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We consider a one period version of our model of financial contracting in which we

allow for stochastic monitoring. We characterize the efficient contract and show that it

shares many similar features to the characterization with deterministic monitoring in Cole

and Atkeson (1). Because of the nature of the court-based enforcement system, we then add

the additional requirement that the monitoring decision be self-enforcing. We show that with

self-enforcement, it becomes optimal to separate the debt and equity contracts into separate

construct with different holders of these claims. We show that the efficient contract with

commitment and stochastic monitoring is not self-enforcing, while the efficient contract with

deterministic monitoring can be if the expect payment to debt holders is large enough to cover

their monitoring costs. Finally, we provide a partial characterization the efficient contract

with self-enforcing monitoring.

The self-enforcing condition is an incentive condition on the principal, and implies that

the revelation principal does not hold. In fact, we show that the minimally revealing message

space - given the outcome being support - is efficient. Moreover, this message space must

involve a nondegenerate partition of the type space for this message space to be admissible in

the sense of having the possibility of satisfying the self-enforcing condition. We characterize
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the efficient contract for any admissible partition of the type space. We also show by numerical

example that the partition of the state space under self-enforcement may not be minimal.

That is, it may be efficient to increase the size of partition beyond that which is necessary

for admissibility.

1. Model
There is a collection of risk neutral outside investors who are endowed with a pro-

duction technology that transforms the labor of a manager into output. There are a large

number of identical risk averse managers. These managers have an outside opportunity that

offers them utility U0.

The production process takes place over the course of three sub-periods within the

period. In the first sub-period, a manager is chosen to operate the production technology.

In the second sub-period, this production technology yields output y = θ, where θ is a pro-

ductivity shock that is idiosyncratic to this technology. In this sub-period, this productivity

shock θ and hence, output as well, is private information to the manager. The set of possible

shocks is an interval given by Θ and the distribution of these shocks has c.d.f. P with density

p and an expected value of one.

In the second sub-period, a payment can be made out of the output of the firm to

the outside investors. The outside investors have the option of monitoring the output of the

project to learn the realization of the shock θ in order to condition the payment on the level

of output rather than on level of output reported by the manager. This monitoring comes

at the cost of γ units of output. At the end of the second sub-period, the manager has the

option of spending on perquisites that he alone enjoys up to fraction τ of whatever output

of the firm that he has not paid out to the outside investors during this sub-period. The

output that the manager does not spend on perquisites is productively reinvested in the firm.

For simplicity, we assume that the gross return on this productive reinvestment in the firm

between the second and third sub-periods is one.1

1An alternative interpretation is that the manager has become essential to maintaining the value of the
residual output in the third sub-period. Without his cooperation the value of this output is reduced by the
factor (1− τ) and that based upon this, the manager can, in the third subperiod, renegociate his contract.
For simplicity, we assume that the manager has all the bargaining power in this renegociation, and hence he
is able to demand that the fraction τ of the residual output be given to him.
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In the third sub-period, the outside investors can freely observe both the output of

the firm θ and the division of this output between spending on perks for the manager and

productive reinvestment.

The contracting problem between the outside investors and the manager can be de-

scribed as follows. A contract between these parties specifies a probability of monitoring

by the outside investors m and a payment from the manager to the outside investors in the

second sub-period v, and a payment from the outside investors to the manager in the third

sub-period. Both the payment to the investors in the second sub-period and the payment

to the manager in the third sub-period are conditioned upon whether monitoring has taken

place. We denote these payments by v0 and x0 if monitoring doesn’t take place and by v1

and x1 if it does.

We assume that the monitoring probability is a function of the manager’s announce-

ment θ̂ of the output of the project in the second sub-period, and denote it by m(θ̂). Initially,

we assume that the outside investors can commit to a probabilistic strategy for paying the cost

to monitor the output of the project in the second sub-period as a function of the manager’s

announcement. Later we will relax this assumption.

The payments v from the manager to the outside investors in the second sub-period

are contingent on the manager’s announcement of the productivity shock θ̂ as well as the

outcome of the monitoring decision. Let v0(θ̂) denote the payment that the manager makes

to the outside investors in the second sub-period as a function of the announcement θ̂ in case

monitoring does not take place, and let v1(θ̂, θ) denote the payment that the manager makes

as a function both of the announcement θ̂ and the true value of θ in case monitoring does

take place. Finally, let xi(θ̂, θ) denote the payment from the outside investors to the manager

in the third sub-period as a function of his report θ̂ in the second sub-period and the realized

production shock θ, where i = 0 denotes the case in which monitoring did not take place and

i = 1 denotes that in which it did.

For reasons of limited liability, we require

(1) v0(θ̂) ≤ θ̂, v1(θ̂, θ) ≤ θ, and xi(θ̂, θ) ≥ 0.
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We assume, without loss of generality, that xi(θ̂, θ) is chosen to ensure that the manager

chooses not to take any perks for himself. This assumption implies a constraint on x0(θ̂, θ)

and x1(θ̂, θ) that

u(x0(θ̂, θ)) ≥ u(τ (θ − v0(θ̂))) for all θ̂, θ(2)

u(x1(θ̂, θ)) ≥ u(τ (θ − v1(θ̂, θ))) for all θ̂, θ.

Given the terms of the contract, m, v0, v1, x0, and x1 the manager chooses a strategy

for reporting θ denoted σ(θ). We say that the report σ(θ) = θ̂ is feasible given v0 and θ if

v0(θ̂) ≤ θ. Note that this definition requires that the manager has the resources to make

the payment v0(σ(θ)) in the event that he reports σ(θ) = θ̂. We require the manager to

choose a reporting strategies such that σ(θ) is feasible given v0 for all θ. We interpret this

constraint as following from the assumption that there is an optimal contract in which the

outside investors choose to monitor if the manager announces θ̂ but then does not pay v0(θ̂)

and that x(θ̂, θ) = 0 in this event.

