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Abstract

This paper solves for the profit maximising strategy of a durable–goods monopolist when
incoming demand varies over time. Each period an additional demand curve enters the
market; these consumers can then choose whether and when to purchase. The potential for
delay creates an asymmetry in the optimal price path which exhibits fast increases and slow
declines. This asymmetry also pushes the price level above that charged by a firm facing
the average level of demand. Applications of this framework include deterministic demand
cycles, one–off shocks and IID demand draws. The optimal policy can be implemented by
a best–price provision and outperforms renting.

1 Introduction

Each September thousands of students return to universities and colleges across Canada. Cana-
dian Tire, a large retailer, responds to this influx of new consumers by holding a back–to–school
sale, reducing their price on furniture, stationary and kitchen utensils. While the price reduc-
tion helps increase profits from the student community, it also causes customers who would
have bought in July and August to delay their purchases. This paper analyses this tradeoff,
solving for the optimal pricing strategy of a durable–goods monopolist when incoming demand
varies over time.

Consider a monopolist selling a durable good, defined broadly to be any product where
agents can choose both whether and when to purchase. Each period the market is kept alive by
the entry of new consumers. These new consumers are associated with a demand curve which is
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allowed to change over time. The firm’s problem is to choose a sequence of prices to maximise
their profits subject to consumers optimally choosing their purchase time.

Each consumer’s purchase decision can be analysed as an optimal stopping problem. Using
this formulation the paper characterises the consumers’ purchasing rule by a sequence of cutoffs:
at any time t a consumer purchases if their valuation lies above the time–t cutoff. Mechanism
design can then be utilised to describe the firm’s profit as a function of these cutoffs.

Under a monotonicity condition the profit–maximising cutoffs are characterised by a myopic
algorithm, where the allocation at time t only depends upon the consumers who have entered
the market up to time t. Consumers are forward looking and prices depend upon the sequence of
future demand; the optimal allocation, however, only depends upon past demand. The optimal
prices can then be derived from the consumers’ optimal purchase problem.

The optimal myopic algorithm has an intuitive interpretation. The new demand curve in
any period t can be associated with a marginal revenue curve, where marginal revenue is with
respect to price, not quantity. In the first round the firm sells the good to agents with positive
marginal revenue (net of costs). In each period thereafter, the firm adds the marginal revenue
of the old consumers who have yet to buy to that of the new agents, forming a cumulative
marginal revenue function. The firm then sells the good to agents with positive cumulative
marginal revenue.

Consumers’ ability to delay induces an asymmetry in the optimal price path. When demand
grows stronger over time, in that valuations tend to rise, the firm will want to increase their
price. Agents then have no incentive to delay and the firm can discriminate between the different
generations, charging the monopoly price against the incoming generation: the myopic price.

When demand weakens over time, in that valuations tend to fall, the firm will want to
decrease their price over time. Charging the myopic price, however, will now lead to falling
prices, causing some customers to delay their purchases. Anticipating this delay, the firm slows
the rate at which prices fall. This decline in price is reduced so much that prices always stay
above that chosen by a firm who pools all generations together and prices against the average
level of demand: the average–demand price.

The contrast between increases and decreases in demand is stark. If there is a permanent
and unanticipated increase in demand the price quickly jumps up to the new higher monopoly
price. However if demand falls the price will jump down a little and slowly fall towards the
lower monopoly price over time.

This asymmetry between demand increases and decreases crucially affects the firm’s optimal
pricing policy. When demand follows stationary cycles, it leads to sharp price increases and
gentle declines. This is shown in Figure 1, where the lower panel describes which generations
purchase in which periods.

During the first quarter of the cycle, as demand rises from its average level to the peak of
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Figure 1: Price Cycles

the boom, the price rises quickly. For the other three–quarters of the cycle, as demand falls and
then returns to its average position, the price slowly falls. These price cycles are stationary,
showing no decline in amplitude no matter how long the market has existed. The price is also
minimized not in the period of lowest demand, but in the last period of the slump, just before
demand returns to its average position. The asymmetry between increases and decreases in
demand also raises the price level: price always exceeds the average–demand price. This means
introducing variation in demand leads to an increase in all prices. In other words, when the
firm has more information about demand cycles all consumers are made worse off and social
welfare is reduced.

The basic model makes two assumptions of note.
First, there is no resale. There are many goods where this is the right assumption: one–time
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experiences, (e.g. a trip to Disneyland), intermediate products (e.g. aluminium), regulated mar-
kets (e.g. plutonium), potential lemons (e.g. computers), goods with high transactions costs
(e.g. fridges) or those with emotional attachment (e.g. diamonds). However such an assumption
is not innocuous. With perfect resale price variations decrease in amplitude as the market gets
older; without resale the market fluctuations never abate. With resale price responds symmetri-
cally to changes in demand; without resale price movements are highly asymmetric. Introducing
resale has no effect on allocations if and only if new demand falls over time; otherwise the pres-
ence of resale lowers the monopolist’s profits. Since renting is identical to commitment pricing
with resale, renting attains maximal profits if and only if demand is declining.

Second, it is assumed that the monopolist can perfectly commit to a sequence of prices.
With homogenous demand and no commitment there are many equilibria ranging from the
those that are very bad for the firm to others which are close to the full–commitment outcome
(Sobel (1991)). This paper should thus be viewed as establishing the best possible outcome for
the firm. This seems particularly reasonable if the firm is concerned about its reputation across
several durable–goods markets. In addition, there are contractual solutions to the commitment
problem. We extend the result of Butz (1990) by showing if the firm can use a best–price
provision they can implement the optimal scheme without requiring the pre–commitment.

The starting point for this paper are the models of Stokey (1979) and Conlisk, Gerstner,
and Sobel (1984), as examined in Section 3.2. Other authors introduce dynamics into durable
goods models in different ways. Conlisk (1984), Laffont and Tirole (1996), Biehl (2001), and
Board (2004) have stochastic valuations. Cost variations have been analysed by Stokey (1979),
and Levhari and Pindyck (1981). When consumers and the firm have different discount rates
the optimal price may fall over time as examined by Sobel and Takahashi (1983), Landsberger
and Meilijson (1985), and Wang (2001). Rust (1985, 1986), Waldman (1996) and Hendel and
Lizzeri (1999) allow the good to depreciate and for consumers to scrap their the product.

The paper is organised as follows: Section 2 contains a description of the model and a
derivation of the firm’s problem. Section 3 derives optimal control problem which is solved in
Section 4. Section 5 discusses applications including monotone demand paths, one–off shocks,
demand cycles and IID demand. Section 6 examines the effect of information structures, dis-
count rates and best–price schemes. Section 7 analyses resale and renting, while Section 8
concludes. Omitted proofs are contained in the Appendix.

