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Abstract

This paper studies capital adjustment costs. Our goal here is to characterize

these adjustment costs, which are important for understanding both the dynamics

of aggregate investment and the impact of various policies on capital accumulation.

Our estimation strategy searches for parameters that minimize ex post errors in

an Euler equation. This strategy is quite common in models for which adjustment

occurs in consecutive periods. Here, we extend that logic to the estimation of

parameters of dynamic optimization problems in which non-convexities lead to

extended periods of investment inactivity.

1 Introduction

This paper studies capital adjustment costs. As in the recent literature, our model

incorporates various forms of capital adjustment costs intended to capture the rich nature

of capital adjustment at the plant-level. Our goal here is to characterize these adjustment

costs, which are important for understanding both the dynamics of aggregate investment

and the impact of various policies on capital accumulation.

Our estimation strategy searches for parameters which minimize ex post errors in

an Euler equation. This strategy is quite common in models for which adjustment

occurs in consecutive periods. Here, following Pakes (1994) and Aguirregabiria (1997),

we extend that logic to the estimation of parameters of dynamic optimization problems

in which non-convexities lead to extended periods of investment inactivity. We do so in

the context of the capital adjustment problem.
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This paper thus makes two contributions. First, we obtain parameter estimates for

capital adjustment costs. Second, we obtain these estimates using a new methodology.

The paper begins by specifying the dynamic optimization problem at the plant-level.

This problem is used to generate the Euler equation that underlies our empirical analysis.

The empirical strategy is then laid-out in some detail. We provide some results using

simulated data to guide us in terms of the choice of instruments and also in dealing with

problems of censored observations. Finally, estimates of adjustment costs are reported.1

2 Model

The dynamic optimization model draws upon the results reported in Cooper and Halti-

wanger (2000). The dynamic programming problem, ∀(A,K), is specified as:

V (A,K) = max{V i(A,K), V a(A,K)} (1)

where K represents the beginning of period capital stock and A is the profitability shock.

The superscripts refer to active investment “a,” where the plant undertakes investment

to obtain capital stock K ′ in the next period, and inactivity “i,” where no investment

occurs. These options, in turn, are defined by:

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1 − δ)) (2)

and

V a(A,K) = max
K′

Π(A,K)λ− pb(I > 0)(K ′ − (1 − δ)K)

+ ps(I < 0)(K ′ − (1 − δ)K) −
ν

2

(

K ′ − (1 − δ)K

K

)2

K + βEA′|AV (A′, K ′)

(3)

So here there are three types of adjustment costs which, as reported in Cooper and

Haltiwanger (2000), are the leading types of estimated adjustment costs. The first is

a disruption cost parameterized by λ. If λ < 1, then any level of gross investment

implies that a fraction of revenues is lost. The second is the quadratic adjustment cost

parameterized by ν. The third is a form of irreversibility in which there is a gap between

1This last section is not yet complete.
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the buying, pb, and selling, ps, prices of capital. These are included in (3) by the use of

the indicator function for the buying (I > 0) and selling of capital (I < 0).

Assume the profit function has the following form

Π(A,K) = AKα. (4)

Cooper and Haltiwanger (2000) discusses the derivation of this profit function from a

production function and a demand curve facing the plant.

The first-order condition for the investment decision is

p(I) + ν

(

K ′ − (1 − δ)K

K

)

= βEA′|AV2(A
′, K ′) (5)

where p(I) = pb if I > 0 and capital is purchased and p(I) = ps if I < 0 and capital

is sold. To evaluate this equation ex post, we expand the EA′|AV2(A
′, K ′) term until

the plant’s next episode of capital adjustment is observed. With non-convex adjust-

ment costs, λ < 1, adjustment will generally not occur each period. We then replace

expectations with realizations to calculate the ex post errors from the Euler equation.