We restrict attention to contracts in which the manager truthfully reports θ. Hence,

we impose the incentive constraint

m(θ)u(x1(θ, θ)) + (1−m(θ))u(x0(θ, θ)) ≥ m(θ̂)u(x1(θ̂, θ)) + (1−m(θ̂))u(x0(θ̂, θ))(3)

for all θ ∈ Θ and feasible θ̂ given θ and v0.

The managers payoff under the contract is given by the expectation of u(xi(θ, θ)). Since

managers have an outside opportunity that delivers them utility U0, we require the individual

rationality constraint

(4)
Z
[m(θ)u(x1(θ, θ)) + (1−m(θ))u(x0(θ, θ))] p(θ)dθ ≥ U0.
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2. Characterizing an efficient contract
We characterize a contract that maximizes the expected payoff to the outside investors

(5)
Z
[θ − γm(θ)−m(θ)x1(θ, θ)− (1−m(θ))x0(θ, θ)] p(θ)dθ

subject to the constraints (1), (2), (3), (4) and

(6) m(θ) ∈ [0, 1] for all θ ∈ Θ,

in the following propositions. We refer to such a contract as an efficient contract.

Proposition 1. There is an efficient contract with the following properties: (i) v1(θ̂, θ) = θ

and v0(θ̂) = θ̂, (ii) x1(θ̂, θ) = 0 and x0(θ̂, θ) = τ (θ− θ̂) for θ 6= θ̂, and (iii) x0(θ, θ) = x1(θ, θ).

Proof: To prove part (i), note that v1 and v0 only show up in the no-perks constraint (2), and

that increasing their values to the maximum extent allowed by the limited liability constraint

(1) relaxes the no-perks constraint. Hence, it is efficient to do so. Given (i) and the fact

that it is efficient to punish misreporting to the maximum feasible extent, since it will not

occur in equilibrium, (ii) follows. Given (i), it follows that under truthtelling the no-perks

constraints cannot bind, and hence, fixing the expected utility provided to the manager in

state θ at y(θ), where

y(θ) = m(θ)u(x1(θ, θ)) + (1−m(θ))u(x0(θ, θ)),

it follows that any efficient contract must minimize the cost of delivering this utility. In other

words, it must solve the following sub-problem

min
x0,x1

m(θ)x1 + (1−m(θ))x0 s.t. m(θ)u(x1) + (1−m(θ))u(x0) ≥ y(θ).

The concavity of u implies that this minimization is achieved with x1 = x0. Q.E.D.

4



Given proposition 1, we can simplify the problem to be one of choosing [m(θ), w(θ)]

so as to

(7) max

Z
[θ − w(θ)− γm(θ)] p(θ)dθ

subject to

(8)
Z
u(w(θ))p(θ)dθ = U

(9) u(w(θ)) ≥ sup
θ̃<θ

(1−m(θ))u
³
τ
h
θ − θ̃

i´
,

where we now use w(θ) to denote x(θ, θ).

Proposition 2. In any solution to the simplified problem:

(i) w(θ) is such that there exists a θ̄ such that w(θ) = w̄ for all θ ≤ θ̄, and strictly

increasing thereafter,

(ii) m(θ) is weakly decreasing.

If θ has finite upper support and if w̄ is strictly greater than 0, then

(iii) m(θ) < 1 and is strictly decreasing in the interior, and

(iv) there will exist a cutoff θ̂ < sup(Θ) such that m(θ) = 0 for all θ > θ̂.

Proof: We first form the Lagrangian, which we formulate in terms of choosing the monitoring

probabilities m(θ) and the utility level of the manager y(θ) to yield a convex constraint set.

(10) L =
Z
θ


[θ − C(y(θ))− γm(θ)] + λ [y(θ)− U ]R θ

0
δ(θ, θ̃)

h
y(θ)− (1−m(θ̃))u(τ

h
θ − θ̃)

i
)
i
p(θ̃)dθ̃

+χ+(θ)(1−m(θ)) + χ−(θ)m(θ))

 p(θ)dθ,

where C(x) = u−1(x), λ is the multiplier on the promise keeping constraint and δ(θ, θ̃) is the

multiplier on the incentive constraint (9) with respect to the deviation of reporting θ̃ given a

realization θ. The first-order conditions for this problem are

(11) C 0(y(θ)) = λ+

Z θ

0

δ(θ, θ̃)p(θ̃)dθ̃
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(12) γ =

Z ∞

θ

δ(θ0, θ)u(τ(θ0 − θ))p(θ0)dθ0 − χ+(θ) + χ−(θ).

Condition (11) implies that if constraint (9) doesn’t bind, then y(θ) = ū, and moreover that

y(θ) ≥ ū for all θ. In terms of the compensation of the manager, this implies that w(θ) = w̄
when the incentive constraint doesn’t bind, where w̄ = C(ū). To see that if the constraint

binds at θ1 and if θ2 > θ1, then it binds at θ2, and moreover that w(θ1) < w(θ2), note that

(1−m(θ̃))u(τ
h
θ − θ̃)

i
) is strictly increasing in θ, which implies that y(θ2) > y(θ1), and hence

w(θ2) = C(u(θ2) > C(θ1) = w(θ1)

which this proves (i).

To prove (ii), note that condition (12) implies that if m(θ) > 0, then it must be the

case that δ(θ̃, θ) > 0 for some θ̃ > θ, or in other words that deviating and reporting θ binds

on some type θ̃. This result implies that if we take y(θ) as given, and define for each θ the

probabilities of monitoring such that deviating is not weakly preferred, πθ(θ̃), as follows

(13) πθ(θ̃) =

 max

½
0, 1− y(θ)

u(τ[θ−θ̃)])

¾
if θ̃ < θ

0 o.w.
,

then, efficiency implies that m(θ) = supθ̃{πθ̃(θ)}. In other words, the probability of monitor-
ing is positive only if it binds for some type. (Note that by filling in the required probabilities

with zeros we removed the need to shrink the type space that could deviate to θ as θ in-

creased.) The function πθ(θ̃) is weakly decreasing in θ for fixed θ̃, and the sup over a set of

weakly decreasing functions is weakly decreasing.