2 Model

Time is discrete, t ∈ {1, . . . , T}, where we allow T = ∞. Demand and the discount rate are
allowed to be uncertain, depending on the state of the world ω ∈ Ω. The information possessed
by consumer and the firm is described by a filtered space (Ω,F , {Ft}, Q), where F are the
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measurable sets, {Ft} is the information partition at time t, which grows finer over time, and
Q is the probability measure. The common discount rate, δt ∈ (δ, δ) ⊂ (0, 1), is Ft–measurable,
i.e. {ω : δt ≤ x} ∈ Ft for x ∈ (0, 1). This means that at time t all agents know δt. Let the
discounting up to time t be ∆t =

∏t
s=1 δs, where ∆∞=0.

A consumer with valuation θ ∈ [θ, θ] who purchases at time t ∈ {1, . . . , T,∞} at price pt

obtains utility
(θ − pt)∆t

A consumer always has the option not to purchase, in which case they have zero utility and are
said to buy at time t = ∞.

Each period consumers of measure ft(θ) enter the market. Let Ft(θ) be the distribution
function, where Ft(θ) is the total number of agents (and not necessarily equal to one), and
denote the survival function by F t(θ) := Ft(θ)− Ft(θ). The time–t demand function, ft(θ), is
Ft–adapted, so while agents may not know future demand, they do know current demand. This
avoids issues to demand experimentation and is trivially satisfied if demand is deterministic.

Consider a consumer of type (θ, t) with valuation θ who enters in period t. Given a sequence
of Ft–adapted prices, {pt}, they have the problem of choosing a purchasing time τ(θ, t) ≥ t to
maximise expected utility,

ut(θ) = E [(θ − pτ )∆τ ] (2.1)

where “E” is the expectation over Ω. The purchasing time is a random variable taking values
in {t, . . . , T,∞}, where the decision to buy at time t can only depend on information available
at time t, i.e. {ω : τ ≤ t} ∈ Ft (∀t). Let τ∗(θ, t) be the earliest solution to this problem which
exists by Lemma 1 in Section 3.3.

The firm’s problem is to choose Ft–adapted prices {pt} to maximise profit. Assuming
marginal cost is constant, it can be normalised to zero, yielding expected profit,

Π = E
[

T∑

t=1

∫ θ

θ
∆τ(θ,t)pτ∗(θ,t) dFt

]
(2.2)

where τ∗(θ, t) maximises the consumer’s utility (2.1). In Appendix A.2 it is argued that the
restriction to a price mechanism is without loss.

3 Solution Technique

3.1 Firm’s Problem

Since the purchase time is chosen optimally, we can apply the envelope theorem to the con-
sumer’s utility maximisation problem (2.1). The space of stopping times is complex so we will
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use the generalised envelope theorem of Milgrom and Segal (2002).1 This yields utility,

ut(θ) = E
[∫ θ

θ
∆τ∗(x,t) dx + u(θ, t)

]
(3.1)

Since the seller will always choose prices pt ≥ θ (∀t) it will be the case that u(θ, t) = 0 (∀t).
Integrating by parts, consumer surplus from generation t is

∫ θ

θ
ut(θ) dFt = E

[∫ θ

θ
∆τ∗(θ,t)F t(θ) dθ

∣∣∣∣ Ft

]
(3.2)

Expected welfare from generation t is defined by

Wt := E
[∫ θ

θ
∆τ∗(θ,t)θ dFt

]
(3.3)

with total welfare W =
∑

t Wt. Since costs are zero, the welfare maximising pricing scheme
is to set all prices equal to zero. Expected profit equals welfare (3.3) minus consumer surplus
(3.2),

Π = E
[

T∑

t=1

∫ θ

θ

[
∆τ∗(θ,t)θ − ut(θ)

]
dFt

]

= E
[

T∑

t=1

∫ θ

θ
∆τ∗(θ,t)mt(θ) dθ

]
(3.4)

where mt(θ) := θft(θ)− F t(θ) is marginal revenue with respect to price.2

Profit is thus the discounted sum of marginal revenues. Notice how the marginal revenue
gained from agent (θ, t) is the same no matter when they choose to buy. That is, an agent’s
marginal revenue is determined when they are born, and sticks to them forever.

The firm’s problem is to choose prices {pt} to maximise profit (3.4) subject to consumers
choosing their purchasing time τ∗(θ, t) to maximise utility (2.1).

3.2 Special Cases

We now consider three special cases that will be useful benchmarks for what follows. Example
1 comes from Stokey (1979), where there is a single demand curve of consumers and entry

1This theorem requires that the set of optimal purchasing times is nonempty, which is true by Lemma 1 in
Section 3.3.

2It is more common to use marginal revenue with respect to quantity, MRt(θ) := mt(θ)/ft(θ). However,
since we will be adding demand across generations, summing demand curves horizontally, it is easier to work
with marginal revenue with respect to price. In any case, both mt(θ) and MRt(θ) have the same roots, and are
thus interchangeable in pricing formulae.
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never occurs. Example 2 supposes the monopolist can set a different price schedule for each
generation. Example 3 is the homogenous entry model of Conlisk, Gerstner, and Sobel (1984).

Example 1 (Single Generation). If ft(θ) = 0 for t ≥ 2 the profit (3.4) reduces to

Π =
∫ θ

θ
∆τ∗(θ,t)m1(θ) dθ (3.5)

To maximise (3.5) the firm would like to set purchasing times as follows:

τ∗(θ, 1) = 1 if m1(θ) ≥ 0

τ∗(θ, 1) = ∞ if m1(θ) < 0

That is, the firm would like positive marginal revenue customers to purchase immediately, and
the rest to never buy. If m1(θ) is increasing this optimal policy can be implemented by setting

p1 = m−1
1 (0)

pt ≥ m−1
1 (0) if t ≥ 2

Since the price is increasing, consumers buy in period 1 or never buy at all. A consumer then
buys in period 1 if and only if θ ≥ m−1

1 (0), which is the same as m1(θ) ≥ 0. 4

Example 2 (Discrimination between Generations). Next suppose the firm could tell the
different cohorts apart and set a price ps

t for generation s in time t. They would then implement
Stokey’s solution for each cohort. That is,

ps
t = m−1

s (0) if t = s

ps
t ≥ m−1

s (0) if t ≥ s + 1

Hence if the myopic monopoly price grows over time, m−1
t (0) ≥ m−1

t−1(0), the seller can simply
charge the myopic price, p∗t = m−1

t (0), and need not discriminate. Example 3 amounts to a
special case of this observation. 4

Example 3 (Homogenous Demand). Finally suppose demand is identical in each period,
ft(θ) = f0(θ) ∀t. The firm can implement the discriminatory optimum from Example 2 by
setting p∗t = m−1

0 (0) ∀t. 4

3.3 The Cutoff Approach

As suggested by Examples 1–3, rather than solving for prices directly it is easier to solve for the
optimal purchasing rule and back out prices. This approach works since prices {pt} only enter
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into profits (3.4) via the purchasing rule τ∗(θ, t)—a standard feature of quasi–linear mechanism
design problems. This is analogous to solving a standard monopoly model in quantities and
using the demand curve to derive prices.

