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Abstract. In this paper we evaluate quantitatively the relation-
ship between economic and demographic growth. We use simple
models of endogenous growth, featuring human capital investment
at the individual level in conjunction with either of two models
of fertility choice, the B&B dynastic motive, and the B&J late-
age-security motive. We find that exogenous improvements in age-
specific survival probabilities, lead to increases in the rate of return
to human capital investment. This, in turn, engenders an increase
in the growth rate of output per capita much like what is typically
seen when countries go through industrialization. In the models
implemented so far, we also find that this is accompanied either
by a permanent increase in the growth rate of population (for the
B&B), or by too much late age consumption and a rate of return
on capital that is too high relative to available data (for the B&J).
Historical records show that the increase in the growth rate of pop-
ulation during the takeoff was temporary, and that the transition
eventually lead to a stationary population; it is unclear if a dif-
ferent version of the B&B model can be built that generates this
crucial stylized facts. On the other hand, preliminary work shows
that more realistic variations of the B&J model should eliminate
the unrealistic predictions about old age consumption and rate of
return on capital while maintaining the ability of the model to
generate an IR and a DT.

1. Introduction

The idea we pursue in this paper is simple, still ambitious. We lay
out a simple model (in fact: two family of models) of fertility choice,
production, and capital accumulation in which an increase in life ex-
pectancy may, in principle, cause a sustained increase in the growth
rates of productivity and income per-capita. We use different variants
of these models to assess the quantitative relevance of a contention that
has frequently been advanced in the literature on economic growth, and
in the context of studies of the British Industrial Revolution especially.
It can be summarized as follows: exogenous improvements in survival
probabilities provide the incentive for investing more in human capital
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and productive skills, hence leading to an increase in the productivity
of labor; the latter, through some “endogenous growth” mechanism,
leads to a sustained increase in the growth rate of output. In other
words, the productivity take-off that characterizes most development
processes may be mostly due to exogenous improvements in the life
expectancy of the population. Furthermore, while the initial increase
in lifetime expectancy brings about also an increase in population and,
possibly, of its growth rate, both the increase in the productivity of
(parental) labor time and the enhanced incentives to invest in human
capital (of children) are likely to activate a quantity-quality tradeoff
that leads to a reduction in fertility and, eventually, to a newly stag-
nant population.
The intuition is straightforward, and it may actually work. Indeed,

it does seem to work in a variety of different theoretical formulations of
the basic intuition, as an extensive literature (discussed in Section 3)
has shown in the recent past. The intuition may also work in practice,
i.e., once solid historical evidence has been used to discipline calibra-
tion, a fully specified model of endogenous growth and fertility may
deliver (most of) an industrial revolution and a demographic transi-
tion using the historically observed changes in (young’s and adult’s)
life expectancies as the only exogenous “causes”. In fact, a number of
papers have compared numerical simulations of simplified models with
data and claimed that the ‘basic’ stylized facts of economic takeoffs
and demographic transitions are replicated. The most relevant among
these attempts we also discuss in Section 3; in our judgement, things
are less clear cut than the literature so far seems to believe and the
jury is still out on the overall capability of a well specified model of
the ‘survival hypothesis’ to generate an industrial revolution and a de-
mographic transition. As we argue in Section 3 on the basis of the
historical evidence summarized in Section 2, it remains an open ques-
tion if using historically observed time series of (age specific) survival
probabilities, and realistically calibrated technologies, one can actually
generate time series of output, capital stock, wages, rental rates, and
fertility that resemble those observed in UK during the 1700-2000 time
interval. This paper aims straight at this question, and the preliminary
answer is a qualified ‘maybe’, leaning more toward yes than no. Lots
of non-trivial work still needs to be carried out, by us and by other, to
reach a convincing answer.
In spite of its current appearances, our paper is not a theoretical

one; this research is meant, instead, to be an exercise in quantitative
economic history. For this reason, we do not claim that our model
is able to capture “all” industrial revolution-like sustained increases in
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the growth rate of income per-capita. We concern ourselves with a spe-
cific historical episode: the English Industrial Revolution of the eigh-
teenth and nineteenth centuries, and use more or less contemporaneous
episodes in other European countries purely to test the robustness of
certain stylized facts. This is not to rule out beforehand that the causal
explanation examined here may turn out to have “universal” value. In
fact, we suspect it may, in so far as the majority of eighteenth and
nineteenth century take-off episodes we are aware of, were proceeded
by substantial changes in the patterns of mortality, and by a more or
less visible increases in life expectancy. Before drawing such conclusion,
though, the ability of a differently calibrated version of this model to
replicate other episodes of economic and demographic growth should
be assessed. What we have learned so far is that, when calibrated to
the data for England 1700-2000, our two models exhibit an endoge-
nous change in the rates of physical and human capital accumulation,
fertility, and labor productivity which is similar (but not of the same
magnitude of) those observed in the data.
Before moving on to discuss motivational evidence and previous lit-

erature, we should indulge a bit longer in a discussion of the basic
mechanism inspected in this paper, and of the modeling choices we
have made. Among the many differences between physical and human
capital, one is attributable to human mortality: when people die, their
human capital (h) goes away with them, while their physical capital (k)
is left behind to their descendants. Hence, everything else the same,
the k/h ratio an individual acquires is decreasing in the length of time
one expect to be able to use h. An increase, at the time of human cap-
ital investment decisions, in the expected future flow of workable hours
implies that the rate of return on human capital investment goes up.
If the underlying production function has the form F (k, h), an increase
in h/k increases the return on k in turn, thereby increasing the overall
productivity of the economy. This change causes the growth rates of
output per capita to increase in models where output growth is endoge-
nous and determined by equilibrium conditions of the type: growth rate
of consumption equal to a monotone increasing transformation of the
discount factor times the marginal productivity of capital. Hence, our
choice of a linear homogeneous production function, in which output
per capita y = F (k, h), and the two inputs can be reproduced and ac-
cumulated without bound from one period to the next. This choice of
technology rules out changes in the relative price of h and k, something
that may well have taken place but which does not seem to follow, ei-
ther directly or indirectly, from the ‘survival hypothesis’. We have also
chosen to abstract from ‘exogenous’ TFP in our model, be it neutral
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or, as in other exercises, ‘biased’ toward skilled labor. This is only for
a matter of simplicity and not because we believe that changes in per
capita human capital alone can possibly explain the whole evolution
of U.K. aggregate productivity from 1700 to 2000. In fact, as Section
2 acknowledges in reviewing the cumulated historical evidence on the
sources of productivity growth, this cannot clearly be the case, and
a more complete account of the British Industrial Revolution should
also model and quantify the key technological changes that took place
during those two centuries.
In order to work, the causal mechanism described here needs to sat-

isfy an additional couple of requisites. First, a generic increase in life
expectancy would not do, as the latter can be determined, for exam-
ple, by a drop in infant or child mortality or by an increase in late age
survival: in both cases the amount of time during which productive
human capital can be used would not change. The survival rate that
matters is the one between the age at which productive skills are ac-
quired and the age of retirement from the work force, that is between
10-15 and 50-60 years of age two centuries ago, and between 20-25 and
60-65 years of age nowadays. This explains why we have paid a sub-
stantial degree of attention to the life cycle and the timing of human
capital acquisition/utilization. Second, if the survival mechanism has
to work, the change in survival rates must eventually induce a reduction
in total fertility, that is they must be correlated to a movement along
the quantity/quality dimension among offsprings. Ideally, what one
would like to have is that births fall, survivors increase, investment per
survivor rises, time spent by survivors in productive activities increase,
hence incentive to invest in both h and k also increase. A sharp enough
reduction in birth rates is not an obvious consequence of an increase in
child and youth survival probabilities, as the ‘higher return on children’
the latter implies may, in reasonable circumstances, lead to an increase
in the number of children; something that is well known to happen, at
realistic parameter values, in models of endogenous fertility. This is a
crucial feature of the problem at hand, which has lead us to inspect
two different (almost opposite) rationalizations of why people have chil-
dren and why they may or may not invest in their training. The first
is the well known ‘dynastic altruism’ motivation of Becker and Barro
(1988), while the second is commonly known as the ’late-age-insurance’
motive, and we use the formalization advanced in Boldrin and Jones
(2002). There is, therefore, a sense in which part of our paper con-
sists of a “horse race” between different views of endogenous fertility.
As mentioned, we know from previous work (i.e. Boldrin and Jones
(2002)) that the B&B explanation tends to perform badly when used
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to model endogenous fertility reactions to changes in mortality rates
in models of exogenous growth. We are interested to see how it does
when the same changes in mortality rates are used to generate changes
in human capital accumulation over the life cycle and increases in the
growth rate of output and labor productivity. Also, we know that the
B&J explanation, in its non-cooperative version,1 tends to predict lev-
els of fertility that are low by historical standards, and much more
elastic (downward) to reductions in mortality rates than the coopera-
tive version, which in turn predicts higher fertility rates. Again, such
features of the B&J model appear, at realistic parameter values, when
growth is driven by exogenous TFP, and how performances change in
an endogenous growth context is neither clear nor obvious.2

Additionally, as we like to impose upon our quantitative exercise the
discipline of historical measurement, we do abstain from introducing
into our models a number of ‘external effects’ that are frequently en-
countered in this literature, and that often become the main driving
force behind the final results. This is not meant to imply we are com-
pletely convinced that a number of external effects, especially when it
comes to the impact of public health and education, cannot have played
a role in the evolution of mortality rates and overall productivity dur-
ing the British Industrial Revolution. In principle, they may have been
quite relevant, but no quantitative measurement of their nature, size
and impact is anywhere to be found. In this sense, ‘human capital
externalities’ are a bit like phlogiston, a fascinating and theoretically
useful, but hardly measurable entity. Our choice of sticking to models
where external effects are altogether absent means, then, that at least
when trying to perform an exercise in quantitative economic history, we
deem it appropriate to adhere to the rule ‘whereof one cannot measure,
thereof one should not assume.’