We turn now to the case in which θ has finite upper support. To prove (iii), note first

that y(θ) ≥ ū = u(w̄) > 0. Then note that (1−m(θ))u
³
τ
h
θ − θ̃

i´
≤ (1−m(θ))u(τ(sup(θ)),

and that since u(τ(sup(θ)) is finite, the rhs goes to zero as m(θ) goes to one. Hence, m(θ) < 1

for all θ.

To prove that m is strictly decreasing in the interior when θ has finite upper support,

assume that the reverse was true. That is, assume that for θ ∈ [θ1, θ2], m(θ) = a, where
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0 < a < 1 and θ2 − θ1 > 0. Then, note that since for all finite θ > θ1,

(1− a)u(τ [θ − θ1)]) > (1− a)u(τ [θ −min(θ2, θ))]),

this contracts our earlier result that monitoring is only positive if it binds for some type.

To prove (iv), note that the incentive constraint (9) implies that if w̄ > τ(θ− θ̂), then

deviating and making a report of θ̂ can only lower the payoff of the manager. Hence, for all

θ such that τ(sup(Θ)− θ) < w̄, monitoring is unnecessary and will optimally be set to zero.

Note that since w(θ) ≥ w̄, the interval over which m(θ) = 0, may be substantially larger than
this simple bound would imply. Q.E.D.

Proposition 3. Since monitoring goes to zero above some cutoff θ̂; i.e. m(θ) = 0 for all

θ > θ̂; it is efficient for v0(θ) = θ̂ for all θ > θ̂.

Proof: The cessation in monitoring implies that

u
³
τ
h
θ − θ̂

i´
≥ sup

θ̃∈[θ̂,θ)

³
1−m(θ̃)

´
u
³
τ
h
θ − θ̃

i´
= sup

θ̃∈[θ̂,θ)
u
³
τ
h
θ − θ̃

i´
,

and hence there is no further relaxation in the incentive constraint from higher payments in

the second sub-period above the level of the monitoring threshold. Q.E.D.

As the gap between proposition 2 and proposition 3. makes clear, the exact form of

v0(θ) is only pinned down for θ such that m(θ) > 0, and either of the two extremes indicated

under proposition 2 or proposition 3. is efficient. This is because monitoring at a given

θ is done to dissuade misreporting by managers with higher realizations of the shock. If

monitoring ceases, above some threshold θ̂, then it is efficient to have the payments in the

second sub-period take on a debt like structure in which up to the threshold the manager

pays out everything, and above θ̂ he pays out the flat amount θ∗. However, for θ such that

positive monitoring takes place, then setting v0(θ) = θ is necessary for efficiency for those

realizations the no-perks constraint binds, and raising the second sub-period payment strictly

relaxes this constraint. Hence, it must be set as high as possible for efficiency.
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A. Contrasting Stochastic and Deterministic Monitoring

Here, we restrict ourselves to deterministic monitoring in order to exhibit the close

connection between the two. Formally, we impose the restriction that m(θ) ∈ {0, 1}. Now
v0(θ̂) is vacuous when m(θ̂) = 1 and v1(θ̂, θ) is vacuous in the reverse case when m(θ̂) = 0.

However, none of the results in proposition 1 depended on monitoring not being stochastic.

So that characterization still holds. Moreover, the logic of propositions 2 and 3 carries over

with this restriction on m(θ). We summarize these results in the following preposition. First

through, a bit of useful notation. Let M denote the set of reports which induce monitoring;

where M = {θ : m(θ) = 1} ; and let θ∗ denote the lower support of the set of reports that
don’t induce monitoring; where θ∗ = inf{θ : θ /∈M}.

Proposition 4. There is an efficient contract with the following properties: (i) v1(θ̂, θ) = θ

for all θ̂ s.t. m(θ̂) = 1 and v0(θ̂) = θ∗ for all θ̂ /∈ M, where θ∗ = inf
n
θ̂|θ̂ /∈M

o
, (ii) M is

an interval ranging from 0 to θ∗, and (iii) the payments to the manager w(θ) have the form

w(θ) = w̄ for θ ≤ θ̄ and w(θ) = τ (θ−θ∗) for θ > θ̄, where θ̄ is the solution to w̄ = τ
¡
θ̄ − θ∗

¢
.

Proof: See Atkeson and Cole (1).

Thus the results with stochastic and deterministic monitoring are very similar. More-

over, the result that the stochastic monitoring schedule is strictly decreasing for all nonzero

monitoring levels becomes, under deterministic monitoring the result that the monitoring is

weakly decreasing, which implies that it is done on the an interval of shock reports starting

from the lowest level. With respect to compensation, the results are somewhat more stark

with deterministic monitoring. The efficient contract is completely specified by the base pay

of the manager, w̄ and the upper support of the monitoring set θ∗. Monitoring takes place for

any report θ̂ < θ∗, and when monitoring takes place the outside investors take everything. In

the case of a report that doesn’t lead to monitoring, θ ≥ θ∗, the second sub-period payment

is θ∗. The compensation of the manager is the max [w̄, τ (θ − θ∗)] so long as he tells the truth,

and the minimum possible if he doesn’t.

3. Self-Enforcing Monitoring
Court systems require that one of the parties to an agreement bring a complaint before

they will consider enforcing it. This fact has been seen as suggesting that a natural condition
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to require of our efficient contract is that the outside investors making the monitoring decision

have a positive motivation to undertake it. For monitoring to be self-enforcing, the gap in

the expected net payments for monitoring v.s. not monitoring must be weakly greater than

the cost γ for any reports that lead to monitoring, and strictly equal to γ if monitoring is

occurring with a probability between 0 and 1.