Lemma 1. The earliest purchasing rule, τ∗(θ, t), has the following properties:
[existence] τ∗(θ, t) exists.
[θ–monotonicity] τ∗(θ, t) is decreasing in θ.
[non–discrimination] If τ∗(θ, tL) ≥ tH then τ∗(θ, tL) = τ∗(θ, tH), for tH ≥ tL.
[right–continuity] {θ : τ∗(θ, tL) ≤ tH} is closed, for tH ≥ tL.

Proof. [existence], [θ–monotonicity], [non–discrimination] follow from Lemma 4 which describes
properties of the set of optimal stopping rules. These properties also apply to the least element
by Topkis (1998, Theorem 2.4.3). [right–continuity] follows from the continuity of ut(θ) in
θ.

Lemma 1 implies the optimal stopping rule τ∗(θ, t) can be characterised by a sequence of
cutoffs. The cutoff θ∗t is the lowest type who purchases in period t,

θ∗t := min{θ : τ∗(θ, t) = t}.

That is, consumers in the market in period t will buy if their valuation exceeds θ∗t . If demand
is uncertain, these cutoffs are Ft–adapted random variables. For generation t ≤ t′ the updated
cutoff, θ∗(t′; t), is the lowest type from generation t who buys by time t′,

θ∗(t′; t) := min
t≥s≥t′

θ∗s (3.6)

If t′ < t then set θ∗(t′; t) = ∞. Agents from generation t will then buy in period t′ if

θ ∈ [θ∗(t′; t), θ∗(t′ − 1; t))

A simple three–period example is shown in Figure 2, where we suppose θ∗1 > θ∗3 > θ∗2.
The firm’s problem is then to choose cutoffs {θ∗t } to maximise profit (3.4).
Optimal prices can then be backed out from the optimal sequence of cutoffs. First suppose

T is finite. In the last period type θ∗T is indifferent between buying and not, so the firm sets
p∗T = θ∗T . In earlier periods an agent with value θ∗t should be indifferent between buying in
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period t and waiting. Hence prices are determined by the following algorithm:3

∆t(θ∗t − p∗t ) = max
τ≥t+1

E [(θ∗t − p∗τ )∆τ |Ft] (3.7)

= E
[
(θ∗t − p∗τ(θ∗t ,t+1))∆τ(θ∗t ,t+1)|Ft

]

where τ(θ∗t , t + 1) = min{τ ≥ t + 1 : θ∗t ≥ θ∗τ}. When T in infinite there is no last period, but
we can still use equation (3.7). One can also truncate the problem, calculate prices for a finite
T and let T →∞, as shown in Chow, Robbins, and Siegmund (1971, Theorems 4.1 and 4.3).

4 Optimal Pricing

4.1 Ordering Demand Functions

It will be useful to consider a method to rank demand curves. Period H is said to have higher
demand than period L if m−1

H (0) ≥ m−1
L (0), so the optimal static monopoly price is higher

under FH(θ) than FL(θ). There may, however, be more people under the “low” demand, i.e.
FH(θ) ≤ FL(θ), as is the case in the “back–to–school” example in the Introduction.

A sufficient condition for this is that FH is larger than FL in hazard order, FH(θ)/fH(θ) ≥
FL(θ)/fL(θ). Suppose θL is distributed according to FL(θ) which is log–concave. Then FH(θ)
is larger than FL(θ) in hazard order, and consequently m−1

H (0) ≥ m−1
L (0), in the following

examples:

(a) Upwards Shift. θH := θL + ε for some constant ε > 0.

3If the cutoffs lie in (θ, θ) and there is entry each period these prices are unique. An equivalent way to obtain
prices is to equate (2.1) and (2.3) under the optimal purchasing time τ(θ, t).
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Figure 3: Two–Period Pictures

(b) Upwards Pivot. θH := αθL for α > 1.

(c) Outwards Shift. fH(θ) := αfL(θ/α) for α > 1.

Let the marginal revenue from a set of generations A ⊂ {1, . . . , T} be denoted mA(θ) :=∑
s∈A ms(θ). Similarly, let m≤t(θ) :=

∑
k≤t mk(θ) be total marginal revenue of consumers who

have already entered.

4.2 Deterministic Two–Period Model

To gain some intuition behind the solution, consider two–period model, where demand is de-
terministic and the discount rate δ is constant. In this case, profit (3.4) reduces to,

Π =
∫ θ

θ∗1
m1(θ) dθ + δ

∫ θ

θ∗2

[
m2(θ) + 1{θ<θ∗1}m1(θ)

]
dθ

Assume that the marginal revenue functions, mt(θ), are increasing. One can now derive the
optimal policy via calculus, however the approach is not particularly illuminating. In contrast,
the following argument is easy to generalise.

First consider the increasing demand case, m−1
2 (0) ≥ m−1

1 (0), as shown in Figure 3A.4

4Figure 3 is created using the Weibull distribution.

10



Example 2 demonstrates that the optimal rule is the myopic policy θ∗t = m−1
t (0). To verify this

consider fixing the second period cutoff and choosing θ∗1. If the firm sells to type (θ, 1) in period
1 they will obtain profit of m1(θ). If they do not sell to this agent in period 1 they may end
up selling to them in period 2, yielding profit δm1(θ), or may never sell to the agent, yielding
profit 0. If m1(θ) ≥ 0 then m1(θ) ≥ max{δm1(θ), 0}, so the firm is always better of selling now,
independent of future cutoffs. Conversely, if m1(θ) < 0 then m1(θ) < min{δm1(θ), 0} and the
firm is always better not to sell. So the profit–maximising rule is simple: sell to an agent of
type (θ, 1) in period 1 if and only if m1(θ) ≥ 0.

In period 2 selling to a type θ ∈ [
m−1

1 (0), θ
]
yields a marginal revenue of m2(θ). For types θ ∈[

θ,m−1
1 (0)

)
the firm also sells to first generation agents and marginal revenue is m1(θ)+m2(θ).

