 on column 3 from table 1. An intercept of 0 and a
slope of 1 means the indexes perfectly track one another. An r-squared of 1 means they perfectly
covary, although their magnitudes can differ.

For industry 311, the r-squared’s range from 0.22 to 0.47. The intercept is significantly different
from zero and the slope is significantly different from one.2> Overall, these results suggest that
the BHC index is a poor proxy for the growth accounting measure for ISIC 311. The slope terms
range from 0.12 to 0.31, so the BHC index overstates true growth by a factor of 8 (using the proxy
approach) and 3 (using revenue shares).

These results are similar across all of these eight industries. R-squareds are typically low,
ranging between 0.2 and 0.4. Intercept and slope coefficients are significantly different from zero
and one respectively. The point estimates for the slope coefficients suggests that the BHC index

overstates true growth by several magnitudes.

25 These results do not correct for error in the parameter estimates. For this industry, with almost 10,000 obser-
vations, the parameter estimates are very precisely estimated.
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The messages that come out of the results from tables 1-3 are confirmed by the other 15
manufacturing industries in Chile and the 26 manufacturing industries from Colombia. Overall,
for Chile, using OLS only 4 of 23 industries had r-squareds above 0.5, using revenue shares only
5 of 23 had r-squareds above 0.5, and using the proxy approach only 1 in 23 industries had an
r-squared over 0.5. Most slope coefficients across estimators and industries varied between 0.1 and
0.3.26 For Colombia, using OLS only 4 of 26 industries had r-squareds above 0.5, using revenue
shares 8 of 26 had r-squareds above 0.5, and using the proxy approach only 5 of 26 industries had
an r-squared over 0.5. Slope coefficients across estimators and industries also varied between 0.1
and 0.3, suggesting the BHC index overstates by several magnitudes the true rate of productivity
growth. In summary, the results demonstrate that the BHC aggregator adds a “reallocation” term
to productivity growth that is large and volatile, making it a very noisy indicator of true growth.
This might not be a big deal except the literature is rife with studies using the BHC aggregator
and then drawing conclusions about the apparent importance (or not) of reallocation.

We now turn to the decomposition of productivity growth. As we showed earlier, there is
no “reallocation” component in the instantaneous change in productivity. However, in Section 4
we showed how to decompose the change in the growth rate of productivity into a term that is
increasing if growth rates at the plant level are increasing (the “real productivity” term), and a
term that is increasing when plants with higher average growth rates gain larger shares of value
added (the “reallocation” term).

Table 4 provides this decomposition for ISIC 311 in Chile. The change in the growth rate from
year to year is reported in column 2. Note that it does not exactly equal change in the growth rate
reported in column 1; the difference is due to the entry/exit plants, (those plants that do not exist
int—2,t—1, and t). As defined in Section 4, for those plants that exist in these three periods,
the change in column 2 can be decomposed into the “real productivity” term, column 3, and the
“reallocation” term, column 4. The real productivity component is quite volatile, averaging -5.95%
with a standard deviation of 7.33%, with both positive and negative outcomes. The reallocation
term is positive, very stable, and always contributes to increases in the rate of productivity growth,
even in periods when the overall growth rate falls.

Overall, the reallocation series for ISIC 311 in Chile is remarkably similar in spirit to the
reallocation series from the other 48 manufacturing industries. Regardless of the estimator for

production function coefficients, the industry, or the country, the annual reallocation terms are

26 The industries that had higher r-squareds were also the industries where the slope coefficients tended to be
larger.
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almost universally positive. Within an industry over time they vary very little, with a typical
standard deviation less than 1%, while across industries they range from between 3% to 8%. Thus,
in contrast to current findings that reallocation effects vary in sign and magnitude across time within
industries, our measure suggests reallocation effects are very stable and almost always contribute

positively to industry growth, even when the overall growth rate is falling.