This requirement is in effect an incentive constraint on the principals to the contract

(in this case, the outside investors). The addition of this incentive constraint and the re-

sulting lack of complete enforcement means that we can no longer appeal to the revelation

principal to determine the nature of the message space in the contract. In particular, the

truth-telling equilibrium of a direct mechanism has the potential of giving the principals too

much information which can make satisfying their incentive constraint with respect to their

monitoring decision difficult.

Consider an arbitrary message space denoted by Ω. Given this message space, we can

denote a contract by vω0 (ω), v
ω
1 (ω, θ), m

ω(ω), xω0 (ω, θ) and x
ω
1 (ω, θ), along with a reporting

strategy σω : Θ → Ω. The analog to our conditions under commitment are given by the

following constraints:

The feasibility conditions for the ω-contract are

vω0 (ω) ≤ inf {θ : σω(θ) = ω} ,
vω1 (ω, θ) ≤ θ,

xωi (ω, θ) ≥ 0

The incentive condition for the ω-contract is given by

mω(σω(θ))u (xω1 (σ
ω(θ), θ)) + (1−mω(σω(θ)))u (xω0 (σ

ω(θ)))

≥ mω(ω̂)u (xω1 (ω̂, θ)) + (1−mω(ω̂))u (xω0 (ω̂)) ∀ω̂ ∈ Ω & θ ∈ Θ.

The no-perks constraint for the ω-contract is given by

u (xωi (ω, θ)) ≥ u (τ(θ − vi(ω, θ))) .
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The promise keeping constraint for the ω-contract is given by

Z
[mω(σ(θ))u(xω1 (σ

ω(θ), θ)) + (1−mω(σ(θ)))u(xω0 (σ
ω(θ), θ))] p(θ)dθ ≥ U0.

A. Claim Separation

We turn next to formalizing our the self-enforcing condition for the monitors. To

make monitoring self-enforcing, it is necessary that the net expected payment be equal to

zero if m(θ) ∈ (0, 1), nonnegative if m(θ) = 1 and nonpositive if m(θ) = 0. However, the

net expected gain depends upon how the claims to output are distributed among the outside

investors and the mechanism that initiates monitoring.

With respect to the distribution of claims, it matters whether or not the second sub-

period and the third sub-period claims can be thought of as being held by one joint investor,

or whether or not there are two separate investors holding each of these claims (and of course

all the convex combinations in between).

To make this point, it will be convenient to define the expected payment conditional

on monitoring probability mω(ω̂) as ṽω1 (ω̂), where

ṽω1 (ω̂) =

R
{θ:σω(θ)=ω̂} v

ω
1 (ω̂, θ)p(θ)dθR

{θ:σω(θ)=ω̂} p(θ)dθ

Next consider the net payout in two extreme cases in which (i) an investor held all of

the claims and (ii) one investor held the claims to second sub-period payouts and a second

investor held the claims to third sub-period payouts:

1. Unseparated Claims Condition: The expected gain to the monitors is

[ṽω1 (ω̂)− vω0 (ω̂)] τ − γ,

since the agency cost will lose them at most only the fraction τ of what is not paid out

in the second sub-period

2. Separated Claims Condition: The expected gain to the monitors is

[ṽω1 (ω̂)− vω0 (ω̂)]− γ,
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since now the holders to the claim on the second sub-period payment will lose the full

amount of anything them don’t collect in this period. Hence, separated claims imply a

larger gap in the expected net payments for a given gap between vω1 (ω̂) and v
ω
0 (ω̂).

The actual extent of the separation of the claims need to induce the right incentives

depends upon how monitoring decision is made. For example, if all of the holders of second

sub-period claims had to agree to monitoring, then we would need complete separation. If

only a majority of the holders had to want it, then we would need that a majority of the

second sub-period claims were held by investors who didn’t also hold claims to the third sub-

period. If only a single debt holder could trigger monitoring, then we would need that only

a small portion of the claims were held by an outside investor who didn’t also hold claims to

the third period payments.

Definition: We therefore define an ω-contract to self-enforcing if there exists a

φ ∈ [γ, γ/τ ] such that for all ω ∈ Ω, the expected differential between monitoring and

not monitoring is equal to φ if the monitoring probability is interior, and greater than equal

to φ if it is occurring with probability one. Formally, this is the requirement that for all

ω̂ ∈ Ω,

[ṽω1 (ω̂)− vω0 (ω̂)] = φ if 0 < m(ω̂) < 1,

[ṽω1 (ω̂)− vω0 (ω̂)] ≥ φ if m(ω̂) = 1,

[ṽω1 (ω̂)− vω0 (ω̂)] ≤ φ if m(ω̂) = 0(14)

This definition imposes the weakest form of a self-enforcement constraint on the ω-

contract. It merely requires that the contract be such that there exists degree of separation

(and a voting rule for initiating monitoring) which will enable the contract to be self-enforcing.

One of the impacts of this constraint will be to force similar ω reports for some θ values in

order to satisfy this constraint. This will lead to the original direct optimal contract not being

able to satisfy the monitoring self-enforcing condition. For example, if there was a distinct

report ω̂ for any θ < γ, then it would not be possible to satisfy this constraint and have a

positive probability of monitoring.
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B. Reconsidering our commitment solutions

Here we examine whether or not the analogs to the solutions with commitment with

either stochastic or deterministic monitoring can satisfy the monitoring self-enforcement con-

dition. We will show that trivially the stochastic monitoring solution cannot. However, we

will show that for the case of deterministic monitoring, if the amount being paid out on

the debt claim (which pays off in the second sub-period) is sufficient large, then the effi-

cient contract with deterministic monitoring is self-enforcing. This result both provides a

partial rationalization for deterministic monitoring and gives further insight into how the

self-enforcing constraint is altering the efficient contract.