Hence the firm faces the cumulative marginal revenue, M2 := m2(θ) + min{m1(θ), 0}. Since
demand is increasing the firm can sell to all generation 2 agents with positive marginal revenue,
m2(θ) ≥ 0, without having to sell to any more generation 1 agents. One can imagine the cutoff
θ∗2 being slowly reduced, including more and more agents. The firm then stops at m−1

2 (0),
since going further will include negative marginal revenue agents from generation 2 and will
eventually include negative marginal revenue agents from generation 1. This yields the cutoffs
θ∗t = m−1

t (0) for t = 1, 2.
Second, consider the decreasing demand case, m−1

2 (0) ≤ m−1
1 (0), as shown in Figure 3B.

As in the increasing demand case, the firm should sell to an agent in period 1 if and only if
m1(θ) ≥ 0. However, the second period is different. If the firm were to sell to all the generation
2 agents with positive marginal revenue, θ ≥ m−1

2 (0), they would include some generation
1 agents with negative marginal revenue who did not buy in the first round. Thus the firm
increases the cutoff until the total marginal from both generations, m≤2(θ), equals zero. This
yields the cutoffs θ∗t = m−1

≤t (0) for t = 1, 2.
When demand is increasing only generation 2 buys in period 2. Hence the firm only cares

about the marginal revenue from the second generation when choosing its cutoff. In comparison,
when demand is decreasing both generations are active in period 2. Hence the firm cares about
the total marginal revenue from both generations when choosing its cutoff.

4.3 General Solution

Definition 1. Cumulative marginal revenue equals Mt(θ) := mt(θ) + min{Mt−1(θ), 0}, where
M1(θ) := m1(θ).

Assumption (A1). Mt(θ) is quasi–increasing (∀t).5
5A function M(θ) is (strictly) quasi–increasing if M(θL) ≥ 0 =⇒ M(θH) ≥ (>)0 for θH > θL. Define the

root of a quasi–increasing function by M−1(0) := sup{θ : Mt(θ) < 0}. If M(θ) < 0 (∀θ) then M−1(0) := θ. If
M(θ) ≥ 0 (∀θ) then M−1(0) := θ.
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A common assumption in mechanism design is that marginal revenue with respect to quan-
tity, mt(θ)/ft(θ), is quasi–increasing. This implies that mt(θ) is quasi–increasing. If demand
jumps are not too large then Mt(θ) will also be quasi–increasing.

Theorem 1. Under A1, the optimal cutoffs are given by θ∗t = M−1
t (0).

Proof. Let Πt be expected profit from generation t, and Π≥t be the profit from generations
{t, . . . , T}. Denote the positive and negative components by M+

t (θ) := max{Mt(θ), 0} and
M−

t (θ) := min{Mt(θ), 0}. The proof will proceed by induction, starting with period t = 1.
Fix {τ(θ, t′)} for t′ ≥ 2, and consider the optimal choice of τ(θ, 1). Notice that the [non–

discrimination] condition in Lemma 1 implies τ(θ, 1) ∈ {1, τ(θ, 2)}. Splitting up the profit
equation, Π = Π1 + Π≥2, and applying equation (3.4),

Π = E
[∫ θ

θ
E [

∆τ(θ,1)M
+
1 (θ) + ∆τ(θ,1)M

−
1 (θ) | F1

]
dθ

]
+ Π≥2

≤ E
[∫ θ

θ
E [

∆1M
+
1 (θ) + ∆τ(θ,2)M

−
1 (θ) | F1

]
dθ

]
+ Π≥2

The second line solves for the optimal choice of τ(θ, 1). Since M1(θ) is measurable with respect
to F1, the optimal choice is τ∗(θ, 1) = 1 if M1(θ) ≥ 0 and τ∗(θ, 1) = τ(θ, 2) if M1(θ) < 0. This
is independent of the choice of τ(θ, 2). If M1(θ) is quasi–increasing this purchasing rule can be
implemented by setting θ∗1 = M−1

1 (0).
Continuing by induction, consider period t. Suppose θ∗s = M−1

s (0) for s < t. Fix {τ(θ, t′)}
for t′ ≥ t, and consider the optimal choice of τ(θ, t). The [non–discrimination] condition in
Lemma 1 implies τ(θ, t) ∈ {t, τ(θ, t+1)}. Splitting the profit equation, Π = Π≤t−1+Πt+Π≥t+1,

Π = E
[

t−1∑

s=1

∫ θ

θ
∆sM

+
s (θ) dθ

]
+ E

[∫ θ

θ
E [

∆τ(θ,t)M
+
t (θ) + ∆τ(θ,t)M

−
t (θ) | Ft

]
dθ

]
+ Π≥t+1

≤ E
[

t−1∑

s=1

∫ θ

θ
∆sM

+
s (θ) dθ

]
+ E

[∫ θ

θ
E [

∆tM
+
t (θ) + ∆τ(θ,t+1)M

−
t (θ) | Ft

]
dθ

]
+ Π≥t+1

The optimal choice of stopping rule is τ∗(θ, t) = t if Mt(θ) ≥ 0 and τ∗(θ, t) = τ(θ, t + 1)
if Mt(θ) < 0. If Mt(θ) is quasi–increasing this stopping rule can be implemented by setting
θ∗1 = M−1

1 (0).

In the first period the monopolist can either sell to consumer θ and gain ∆1m1(θ), or not
sell to the consumer and gain ∆tm1(θ) if they eventually buy in period t. Since ∆t < ∆1 the
monopolist should sell to the agent if and only if m1(θ) ≥ 0. In period 2, and every subsequent
period, the firm sums the marginal revenue of the new consumers and that of old agents who
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have yet to buy. This cumulative marginal revenue is given by Mt(θ) = mt(θ) + M−
1 (θ),

whereupon the monopolist again sells to an agent with valuation θ if and only if their marginal
revenue is positive, Mt(θ) ≥ 0.

This algorithm is completely myopic: It says the optimal cutoff point at period t only
depends upon the consumers who have entered by time t. That is, the optimal cutoff at time t

is independent of future demand and the discount rate.

4.4 Active Generations

The optimal policy has an alternative interpretation. At time tH a generation tL is active if
some members of generation tL purchase in period tH .

Definition 2. The upper active set is A(tH) := {tL ≤ tH : θ∗t ≤ θ∗(tH − 1; tL)}.

Lemma 2. The upper active set has the following properties:
(a) A(t) is connected and contains {t}.
(b) A(t) ⊃ A(t− 1) or A(t) = {t}.

Proof. (a) t ∈ A(t) since M−1
t (0) ∈ [θ, θ] < ∞. A(t) is connected since θ∗(tH − 1; tL) is

increasing in tL. (b) If t′ ∈ A(t− 1) then θ∗(t− 1; t′) = θ∗(t− 1; t− 1). If {t− 1} ∈ A(t) then
t′ ∈ A(t).