To see how this works, suppose the plant adjusts in two consecutive periods, t and

t+ 1. Then the ex post error, denoted εt,t+1, from (5) is

εt,t+1 = ν
It

Kt

+p(It)−β

[

λΠ2(At+1, Kt+1) + p(It+1)(1 − δ) + ν(1 − δ)
It+1

Kt+1
+
ν

2

(

It+1

Kt+1

)2
]

(6)

where It = Kt+1 − Kt(1 − δ). The first two terms here are the period t marginal costs

of capital and the remaining terms are the marginal gains for the next period, including

the marginal profitability and the marginal effects on adjustment costs next period.

Of course, not all plants adjust every period. It is not appropriate due to selection

bias to estimate parameters from the plant’s who choose to adjust in two periods.2 Thus

we need a more general condition which allows estimation of the structural parameters.

In general, if the plant adjusts in period t and subsequently in period t+ τ , then the

ex post error, denoted εt,t+τ , from the first-order condition is

2We later characterize this bias.
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εt,t+τ = ν
It

Kt

+ p(It) −
τ−1
∑

i=1

βiΠ2(At+i, Kt+i)(1 − δ)i−1 − βτλΠ2(At+τ , Kt+τ )(1 − δ)τ−1

−βτ

[

p(It+τ )(1 − δ)τ + ν(1 − δ)τ It+τ

Kt+τ

+
ν

2

(

It+τ

Kt+τ

)2

(1 − δ)τ−1

]

.

(7)

From this general expression, the first term on the right is the marginal cost of

adjustment and the second term is the gain in profitability in the period of adjustment.

During the periods between adjustment, there is an the effect of capital accumulation

on marginal profitability. Finally, in the period of the next adjustment, i.e. when the

spell of inactivity ends, there is a final term reflecting the effects of Kt+1 on the marginal

adjustment cost in period t+ τ . Note that the non-convex adjustment cost, λ, appears

in (7), at the end of the spell of inaction. In addition, both the price of capital in the

period of the initial adjustment and in the next adjustment are included as well.

As in the estimation of quadratic adjustment cost models, the ex post errors should

not be predictable. In the next section we discuss estimation of all parameters, including

the non-convex adjustment cost parameter using the orthogonality restrictions generated

by optimization.

3 GMM Estimation

Pakes (1994) argues that the logic of Hansen and Singleton (1982) can be applied to

the estimation of the structural parameters in a dynamic discrete choice problems. The

application in Pakes (1994) is investment coupled with an exit decision. Aguirregabiria

(1997) considers a dynamic labor demand model. Here we discuss the estimation of the

capital accumulation problem drawing on those contributions.

Starting with (7), we can compute the ex post errors between adjustment periods.

The optimization condition of the firm, (5), implies that expectations in period t over

the ex post errors for all completed spells should be zero.

Et[εt,t+τ ] = 0 (8)

for all τ where the expectation is conditional on all variables known in period t. Thus,

εt,t+τ ought to be uncorrelated with period t and prior variables. Using a vector of N
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variables predetermined in period t, zt, the following orthogonality condition can be used

in a GMM estimation procedure.

Et[ztεt,t+τ ] = 0 (9)

The sample analog of this condition is

m =
1

n
Z ′ε(X, θ) = m(θ) (10)

where Z is the matrix of N variables over T periods and ε(X, θ) are the ex post errors

calculated using the sample data, X, and the parameter vector of interest, θ.

The minimum distance estimator is the θ̂ that minimizes

s = m(θ̂)′W−1m(θ̂)

=
1

n2
[ε(X, θ̂)′Z]W−1[Z ′ε(X, θ̂)]. (11)

Hansen (1982) showed that for this estimator, the optimal choice for W is

WGMM = Var (Z ′ε(X, θ))

=
1

n2
Z ′ΩZ (12)

where Ω = E[εε′]. If the errors are uncorrelated, W can be estimated as shown by White

(1980) using the following equation.3

(

1

n

)

S0 =
1

n

[

1

n

T
∑

t=1

ztz
′
tε(xt, θ̂)

2

]

. (13)

Finally, the estimated asymptotic covariance matrix of the GMM estimator is

V (θ̂) =



G(θ̂)

(

Z ′Ω̂Z

n2

)−1

G(θ̂)′





−1

(14)

where G(θ̂) = ∂m(θ̂)

∂θ̂
is numerically computed.