The commitment contract with stochastic monitoring violates the self-enforcement

condition at every point at which monitoring is strictly interior. To see this note that if an

ω-contract is to replicate the outcomes of the efficient contract with stochastic monitoring

and commitment, it must be the case that (i) mω(σω(θ)) = m(θ), (ii) vω1 (σ
ω(θ), θ) = v1(θ, θ)

and (iii) vω0 (σ
ω(θ)) = v0(θ). But, we have already shown that if m(θ) is strictly interior at

θ, this implies that it is also is strictly decreasing at θ from proposition 2, which implies

that m(θ) is invertible at this value of θ. Since the monitors must know the probability with

which they are suppose to monitor, this implies that they will also be able to infer that the

state is θ, since mω(σω(θ)) will also be invertible. Hence under the associated ω-contract, for

ω = σω(θ),

ṽω1 (ω
0)− vω0 (ω0) = E{v1(θ)− v0(θ)} = 0.

Given that our earlier result thatm(θ) being positive implies that (9) binds, this then leads to

our result since there is no slack within which to adjust v1 and v0 to achieve self-enforcement.

To see this note that since v1(θ) = v0(θ) = θ, we cannot raise v1(θ) without violating feasi-

bility. But we cannot we lower v0(θ) without violating (9), since this constraint binds.

The invertibility of the commitment stochastic monitoring schedule whenever it was

interior was a key factor in precluding a self-enforcing ω-contract analog. However, the

deterministic contract imposes a two part partition of the state space, which avoids the

invertibility problem for the ω-contract analog. Hence, the only factor in whether or not it

12



is self-enforcing is whether the expected payment under monitoring is sufficient to cover the

costs of monitoring.

Proposition 5. If an efficient contract with deterministic monitoring satisfies

E {θ|θ ≤ θ∗} > γ,

then monitoring in the associated ω-contract is self-enforcing.

Proof: We can construct the associated ω-contract as follows:

Ω = {0, 1}

σω(θ) =

 0 if θ ≤ θ∗

1 o.w.

mω(ω) =

 1 if ω = 0

0 o.w.

vω0 (ω) =

 0 if ω = 0

θ∗ − γ o.w.

vω1 (ω, θ) = θ

xω0 (ω, θ) =

 x0(θ, θ) if θ ∈ σω−1(ω)

τθ o.w.

xω1 (ω, θ) =

 x1(θ, θ) if θ ∈ σω−1(ω)

0 o.w.

By construction, the payoffs to the principals and the manager are the same since xωi is the

same as xi for each θ if the manager reports according to σω in the ω-contracting game

and tells the truth under the direct mechanism in the commitment case. Similar logic also

implies the no-perks constraint given that the strategies are followed. With respect to the

case when an agent misreports, the only relevant misreport is to say ω = 0 when θ > θ∗ in

the ω-contracting game, and report some θ < θ∗ in the direct mechanism. In both cases the

payment conditional on not monitoring is 0, and hence the ω-contracts no-perks constraint is

implied by that under the direct mechanism. Similar logic show that the incentive constraint
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under the ω-contract is implied by that under the direct mechanism. Hence, all that remains

to be verified is that the self-enforcing condition for the monitors is satisfied. Note that

E{ṽω1 (0)− vω0 (0)|ω = 0} = E{θ|θ ≤ θ∗}− 0 > γ,

and that

E{ṽω1 (1)− vω0 (1)|ω = 1} > E{θ|θ > θ∗}− (θ∗ − γ) > γ

and, hence our self-enforcing condition is satisfied. Q.E.D.

C. An Efficient Message Space

Here we prove that a message space consisting of monitoring probabilities, which we

denote by π, and no-monitoring payments, which we denote by v0, is sufficient to replicate

the outcomes of any other mechanism with an alternative message space. One thing to note

here is that this message space the least revealing possible given the activities of the monitors

that are being supported. The monitors must know with which probability they are suppose

to monitor, and they must also know whether or not the appropraite payment in the case of

nonmonitoring has been made, because otherwise they could not credibly threaten to monitor

and take everything if this payment wasn’t made. Hence, at a minimum, both π and v0 must

be conveyed to them. This is the opposite of the standard revelation principal in which the

message space is the space of the agent’s information, Θ, which is the most revealing possible.

Let Λ = m(Ω)× vω0 (Ω). Define the new λ-contract by setting

vλ1 (π, v0, θ) = v
ω
1 (ω̂, θ),

xλi (π, v0, θ) = x
ω
i (ω̂, θ),

and reporting strategy

[πλ(θ), vλ0 (θ)] = [m
ω(θ), vω0 (θ)],
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where

ω̂ : mω(ω̂) = π and vω0 (ω̂) = v0.

Proposition 6. The λ-contract deliverers the same payoffs as the ω-contract, and if the

ω-contract satisfies our constraints, then so too does the λ-contract.

Proof: The payoff part follows trivially. With respect to the constraints, the feasibility,

no-perks, and promise-keeping constraints also follows trivially. Hence, all that needs to be

checked is the incentive constraints on the manager and the monitors.

To see that the analog incentive constraint on the manager holds for the λ-contract,

assume otherwise. That is, for some θ there exists an (π0, v00) ∈ Λ report, where π0 6= πλ(θ)

or v00 6= vλ0 (θ), for which

πλ(θ)u
¡
xλ1(π

λ(θ), vλ0 (θ), θ)
¢
+ (1− πλ(θ))u

¡
xλ0(π

λ(θ), vλ0 (θ), θ
¢
)

< π0u
¡
xλ1(π

0, v00, θ)
¢
+ (1− π0)u

¡
xλ0(π

0, v00, θ)
¢
.