Lemma 2(a) says the current generation is always active, and the set of active generations
is connected. Lemma 2(b) says that once two generations are pooled they are never separated.
Define A(t) := {{a, . . . , t} : a ≤ t} as the set of potentially active generations at time t.

Theorem 2. Suppose A1 holds. Then Mt(θ) is the lower envelope of {mA(θ) : A ∈ A(t)} and
the optimal cutoffs are given by

θ∗t = max
A∈A(t)

m−1
A (0) (4.1)

When A = A(t) this maximum is obtained. Moreover, if Mt(θ) is strictly quasi–increasing and
continuous then A(t) is the maximal set in A(t) such that m−1

A (0) = θ∗t .

Proof. Fix t and pick an arbitrary A ∈ A(t). That is, A = {s, . . . , t} for some s ≤ t. By
construction,

t∑

i=s

mi(θ) = Mt(θ) +
t−1∑

i=s

M+
i (θ)−M−

s−1(θ) (4.2)

Hence Mt(θ) ≤ mA(θ). Cumulative marginal revenue can also be written as

Mt(θ) =
∑

s≤t

ms(θ)1θ<θ∗(t−1;s) (4.3)

13



so for any θ, ∃A ∈ A(t) such that Mt(θ) = mA(θ). That is, Mt(θ) = min{mA(θ) : A ∈ A(t)}.
Since Mt(θ) ≤ mA(θ), if Mt(θ) ≥ 0 then mA(θ) ≥ 0, ∀A ∈ A(t). That is, M−1

t (0) ≥
maxA∈A(t) m−1

A (0). To obtain the reverse inequality, (4.3) implies that for small ε > 0, Mt(θ∗t −
ε) = mA(t)(θ

∗
t − ε). Hence M−1

t (0) ≤ m−1
A(t)

(0). Putting this together, M−1
t (0) = m−1

A(t)
(0).

Fix t and define A∗(t) to be the maximal set such that m−1
A∗(t)(0) = M−1

t (0). Since
m−1

A(t)
(0) = M−1

t (0) it must be that A(t) ⊂ A∗(t). In order to obtain a contradiction, sup-

pose A∗(t) = A(t) ∪ B for some nonempty set B, where b = max{t : t ∈ B}. Since
b 6∈ A(t), θ∗b < θ∗t . Mb(θ) lies below mB(θ) and is strictly quasi–increasing so there is a
small ε > 0 such that mB(θ∗t − ε) ≥ Mb(θ∗t − ε) > ε. Moreover, Mt(θ) is continuous so
ε can be chosen sufficiently small such that mA(t)(θ

∗
t − ε) = Mt(θ∗t − ε) ∈ (−ε, 0). Hence

mA∗(t)(θ∗t − ε) = mA(t)(θ
∗
t − ε) + mB(θ∗t − ε) > 0, and m−1

A(t)
(0) > m−1

A∗(t)(0), contradicting the

assumption that m−1
A∗(t)(0) = M−1

t (0).

Theorem 2 says the optimal cutoffs are determined by the marginal revenue of the active
generations. Let a(t) = minA(t). Theorem 2 induces the first order condition:

Proposition 1. Suppose A1 holds. Then

m−1
a(t)−1(0) < m−1

A(t)
(0) ≤ m−1

a(t)(0) (4.4)

Proof. First, a(t) − 1 6∈ A(t), so m−1
A(t)

(0) = θ∗t > θ∗a(t)−1 ≥ m−1
a(t)−1(0). The last inequality

comes from Theorem 2. Second, a(t) ∈ A(t), so m−1
A(t)

(0) = θ∗t ≤ θ∗a(t) = m−1
a(t)(0). The last

equality follows from Lemma 2(b) which implies A(a(t)) = a(t).

If time is continuous and the monopoly price, m−1
t (0), varies continuously in t, then equation

(4.4) reduces to m−1
A(t)

(0) = m−1
a(t)(0). This provides a fixed–point interpretation: the monopolist

serves enough agents so that the monopoly price against the marginal agent equals the monopoly
price against the average agent. One must, however, be careful with this first order approach
since the fixed point may not be unique.

4.5 Ironing

Theorem 1 assumes the cumulative marginal revenue Mt is quasi–increasing (A1). If this fails
in a one–period model one can calculate the ironed marginal revenue M1(θ) (e.g. Myerson
(1981)). The firm sells to an agent if and only if M1(θ) ≥ 0. Unfortunately in the multi–period
model it is not possible to use the myopic policy of ironing each Mt individually, as the following
example shows.

Example 4. Suppose T = 2, δ constant, [θ, θ] = [0, 1] with m1(θ) = 1− 41[1/2,1] and m2(θ) =
−10+201[1/2,1]. This yields M1(θ) = −1 so a myopic policy suggests not awarding the good to
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any agent. In period 2, M2(θ) = −9 + 161[1/2,1] which is quasi–increasing with M−1
2 (0) = 1/2

yielding revenue 7δ/2. However if the firm sells to consumers [0, 1] in period 1 and [1/2, 1] in
period 2 then revenue is −1 + 10δ/2 which is preferable if δ ≥ 2/3. 4

The existence of negative marginal revenue agents may stop the monopolist selling to all
positive marginal revenue consumers. However if these negative consumers end up buying
anyway, the firm should take this into account in its ironing calculation. Since the firm now
has to be forward looking the simple myopic policy in Theorem 1 no longer holds.

5 Applications

Assumption (A2). mt(θ) is strictly increasing and continuous in θ and m−1
t (0) ∈ (θ, θ) (∀t).

This Section (as well as Section 7) uses A2 rather than A1. This stricter monotonicity
assumption simplifies proofs and helps provide a cleaner characterisation of demand cycles
(Section 5.4). Versions of many of these results, however, extend to A1.6

Lemma 3. Suppose A2 holds. Then
(a) m−1

1 (0) > m−1
2 (0) implies m−1

{1,2}(0) ∈ (m−1
2 (0),m−1

1 (0))
(b) m−1

1 (0) ≥ m−1
2 (0) implies m−1

{1,2}(0) ∈ [m−1
2 (0),m−1

1 (0)]

Proof. (a) On [m−1
1 (0), θ], m1(θ) ≥ 0, m2(θ) > 0 (by strict monotonicity) and m{1,2}(θ) > 0.

Continuity implies m−1
{1,2}(0) < m−1

1 (0). On [θ,m−1
2 (0)], m1(θ) < 0 (by monotonicity), m2(θ) ≤

0 (by continuity and monotonicity) and m{1,2}(θ) < 0. Continuity implies m−1
{1,2}(0) > m−1

2 (0).
(b) On [m−1

1 (0), θ], m1(θ) ≥ 0, m2(θ) ≥ 0 and m{1,2}(θ) ≥ 0. Hence m−1
{1,2}(0) ≤ m−1

1 (0).
On [θ,m−1

2 (0)], m1(θ) ≤ 0 (by monotonicity and continuity), m2(θ) ≤ 0 and m{1,2}(θ) ≤ 0.
Hence m−1

{1,2}(0) ≥ m−1
2 (0).