7. Conclusions

We have shown that the most popular index for measuring productivity growth with plant-level
data has two major shortcomings: it adds a “reallocation” term to the growth accounting measure,
and it fails to use the correct weights from Hulten (1978) in the aggregation. Empirically, even when
the correct weights are used, the “reallocation” term is substantial, leading to a weak relationship
between the popular measure and the growth accounting measure for almost every manufacturing
industry in both Chile from 1987-1996 and Columbia from 1981-1991. These findings are robust
to many different estimation approaches for plant-level productivity, and they call into question
the literature’s interpretation of the “reallocation” term as productivity growth. We provide a
new method for separating real productivity growth from reallocation effects that is entirely based
on decomposing changes in the traditional growth accounting measure. In contrast to current
findings that reallocation effects vary in sign and magnitude across time and sector, our new
measure suggests that reallocation effects are reasonably stable within industries and almost always

positively impact the productivity growth rate, even in instances where aggregate productivity falls.
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Appendix

Estimation of the Production Function: The Proxy Approach

Our estimator that proxies for correlation between productivity and inputs choices follows Levin-
sohn and Petrin (2003). We start with a production function given by

yr = Bsli + Buly + Bkt + wi + e, (22)

with inputs skilled labor, unskilled labor, capital, a Hicks-neutral productivity shock w;, and an
i.i.d. error 7;. We assume the intermediate input m; is a strictly increasing function of w;. That is:

my = mt(wta kt)a (23)

and we then invert (23) and express the unobservable productivity as a function of the intermediate
input and capital, or
Wy = ht (mt, kt) (24)

This inversion plays a very important role, since it permits us to control for w;. To see how this is
done, substitute (24) into (22) to obtain:

Yr = Bli + Buly + de(my, k) + 1y, (25)

where,

be(me, k) = Bo + Brks + he(my, ky). (26)

(25) is partially linear; it is linear in skilled and unskilled labor, and non-linear in the inter-
mediate input and capital. We use data on electricity usage for the intermediate input m;.2” We
proceed by regressing y; on I, I3, and a third order polynomial in electricity (m;) and k:, i.e. we
use a polynomial series to approximate the function ¢;(my, k;).2® Thus the first stage is as simple
as OLS, and it yields estimates of 8;* and 3; which are not contaminated by labor’s responsiveness
to the current period’s productivity term; including ¢;(-) controls for the correlation between labor
and the error term.

We now describe how Sy is identified. From (26), capital appears twice in the equation and
thus B is not identified without some further restriction. Next period’s output is written as

Yt+1 = 50 + lei-l-l + ﬂulg_{_l + Bkkt+1 + Wi41 + Nt+1- (27)

Define the function g(w;) as
g(wt) = Bo + Elwiy1|wy].

The function g(w¢) gives, up to an additive constant, the expectation of next period’s productivity,
wt+1, conditional on this period’s productivity shock. We can rewrite wi11 = Elwit1|we] + &e+1,
where &;41 is the innovation in productivity. The important identification assumption for capital
is that ki1 does not respond to this innovation (although it can freely covary E|wiyi|w]). In

27 See Levinsohn and Petrin (2003) and Levinsohn and Petrin (1999), where we show that results for production
function estimates are robust across other intermediate inputs, including fuels and materials.

28 In this and all future polynomial series approximations we experimented with a fourth order expansion and
found that it had a negligible effect on our final parameter estimates.
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practice, we estimate g(w;) non-parametrically, substituting it into (27) to provide the population
moment
Elysy1 — Bsliv1 — Bulirr — Brekir1 — g(we)|kg1] =

El&41 + neg1|ke1] = 0.

This moment identifies S.

It is perhaps helpful to note in less technical terms what this moment condition represents. The
expectation of output less inputs equals the error, or productivity plus another additive independent
error. This error cannot be used as the basis for a moment condition that will identify (8, since
productivity is not orthogonal to capital. We can solve for an error term, (&1 + 7¢41), that
is uncorrelated with capital by conditioning out the expectation of w;yi. It is the inclusion of
the function g(w;) which controls for this expectation and allows for identification of the capital
coefficient (via the restriction from (28).)