But then this implies that the incentive constraint cannot hold for θ when the manager

considers the report

ω0 : mω(ω0) = π0 and vω0 (ω
0) = v00.

Hence, this cannot be the case.

Next consider the incentive constraint for the monitors and assume that it does not

hold with respect to the λ-contract, despite holding for the original ω-contract. We start first

with the case in which the monitoring probability is interior, and assume that there exists a

(π, v0) ∈ Λ report for which

£
E
©
vλ1 (π, v0, θ)|θ : πλ(θ) = π & vλ0 (θ) = v0

ª− v0¤ 6= φ for π ∈ (0, 1).

15



But, note that

E
©
vλ1 (π, v0, θ)|θ : πλ(θ) = π & vλ0 (θ) = v0

ª
=

P
ω∈Ω̂E {vω1 (ω, θ)|ω}Pr{θ : σω(θ) = ω}P

ω∈Ω̂ Pr{θ : σω(θ) = ω} ,

where

Ω̂ = {ω ∈ Ω : mω(ω) = π & vω0 (ω) = v0} .

But, E {vω1 (ω, θ)|ω}− vω0 (ω) = φ from the monitoring incentive constraint on the ω-contract,

which generates a contradiction. Q.E.D.

D. Efficiency and Partitions

The message space along with the reporting strategy partition the type space. Here

we start with a given partition of the type space and, taking the separation parameter φ in

the monitoring self-enforcement condition as given, characterize the efficient contract.

Let {Θ1,Θ2,...} denote such a partition. For it to be physically feasible to satisfy the
monitoring condition, it must be the case that

E{θ|Θi} ≥ γ for all i.

Given a physically feasible partition, and our results with respect to the efficient message

space, we can formulate the contracting problem as choosing [πi, v0i]i=1,...,n and functions

[v1(θ), x0(θ), x1(θ)] so as to

max
X
i

Z
Θi

[θ − γπi − πix1(θ)− (1− πi)x0(θ)] p(θ)dθ

subject to

X
i

Z
Θi

[πiu(x1(θ)) + (1− πi)u(x0(θ))] p(θ)dθ ≥ U
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πiu(x1(θ)) + (1− πi)u(x0(θ)) ≥ (1− πj)u(τ (θ − v0j))
for each θ, and each j 6= i

x0(θ) ≥ τ(θ − v0i) for each θ

x1(θ) ≥ τ(θ − v1(θ)) for each θ

v0i ≤ inf{θ ∈ Θi} for i = 1, ..., n

v1(θ) ≤ θ for each θ

Z
[v1(θ)− v0i − φ]

p(θ)

Pr{Θi}dθ
≥ 0 if πi = 1

= 0 if πi ∈ (0, 1)
≤ 0 if πi = 0

for i = 1, ..., n.

Proposition 7. It is efficient to set v0i = min [E{θ|θ ∈ Θi}− φ,min (θ ∈ Θi)] . Addition-

ally, if v0i < min (θ ∈ Θi) , then it is efficient to set v1(θ) = θ for all θ ∈ Θi.

Proof: The logic here is largely in the case with commitment. The only caveat now is the

incentive constraint for monitoring. However, if both v0i and v1(θ) can be raised without vio-

lating the upper bound constraints on v0i and v1 or the incentive constraint for the monitors,

then it is always efficient to do so. If E{θ|θ ∈ Θi} − φ < min (θ ∈ Θi) , then it is possible

to raise v0i to E{θ|θ ∈ Θi} − φ and set v1(θ) = θ. Moreover, it is not possible to set these

variables any higher. If the reverse is true, then is always possible to raise v0i to min (θ ∈ Θi)

without violating the incentive constraint for monitoring by also raising some of those v1(θ)

who were below their upper bound of θ. Q.E.D.

Taking v0i as set according to the above proposition, we can form the Lagrangian for
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this problem as

L = min
λ,δ,γ0,γ1

max
{πi,v0i}{x0(θ),x1(θ)}X

i

Z
Θi

[θ − γπi − πix1(θ)− (1− πi)x0(θ)] p(θ)dθ

+ λ

(X
i

Z
Θi

[πiu(x1(θ)) + (1− πi)u(x0(θ))] p(θ)dθ ≥ U
)

+
X
i

X
j 6=i

Z
Θi

 πiu(x1(θ)) + (1− πi)u(x0(θ))

−(1− πj)u(τ(θ − v0j))

 δ(θ, j)p(θ)dθ

+
X
i

Z
Θi

[x0(θ)− τ (θ − v0i)] γ0(θ)p(θ)dθ

+
X
i

Z
Θi

[x1(θ)− τ (θ − v1(θ))] γ1(θ)p(θ)dθ

+
X
i

Z
Θi

[θ − v1(θ)]φ1(θ)p(θ)dθ

+
X
i

½Z
Θi

(v1(θ)− v0i − φ)
p(θ)

Pr(Θi)
dθ

¾
ψi Pr{Θi}

where λ is the multiplier on the promise-keeping condition, δ(θ, j)p(θ) is the multiplier on the

incentive constraint for the manager who has income θ and is considering report j, γ0(θ)p(θ)

and γ1(θ)p(θ) are the multipliers on the no-perks constraints on x0(θ) and x1(θ) respectively,

φ1(θ)p(θ) are the multipliers on the physical upper bounds on v1(θ), and ψi Pr{Θi} is the
multiplier on the incentive constraint with respect to monitoring.

The associated first-order conditions are

πi : 0 =

Z
Θi

 −γ − (x1(θ)− x0(θ))+³
λ+

P
j 6=i δ(θ, j)

´
[u(x1(θ))− u(x0(θ)]

 p(θ)dθ
+
X
j 6=i

(Z
Θj

δ(θ, i) [u(τ(θ − v0i))]
)

x1(θ) : 0 =

(
−πi + πi

Ã
λ+

X
j 6=i

δ(θ, j)

!
u0(x1(θ)) + γ1(θ)

)
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x0(θ) : 0 =

(
−(1− πi) + (1− πi)

Ã
λ+

X
j 6=i

δ(θ, j)

!
u0(x0(θ)) + γ0(θ)

)

v1 : 0 = [γ1(θ)− φ1(θ) + ψi] p(θ)dθ

These conditions are the analogs of what we saw with respect to the commitment case.