2. Motivational and Historical Evidence

The idea that there is a connection between economic development
and population dynamics is an old one. It appears in many forms
in the literature in both areas. Indeed much of the literature on the
Demographic Transition has focused on this link as a causal one —

1We apologize to the reader for the, temporarily, cryptic language, that should
become less so once the formal models are introduced. The details of the cooperative
and non-cooperative case are discussed in Boldrin and Jones (2002).
2In this preliminary version of the paper, it remains unclear what the answer to

this question is. Much to our chagrin, we are still far from satisfactorily calibrating
and simulating the B&J model for versions other than the simplest one, and even
then for BGPs only.
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Figure 1A: UK Population and GDP per capita, 1565 to 1990
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Figure 2.1

the reduction in fertility is caused by the increase in per capita GDP
that goes along with the development process. The reasoning that
the relationship is causal is tenuous at best and really comes down to
the observation that the two series are co-integrated. Figure 1A below
shows the basics of the relationship in a historical setting in the UK for
the period 1565-1990; data are reported in logs to facilitate the visual
capture of changes in the underlying trends.3

For output, it can be seen that there is a slow but steady climb over
the period from 1550 to about 1830 (or 1850). At that point output
growth accelerates as indicated by the change of slope in the series.
Population also shows a slow steady climb at first, lasting until about
1750. After that point, there are two distinct changes. First is the
acceleration that occurred between 1750 and about 2000, and then the
dramatic slowdown after that, with the series becoming almost flat
since 1960 or so.
Figure 1B tells a similar story, but in growth rates rather than log-

levels. These series (naturally) show much more volatility than those

3Data sources are as follows. Population data, 1541-1866: Wrigley, Davies, Oep-
pen and Schofield, ”English population history from family reconstitution”; 1871-
1970: Mitchell, ”European Historical Statistics”. GDP data are taken from Michael
Bar and Oksana Leukhina (2005). The basic sources are Clark from 1565 to 1865,
and Maddison from 1820 to 1990. Clark is normalized so that 1565 = 100, Maddison
is renormalized so that Maddison = Clark in 1865.
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Figure 1B: GDP and Pop Growth Rates: UK 1565 to 1990
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Figure 2.2

in Figure 1A, where the visual image is swamped by growth. Even still
one can easily see the changes discussed above as the average growth
rate of output shifts clearly upward (albeit volatilely so) and the growth
rate of population first goes up, then later, around 1900, falls again. An
important additional feature of the UK data, which is only weakly repli-
cated in data from other European countries (see Appendix II) is the
following: around 1770 the population growth rate increases substan-
tially, and remains high for about a century and a half, before dropping
to levels near zero. This increase in population growth anticipates the
increase in output growth of between 50 and a 100 years4, but output
growth remains high after that or even increases till our days.5 These
two differences are crucial for our testing of the ‘survival hypothesis’:
(i) population growth increases before income growth does, (ii) the in-
crease in population growth rate is temporary, and not accelerating,
while that in per capita GDP is permanent, and accelerating for about
two centuries.

4For more details about output growth between 1700 and 1900, and on the
modifications of historical estimates brought about by recent work, see later in this
Section.
5Clearly, we are abstracting from the impact of the Great Depression, which is

visible in Figure 1B.
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Figure 1C: Survival Proabilites in the UK: 1565 to 1970
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Figure 2.3

Since this is of interest for our modeling choices, and relevant to as-
sess the ability of different models to replicate the actual causal mech-
anism, if any, between sruvival probabilities and economic growth, we
also include here the historical record on survival probabilities at dif-
ferent ages.6 Shown in Figure 1C are time series of the probability of
surviving to ages 5, 15 and 20 since 1565. As can be seen survival rates
to working age have shown a dramatic increase in 1880 or so. But also
note that the survival rate to age 15 may have picked up substantially
earlier, around 1750 or so.
[SURVIVAL PROBABILITIES TO 40 AND 60 YEARS TO BE

ADDED]

The same kind of relationship IS seen in cross sectional data in more
modern times. For example, cross sectional data on the average, over
the 1960 to 2000 period, rate of growth of per capita GDP and the
average, again over the 1960 to 2000 period, rate of growth of popula-
tion for a sample of 98 countries taken from the Penn World Tables is
shown in Figure 2.

6Survival Data sources are, 1541-1866: Wrigley et al. (); 1840-1906:
http://www.mortality.org; 1906-1990: Mitchell ().
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Figure 2: Real GDP per capita Growth - Population Growth
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The relationship between γy (per capita GDP growth) and γn (pop-
ulation growth) is statistically and economically significant. Statisti-
cally, the estimated relationship is:

γy = 0.0343− 0.826γn
The R2 of this regression is 25.4%, and the standard error of the

regression coefficient is 0.1444, giving a t-ratio of -5.72. Thus, with
every decrease of 1% in population growth rates, there is an associ-
ated 0.83% increase in per capita output growth rates, economically
a very large change. The strong correlation evidenced here is purely
motivational, and we should focus next on more detailed UK data for
the period 1700-2000. Still, the reader should also consult () and ()
for further analysis of recent cross country data and the claim that the
causal mechanism investigated here is actually relevant to understand
current development experiences.
The historical evidence we consider next is of three types: (i) esti-

mates of the historical evolution of per capita GDP in the U.K. from
1700 to the early 1900s (DATA FOR XX CENTURY TO BE ADDED);
(ii) data on the demographic transition in the U.K. during the same
period, with a particular attention to the evolution of age-specific mor-
tality rates and fertility; (iii) additional evidence, both from the U.K.
and other countries, of the timing of demographic and economic change.
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2.1. Output Growth and its Sources. The following table is con-
structed using estimates reported in Crafts (1995), and Crafts and
Harley (1992). The factor shares used to compute the estimates are,
respectively, K = 0.40, L = 0.35 and H = 0.25, where K is the aggre-
gate capital stock, H is a measure of human capital7 and L is total raw
labor. While this parameterization of the aggregate technology is not
exactly equivalent to the one we use in our modeling and calibration
exercise, it is the closest available in the literature, and should provide
a reasonable ‘target’ for the kind of detailed facts the formal model
should be able to match in order to be called ‘successful’.

Table 1: Output Growth, 1700-1913 (% per year)
Period ∆Y/Y ∆K/K ∆L/L ∆H/H ∆TFP

1700-1760 0.7 - - - -
1760-1780 0.6 0.25 0.20 0.10 0.05
1780-1801 1.4 0.45 0.35 0.40 0.10
1801-1831 1.9 0.70 0.40 0.55 0.25
1831-1873 2.4 0.90 0.45 0.70 0.35
1873-1899 2.1 0.80 0.30 0.50 0.50
1899-1913 1.4 0.80 0.30 0.50 -0.20

The most striking feature of Table 1 is the very small growth rate
of TFP all along the two centuries under consideration, and especially
until 1850. This finding, that aggregate TFP growth was quite small
during the initial two centuries of the British Industrial Revolution, and
that accumulation of factors was the main driving force, characterized
Crafts and Harley fundamental contribution to the economic history
literature, and has helped to substantially alter the view of most eco-
nomic historians about the nature of the Industrial Revolution. When
first published, the Crafts and Harley estimates of output and produc-
tivity growth were received with doubts, and gave rise to a fairly intense
debate. Their basic contention was that substantial technological im-
provements did take place during the period, some of which did imply
revolutionary changes, but such improvements were restricted to very
few sectors of the UK economy. More precisely, their historical work
shows that dramatic increases in productivity took place in the textile
(especially cotton), shipping, and metallurgical industries, the size of
which were, nevertheless, too small to generate the increase in aggre-
gate TFP that previous researchers has estimated. Our readings of the
literature that ensued, and of the current consensus among economic
historians, is that the Crafts and Harley estimates, including minor

7Add details on how this measure is constructed.
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recent revisions, are the best available and, short of new additional
evidence, should be taken as summarizing the basic facts any model of
the British Industrial Revolution should be capable of matching. This
is, at least, the position adopted in this paper. In summary, from Table
1 we learn two things our modeling exercise must be able to account
for:

(1) Output growth did not increase suddenly from the previous
0.3− 0.5% per year rate8 to 2% a year. The increase was slow
and progressive, and even more so (see below Table ??) if one
consider output per employee or output per capita (recall from
above that the population growth rate is close to 1.5% per year
between 1770 and 1890.)

(2) The contribution of physical and human capital accumulation
to output growth was quantitatively more important than that
of TFP during the whole period. It is only at the very end
of the nineteenth century that TFP growth starts to become
substantial.