3There is an unresolved issue concerning a correction in the case where the errors are correlated.

Because the “observations” in this estimation are spells of different length it is not immediately apparent

how to apply a correction similar to that of Newey and West (1987).
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4 Monte Carlo

Before estimating this model, we construct a simulation-based exercise. There are a

number of goals of this experiment. First, there is the issue of checking the methodology

to be sure that we can consistently estimate the parameters of interest.4 Second, there

is the issue of instruments. One can solve (11) for any instruments and, at least in

theory, obtain consistent parameter estimates. In practice, it is useful to find instruments

that are effective across a broad range of parameterizations. This can be achieved by

simulating different models of adjustment costs and evaluating alternative instrument

sets.

Third, the estimation strategy outlined above assumes that all investment spells

are complete: for all plants adjusting in period t, there is a τ such that adjustment is

observed in period t+ τ . In practice, spells may not all be complete. In that case, there

are two issues. The first concerns the extent of the bias associated with estimation from

completed spells only. The second is the development of a correction which is consistent

with the dynamic optimization approach.

4.1 Creation of simulated dataset

A data set is simulated in the following steps. First, the structural parameters of the

model are chosen and the investment policy functions of the dynamic programming

problem are obtained through value function iteration. The parameters of interest in

this exercise are those that can be estimated with GMM: Θ = {α, ν, λ, ps}.
5

We consider three different parameterizations of Θ in order to assess the properties

of the estimation procedure. The first case, Θa = {0.6, 2, 1, 1}, includes only a quadratic

cost of adjustment. The second case, Θb = {0.6, 2, 0.95, 0.98}, adds asymmetry between

the buying and selling prices of capital and disruption costs. This parameterization

results in a much higher rate of inactivity due to the introduction of the non-convex

costs associated with adjustment. The final case, Θc = {0.6, 2, 0.8, 0.98}, has a much

larger disruption cost and therefore leads to more inactivity. This parameterization most

closely matches the estimates of Cooper and Haltiwanger.

4This is partly a test of our programs and partly an evaluation of the logic associated with this

extension of the method of Euler equation estimation.
5In this exercise, we normalize pb = 1 and we have chosen not to focus on estimating the discount

rate, β, at this point. In the estimation on manufacturing data, we may include interest rate to allow

for variation in the discount rate.
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The other structural parameters of the model are chosen to be similar to those used

by Cooper and Haltiwanger. The frequency of the model is annual, so the discount

rate, β, is set at 0.95. The productivity shock, A, consists of an aggregate shock and an

idiosyncratic shock. Each of these shocks follows a log-normal autoregressive process.

The aggregate shock process has a persistence of 0.75 and the innovation to this process

has a standard deviation of 0.05. The idiosyncratic shock process has a persistence of

0.88 and the standard deviation of the innovation is 0.3. The depreciation rate, δ, is

0.07.

The simulated panel data set is created by using the investment policy functions

in conjunction with the randomly drawn innovations to the two productivity shock

processes. For these exercises, each data set contains 200 plants, the size of an average

manufacturing sector. To explore the small sample properties of this estimation method,

results are reported for 3 sample lengths: 19 periods, 50 periods, 100 periods.6

4.2 Parameter estimation

The parameter vector Θ is estimated by minimizing the weighted sum of squared mo-

ments statistic in (11). Two different sets of instruments are used to examine the impact

of alternative instruments on the precision of the estimates. The first set of instruments

is composed of current and once-lagged values of the state variables of the dynamic

programming problem along with a constant; Z1,t = {1, At, At−1, Kt, Kt−1}. The second

set of instruments consists of current and once-lagged variables that are observed in the

actual data. The variables include the investment rate ( I
K

), the profit rate ( π
K

), and the

capital stock (K); Z2,t = {1, It

Kt

,
It−1

Kt−1
, πt

Kt

,
πt−1

Kt−1
, Kt, Kt−1}.

The estimates are obtained using a two-stage procedure. In the first stage, an identity

matrix is used to weight the moments, and the simplex algorithm is used to obtain the

parameter estimates. These first stage estimates are used to estimate a weighting matrix,

W , based on the White specification. This weighting matrix is then used in the second

stage estimation.