5.1 Lower Active Set

Definition 3. The lower active set is A(tH) := {tL ≤ tH : θ∗t < θ∗(tH − 1; tL)}.

Lemma 2 also applies to the lower active set.

Proposition 2. Under A2, m−1
A(t)(0) = θ∗t . Moreover, A(t) is the minimal set is A(t) such that

m−1
A (0) = θ∗t .

6To illustrate, A1 is sufficient for the “if” part of the monotone demand characterisation (Proposition 3).
Similarly, when demand cycles, cutoffs are stationary (Proposition 4) and, using Theorem 2, cutoffs and prices
exceed the average–demand price (Proposition 5).
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Proof. Using (4.3) and A2 Mt(θ∗t ) = mA(t)(θ∗t ) = 0. By A2, this uniquely defines θ∗t = m−1
A(t)(0).

Fix t and let A∗(t) be the minimal set such that m−1
A∗(t)(0) = θ∗t . In order to attain a

contradiction suppose A = A∗ ∪B for some nonempty set B, where b = max{t : t ∈ B}. Since
b ∈ A(t), θ∗b > θ∗t and M−

b (θ∗t ) < 0. Using equation (4.2), 0 = Mt(θ∗t ) ≤ mA∗(t)(θ∗t )+M−
b (θ∗t ) <

0, yielding a contradiction.

5.2 Monotone Deterministic Demand: Fast Rises and Slow Falls

Definition 4. Demand is increasing if m−1
t+1(0) ≥ m−1

t (0). Demand is weakly decreasing if
m−1
≤t (0) ≥ m−1

t+1(0).

Increasing demand means that the myopic monopoly price against the incoming generation
rises over time. Weakly decreasing demand means the myopic monopoly price against the
incoming generation is lower than the monopoly price against the sum of the previous demands.

Proposition 3 characterises the optimal cutoffs and prices when demand is growing or falling.
These results are simple extensions of the two–period solution in Section 4.2.

Proposition 3. Suppose demand is deterministic and A2 holds. Optimal cutoffs are given by
θ∗t = m−1

t (0) (∀t) if and only if demand is increasing. This can be implemented by prices

p∗t = m−1
t (0)

Optimal cutoffs are given by θ∗t = m−1
≤t (0) if and only if demand is weakly decreasing. This can

be implemented by prices

p∗t =
T∑

s=t

E
[(

∆s

∆t
− ∆s+1

∆t

)
m−1
≤s(0)

∣∣∣∣ Ft

]
(5.1)

where ∆T+1 := 0.

Proof. [If]. Increasing demand case. For t = 1, θ∗1 = m−1
1 (0). Suppose θ∗s = m−1

s (0) for s < t

and consider period t. Mt(θ) = mt(θ) on [θ∗t−1, θ] = [m−1
t−1(0), θ], using the induction hypothesis.

Demand is increasing so M−1
t (0) = m−1

t (0).
Decreasing demand case. For t = 1, θ∗1 = m−1

≤1(0). Suppose θ∗s = m−1
≤s(0) for s < t and

consider period t.
Mt(θ) = m≤t(θ) on [θ, min{θ∗1, . . . , θ∗t−1}] = [θ,m−1

≤t−1(0)], using the induction hypothesis.
Demand is decreasing so M−1

t (0) = m−1
≤t (0).

[Only If]. Increasing demand case. Applying the contrapositive, suppose m−1
t (0) < m−1

t−1(0).
Theorem 2 means θ∗t ≥ m−1

{t−1,t}(0) > m−1
t (0) using Lemma 3.

Decreasing demand case. Applying the contrapositive, suppose m−1
t (0) > m−1

≤t−1(0). Theo-
rem 2 means θ∗t ≥ m−1

t (0) > m−1
≤t (0) using Lemma 3.
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Prices can then be derived from equation (3.7). With increasing demand this is immediate.
With weakly decreasing demand prices obey the AR(1) equation (θ∗t−p∗t ) = E [(θ∗t−p∗t+1)δt+1|Ft]

When demand is increasing over time the firm can charge the optimal myopic price, p∗t =
m−1

t (0). Since the price is increasing, no consumers will delay their purchases, and the problem
can be broken into T disjoint sub–problems (see Example 2 in Section 3.2). In contrast, if the
firm charges the myopic price when demand is decreasing then there will be much delay. The
firm takes this into account and chooses the cutoff points so that at time t agent θ buys if the
“past average” marginal revenue, m≤t(θ), is positive. Prices are then given by a geometric sum
of future “past averages”.

Two price paths, mentioned in the introduction, will be useful benchmarks.

Definition 5. The myopic price is pM
t := m−1

t (0). The average–demand price is pA :=
limt→T m−1

≤t (0), assuming the limit exists.

The myopic price would be the price charged by a monopolist who only takes current
generation of consumers into account, ignoring the previous ones. By Example 2, this equals
the optimal price when the monopolist can discriminate between generations. It is also the
optimal price if consumers are banned from delaying consumption. The average–demand price
is charged by a monopolist who faces average demand 1

T

∑t
t=1 Ft(θ) each period. This is also

the price charged by an uniformed firm who knows total demand over the T periods, but does
not know the demand each period.7

Figure 4A compares different price paths under increasing demand.8 As can be seen, p∗t =
pM

t is increasing. Since agents never delay their purchases under increasing demand, the optimal
price path is independent of the discount factor.

This can be contrasted to decreasing demand, as shown in Figure 4B. Here p∗t is decreasing,
starting off below the myopic price and ending above it. The optimal price p∗t converges to the
average–demand price from above as t → T . That is,

lim
t→T

[pR
t − pA] =

T∑
s=t

E
[(

∆s

∆t
− ∆s+1

∆t

)
(m−1

≤s(0)−m−1
≤t (0))

∣∣∣∣ Ft

]
= 0

since every convergent sequence is cauchy. The discount factor is also relevant when demand
decreases: price fall towards the average demand price as agents become more patient. For
more on discounting see Section 6.2.

7The uncertainty interpretation assumes the firm cannot update their strategy over time, perhaps because
because sales are unobservable in the short term.