Table 2, also based on Crafts and Harley estimates as reported in
Clark (2004, Chapt. 9), confirms and qualify these findings by using an
aggregate production function that excludes direct measures of human
capital but introduces land (Q). Again, TFP growth is slow at the
beginning and progressively accelerates, and, again, a sharp increase
in capital to labor intensity accounts for most of the growth in labor
productivity until the second half of the nineteenth century. In these
estimates, the factor shares adopted were of 35% for capital, 15% for
land and 50% for labor. For detailed estimates of factors share, see
Stokey (2001:69), showing that labor share goes from .45 to .47 between
1780 and 1850, capital share goes from .35 to .44 and land share goes
from .20 to .09 during the same period.

Table 2: Per Capita Productivity Growth (% per year)
Period Y/L K/L Q/L TFP
1700-1760 0.30 0.31 -0.29 0.24
1801-1831 0.45 0.36 -1.35 0.53
1831-1861 1.09 0.59 -1.42 1.10

1760-1861 0.54 0.37 -1.12 0.58

Finally Table 3, adapted from Clark (2001, 2004) reports a number
of other measures of factor prices and productive efficiency for the
period of our interest. Wages are computed for a 10 hour day, land

8For the most recent and reliable estimates of the growth rate of output pre-1700
in the UK see Clark (200?) and Feinstein (199?).
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rent is in $ per acre, and the return on capital is in percentage points.
The index of productive efficiency is normalized to a value of 100 for
the decade 1860-1869. It provides a further confirmation of what we
already said: TFP growth was slow at the beginning, accelerating only
well into the nineteenth century. Notice also that, while the return
on capital is quite stable, the return on land increases dramatically, as
does the wage rate per day of work after 1800.

Table 3: Efficiency Growth in the Industrial Revolution
Decade W R on Q R on K Input Costs Efficiency
1700-9 11.7 0.45 4.67 60.7 -
1710-9 12.1 0.48 4.96 60.9
1720-9 12.3 0.52 4.38 62.9
1730-9 12.7 0.51 4.14 69.7 68.9
1740-9 12.9 0.47 4.24 71.9 64.8
1750-9 12.9 0.59 4.26 78.5 65.6
1760-9 13.7 0.59 4.04 87.5 64.4
1770-9 14.6 0.69 4.15 102.2 64.4
1780-9 15.3 0.68 3.95 112.1 64.3
1790-9 18.2 0.83 4.10 142.9 66.3
1800-9 25.1 1.15 4.38 215.5 70.4
1810-9 34.1 1.47 4.63 296.5 81.6
1820-9 31.3 1.29 4.48 309.4 88.3
1930-9 32.8 1.22 4.85 341.5 95.0
1840-9 33.6 1.15 4.28 398.0 97.4
1850-9 35.4 1.24 4.10 462.8 98.9
1860-9 39.8 1.37 4.27 581.4 100.00

Clark (2002), also shows that agricultural wages decline from 1540 all
the way till 1640, when a slow recovery begins that is reversed again
about a century later. It is only by the middle of the 19th century
that real agricultural wages go back to their level of 300 years before,
and grow monotonically to new heights every period after that. The
indices he computes for the productivity of capital in the agricultural
sector show an almost parallel dynamics, even if the levels are different
and, in particular, the capital productivity level of 1550 is reached and
surpassed many times between 1620 and 1850; nevertheless, it is not
until 1800 that a monotone increasing trend sets in. Interestingly, the
estimated rates of return decrease from historical highs of 6.2 % in
1600-1620 to 4.2% in 1800 and then to 3.9% in 1900.
Various other data sources suggest that accumulation of productive

factors played a major role in ouptut growth, at least until 1850 and
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probably after that. For example, the share of consumption over in-
come decreased from 93% in 1700 to 80% in 1840, while the investment
to output ratio more than doubled, from 4.0% to almost 11% in 1840
(Feinstein 1988). Population and net fixed capital formation growth
rates are similar and raising, period after period, between 1760 and
about 1810. After that the population growth rate decreases, from
a pick of about 1.4%, while capital formation growth rate accelerates
and reaches almost 3% by 1840. (Nick von Tunzelmann, in Floud and
McCloskey, eds. (1994), p. 290). What this implies is that the K/L
ratio increases, slowly but steadily, from the middle of the eighteenth
century onward, and that after 1810 or so its growth rate accelerates
substantially.
MORE ONMEASURES OF LABOR PRODUCTIVITY AND FAC-

TOR SHARES TO BE ADDED
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2.2. Mortality and Fertility. What happened, during the same pe-
riod, to mortality and fertility rates? Figure 3 summarizes the answer:
(a) mortality rates remained high well into the eighteenth century, im-
proving only marginally toward its end, and then only for adult people;
(b) fertility tagged along with mortality rate as before, but then took
off substantially in the second half of the eighteenth century, leading
to a dramatic increase in the growth rate of the population; (c) infant
(and child) mortality did not improve seriously only until well into the
nineteenth century, and it is only in the very second part of this century
that dramatic, and dramatically fast, improvements take place.
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Figure 2.5. Figure 3: Britsh Crude Birth, Death
and Infant Mortality Rates 1541-1970

These mortality and fertility patterns generate the compounded pop-
ulation annual growth rates reported in Table 4 (from Wrigley and
Schofield (1981: 208-9)), and the Gross Reproduction Rates9 and ex-
pectation of life at birth reported in Table 5 (also, adapted fromWrigley
and Schofield (1981:231)). Both ventennial and decennial values have
been obtained by averaging over the quinquennial values that Wrigley
and Schofield report. There is one important message one wants to
learn here: life expectancy did not increase by any substantial amount
between 1700 and 1870, and this is because infant and child mortalities

9The GRR is, basically, the same as the TFR restricted to female offsprings. It
does, therefore, take into account the fact that male infants are slightly more likely
than female infants.
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did remain very high until late in the eighteenth century. On the other
hand, as Figure 1C above shows, survival probabilities from age five
to age twenty did increase of a visible amount during the same period.
It is with this quantitative restrictions on the actual improvements in
mortality rates that a model testing the ’survival hypothesis’ for the
British Industrial Revolution has to cope. Life expectancy is not only
the inappropriate theoretical measure to look at, but, historically, it
started to grow only when the IR was well under way; expectation of
life at birth, between 1681 and 1741 oscillates from a minimum of 27.9
years to a maximum of 37.1 years, from there it slowly raises to reach
40 years in 1826-1831 and 41.3 in 1871.

Table 4:English Population compound annual growth rates
1681-1701 1701-1721 1721-1741 1741-1761 1761-781

0.25 0.28 0.21 0.49 0.68

1781-1801 1801-1821 1821-1841 1841-1861 1861-1881

1.04 1.42 1.08 1.18 1.26
Table 5: GRR and Life Expectancy

1681-91 2.06 30.1
1691-01 2.17 34.5
1701-11 2.29 36.8
1711-21 2.15 36.5
1721-31 2.24 32.5
1731-41 2.28 32.3
1741-51 2.25 33.5
1751-61 2.33 37.0
1761-71 2.38 34.6
1771-81 2.51 36.9
1781-91 2.56 35.3
1791-01 2.76 37.0
1801-11 2.81 37.3
1811-21 2.97 37.8
1821-31 2.92 39.6
1831-41 2.56 40.5
1841-51 2.43 39.9
1851-61 2.42 40.0
1861-71 2.53 40.7

Our allegation, TO BE BETTER DOCUMENTED, is that such in-
crease in survival rates, first slow and limited to the adult segments
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of the population and then much more dramatic, generalized and par-
ticularly strong among children and infant, is to be considered as an
exogenous technological (or medical) shock and not as the effect of the
improvement in the living conditions of the British people that took
place before it. The fundamental motivation for our position is that,
on the one hand, an overwhelming number of demographic studies (see
Livi Bacci (2000) for an excellent summary) have documented that the
range of caloric-proteinic intake and living conditions compatible with
human survival is so large that the purely economic improvement in
the living conditions of the British people that took place between 1700
and 1800 cannot possibly be the cause for the increase in survival rates
that ensued. On the other hand, our reading of the specific causes of
the TO BE ADDED The late 1720s is the last time in which England
is affected by epidemics in any relevant form; in 1731 the total popula-
tion is at 5.263 million. After that, the population growth rate starts
accelerating, peaking at 1.55% per year in the quinquennium 1826-1831
and then falling to around 1.2% a year until 1871, at which point the
population of England had quadrupled to 21.501 million.
Razzell (1993) contains a strong advocacy of the idea that “Pop-

ulation growth in 18th century England was due mainly to a fall in
mortality, which was particularly marked during the first half of the
century. The fall affected all socioeconomic groups and does not appear
to have occurred for primarily economic reasons.”
The idea that is is income growth that causes a decline in mortality,

and not viceversa, finds strong support, at least prima face, from the
observation that it is only in the second half of the 19th century that life
expectancy increases substantially, and this is at least a century after
income per capita had started to visibly increase in Europe, and in the
U.K. in particular. Further, this is not true only for the U.K. but seems
to be a general feature of most countries: for all European countries
life expectancy trend changes between one and half a century after per
capita GDP trend changes, and the growth rate in life expectancy after
the take off is three to six times higher than before; see, e.g. Easterlin
(1999, Tables 1 and 2). One should hasten to add, though, that looking
only at life expectancy at birth is rather distorting, and that the sharp
increase
Further, the same data also show that this fact is not true for late

growing countries such as Brazil or India: in their case, life expectancy
and economic growth move either simultaneously or the former earlier
than the latter, suggesting that life expectancy is mostly driven by the
spread of advanced medical practices, and that the latter, while vaguely