An important issue in the estimation is accounting for incomplete spells in the data

set. Non-convex adjustment costs in the form of disruption costs and asymmetry between

the prices of buying and selling capital result in periods of inaction for plants. The

moment condition underlying this GMM estimation is based upon the expectation taken

across ex post errors for all plants that adjusted in a given period. Therefore, if there

6The actual data set that is used for estimation in Section 5 contains 19 periods.
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is a plant that adjusted in a given period but did not adjust again before the end of

the sample, then the ex post error expressed in (7) cannot be computed. We explore

different ways of accounting for these incomplete spells.

The first set of results are shown in Tables 1a, 1b, and 1c, corresponding to the three

parameterizations being considered. For each estimation exercise, 1000 data sets were

simulated. The parameter estimates reported in the tables represent the mean of the

estimates from the 1000 data sets. The standard deviation of the estimates is reported

in parentheses. For the first set of estimates, we control for incomplete spells by only

including observations up to the first period in which there is an observed incomplete

spell.

The results in Table 1a show that the GMM estimation procedure performs well in

the case with only quadratic adjustment costs, Θa, even in the smallest sample exercise.

In this case, the true value of the production function parameter, α, is 0.6, and the scalar

on the quadratic adjustment cost, ν, is set at 0.2. Using the first instrument set, Z1, the

means of the parameter estimates across the 1000 samples of 200 plants and 19 periods

are {ᾱ1,19, ν̄1,19} = {0.600, 1.971}. The respective standard deviations across the 1000

parameter estimates are {0.025, 0.136}. Due to the discrete nature of the value function

iteration solution, there are some situations where firms choose to remain inactive. The

average number of periods before the first incomplete spell is initiated is 13.6 (listed in

the “uncensored periods” column). The average number of complete investment spells

(observations) across datasets is 2615. All complete spells starting on or after the date

on which the first incomplete spell in initiated are dropped.

Increasing the number of periods in the sample from 19 to 100 leads to a slight

improvement in the estimates. The estimate of α is essentially unchanged while the mean

estimate of ν is now 1.991. The standard deviations across both parameter estimates

decreases by more than two-thirds in comparison to those from the smaller samples.

The average number of observations in a sample is 18214.

The lower portion of Table 1a shows estimation results obtained using the second

instrument set. The results here are almost identical to those in the upper panel. The

mean estimate of ν in the largest data set, 1.978, is slightly further away from the the

true value than that reported in the upper panel, but the difference is less than one

standard deviation.
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Table 1a: GMM Estimates of Θa from Monte Carlo Exercise

uncensored

α ν T periods obs.

Θa 0.6 2.0

GMM estimates using 0.600 1.971 19 13.6 2615.2

instrument set Z1 (0.025) (0.136)

0.601 1.988 50 44.6 8584.1

(0.014) (0.074)

0.601 1.991 100 94.6 18214.2

(0.009) (0.047)

GMM estimates using 0.600 1.964 19 13.6 2615.2

instrument set Z2 (0.025) (0.129)

0.600 1.977 50 44.6 8584.1

(0.014) (0.072)

0.601 1.978 100 94.6 18214.2

(0.009) (0.044)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-

dard deviations of the estimates are reported in parentheses. Each sample contains 200

plants. T denotes the length of the sample period. The last two columns report the mean

number of periods in the sample before the first incomplete spell begins and the mean num-

ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in

which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.

Table 1b shows results for the case where the true parameter vector is Θb. Here

we see evidence that the size of the sample strongly affects the average and the preci-

sion of the estimates when disruption costs and capital price asymmetries are present.