8Figures 1, 4 and 5 are generated by linear demand curves. In particular, types have measure 1 on [0, bt]
where bt ∈ [20, 30]. The discount rate is δ = 0.9 in Figures 4–5 and δ = 0.75 in Figure 1. Example 4 in Section
4.3 further analyses the linear demand specification.
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5.3 Permanent Shocks to Demand

The model can be used to analyse the effect of permanent shocks to demand. Moreover, since
demand curves are allowed to be uncertain, we can examine the price paths when this shock is
anticipated or unanticipated.

For the first t′− 1 periods demand is constant, mt(θ) = mα(θ) for t ∈ {1, . . . , t′− 1}. There
are two states of the world. In state ωα demand stays at mt(θ) = mα(θ) for t ∈ {t′, . . . , T}. In
state ωβ demand shifts to mt(θ) = mβ(θ) for t ∈ {t′, . . . , T}. To complete the description of
the world, suppose the state of the world is realised in period t′′ ≤ t′ and let the probability of
state ωα be α.

First consider an upwards jump in demand, m−1
β (0) ≥ m−1

α (0). Proposition 3 says the
optimal cutoffs are given by θ∗t = mt(θ). This allocation is implemented by prices p∗t = mt(θ).
In state ωα, cutoffs and prices remain constant over time, p∗t = θ∗t = m−1

α (0) (∀t). In state ωβ,
prices stay constant until time t′ and then jump upwards.

Next, consider a downwards jump in demand, m−1
β (0) ≤ m−1

α (0). Proposition 3 says the
optimal cutoffs are given by θ∗t = m≤t(θ). In state ωα, these cutoffs remain constant over time,
θ∗t = m−1

α (0) (∀t). In state ωβ, these cutoffs slowly decline after time t′.
Prices are trickier in the downwards jump case. Before period t′′ − 1 prices slowly fall in

accordance with AR(1) equation p∗t−1 = (1− δt)m−1
α (0) + δtp

∗
t with boundary condition

p∗t′′−1 = (1− (1− α)δt′′)m−1
α (0) + (1− α)δt′′p

∗
t′′(ωβ)

At time t′′ the state is revealed. In state ωα the price jumps upwards to p∗t (ωα) = m−1
α (0)

for t ≥ t′′. In state ωβ, the price p∗t (ωβ) jumps downwards and slowly converges to m−1
α (0)

according to equation (5.1). If the shock is “unexpected” (α → 1) then p∗t → m−1
α (0) for t < t′′.

This is shown in Figure 4C, where t′′ = t′.
There are two further points worth noting. First, the time t′′ information is revealed only

affects prices in the case of a decline in demand. However, even then it does not affect allocations
or utility (see Section 6.1). Second, an increase in today’s price not associated with an increase
in demand does not mean future demand will increase; rather it means an anticipated demand
fall is no longer expected.

5.4 Deterministic Demand Cycles

This section examines the implications of demand that follows deterministic cycles, where the
sequence of demand functions is described by K repetitions of {F1, . . . , FT }, where T < ∞ but
we allow K = ∞. Denote the period t of cycle k by tk. An example of this was seen in Figure
1 in the Introduction which also illustrates the set of active agents, A(t). One can see the
pattern of sharp price increases, and slow declines, which intuitively follow from Proposition 3.
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When new demand is growing the price rises quickly along with the myopic price and there is
no delay. When new demand is falling agents delay their purchases and the price falls much
more slowly. The picture also illustrates other regularities:

1. After the first cycle, cutoffs and prices follow a regular pattern.

2. After the first cycle, prices always lie above the average–demand price.

3. The lowest price occurs in the last period of the slump.

The next three propositions correspond to these results.

Proposition 4. Suppose demand follows deterministic cycles and A2 holds. Then |A(t)| ≤ T .
Hence if k ≥ 2, the cycles are stationary, θ∗tk = θ∗t2.

Proof. Suppose |A(t)| > T . Define the set A such that A(t) = A ∪ B where B consists of the
union of sets of the form {1, . . . , T} and |A| ≤ T . Then m−1

A(t)(0) ≤ max{m−1
A (0), m−1

{1,...,T}(0)}
by Lemma 3, contradicting the fact that A(t) is the smallest set to achieve the maximum in
Theorem 2.

Proposition 4 means the cutoffs will be the same for each cycle k ≥ 2. This substantially
simplifies analysis: when k ≥ 2 we can use modular arithmetic to write the sets of potentially
active generations A(t) as:

AK(t) = {{a, . . . , t} : a ∈ {1, . . . , T}} (mod–T )

The cutoff and price are minimised at time

t := min{argmint∈{1,...,T}{θ∗tk : k ≥ 2}}

The market is effectively cleared out in period t and everything resets. This means that the
starting position of the cycle only matters for the first t periods, after which the stationary
cycles start.

Prices are determined by equation (3.7). For cycles k ∈ {2, . . . , K − 1} the prices are
stationary with boundary condition p∗t = θ∗t = m−1

{1,...,T}(0), using Proposition 5(a). For the
final cycle, where k = K and t > t, the relevant boundary condition is p∗T = θ∗T . Since there is
not as much scope for delay, prices in the last cycle may be higher than in previous cycles.

Proposition 5. Suppose demand follows cycles with k ≥ 2 and A2 holds. Then
(a) The lowest optimal cutoff equals the average–demand price. Hence agents buy later under
optimal pricing.
(b) The lowest optimal price equals the average–demand price.
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(c) Under the optimal price path, in comparison to average–demand pricing, profits are higher,
utility is lower for every type (θ, t) and welfare is lower for every generation.

Proof. (a) If k ≥ 2 then {1, . . . , T} ∈ A(t) and Theorem 2 implies θ∗t ≥ m−1
{1,...,T}(0). Equation

(4.2) implies

m{1,...,T}(θ∗t ) = Mtk(θ∗t ) +
tk−1∑

s=tk−1+1

M+
s (θ∗t )−M−

tk−1
(θ∗t ) = 0

using (1) the definition θ∗t , (2) the fact that θ∗s ≥ θ∗tk for s ∈ {tk−1 + 1, . . . , tk − 1} and (3)
θ∗tk ≥ θ∗tk−1

. Thus θ∗t = m−1
{1,...,T}(0) = pA

t .
(b) p∗t = θ∗t = pA

t .
(c) Profit is lower under the average–demand price regime by revealed preference. The utility

of any customer (3.1) and welfare of any generation (3.3) is higher under the average–demand
price since the cutoffs are always higher.

In each period the cutoff is higher than if the monopolist faced average demand, the price is
higher, and welfare and consumer surplus are lower. That is, all customers are made worse off
by the ability of the monopolist to discriminate between generations. Intuitively, during a high
demand period the price will be high, and only the high demand generations will be active.
However during low demand periods both high and low generations will be active. Thus the
high demand cohorts exert a negative externality on the low cohorts, raising the price to an
average level.