The second stage of the estimation uses Bl“, ij, and qASt() to construct the sample analog to
the moment restriction from (28) that identifies the capital coefficient. Given Bl“, 3u_and (),

87
and any candidate value for S, say B;, we can estimate the function g(w;) using a polynomial

(28)

approximation with argument @;(8;) = b(-) — By k:. Alternatively, for any candidate value §; we
can compute the residual

(Eit41 + Mt 1) (BE)

for any plant 7 at time ¢ (see equation (27).) We then use a non-linear least squares routine to
locate the minimizer 85 which solves

ming 3 (6ot +7e0s11(8)%,

i t=T;o

where T;¢ and T3; index the second and last period a plant is observed.

In an effort to make our estimation algorithm more readily available, exactly duplicable, and
more user-friendly, the estimation algorithm has been adapted to run entirely in STATA and the
program (in .do file format) is available from stata (see Petrin, Poi, and Levinsohn (2004)) or at
either author’s website.

Imputing Missing Values

Approximately 3% of the plant-year observations in Chile are “missing”; a plant id number is
present in year ¢ — 1, absent in year ¢, and then present again in year £ + 1. We impute the
values for these observations using ¢ — 1 and ¢ + 1 information and the structure of the estimated
production function. We use the simple average of the ¢ — 1 and ¢ + 1 (log) productivity estimates
for the period t productivity estimate. Similarly, we use the simple average of the t —1 and ¢t + 1
(log) input index estimates, where the weights in the index are the estimated production function
parameters. All of our findings are robust to dropping these observations.
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TABLE 1
Comparison of BHC Productivity Index to
Growth Accounting Productivity Index, ISIC 311

Ordinary Least Squares Estimates

Rate of Growth in:

Year Value Growth Accounting BHC Index: Discrepancy
Added Index: > Satlmwg (BHC “Reallocation” Term)
> (sit+zi’t_1)l”(wf?_1 ) =20 sip-1lnwig g
1988 11.75 -3.12 -14.96 -11.84
1989 7.36 3.64 -7.45 -11.10
1990 4.59 -1.10 -10.52 -9.43
1991 13.82 7.36 -13.28 -20.63
1992 14.67 6.09 -8.11 -14.20
1993 8.98 5.09 -0.19 -5.28
1994 8.20 2.95 7.09 4.13
1995 7.06 -0.74 -7.24 -6.50
1996 -1.30 12.56 28.25 15.69
Average 8.35 3.64 -2.93 -6.57
Std. Dev. 4.89 4.72 13.48 10.74

The second column uses the Tornquist approximation to the Divisia index (the growth accounting
definition of productivity). The last column is the discrepancy between the BHC index and the
growth accounting index, which is equal to a reallocation-like term given by ). Inw; * As;. Com-
parison is done on firms that exist in period ¢ and ¢ — 1, which account for 94.4% of the plant-year
observations and 96.4% of industry value added. See text for details.



TABLE 2

Comparison of Productivity Indexes Across

OLS, Levinsohn-Petrin, and Revenue Share Estimates, ISIC 311

Growth Accounting Index

Year Value OLS Levinsohn- Revenue
Added Petrin Shares
1988 11.75 -3.12 -0.04 0.77
1989 7.36 3.64 4.39 4.86
1990 4.59 -1.10 -1.26 -1.91
1991 13.82 7.36 7.68 8.98
1992 14.67 6.09 6.82 9.69
1993 8.98 5.09 5.87 4.41
1994 8.20 2.95 4.45 2.84
1995 7.06 0.74 1.41 -5.22
1996 -1.30 12.56 11.07 6.80
BHC Index

1988 11.75 -14.96 -19.16 -5.04
1989 7.36 -7.45 -11.94 -4.40
1990 4.59 -10.52 -20.43 -2.21
1991 13.82 -13.28 -24.42 -4.09
1992 14.67 -8.11 -15.54 -0.01
1993 8.98 -0.19 5.16 0.09
1994 8.20 7.09 4.81 4.33
1995 7.06 -7.24 -9.09 -10.40
1996 -1.30 28.25 39.66 1.07

Growth rates in productivity compared across methods used to estimate production function pa-
rameters. Comparison is done on firms that exist in period ¢ and ¢ — 1.