In the smallest sample exercise, the mean parameter estimates using instrument set

Z1 are {ᾱ1,19, ν̄1,19, λ̄1,19, p̄s1,19} = {0.63, 0.24, 0.89, 1.02} with respective standard devi-

ations of {0.11, 0.26, 0.32, 0.26}. The imprecision of the estimates is due in large part

to the length of investment inactivity induced by the nonconvex adjustment costs. Af-
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ter omitting all periods beginning with the earliest observed incomplete spell, the av-

erage number of periods used in the estimation is only 4.4 and the average number

of observations is 320. In the largest sample exercise, the mean parameter estimates

are {ᾱ1,100, ν̄1,100, λ̄1,100, p̄s1,100} = {0.602, 0.198, 0.946, 0.978}, which are very close to

the true values of Θb = {0.6, 0.2, 0.95, 0.98}. The precision of these estimates is also

much improved as the average number of uncensored periods increases to 84 and the

average number of observations is not 6207. The respective standard deviations are

{0.019, 0.050, 0.054, 0.046}.

The mean parameter estimates obtained using instrument set Z2, shown in the lower

portion of Table 1b, are very similar to those based on Z1. The precision of these

estimates, however, is much improved. The respective standard deviations of the esti-

mates using the smallest sample are one-third to two-thirds the size of those based on

Z1. In the largest sample, the standard deviations for the four parameter estimates are

{0.014, 0.019, 0.044, 0.016}, representing a reduction of over 50 percent for the estimates

of ν and ps.

Table 1c shows results based on the parameterization that most closely matches the

estimates of Cooper and Haltiwanger, Θc. This parameterization has a much larger

disruption cost, λ = 0.8, than in the previous case. The larger disruption cost leads to

more inactivity and longer observed incomplete spells, which translates into greater im-

precision of the estimates due to the number of periods that must be excluded from the

estimation. The mean parameter estimates in the smallest sample exercise when using in-

strument set Z1 are {ᾱ1,19, ν̄1,19, λ̄1,19, p̄s1,19} = {0.61, 0.10, 0.1.17, 0.89}. The high degree

of impression is reflected in the respective standard deviations of {0.28, 0.42, 1.33, 0.57}.

After controlling for incomplete spells, the average number of periods in the sam-

ple is now only 1.8 periods and the average number of observations is 63. In the

largest sample exercise, the mean parameter estimates are {ᾱ1,100, ν̄1,100, λ̄1,100, p̄s1,100} =

{0.595, 0.189, 0.827, 0.967}. These mean estimates are not as close to the true values as

the comparable estimates in Table 1b, which is a reflection in part of the of greater

impression of the estimates. The average number of uncensored periods is 76.6 and the

average number of observations is 2841, approximately 30 percent fewer observations

than in Table 1b. The respective standard deviations are {0.034, 0.059, 0.127, 0.074}.
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Table 1b: GMM Estimates of Θb from Monte Carlo Exercise

uncensored

α ν λ ps T periods obs.

Θb 0.6 0.2 0.95 0.98

GMM estimates using 0.627 0.239 0.894 1.019 19 4.4 320.5

instrument set Z1 (0.108) (0.260) (0.321) (0.257)

0.603 0.197 0.943 0.979 50 35.2 2583.6

(0.030) (0.081) (0.090) (0.075)

0.602 0.198 0.946 0.978 100 84.5 6207.7

(0.019) (0.050) (0.054) (0.046)

GMM estimates using 0.621 0.180 0.877 0.968 19 4.4 320.5

instrument set Z2 (0.071) (0.103) (0.231) (0.085)

0.604 0.194 0.938 0.978 50 35.2 2583.6

(0.020) (0.031) (0.070) (0.026)

0.602 0.197 0.945 0.978 100 84.5 6207.7

(0.014) (0.019) (0.044) (0.016)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-

dard deviations of the estimates are reported in parentheses. Each sample contains 200

plants. T denotes the length of the sample period. The last two columns report the mean

number of periods in the sample before the first incomplete spell begins and the mean num-

ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in

which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.
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Table 1c: GMM Estimates of Θc from Monte Carlo Exercise

uncensored

α ν λ ps T periods obs.