If none of the incentive, and no-perks constraints bind, then once again it is easy to see that

there is an efficient level of consumption for the manager which is constant.

Denote this level of consumption by x̄, where λu0(x̄) = 1. Even when the incentive

constraints on the manager, bind, thereby inducing a higher level of consumption for that θ,

so long as the v1(θ) and v0i can be set high enough so that the no-perks constraints don’t

bind, then γ1(θ) = γ0(θ) = 0, and it is straightforward from the first-order conditions to see

that x0(θ) = x1(θ). However, to the extent that the introduction of the incentive constraint

on monitoring and the resultant use of partitions precludes setting v1(θ) and v0i high enough

to prevent the no-perks constraints from binding, there is an additional factor that can raise

consumption above the efficient level, x̄.

The incentive constraint on monitoring can bind from either of two directions, and

there are three cases correspondingly. Case 1: If ψi > 0, then φ1(θ) > 0 and v1(θ) must

be at the upper bound for all θ ∈ Θi. In this case the no-perks constraint on x1(θ) cannot

bind and γ1(θ) = 0. Case 2: If ψi < 0, then γ1(θ) must be positive and hence the no-perks

constraint constraint on x1(θ) must bind, which implies that v1(θ) < θ. Case 3: ψi = 0, and

the incentive constraint on monitoring doesn’t bind. However, as the following proposition

makes clear, Case 2 in which ψi < 0 is caused by having too coarse a partition, and will not

arise with an efficient partition.

Proposition 8. If in the solution for a given partition, there exists an i such that, E{θ|θ ∈
Θi}− φ > min (θ ∈ Θi) and πi > 0, then there is an efficiency improving sub-division of this

element of the partition. Additionally, it is efficient to make φ as small as possible, which is

γ.

Proof: To prove the first statement, assume that this was the case, and consider the following

two cases. Case 1: There is a subset of relatively high θ points Θ̃ ⊂ Θi such that E{Θ̃} >
E{θ|θ ∈ Θi}− φ, and E{Θi/Θ̃} > φ. Then we can remove the remove the points Θ̃ from Θi
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and put them in their own partition. This will not lower v0i, and we can construct v1(θ) so

that it is weakly higher on Θi, while we can set the v0 and v1 strictly higher for θ ∈ Θ̃. This

means that the same monitoring and managerial consumption choices are still feasible, while

it relaxes the our incentive and no-perks constraints. Hence, we can lower π for θ ∈ Θ̃ which

raises the value of the objective. Note that Case 1 applies to the case in which Pr{Θi} > 0.
Case 2: The set Θi is not of positive measure and there does not exist an appropriate

subset Θ̃ to break off. In this case, one can achieve the same result by simply having the

manager randomize in his reports. For example assume that Θi = {θ1, θ2}, where θ2 > θ1.

Then by choosing a probability κ of reporting partition i, where

κp(θ2)θ2 + p(θ1)θ1
κp(θ2) + p(θ1)

− φ > θ1,

the same choice of v0i is still feasible, and v1(πi, θ) can be raised. Furthermore, for the report

that is made with probability 1− κ, v1 = θ2 and v0 = θ2− φ. This relaxes that no-perks and

incentive constraints for this alternative report, allowing for a lower monitoring probability.

To prove the second statement, assume that φ > γ and consider lowering it γ. So

long as E{θ|θ ∈ Θi} − γ ≤ min (θ ∈ Θi) , this will lead to a raising of v0i, which relaxes

the incentive and no-perks constraints. If this the reverse inequality is true, then we can

construct efficiency improving sub-divisions of our current partition along the lines discussed

above. Q.E.D.

E. Efficient Partition Size

Assume that the partitions are intervals of the form

Θi = [a−i, ai],

where a0 = 0 and aI+1 = 1, and the vector of a = {a1, ..., aI} (where ai > ai−1) defines the
partitions. Then assume that the partitions are sufficiently small that E{θ|Θi} − γ < a−i,

so we can set v1(θ, i) = θ and v0i = E{θ|Θi}− γ. Also, conjecture that U is sufficiently high

that the no-perks constraints do not bind (something which we can verify once we have the

solution). As was noted above, this implies that x0(θ, i) = x1(θ, i). Given this, we can write
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the Lagrangean in terms of the utility of the agent, y(θ, i), as we did in the commitment case.

In this case, the Lagrangean can be written as

L =
X
i

Z ai

ai−1
[θ − γπi − C(y(θ, i))] p(θ)dθ

+ λ

(X
i

Z ai

ai−1
y(θ, i)p(θ)dθ − U

)

+
X
i

X
j

Z ai

ai−1
[y(θ, i)− (1− πj)u(τ (θ −E {θ|θ ∈ [aj−1, aj]}+ γ))] δ(θ, j, i)p(θ)dθ.

In this case, the f.o.c. for πi can be written asZ ai

a−i
−γp(θ)dθ +

X
j

Z aj

aj−1
u(τ(θ −E {θ|θ ∈ [ai−1, ai]}+ γ))δ(θ, i, j)p(θ)dθ = 0

The f.o.c. for y(θ, i) can be written as

−C 0(y(θ, i)) + λ+
X
j

δ(θ, j, i) = 0.