THREE EQUATIONS GENERATING AN INDUSTRIAL REVOLUTION? 17

correlated with income levels, tend to follow a dynamics that is mostly
independent from that of per capita income growth.
TO BE ADDED

3. Review of Previous Literature

Libraries have been written, both on the Industrial Revolution and
on the Demographic Transition in the United Kingdom between 1600
and 2000, hence attempting a true review of the literature would result
in an impossible task. We focus here only on the recent literature, say
post 1980, and, within this, on three kinds of works: (i) those providing
data and empirical support to the particular causation mechanism we
are testing; (ii) those modeling such causation mechanism, in particular
those works that have attempted to bridge the gap between theory
and data; (iii) those works that explicitely question the direction of
causality we are concerned with and suggest that either the opposite is
true or that changes in age-specific survival probabilities had little or
nothing to do with the increase in the growth rate of output per capita
in the U.K after 1750.
One of the first researchers to begin addressing the potential causal

link between health and economic growth is Samuel Preston, see Pre-
ston (1975). His conclusion, based on data for the period 1900-1960,
was that health improvements were mostly due to autonomous tech-
nological change in the ‘health production function’, with little con-
tribution from increases in income per capita per-se. On the opposite
side, and practically at the same time, Thomas McKeown, McKeown
(1976), uses data for England and Wales from the middle of the 19th
century to argue that it could not possibly be the case that improve-
ments in medical technology were capable of explaining the increase in
life expectancy observed at the time in those areas.
McKeown’s argument, which was interpreted mostly as an argument

for the market as a provider of health services, has been widely criti-
cized ever since, see Mercer (1990) and Easterly (1999) for recent ex-
amples and review of other works. This criticism TO BE ADDED
Among the most interesting recent economic papers that investigate

the same causation channel as we do, the following are closer to our
approach: Boucekkine, de la Croix and Licandro (2002. 2003), Cervel-
lati and Sunde (2002), Kalemli-Ozcam (2002, 2003), Soares (2005),
and Zhang, Zhang and Lee (2001). DISCUSSION TO BE ADDED.
Hazan and Zoabi contains a sharp theoretical criticism to most of

the modeling strategies adopted in the previous literature. Correctly,
we believe, they point out that “[...] greater longevity raises children’s
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future income proportionally at all levels of education, leaving the rel-
ative return between quality and quantity unaffected. [...] Our theory
also casts doubts on recent findings about a positive effect of health on
education. This is because health raises the marginal return on quality
and quantity, resulting in an ambiguous effect on the accumulation of
human capital.” This criticism does not apply to the models studied
here, as it is the incentive to invest in physical versus human capital
that is affected by the changes in survival probabilities. Further, we
investigate age specific survival probabilities directly, and allow for the
quantity/quality tradeoff to be resolved at the quantitative level.
In most of the literature on demographic behavior and economic

growth, the problem is almost invariably cast in the following very
stylized form: before the second half of the 18th century European
countries, and the rest of the world indeed, were at a stationay Malthu-
sian equilibrium with low (approximated to zero) growth in income
per capita, high mortality, high fertility, low (approximated to zero)
growth of population and small or nihil investment in human capital
and productive skills. A transition to a new stationary state of sus-
tained growth in income per capita, low fertility and mortality (in fact,
constant population) and high investment in productive human capital
begins around 1750 and is completed roughly two century later. Dur-
ing the transition, mortality and fertility decline somewhat in parallel,
human capital accumulation progresses and the growth rate of income
per capita increases till it stabilizes at around two per cent per year
after WWII, finally, population multiplies by a factor of five before
becoming constant again. While there is lots of truth in this stylized
story, we actually believe it is a bit too much stylized. Because it is
too much stylized it is consistent with very many different and incom-
patible explanations, among which it is hard, not to say impossible, to
discriminate when the set of “facts” to be accounted by the theory is
restricted to those we just listed.
Additionaly, a variety of othe authors have investigated in isolation

one of more of the mechanisms we assemble here. The one most of-
ten encountered is the idea that an increase in life expectancy incrases
the incentive to acquire human capital (Blackburn and Cipriani [2004]
). Cavalcanti and Abreu de Pessoa (2003) look at the interaction be-
tween longevity and government fiscal and education policies. TO BE
ADDED.
It may not be unfair to say that the “dominant” view is the one

summarized in the ‘Malthus to Solow’ parable of Hansen and Prescott
(2002) and in the ‘development miracle’ Lucas (2002). While we concur
with the general description of the facts presented in these two papers,
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and in the many other that follow similar lines, we find the underly-
ing theory lacking in so far as some ’exogenous miracle’ becomes the
essential driving force, be it exogenous TFP growth or a particularly
engineered demand for children or a pervasive and aggregate human
capital externality. TO BE ADDED

4. Models of Endogenous Fertility and Growth

We will now present two classes of models of endogenous growth
and endogenous fertility: the ‘dynastic’ model of an infinitely lived
family (due originally to Becker and Barro (1988), and the ‘late age
insurance’ model, theorized among other by Caldwell (1978). We label
the first the B&B model, and the second the B&J model, as we use the
particular formalization of the late age insurance motive introduced by
Boldrin and Jones (2002).

4.1. The Cost of Children Under Certainty Equivalence. One
of the key tricks that we will be exploiting is a way of modeling childcare
costs in a certainty equivalent environment. The costs of raising a child
are many and complex. Moreover, in an uncertain world, like that in
the 18th and 19th centuries in the (currently) developed world, and
in much of the developing world still today, the cost of raising a child
depends on how long it survives. For example, if schooling is only
provided for those children reaching age 5, it is only a cost, ex ante, for
those expected to survive. In a certainty equivalent world, this can be
introduced into standard models of fertility choice by having different
costs for different ’ages’ of the kids. The formulation we adopt is based
on Schoonbroodt (2004).
The key step amounts to properly defining θt, the total cost of raising

one child. For simplicity, assume that there are 3 stages of life for a
child. Roughly, they correspond to ’newborn,’ ages 0 to 1, ’child,’
ages 1 to 5, and ’school aged,’ ages 5 to 15. This is supposed to
represent a ’rough’ division, finer ones would be possible, and will be
considered in future versions of this work. Let π2t and π3t denote the
probability of survival to the beginning of the second and third phases
of childhood conditional on being born. Thus, π2t = (1− IMRt), and
π3t = (1 − CMRt). Then, we assume that the (expected) cost of a
newborn is given by:

θt = [b1 + π2tb2 + π3tb3]htwt + [α1 + π2tα2 + π3tα3] c
m
t = bthtwt + αtc

m
t

where, bi is the amount of time required from the parents for a child in
phase i, and αi is the amount of physical consumption good, relative
to parents consumption, required for a child of phase i. Thus, in this
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formulation, b2 is only spent on those children that actually survive to
phase 2, and so forth. Then, denoting with µt = π3t the probability
that a born child survives to the age in which he is educated and/or
trained in some productive activity, the total cost of rearing nt children
is given by:

nt[θt + µtht+1]

.
Finally, let πt denote the probability to survival to adulthood. The

reason that this is a convenient formulation is that, from the point of
view of the differential effects of changing survival rates on the incen-
tives for human capital formation, what we probably want to focus on
is the data analog of changes in π/π3, that is, the conditional probabil-
ity to survival to working age given survival to age 5, since no human
capital investment is made for those children that die in infancy.
What we do next is to add this formulation into the B&B and B&J

models. Throughout this version, we will assume that α1 = α2 = α3 =
0 for simplicity.