TABLE 3
Regression of BHC Index on Growth Accounting Index
Industry by Industry, 1988-1996 (9 observations)

Industry Coefficient Intercept Slope R-squared
Code Estimator (Std. Err.) (Std. Err.)

311 OLS .043 .247 0.47
(.012) (.099)

LP .051 122 0.38
(.011) (.058)

Rev. .036 314 0.22
Shares (.015) (.223)

381 OLS .031 .228 0.47
(.023) (.091)

LP .028 .230 0.44
(.024) (.096)

Rev. .008 373 0.62
Shares (.021) (.109)

321 OLS .010 77 0.21
(.023) (.129)

LP 017 .092 0.14
(.020) (.085)

Rev. -.009 .503 0.38
Shares (.026) (.026)

331 OLS 017 207 0.25
(.046) (.132)

LP .018 .146 0.20
(.047) (.108)

Rev. 043 .501 0.57
Shares (.045) (.163)

An intercept of 0 and slope of 1 would indicate that the measures are identical. An r-squared of 1
would indicate that the BHC measure is a linear transformation of the growth accounting measure.
Row one for ISIC 311 is the regression of column 2 on column 3 from table 1 (for example).



TABLE 3 (continued)
Regression of BHC Index on Growth Accounting Index
Industry by Industry, 1988-1996 (9 observations)

Industry Coefficient Intercept Slope R-squared
Code Estimator (Std. Err.) (Std. Err.)

322 OLS -.008 .223 0.22
(.031) (.154)

LP -.008 214 0.21
(.033) (.156)

Rev. -.008 .482 0.44
Shares (.033) (.201)

356 OLS -.047 024 0.02
(.029) (.061)

LP -.043 028 0.02
(.031) (.066)

Rev. -022 .165 0.15
Shares (.042) (.143)

382 OLS .093 .068 0.14
(.036) (.063)

LP .093 .058 0.11
(.037) (.062)

Rev. 072 180 0.19
Shares (.047) (.137)

352 OLS 019 274 0.27
(.031) (.168)

LP .039 156 0.17
(.031) (.128)

Rev. .003 416 0.50
Shares (.024) (.155)

An intercept of 0 and slope of 1 would indicate that the measures are identical. An r-squared of 1
would indicate that the BHC measure is a linear transformation of the growth accounting measure.
Row one for ISIC 311 is the regression of column 2 on column 3 from table 1 (for example).



TABLE 4
Change in Rate of Productivity Growth
Decomposed Into “Real Productivity” and “Reallocation” Terms, ISIC 311

Ordinary Least Squares Estimates

Year Productivity = Change in Real Productivity Reallocation
Growth Rate Growth Rate Component Component
1988 -3.12 — — —
1989 3.64 7.40 -1.79 9.18
1990 -1.10 -5.25 -14.83 9.59
1991 7.36 10.86 2.35 8.51
1992 6.09 -2.30 -10.64 8.34
1993 5.09 -0.66 -9.17 8.51
1994 2.95 -1.12 -9.72 8.60
1995 -0.74 -2.44 -10.08 7.64
1996 12.56 13.61 6.23 7.38
Average 3.64 2.51 -5.95 8.46
Std. Dev. 4.72 7.05 7.33 0.72

The first column is the rate of productivity growth from ¢ — 1 to ¢ (estimated using the growth
accounting definition). The second column is the change in this growth rate for firms that exist in
t—2,t—1, and ¢ (the discrepancy between the change in column 1 and the level in column 2 is due
to firms that do not exist in all three periods). The third and fourth column decompose column
2 (the third term in the decomposition is equal to the afore-mentioned discrepancy). See text for
details.