And, the f.o.c. for ai can be written as

{[−γπi − C(y(ai, i))]− [−γπi+1 − C(y(ai, i+ 1))]} p(ai)
+λ [y(ai, i)− y(ai, i+ 1)] p(ai)

+
X
j

 [y(ai, i)− (1− πj)u(τ (ai − E {θ|θ ∈ [aj−1, aj]}+ γ))] δ(θ, j, i)

− [y(ai, i+ 1)− (1− πj)u(τ (ai − E {θ|θ ∈ [aj−1, aj]}+ γ))] δ(θ, j, i+ 1)

 p(ai)
+
X
j

Z aj

aj−1

·
−(1− πi)u

0(τ (θ − E {θ|θ ∈ [ai−1, ai]}+ γ))
dE {θ|θ ∈ [ai−1, ai]}

dai

¸
δ(θ, i, j)

+
X
j

Z aj

aj−1

·
−(1− πi+1)u

0(τ(θ − E {θ|θ ∈ [ai, ai+1]}+ γ))
dE {θ|θ ∈ [ai, ai+1]}

dai

¸
δ(θ, i+ 1, j)

= 0.

If the partitions are small, then the incentive constraints cannot bind locally: for

θ ∈ [ai, ai+1] if ai+1 is close enough to a−i, then since τ(θ − a−i) < C 0−1(λ), and the con-

straint doesn’t bind with respect to the next lower partition. But, this implies that changing
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δ(θ, i, j) = δ(θ, i + 1, j), and hence y(ai, i) = y(ai, i + 1). In this case, the above expression

simplifies to

−γ(πi − πi+1)

+
X
j

Z aj

aj−1

·
(1− πi)u

0(τ(θ −E {θ|θ ∈ [ai−1, ai]}+ γ))
dE {θ|θ ∈ [ai−1, ai]}

dai

¸
δ(θ, i, j)

+
X
j

Z aj

aj−1

·
(1− πi+1)u

0(τ (θ −E {θ|θ ∈ [ai, ai+1]}+ γ))
dE {θ|θ ∈ [ai, ai+1]}

dai

¸
δ(θ, i+ 1, j)

= 0

The monitoring probabilities will be declining in i, hence the first term is negative. But,

dE {θ|θ ∈ [ai−1, ai]}
dai

> 0

and

dE {θ|θ ∈ [ai, ai+1]}
dai

> 0.

What is happening at the margin is that the first-order condition is trading off the increases

probability of monitoring from expanding partition Θi at the expense of Θi+1 against the

increase in v0i and v0i+1 that this leads too.

4. Numerical Example
Consider the following example: The set of sets Θ = [0, 0.1, 0.2, ..., 2] and each state is

equally likely. τ = .5, γ = 0.1, and preferences are u(c) =
√
c, which implies that C(u) = u2.

We set the reservation utility U =
√
.2, which was high enough so that the no-perks condition

did not bind in either commitment and self-enforcing stochastic monitoring problems. We find

that stochastic monitoring with commitment yielded a 5.87% higher solution value relative to

deterministic monitoring. We also find that at the optimal partition, self-enforcing monitoring

yielded 5.57% higher solution value than deterministic monitoring, and for this solution the

associated partition was nonminimal. We report the monitoring probabilities and the wage

payments to the manager below for each of our solutions. What one see’s is that base wages
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are lower with deterministic monitoring than with self-enforcing monitoring, which in turn

has lower base wages that stochastic monitoring with commitment. Correspondingly, the

solutions with lower base wages had higher wages for high levels of θ, when the incentive

conditions bound. In the stochastic monitoring cases - both with commitment and self-

enforcement - monitoring probabilities are always below 1/2, and monitoring is used over a

wider range of states than in the deterministic case.

Deterministic Monitoring: The solution in terms of monitoring probabilities (m) and the

manager’s payment (w) is given by

θ m w θ m w

0 1 .160 1.1 1 .160

.1 1 .160 1.2 0 .160

..2 1 .160 1.3 0 .160

.3 1 .160 1.4 0 .160

.4 1 .160 1.5 0 .200

.5 1 .160 1.6 0 .250

.6 1 .160 1.7 0 .300

.7 1 .160 1.8 0 .350

.8 1 .160 1.9 0 .400

.9 1 .160 2.0 0 .450

1.0 1 .160

Stochastic Monitoring with Commitment: The value of the solution probabilities of monitor-
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ing (m) and the payment (w) are given in the following table.

θ m w θ m w

0 .450 .165 1.1 .112 .168

.1 .429 .165 1.2 .058 .181

..2 .408 .165 1.3 0 .197

.3 .385 .165 1.4 0 .212

.4 .360 .165 1.5 0 .228

.5 .334 .165 1.6 0 .246

.6 .305 .165 1.7 0 .266

.7 .274 .165 1.8 0 .290

.8 .238 .165 1.9 0 .319

.9 .201 .165 2.0 0 .355

1.0 .158 .165

Self-Enforcing Stochastic Monitoring: The value of the solution is 0.7766178 at the optimal

partition

Θ1 = {0, .1, .2}
Θ2 = {.3, .4, .5}
Θ3 = {.6, .7}
Θ4 = {.8, .9}
Θ5 = {1.0}
Θ6 = {1.1}

...

and the monitoring probabilities, wages, and the nonmonitoring payment v0 were given
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by

θ m w v0 θ m w v0

0 .445 .162 0 1.1 .155 .170 1.0

.1 .445 .162 0 1.2 .110 .185 1.1

..2 .445 .162 0 1.3 .056 .200 1.2

.3 .379 .162 0.3 1.4 0 .216 1.3

.4 .379 .162 0.3 1.5 0 .231 1.4

.5 .379 .162 0.3 1.6 0 .250 1.5

.6 .315 .162 0.55 1.7 0 .270 1.6

.7 .315 .162 0.55 1.8 0 .293 1.7

.8 .253 .163 0.75 1.9 0 .321 1.8

.9 .253 .163 0.75 2.0 0 .357 1.9

1.0 .199 .164 0.9
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