4.2. The Aggregate Production Function.
Let production be defined at the individual, disaggregated level,

with yit = F (kt(i),eht(i)), for each member i of the working age cohort,
which is composed of Nt people (depending on which specific model is
being used, this may include people from different generations.) Ag-
gregate output is then

Yt =

Z Nt

0

F (kt(i),eht(i))di = NtF (kt,eht).
4.3. Different Specifications. There is a large variety of different
specifications of the B&B and the B&J models that one would like to
consider, eight of which are reported in Appendix I (to becomes sixteen
as the T=4 cases are added!) Some of these versions are implementable
in both models, while other are not. Those that are common to both
B&B and the B&J fertility theories, are the following: (a) different
modeling of the length of time spent working versus the length of time
spent in training and the length of time spent in retirement, (b) differ-
ent specifications for the aggregate production function, (c) different
specifications for the market arrangement in the provision of child care
services. The different versions that are special only to the B&J model
are due to (d) different solution concept for the donations game played
among the members of the middle age generation. Let us illustrate the
structure of the various versions, starting with point (d).
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In the B&J model, when they become middle-age children internal-
ize old parents utility from consumption, and therefore are motivated
to provide them with some transfer of consumption goods, which we
label “donations” and denote with dt. How much per capita donation is
chosen, in equilibrium, is nevertheless not uniquely determined by how
much children like their parents, which we denote with ζu(cot ), as the
within-siblings agreeement about how individual donations should be
arranged also matters. Two polar cases are relevant: in the cooperative
one siblings maximize joint utility by choosing a common donation d;
in the noncooperative case, each person take the other siblings’ dona-
tion as given and chooses its best response, with the equilibrium being
symmetric Nash. In the cooperative case, ceteris paribus, donations
are higher, and so is fertility, with respect to the cooperative equilib-
rium; further, because per capita donations decrease less rapidly in the
cooperative than in the noncooperative, the (negative) elasticity of en-
dogenous fertility to an increase in the survival probability of children
is smaller (in absolute value) in the cooperative case; more detailes
about the two cases and their properties can be found in Boldrin and
Jones (2002).
With respect to (c), we look at two basic case: child care services

are produced directly at home (which we label the one sector case) or
are produced by the market (the two sector case). In both cases the
technology for rearing children is the same, and it uses both goods and
time as specified in the previous subsection. The difference between
the two models is subtle and has to do with the incentives of parents
to invest in the human capital of the children: in the one sector case, by
increasing the human capital of their own children, parents affect both
their future labor income and their opportunity cost of having children,
in so far as the latter requires parental time. In the two sector model,
parental investment in the human capital of their own children only
increases the labor income of the latter, as the cost of rearing children
is determined by market prices, and cannot be influenced by individual
variations in parental human capital.
With respect to (b), we consider both the general CES production

function y = F (k,eh) = A [ηkρ + hρ]1/ρ, −∞ < ρ < 1, and the special

Cobb-Douglas case y = F (k,eh) = Akαh1−α 0 < α < 1. The reason for
studying also a general CES is that, for the latter, when ρ 6= 0, varia-
tions in factor intensities induce endogenous variations in factor shares.
The historical evidence we have exhamined suggests that sizeable varia-
tions in the share of income going to capital, labor, and human capital,
did occurr in the period under consideration.
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Finally, (a) is an obvious requirement for two reasons. First, one
always looks for the technically simplest model that can do the job;
meaning, in this case, the model with the minimum number of peri-
ods that allow facing the data. Our current guess is that models in
which individuals live for four periods, of twenty years each, should be
enough for our purposes. Second, as our contention is that changes
in age specific survival probabilities have substantially different effects
on investment, human capital accumulation and fertility, one needs to
work with a model that is rich enough to treat variations in age specific
mortality rates independently. Furthermore, the historical evidence it-
self says that the growth in life expectancy was not the outcome of
a homogeneous drop in mortality rates at all ages, but that, instead,
different mortality rates changed at different points in time.

5. The B&B Model with Endogenous Growth

5.1. The Simplest B&B Model. The Household Problem is given
by:

U =
∞X
t=0

βtg(Ns
t )u(c

s
t) =

∞X
t=0

βtg(πtN
b
t )u(c

s
t) =

∞X
t=0

βtg(πtN
b
t )u

µ
Ct

πtN b
t

¶
subject to:

Ct+atN
b
t+1+ ŵtĉ

cc
t N

b
t+1+Ht+1+Kt+1 ≤ wtN

s
t h

s
tc

m
t + ŵtN

s
t c

cc
t +

RtKt
10

ĉcct ≥ bt

cmt + ccct ≤ 1
where Ct is aggregate spending it period t by the dynasty on con-

sumption, N b
t+1 is the number of births in period t, Ht+1, and Kt+1 are

aggregate spending on the dynasty on human and physical capital in
period t, Ns

t = πtN
b
t is the number of surviving members in the dynasty

in period t, is the effective labor supply per surviving period t middle
aged person, hst is the human capital per surviving middle aged person

10Here we have used the simplifying assumption that H is produced using
the market technology, as discussed below. This amounts to an aggregation
assumption— if H is produced in a separate sector with the same, CRS, production
function, this will follow automatically. Many models of human capital investment
do not satisfy this assumption, however— often assuming that labor’s share is higher
in the H sector. See Lucas (1988) for example. It is of interest to explore other
alternatives as well.



THREE EQUATIONS GENERATING AN INDUSTRIAL REVOLUTION? 23

in period t, ĉcct is the number of hours of child care purchased per new
child, at is the goods requirement per child by the dynasty in period t,
cmt is the number of hours the typical dynasty member spends in the
market sector working, ccct is the number of hours the typical dynasty
member spends in the childcare sector working, Rt is the gross return
on capital, wt is the wage rate for one unit of time with one unit of
human capital (so wth

s
t is the wage rate per unit of time for labor with

hst units of human capital), and ŵt is the wage rate in the childcare
sector.
For hst , we assume that investments are made for all children surviv-

ing to age 5, thus investments per person are hst = Ht/π3tN
b
t . Thus,

N s
t h

s
t = πtN

b
tHt/π3tN

b
t =

πt
π3t

Ht.
Firms face static problems:

max Yt −RtK
f
t − wtL

f
t

s.t. Yt ≤ F (Kf
t , L

f
t )

Goods and Labor market clearing (per dynasty) require that:

(F1) Kf
t = Kt

(F2) Lf
t = Ns

t h
s
tc

m
t

(F3) ĉcct N
b
t+1 = btN

s
t c

cc
t

(F4) Ct + atN
b
t+1 +Ht+1 +Kt+1 = Yt

Note that interiority implies immediately that ŵt = wth
s
t that is,

wages are equalized across the two sectors. Because of this, letting
θt = at + btŵt, we can rewrite constrainst of the individual household
problem as:

Ct+atN
b
t+1+ ŵtN

b
t+1ĉ
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s
t h
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Ct + θtN
b
t+1 +Ht+1 +Kt+1 ≤ wt

πt
π3t

Ht +RtKt.
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This is the version of the BC we will use below. Thus, the Household
Problem is given by:

U =
∞X
t=0

βtg(πtN
b
t )u

µ
Ct

πtN b
t

¶
subject to:

Ct + θtN
b
t+1 +Ht+1 +Kt+1 ≤ wt

πt
π3t

Ht +RtKt

Note that there is also a conceptual difficulty in assuming that at
is positive in an endogenous growth model. If we assume that at is
’constant,’ i.e., converges to a constant, de-trended at → 0. If we
assume that it is growing at some exogenous rate, at = (1 + g)ta0
then if the output of the economy (per capita) grows at a lower rate,
then atN

b
t+1/Yt → ∞ which is not possible. If on the other hand

the output of the economy (per capita) grows at a higher rate, then
atN

b
t+1/Yt → 0, again not very sensible. This is something that comes

out of using an endogenous growth model rather than an exogenous one
(as in the original B&B model), since there, we can assume that (1+g)
is the exogenously given rate of growth of technology, and neither of
these issues arises. The only real solutions to this problem are to either
assume that at = 0 or to assume that the goods consumption of children
enter the utility of the planner. The second option is probably better,
since this would guarantee that atN

b
t+1/Yt is a constant fraction of

output per person on a BGP (with the right choice of utility function).
Since this would raise a host of issues that we do not want to deal with
here, we will take the less appealing route and assume that at = 0.
Thus, θt = btŵt.
Because of this, it follows that feasibility becomes:
(F4) Ct +Ht+1 +Kt+1 = Yt.
Note that θtN

b
t+1 does not appear in this equation! That is, θtN

b
t+1 =

btwth
s
tN

b
t+1 can be thought of as entering the individual dynasty budget

constraint since the household could either buy this service, or provide
it at home, but, it does not require market output.
Assuming that u(c) = c1−σ/(1 − σ), and g(N) = Nη, we can write

this problem as:

U =
∞X
t=0

βt
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£
πtN

b
t

¤η · Ct

πtN b
t

¸1−σ
=

∞X
t=0

βt

(1− σ)
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t
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subject to:

(βtλt) Ct +N b
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πt
π3t

Ht +RtKt
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First Order Conditions (FOCs, from now on) are:

Ct : βt(1− σ)Ut/Ct = βtλt

Ht : βtλtwt
πt
π3t
= βt−1λt−1

Kt : βtλtRt = βt−1λt−1

N b
t : βt(η + σ − 1)Ut/N

b
t = θt−1βt−1λt−1

Where, Ut =
1

(1−σ)
£
πtN

b
t
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[Ct]

1−σ

Ct : (1− σ)Ut/Ct = λt

Ht : wt
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= Rt

Kt : βRt
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Ut−1
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Ct−1

N b
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b
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t ]
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1−σ

1
(1−σ) [πt−1Nb

t−1]
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[Ct−1]1−σ
=
h

πt
πt−1

iη+σ−1
γη+σ−1N γ1−σC ,

Thus, assuming that Balanced Growth Path (BGP, from now on)
holds, the FOCs become:

Ct : (1− σ)Ut/Ct = λt

Ht : wt
πt
π3t
= Rt

Kt : βRγη+σ−1N γ1−σC = γC

N b
t : β(η + σ − 1)γη+σ−1N γ1−σC = θt−1(1− σ)

Nb
t−1

Ct−1
γN

So,

Kt : γη+σ−1N γ1−σC = γC
βR
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N b
t : β(η + σ − 1)γη+σ−1N γ1−σC = θt−1(1− σ)

Nb
t−1

Ct−1
γN

Ht : wt
πt
π3t
= Rt

These are the 3 equations referred to in the title,11 they come out of
individual dynasty optimization plus intertemporal competitive equi-
librium. As we will see, increases in πt

π3t
, can, at least in some circum-

stances, generate and increase in the growth rate of per capita output.
What are R, w and θ? As discussed above,

θt = btwth
s
t =

btwt
π3t

Ht

Nb
t
.