Θc 0.6 0.2 0.80 0.98

GMM estimates using 0.610 0.099 1.170 0.894 19 1.8 63.2

instrument set Z1 (0.275) (0.422) (1.332) (0.572)

0.598 0.195 0.823 0.979 50 25.7 953.6

(0.067) (0.125) (0.253) (0.159)

0.595 0.189 0.827 0.967 100 76.6 2841.6

(0.034) (0.059) (0.127) (0.074)

GMM estimates using 0.622 0.095 0.700 0.904 19 1.8 63.2

instrument set Z2 (0.120) (0.148) (0.434) (0.167)

0.595 0.185 0.808 0.966 50 25.7 953.6

(0.029) (0.044) (0.125) (0.047)

0.599 0.195 0.808 0.975 100 76.6 2841.6

(0.017) (0.027) (0.072) (0.030)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-

dard deviations of the estimates are reported in parentheses. Each sample contains 200

plants. T denotes the length of the sample period. The last two columns report the mean

number of periods in the sample before the first incomplete spell begins and the mean num-

ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in

which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.

The estimates obtain using instrument set Z2, shown in the lower portion of Ta-

ble 1c, are much more precisely estimates and the mean estimate is much closer to

the true value in the largest sample. The standard deviations of the four parameter

estimates are less that half the size obtained using Z1 in the smallest sample. In the

largest sample exercise, the mean parameter estimates are {ᾱ2,100, ν̄2,100, λ̄2,100, p̄s2,100} =

{0.600, 0.196, 0.806, 0.976}, which are very close to the true values of Θc = {0.6, 0.2, 0.8, 0.98}.

The standard deviations are roughly half the size of those obtained with Z1. One poten-
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tial explanation for the improved results using Z2 is that Z2 contains two more variables

than Z1. With the additional variables, Z2 may provide more explanatory power than

Z1. However, instrument set Z1 contains the current and once-lagged values of the

state variables of the dynamic programming problem, which should be the only pieces

of information needed to summarize the information set of the plant.

4.3 Incomplete Spells

The previous exercises illustrate that this GMM methodology works well if the sample

is of sufficient length. But in cases where the length of the panel is short, the exclusion

of periods due to incomplete spells leads to imprecise estimates. An alternative to

excluding periods containing incomplete spells is to use all of the available data and

attempt to control for the bias created by incomplete spells. In this subsection, we will

conduct two experiments to examine the bias introduced by the failure to control for

incomplete spells.

The first exercise will be to estimate parameters from the same data sets as used

in Tables 1a, 1b, and 1c using a slightly modified criteria in determining which periods

to exclude. In the previous exercises, all periods beginning with the earliest observed

incomplete spell were omitted from the estimation. This criteria, however, often leads

to several periods being omitted in which all investment spells initiated in those period

are completed by the end of the sample. So here we will relax the original criteria to

include all periods which contain only completed investment spells. The potential for

bias is due to the fact that our sample only contains 200 plants. The distribution of spell

lengths in a small sample not properly reflect the potential of long periods of inactivity

that plants factor into their optimization decisions. Thus, this bias is the similar to that

of omitting incomplete spells.

In the second exercise, all periods and all complete spells will be used in the estima-

tion procedure. This exercise will demonstrate the bias that results from not controlling

for incomplete spells in the sample. This exercise will set the stage for the following

section in which we propose a methodology to control for the presence of incomplete

spells.

4.4 Controlling for incomplete spells when A is observed

Here we propose a methodology for controlling for incomplete spells in the estimation

procedure. The difficulty introduced by incomplete spells is that the ex post error
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expressed in (7) cannot be fully evaluated. However, the structure of the dynamic

programming problem can potentially be used to approximate the unobserved portion

of the incomplete spell.

In the first stage of this methodology, parameter estimates are obtained by including

all complete spells as observations in the estimation. We denote these first stage esti-

mates as Θ1. Assuming that we have obtained all of the other structural parameters of

the model from other sources, we then solve the dynamic programming using Θ1. From

this solution, we can compute the expected derivative of the value function that appears

in the first-order condition of the investment decision expressed in (5). This expected

derivative is a function of the current profitability shock and the capital stock resulting

from the investment decision in the current period, conditional on the parameterization

Θ1.

ψ(A,K ′; Θ1) = EA′|AV2(A
′, K ′; Θ1) (15)

This function can then be evaluated using observations of A and K ′ = (1 − δ)K + I

from the final period of the sample, and ex post errors for all incomplete spells can be

computed using the following specification.