Note that this implies that either H
N
is constant, or that θt is not

(assuming that wt is, along a BGP) even when the parameters bt and
π3t are constant. Substituting this into the equations above gives:
Kt : γη+σ−1N γ1−σC = γC

βR

N b
t : β(η + σ − 1)γη+σ−1N γ1−σC = bt−1wt−1

π3t−1
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or N b
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(1− σ)γN
or N b

t : β(η + σ − 1)γη+σ−1n γ1−σc = bw
π3

H
C
(1− σ)γn

Ht : wt
πt
π3t
= Rt

Total capital (per dynasty) in period t is just Kt. Total effective
labor supply (per dynasty) is Ns

t h
s
t while the amount used for child

rearing is btN
b
t+1 hours in the dynasty. Thus, labor market clearing

requires that effective labor supply in the market activity is:
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since, hst =
Ht

π3tNb
t
. Note that the term πt/π3t is the conditional

probability of surviving to working age conditional on surviving to
age 5; according to our interpretation this is the relevant measure of
longevity we take as the main “cause” of the industrial revolution, at
least in this simple version of the model. In a more complete version,
we also look at the expected length of the period during which dynasty
members are of working age.

Thus,

11Indeed, every other model we consider in this paper takes more than three
equations to ‘generate’ an industrial revolution.
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w = Fc

³
1, Ht

Kt

h
πt
π3t
− btγn

i´
= Fc

³
1, H

K

h
π
π3
− bγn

i´
R = Fk

³
1, Ht

Kt

h
πt
π3t
− btγn

i´
= Fk

³
1, H

K

h
π
π3
− bγn

i´
Finally, we must also have:

Ct +Ht+1 +Kt+1 = F
³
Kt, Ht

h
πt
π3t
− bt

π3t

Nb
t+1

Nb
t

i´
,

Dividing by Ht gives:

Ct
Ht
+ Ht+1

Ht
+ Kt+1

Ht
= F

³
Kt

Ht
,
h
πt
π3t
− bt

π3t

Nb
t+1

Nb
t

i´
or, assuming BGP,

C
H
+ γH +

K
H
γH = F

³
K
H
,
h
π
π3
− b

π3
γN

i´
Thus, the system of equations that we want to solve is:

Kt : γη+σ−1N γ1−σC = γC
βR

or, γσCγ
1−η−σ
N = βR

or,
h
γC
γN

iσ
γ1−ηN = βR

(see the relevance of
h
γC
γN

i
below).

N b
t : β(η + σ − 1)γη+σ−1N γ1−σC = bw

π3
H
C
(1− σ)γN

Ht : w π
π3
= R

w : w = Fc

³
1, H

K

h
π
π3
− bγn

i´
R : R = Fk

³
1, H

K

h
π
π3
− bγn

i´

Feas : C
H
+ γH +

K
H
γH = F

³
K
H
,
h
π
π3
− b

π3
γN

i´
Variables are: R,w,C/H,K/H, γH , γN , γC . Note that γC = γH (or

C/H and/or K/H must go to zero) since γC is the growth rate of C
not c. These are the growth rates in aggregates. Thus, the growth
rates in per capita terms are given by:
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γc =
cst+1
cst
=

Ct+1/Ns
t+1

Ct/Ns
t
= Ct+1

Ct

Ns
t

Ns
t+1
= γC/γN

Again, what we want to do with this is to do comparative statics with
respect to changing π, and remember that b depends on the whole array
of π0s.

5.2. B&B as a Planning Problem. Rewriting the B&B Competitive
Equilibrium Problem as a Planner’s Problem, we obtain (assuming that
u(c) = c1−σ/(1− σ), and g(N) = Nη):

U =
∞X
t=0

βt

(1− σ)

£
πtN

b
t

¤η · Ct

πtN b
t

¸1−σ
=

∞X
t=0

βt

(1− σ)

£
πtN

b
t

¤η+σ−1
[Ct]

1−σ

subject to:

(βtλt) Ct +Ht+1 +Kt+1 ≤ F
h
Kt, (πtN

b
t )ht

³
1− b

Nb
t+1

πtNb
t

´i
Here, the second term, (πtN

b
t )ht

³
1− b

Nb
t+1

πtNb
t

´
is derived from the fact

that there are (πtN
b
t ) number of people surviving to working age, with

ht human capital per surviving person, and that (1 − b
Nb
t+1

πtNb
t
) is the

amount of time remaining, per survivor, after the time spent doing
child care for the next generation is accounted for.

Human capital per worker is ht =
Ht

µtN
b
t
, this gives us a labor input

Lt = (πtN
b
t )ht(1− b

N b
t+1

πtN b
t

)

= (πtN
b
t )

Ht

µtN
b
t

(
πtN

b
t − bN b

t+1

πtN b
t

)

=
πt
µt
Ht

µ
πtN

b
t − bN b

t+1

πtN b
t

¶
Thus, the constraint for the problem is:

(βtλt) Ct +Ht+1 +Kt+1 ≤ F
h
Kt,

πt
µt
Ht

³
πtNb

t−bNb
t+1

πtNb
t

´i
or

(βtλt) Ct +Ht+1 +Kt+1 ≤ F [Kt, L1tht]

and
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bN b
t+1 ≤ L2t

L1t + L2t ≤ πtN
b
t

Which can be written as:

(βtλt) Ct +Ht+1 +Kt+1 ≤ F
h
Kt, L1t

Ht

µtN
b
t

i
and

bN b
t+1 ≤ L2t

L1t + L2t ≤ πtN
b
t

TOBEADDED: SHOWTHATPLANNERPROBLEMANDEQUI-
LIBRIUM PROBLEM HAVE EQUIVALENT SOLUTIONS.

6. The B&J Model with Endogenous Growth

6.1. Assumptions and Notation. The model studied in this part
has T-period lives (T will be either 3 or 4, for the time being), al-
truism from children toward parents but not viceversa, and certainty-
equivalence within each family (i.e., we look at a ”representative fam-
ily” and make the bold assumption that both an economy-wide insur-
ance for individual death risk, and bequest mechanisms of the specific
form specified below, are automatically implemented.) Utility is arbi-
trary, in principle, but we specialize it to CES to get analytical solutions
and then calibrate the model. Population in each period is denoted,
respectively, Ny for the young, Nm for middle age (Nm1 and Nm2 in
the model with four periods, distinguishing between ”early” and ”late”
middle age), and No for the old. Age specific survival probabilities to
the next period of life are denoted as πy, πm, and πo for young, early
middle-age and late middle-age people, respectively; they range in the
interval [0, 1], with πo = 0 in the three period model.
Production function is arbitrary neoclassical, but we assume either

Cobb-Douglas or general CES to make progresses with algebra. As
argued in the motivational section, the empirically most relevant case
appears to be that of a CES with an elasticity of substitution between
human and physical capital less than one, i.e., with less substitutability
than the Cobb-Douglas. The aggregate production function is denoted
as Yt = F (Kt, Ht) = LtF (kt, ht), where Lt is the total amount of raw
labor supplied in period t, and F has the usual neoclassical properties.
People can only accumulate human capital during the first period, when
young. Two different technologies to accumulate human capital will be
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considered. In the first, labelled the one sector case, for each child
parents invest goods, in a quantity a ≥ 0, and a fraction b ∈ [0, 1]
of their own time to rear her to working age. In the second, the two
sector case, both goods and time are purchased on the market, from a
competitive child-care sector that uses this same technology.
People can procreate only during their middle age (early middle age,

when T=4), and the number of newborns in period t, per middle age
person, is nbt . The total cost of having a child is denoted θt + µtht+1,
where θt = a + btwtht, µt ∈ [πyt , 1] is the exogenous probability that
a child born in period t survives till when she can receive professional
training/education, and ht+1 is her endogenous level of human capital,
chosen by the parents.
Notice that, with this timing of events and, in particular, under

the assumption that old people do not work, the role played by the
survival probability πm in determining the investment in human capital
is ambiguous. For sure, when πm increases, total investment by middle
age agents should increase. Total investment, though, can take three
forms: more children, more capital per worker, and a higher human
capital for each child. Of these three kinds of investment, the first
decreases the (growth rate of) per capita income, while the other two
should both increase it. The conjecture is, therefore, that an increase
in πm will lead to higher aggregate investment in all three directions
(k, n and h) with the increase in k and in the h/k ratio depending
on relative values of the technological parameters. An increase in πy,
which, as we know from previous work, leads to less fertility, should
increase h unambiguously, while it is unclear if it leads also to higher
levels of k; intuition and basic algebra suggests that, in any case, the
net effect on the h/k ratio should be positive.

6.2. The Simplest B&J Model. Here we illustrate the analytically
simplest version of the B&J model, which is the one adopted so far in
the calibration exercises summarized in the next section. This version
has three period lives, positive mortality only for the young, middle age
agents behaving non-cooperatively in determining donations to parents,
a Cobb-Douglas production function, and two distinct sectors, one for
market output and for childcare services. In this case, parents do not
use their own time to rear children but purchase the services from the
market, at the going equilibirum price. The optimization problem is

Max{nbt ,dit,ht+1kt+1}u(c
m
t ) + ζu(cot ) + βu(cot+1)

subject to:
cmt + kt+1 + nbt(at + ŵtĉ

cc
t + µtht+1) + dit ≤ wthtc

m
t + ŵtc

cc
t
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cot ≤ Rtkt + dit +Dt

cot+1 ≤ Rt+1kt+1 + πtn
b
tdt+1

cmt + ccct ≤ 1
ĉcct ≥ bt.

Market clearing in the childcare sector implies that ĉcct = ccct , for the
representative agent in the cohort. Similarly, interiority will imply that
ŵt = htwt, and hence, it follows that θt = at + bthtwt, and thus, since
at = 0, θt = bthtwt. Thus, output, in period t + 1, per old person in
the same period, is given by:

yt+1 = F (kt+1,eht+1) = F [kt+1, πtn
b
tht+1(1− btn

b
t+1)],

and rental rates and wage rates are given by:

Rt+1 = Fk(kt+1, πtn
b
tht+1(1− btn

b
t+1))

and,

wt+1 = Fh(kt+1, πtn
b
tht+1(1− btn

b
t+1))

respectively.

6.2.1. Donations and Old Age Consumption. Assuming that u(c) =
c1−σ/(1− σ), first order conditions for donations are:

cot = ζ1/σcmt ,

from which we find that:

dt =
ζ1/σ (wtht − It)−Rtkt

ζ1/σ + πt−1nbt−1

cot =
ζ1/σ

ζ1/σ + πt−1nbt−1

£
πt−1nbt−1 (wtht − It) +Rtkt

¤
.

cmt =
1

ζ1/σ + πt−1nbt−1

£
πt−1nbt−1 (wtht − It) +Rtkt

¤
∂cot
∂st−1

=
ζ1/σ

ζ1/σ + πt−1nbt−1
Rt

∂cot
∂nbt−1

=
πt−1ζ1/σh

ζ1/σ + πt−1nbt−1
i2 hζ1/σ (wtht − It)−Rtkt

i
∂cot
∂ht

=
ζ1/σ

ζ1/σ + πt−1nbt−1
πt−1nbt−1wt
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6.2.2. Intertemporal First Order Conditions. (FOCn)

u0(cmt )(θt + µtht+1) = βu0(cot+1)
∂cot+1
∂nbt

(FOCh)

u0(cmt )µtn
b
t = βu0(cot+1)

∂cot+1
∂ht+1

(FOCk)

u0(cmt ) = βu0(cot+1)
∂cot+1
∂st

Reducing the system to two equations and two unknowns. From (FOCh)
and (FOCk) we observe that,

µt−1Fk

³
kt,eht´ = πt−1Fh

³
kt,eht´ .

Using y = Akαeh1−α, the latter equality yields
nbt =

1

bt

µ
1− 1− α

αµt−1nbt−1
bkt¶ ,

So, because nbt−1 is predetermined, the intertemporal equilibrium re-
lation between capital intensity and fertility is one to one. We also
have

Rt = αA

·
πt−1(1− α)

αµt−1

¸1−α
wt = (1− α)A

·
αµt−1

πt−1(1− α)

¸α

byt = A

µ
πt−1(1− α)

αµt−1

¶1−α bkt = bAt
bkt

beht = eht
ht
=
(1− α)πt−1

αµt−1
bkt.

bIt = bkt+1 + 1
b

µ
1− 1− α

αµt−1nbt−1
bkt¶ (wb+ µtγh,t)

The remaining variables can be computed accordingly.
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6.2.3. Computing the Intertemporal Competitive Equilibrium. We ex-
ploit the consumption ratio bcotbcmt = ζ1/σ.

When the latter is plugged in FOCk, this can be solved to express the
growth rate of per capita output as a function of parameters and state
variables only:

γσh,t =
βζ1/σ−1

ζ1/σ + πt
b

³
1− 1−α

αµt−1nbt−1
bkt´αA

·
πt(1− α)

αµ

¸1−α
From the latter, the whole competitive equilibrium sequence can be
computed recursively starting from given initial conditions for {k0, h0, n−1}
and parameters.

6.2.4. BGP Solutions. Because,

bco = ζ1/σ

ζ1/σ + πn

h
πn
³
w − bI´+Rbki .

bcm = 1

ζ1/σ + πn

h
πn
³
w − bI´+Rbki

we have that. bcobcm = ζ1/σ

The eight variables to be determined are {bd,bk, n, γh,bcm,bco, R,w}.Starting
with the donation function, the eight BGP equations we use are

d =
ζ1/σ

³
w − bI´−Rbk
ζ1/σ + πn

FOCn

[γh]
σ−1 (bw + µγh) = β

πζ1/σ−1

[ζ1/σ + πn]2

h
ζ1/σ

³
w − bI´−Rbki

FOCh

[γh]
σ µ = β

πζ1/σ−1

ζ1/σ + πn
w

FOCk

[γh]
σ = β

ζ1/σ−1

ζ1/σ + πn
R

BCMa bcm + γhbk + n(bw + µγh) + bd = w
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BCOld bco = Rbk + πnbd
MCK

R = Fk(bk, πn(1− bn))

MCH
w = Fh(

bk, πn(1− bn))

These can be manipulated, as in the intertemporal competitive equi-

librium case, to find that bk = αµn(1− bn)

1− α

R = αA

·
π(1− α)

αµ

¸1−α
w = (1− α)A

·
αµ

π(1− α)

¸α
by = A

µ
π(1− α)

αµ

¶1−α bk = bAbkt
Last step, using FOCk solve for γh as a function of n and then use
FOCn to solve the nonlinear equation for the BGP value of n.

[γh]
σ =

βζ1/σ−1

ζ1/σ + πn
αA

·
π(1− α)

αµ

¸1−α
7. Quantitative Implementations of the Models

In this section, we describe the results of calibrating and simulating
some (two, at the time being) among the simple models described in
the preceding sections. To this point in time, we have only conducted
full blown simulations of the Barro and Becker version of the model,
and “comparative BGP simulations” of one version of the B&J model,
the one with two sector, Cobb-Douglas production function and non-
cooperative behavior of siblings in the donations game.
What we find in the case of the B&B framework, is that versions

of the model that are calibrated to realistic values of the parameters
give rise to quantitatively interesting and realistic changes in the rate
of growth of output per capita when survival probabilities are changed
as they have changed historically in the UK between 1700 and 2000.
This is, we think, evidence that the mechanism we are highlighting
here — improved survival rates increasing the rate of return to human
capital investments and increasing the technological frontier in such a
way as to increase the growth rate of output — is worthy of more careful
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development. The model does not do so well when it comes to fertility
decisions per se, however. Here, in contrast to what is seen in both
the time series data for the UK and in the country cross section data
described in Section 2, increased survival rates permanently increase
fertility rates and thereby asymptotic population growth rates. Al-
though not huge, these increases are of significant size economically. In
particular, what the various versions of the models we have simulated
so far miss is the following historical demographic pattern: fertility
does neither increase nor decrease to a large extent when survival rates
(among adults, especially) begins to improve; which leads to a first long
period of increasing growth rates of population. Eventually, and espe-
cially when children and infant mortality rates drop, fertility also drops
rapidly and dramatically, slowing down population growth. Should we
extend the analysis to the whole of of the twentieth century, then one
should require the model to yield a zero rate of population growth. The
demographic dynamics generated by the B&B model does not satisfy
all such requirements, as population growth rates are always increas-
ing together with the growth rate of per capita GDP as mortality rates
decrease. As we show below, when calibrated to (second half of the)
XX-century-like parameter values, the B&B model yields a BGP with
an endogenous growth rate of output per capita equal to about 2%,
which is pretty much what we seem to observe, and a zero growth rate
of the population, which is also what we seem to observe.
The behavior of the B&J model is, in some sense, the mirror image

of the B&B: it does better on the side of fertility, but more poorly
on the side of output, as it tends to exagerate the increase in the the
growth rate of output that follows a drop in mortality. We have so
far calibrated and simulated only the non-cooperative version, hence
things may appear different once we succeed simulating the transition
path for the cooperative version. In the same circumstances as the B&B
model, i.e. when calibrated to XX-century-like values, it generates a
2% growth rate of output per capita but fails to achieve a constant
population, predicting instead a population that declines at the rather
rapid pace of 8% per year.