εt,incomplete = ν
It

Kt

+ p(It) −
T−t
∑

i=1

βiΠ2(At+i, Kt+i)(1 − δ)i−1 − βT−t+1ψ(AT , KT+1,Θ)

A second stage estimation including all complete and incomplete spells results in

parameter estimates Θ2. This process can be repeated by computing ψ(A,K ′; Θ2) and

obtaining a third stage estimate, Θ3. Additional repetitions can be computed until esti-

mates of Θ converge. A Monte Carlo exercise will be conducted to evaluate this proposed

methodology and determine the convergence properties of the estimation procedure for

various sample sizes.

4.5 Controlling for incomplete spells when A is not observed

The methodology proposed above assumes that the productivity shock is observed in the

data. However, in practice it is difficult to obtain a measure of productivity. Therefore,

we propose a modification in which we search for a mapping between the derivative

of the value function, which is a function of the unobserved productivity shock, and

variables that are observed in practice.

The first stage estimates are obtained in the same fashion as described above and

the derivative of the value function, ψ(A,K ′; Θ1), is computed. To determine a mapping
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between ψ(.) and observable variables, a simulated dataset of the same size as the actual

data is simulated. The value function derivative can then be regressed on a polynomial

function of the observables (K ′, I
K
, π

K
), estimating the parameter vector Γ.

ψ(A,K ′; Θ1) = f(K ′,
I

K
,
π

K
; Γ,Θ1) (16)

The ex post errors for incomplete spells can then be computed as

εt,incomplete = ν
It

Kt

+ p(It) −

T−t
∑

i=1

βiΠ2(At+i, Kt+i)(1 − δ)i−1 − βT−t+1f(KT+1,
IT

KT

,
πT

KT

; Γ,Θ1)

The second stage estimates of Θ are then computed using all complete and incomplete

spells. The updating process is repeated until convergence is achieved. A Monte Carlo

estimation will be undertaken to determine the best specification of f(K ′, I
K
, π

K
; Γ,Θ1)

and to examine the properties of this methodology.

5 Estimation

The estimation takes the procedures outlined above to plant-level manufacturing data.

The LRD data set is described in some detail in Cooper and Haltiwanger (2000). Some

pertinent aspects of the data are summarized in the following table, taken from that

paper.

Table 2: Summary Statistics

Variable LRD

Average Investment Rate 12.2% (0.10)

Inaction Rate: Investment 8.1% (0.08)

Fraction of Observations with Negative Investment 10.4% (0.09)

Spike Rate: Positive Investment 18.6% (0.12)

Spike Rate: Negative Investment 1.8% (0.04)

Serial correlation of Investment Rates 0.058 (0.003)

Correlation of Profit Shocks and Investment 0.143 (0.003)

The approach in Cooper and Haltiwanger (2000) is to use these moments in a mini-

mum distance estimation exercise. In doing so, for each vector of structural parameters,

the dynamic programming problem was solved through value function iteration, a data
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set was simulated and moments were calculated. In addition, a fixed discount factor was

assumed through the analysis.

The approach taken here is much faster as it does not require repeated solution of

the dynamic programming problem. There is a considerable increase in the speed of the

estimation exercise, though, in contrast to the approach of matching the moments in

Table 5, the estimation requires access to the actual data rather than summary moments.

The estimation uses (11). As discussed in Cooper and Haltiwanger (2000), the LRD

provides enough information to measure all the components of the second instrument

set.

[To Be continued as estimation proceeds]

6 Conclusions

This paper had two purposes. The first was to analyze a methodology for using the logic

of Euler equation estimation, as in Hansen and Singleton (1982), to settings in which

adjustment is infrequent. Our analysis indicates how these procedures can estimate

underlying adjustment costs, including those that create the inaction. We have used a

simulation environment to identify powerful instruments and to guide us in the analysis

of incomplete spells.

The second part of the paper takes this approach to plant-level data for U.S. manu-

facturers. There we find [to be continued.....]
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