7.1. Calibrating the B&B Model. Recall that the B&B version of
the model can be summarized through the choice of utility function,
the production function for output and the cost of newborn children.
In keeping with the above, we choose:
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U =
∞X
t=0

βt

(1− σ)

£
πtN

b
t

¤η · Ct

πtN b
t

¸1−σ
=

∞X
t=0

βt

(1− σ)

£
πtN

b
t

¤η+σ−1
[Ct]

1−σ

and

F (K,L) = AKα(Lh)1−α

Thus, the parameters we need to pick are: β, σ, η, b, A, α.For this, we
choose α = 0.36 following the RBC literature and select combinations
of the remaining parameters, β, σ, η, b, and A so as to match interest
rates, population growth rates and output growth rates in the UK in
1750 given the survival rates that were in effect at that time. Since it
is not obvious whether calibrating to early in the period (e.g., 1750) or
later (e.g., current) is more reasonable, we constructed two versions of
the calibration, one matching the 1750 facts, the other matching the
facts as they are currently.
To do this, we must first choose the length of a period. For this,

we choose T = 20 years as a baseline. Given this, we need data on
the survival rates to age 5 and 20. Unfortunately, as can be seen from
the data presented in Figure 1C, the Wrigley, et. al., data can only be
used to calculate directly survival probabilities to age 15, not 20, for the
period 1750 to 2000. The data from www.mortality.org (from 1840 to
1905) and Mitchell (from 1905 to 1970) can be used to calculate survival
rates to 20 directly. Survival rates to age 5 are directly available from
these sources and can be used to construct a continuous series for the
entire 1750 to 2000 period. The data from www.mortality.org can be
used to compute estimated survival probabilities to both age 15 and
20, and these are shown in Figure 1C. To adjust for the fact that data
on survival to age 20 is not available for the 1750 to 1840 period, we
use the fact that the ratio of the probability of survival to age 20 to the
probability of survival to age 15 was .96 in 1840, and rose steadily to
1.0 over the period from 1840 to 1970. Thus, using the linear function

πt = 0.96 ∗ Surv15W&St
seems a conservative approximation. This gives an initial value of
π1750 ≈ 0.6 which is what we use for both out calibration and out quan-
titative exercises. That µ1750 ≈ 0.75 comes directly from the Wrigley,
et. al. tables. Summarizing then, the actual values of µt and πt that
we use are given in Table 6 below.
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Table 6: Survival Probabilities
Year µt πt
1735 0.696 0.609
1765 0.744 0.666
1795 0.746 0.678
1825 0.771 0.705
1850 0.728 0.660
1870 0.735 0.684
1890 0.770 0.733
1910 0.829 0.824
1930 0.919 0.919
1950 0.962 0.961
1970 0.977 0.976

Over the period from 1650 to 1750, population in the UK grew
at about 0.1% per year (Wrigley, et. al. (****)) while per capita
GDP grew at about 0.3% per year (Clark (****)). Thus, for our
1700 calibration, we will choose parameters so that on an initial BGP,
γy = γn ≈ 1.0 given that µ1750 = 0.75, π1750 = 0.60 (Wrigley and
Schofield (****)). We choose β = 1.03−1 on an annual basis so that
real rates of interest with constant consumption would be about 3%.
This gives us 2 extra degrees of freedom that we will remove in fu-
ture vintages of the paper. We adopt a similar strategy for the 2000
calibration. Again we use β = 1.03−1 and use the more recent values
of µ2000 = π2000 = 1.0, and γn ≈ 1.0, γy = 1.02.The values of the
parameters we have chosen for our base case are shown in Table 7.

Table 7: Calibration of the B&B Model
1750 Calibration 2000 Calibration

α 0.36 0.36
β (1.03)−1 (1.03)−1

η 0.20 0.20
σ 0.85 0.85
b 0.06 0.10
A 4.0 4.65
µ1750 0.75 0.75
π1750 0.60 0.60
µ2000 1.00 1.00
π2000 1.00 1.00

Table 8 shows the targeted quantities and how close the calibrated
version of the model comes to matching them.
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Table 8: Model versus Data, Calibrated Moments
Target 1750 Calibration Data 1750 Source 2000 Calibration Data 2000
R 2.99% 4.5% C&H 4.52% 4%
γn 1.001 1.001 W&S 1.001 1.003
γy 1.001 1.003 Clark 1.018 1.02

7.2. Results From the Calibration.

Figures 3C and 3D show the results of the predicted time series of
population and per capital income, both from the model and the
actual time series from the UK, and both for the 1750 and the 2000
calibrations. For the model quantities, we show BGP levels only, not
a full transition in the probabilities. Not surprisingly, they show

several common features:

Figure 3C: Model vs. Data; 1750 Calibration, Levels
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(1) When calibrated to either the 1750 or the 2000 BGP, the model
is able to match the targeted values with reasonable parameter
values.

(2) When simulated ‘forward’ (or ‘backward’, from 2000) the model
also tracks reasonably well the observed changes in the growth
rate of output at low frequencies. If anything, it predicts more
growth in income than observed.
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(3) The model does not do well, indeed it performs rather poorly,
in tracking the overall pattern of population growth rates. For
both calibrations, the model predicts an increase in γn of about
1% per year between 1750 and 2000, whereas in the data, γn,1750 ≈
γn,2000 ≈ 1.00. This gets at the mechanism that is driving the
model results and points to both its strengths and its weak-
nesses. That is, in the model, increases in survival probabilities
increase the rate of return to human capital formation, thus
increasing output growth rates. For the same reason however,
children become better investments. This increases fertility and
thereby increases population growth rates permanently.

(4) The model is weak at tracking the higher frequency movements
in output growth and population growth. This is perhaps not
surprising since the driving force is only survival probabilities
and it is unlikely that reductions in these are the cause of the
Great Depression or the two World War.

7.3. Calibrating the B&J Model. As with the B&B model, we need
to calibrate an aggregate production function and a utility function
that has three arguments, own middle and old age consumption, and
consumption of parents. Thus, the parameters we need to pick are:
β, σ, ς, b, A, α.For this, we choose α = 0.36 following the RBC literature
and select combinations of the remaining parameters, β, σ, η, b, and A
so as to match observables for either 1750 or 2000. As the mortality
data used are the same as for the B&B, the description is not repeated
here. The values of the parameters we have chosen for our base case
are shown in Table 9, while Table 10 shows the targeted quantities and
how close the model comes to matching them .

Table 9: Calibration of the B&J Model
1750 Calibration 2000 Calibration

α 0.36 0.36
β (1.03)−1 (1.03)−1

ς 1.57 1.80
σ 0.50 0.50
b 0.06 0.06
A 7.9 10.00
µ1750 0.75 0.75
π1750 0.60 0.60
µ2000 1.00 1.00
π2000 1.00 1.00
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Table 10: Model versus Data, Calibrated Moments
Target 1750 Calibration Data 1750 Source 2000 Calibration Data 2000
R 6.56% 4.5% AK 8.6% 4%
γn 1.001 1.001 W&S 1.0009 1.003
γy 1.0006 1.003 Clark 1.019 1.02

7.4. Results From the Calibration. The results for the B&J model
are, in some sense, similar but complementary to those of the B&B
model. While both can be calibrated to match targeted quantities at
either 1750 or 2000, both appear to have troubles at matching observed
dynamic patterns. The B&J model, at least in the cooperative version
adopted here, seems to have an additional troubles, i.e. it requires
an unreasonably high value for the parameter ς to match observed
data. Without a weigth that large on the utility of parents, the rate of
return on having children is too low, compared to that of just investing
in physical capital, and parents end up having an unrealistically low
number of children.12

Moving to the dynamics, for the B&B it is population that behaves
poorly, while for the B&J it seems to be output. This can be seen, more
clearly, in Figure 4D, where the B&J model substantially overpredicts
the growth rate of output. Notice that this may not be a ‘structural’
weakness of the B&J model, but may steam from the calibration of A,
which, as noted in the previous footnote, is very high and yields a rate
of return on capital, in both calibrations, that is substantially higher
than the value in the data. In other words, for reasons that still escape
us, investing in capital is too much profitable respect to investing in
children in the B&J model, hence the mismatch with data.

8. Directions for Future Work

The experiments run so far point to several potentially fruitful fur-
ther directions for research.

12We admit being puzzled by the behavior of the B&J model along this dimen-
sion, which makes us suspicious of our own algebra. This is because we must, at the
same time, use a very large value for A in the production function, which generates
an abnormally high rate of return on capital, and hence the problem with children’s
donations noted in the text.
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Figure 4C: B-J Model vs. Data; 1750 Calibration, Levels

0

2

4

6

8

10

12

1750 1800 1850 1900 1950 2000

Year

ln
(P

op
), 

ln
(G

D
P)

ln(Pop)
ln(GDP)
ln(PopMod)
ln(GDPMod)

Figure 7.2

Figure 4D: B-J Model vs. Data; 2000 Calibration, Levels
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Figure 7.3

(1) Get a version of the B&J model working without assuming an
unreasonably large weight for the utility of the old parents.
Based on past experience with these models, it is quite possi-
ble that this will offer improvements in the tracking of fertility.
Aside for possible mathematical mistakes, we expect the co-
operative version to make investing in children much more at-
tractive, allowing a more realistic calibration of the production
function and, hence, of the rate of return on capital.
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(2) Do the full model with transition dynamics (for both the B&B
and B&J models).

(3) Explore other, more complex models of the formation of human
capital and the changes that a CES production function may
induce in factor shares and the rate of return on capital.

(4) Add one more period (two, for the B&B) in the life times of
the representative agents, and introduce the relevant mortality
rates in the transition from one period to the other. This latter
is a particularly important improvement, as it may generate a
temporary increase in fertility in the first part of the transition
(when the survival rate of adults increases) and a subsequent de-
crease in fertility later on (when the survival rates of infant and
children increase). While this may not eliminate the structural
tendency of the B&B model to make output and population
growth rates increase together, it may allow the B&J model to
better match the historical patterns.
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