With quasi–linear utility the indirect utility function is convex in prices, suggesting price
variation benefits consumers because of the option value. However Proposition 5 shows that
when prices are endogenous, price variation may hurt all consumers. The result can also be
contrasted with the standard view that the welfare effect of third degree price discrimination is
indeterminate (e.g. Tirole (1988, p.137)). Inter– and intra–temporal price discrimination can
have very different properties.

Define a cycle as simple if m−1
t (0) − m−1

t−1(0) is nonzero and has at most two changes of
sign. That is, each cycle has one “boom” and one “slump”.

Proposition 6. Suppose demand follows cycles with k ≥ 2 and A2 holds. Then t obeys

m−1
t (0) ≤ m−1

{1,...,T}(0) ≤ m−1
t+1(0)

When the cycle is simple this uniquely defines t.

Proof. First, Proposition 5(a) and Theorem 2 imply m−1
{1,...,T}(0) = θ∗t ≥ m−1

t (0). Second, by
the definition of t, A(t + 1) = {t + 1}. Hence m−1

t+1(0) ≥ m−1
{1,...,T}(0). When the cycle is simple

this uniquely defines t and implies A(t) = {1, . . . , T}.
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In a simple cycle t is uniquely defined as the last period of the slump, just before new
demand returns to its long run average. In literary terms: The darkest hour is that before
dawn.

Proposition 5 compares the optimal policy to a weak monopolist who can only price against
the average demand. It is also of interest to compare the optimal policy to a strong monopolist
who can completely discriminate between generations, as in Example 2. By revealed preference
the strong monopolist would make greater profits. However, with linear demand curves, wel-
fare is lower under the strong monopolist (see Example 5). In general the welfare effects are
indeterminate (see Example 6). When the firm can completely discriminate between genera-
tions the stronger cohorts lose, while the weaker ones gain; the overall effect depends upon the
distribution of consumers’ rents.

Example 5 (Linear Demand). Suppose ft(θ) = 1 on [0, 2bt] where bt ∈ [10, 20].9 Linear
demand curves have a very useful property: when third degree price discrimination is introduced
to a static market the average quantity sold remains unaffected (Tirole (1988, p.139)). Similarly
in this model, the quantity bt is sold each period under complete discrimination and under
Theorem 1 (see the Appendix A.3). Complete discrimination thus leads to lower welfare and
consumer surplus since the same quantity is allocated less efficiently. 4

Example 6. Let T = 2 and δ = 1. (a) Suppose θ1 = 2 with mass 1 and θ2 ∼ U [0, 2]. Under
complete discrimination the myopic price is (pM

1 , pM
2 ) = (2, 1), while under Theorem 1 the

seller chooses (p∗1, p
∗
2) = (2, 2). Welfare is higher under complete discrimination. (b) Instead

suppose θ1 ∼ U [0, 4] and θ2 = 1 with mass 1. Under complete discrimination the myopic price
is (pM

1 , pM
2 ) = (2, 1), while under Theorem 1 the seller chooses (p∗1, p

∗
2) = (1, 1). Welfare is lower

under complete discrimination. 4

5.5 IID Demand

The model allows demand to be uncertain enabling us to study the effect of incoming co-
horts that are independently and identically distributed (IID).10 Each period demand is drawn
from {mx(θ)}x with probability measure µ(x) for x ∈ [0, 1], where higher indices imply higher
demand: m−1

xH
(0) ≥ m−1

xL
(0).

In this stochastic setting we can define the average–demand price by pA := [
∫

mx(θ)dµ(x)]−1(0).
As in the deterministic setting, this is the optimal price for a monopolist who is ignorant about
demand. Example 7 explicitly derives the optimal price schedule in a two–period model.

9The bounds on bt are required to ensure the marginal revenue functions are quasi–monotone.
10Other sequences of demand functions are have interesting properties. One nice example is where demand

curves are linear with the intercept following a random walk. In this model, the asymmetric treatment of rises
and falls in demand means the ex–ante expectation of θ∗t is increasing in t.
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Example 7 (T=2 with IID Demand). Denote the demand in the first and second period
by m1(θ) = mx1(θ) and m2(θ) = mx2(θ) respectively. Theorem 2 implies θ∗1 = m−1

x1
(0) and

θ∗2 = max{m−1
{x1,x2}(0), m−1

x2
(0)}. The second period price is p∗2 = θ∗2, while the initial price is

given by

p∗1 =
(

1− δ

∫ x1

0
dµ(x)

)
m−1

x1
(0) + δ

∫ x1

0
m−1
{x1,x}(0) dµ(x) (5.2)

If demand of the first generation is low then demand is likely to increase and p∗1 is determined by
the first generation’s demand, m−1

x1
(0). If demand of the first generation is high then demand is

likely to decrease and p∗1 is determined by both generations’ demand, m−1
{x1,x2}(0). These extreme

cases of x1 ∈ {0, 1} are directly analogous to the monotone demand results in Proposition 3.
The general principle is that p∗1 is affected by a state of the world only if the first generation is
active in that state. 4

When there are more periods it becomes harder to solve the option problem required to
back out prices. However one can make comparisons as the number of periods grows large.
This next result is the stochastic analogue to Proposition 5.

Proposition 7. Suppose demand is IID, {mx(θ)}x are uniformly bounded and A2 holds. Then
limt→∞ θ∗t ≥ pA and limt→∞ p∗t ≥ pA a.s..

Proof. Define gt(θ) = 1
t

∑t
s=1 ms(θ) and g(θ) =

∫
mx(θ)dµ(x). The strong law of large number

implies that gt(θ)
as→ g(θ) pointwise ∀θ ∈ [θ, θ]. The collection {mx(θ)}x is uniformly bounded

and increasing so the Glivenko–Cantelli Theorem (Davidson (1994, Theorem 21.5)) states that
supθ |gt(θ)− g(θ)| as→ 0. Since g(θ) is strictly increasing m−1

{1,...,t}(0) = g−1
t (0) as→ g−1(0) = pA.

Finally, {1, . . . , t} ∈ A(t) so Theorem 2 implies limt→∞ θ∗t ≥ pA a.s..

In the long run, the price should be at least as high as the average demand price. Moreover,
it will often be strictly higher (e.g. if m−1

t (0) > pA). This means that prices increase when
there is more demand variation, or when the firm has more information about the incoming
demand.

6 Comparative Statics

This Section explores the properties of the optimal policy given in Theorem 1. Consequently
we only require the weaker monotonicity condition, A1.

6.1 Information Structure

Theorem 1 can be used to address the effect of varying uncertainty about future demand.
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Proposition 8. Consider two information structures Ft and F ′t such that mt is Ft∩F ′t–adapted
and suppose A1 holds. Then utilities and profit are the same under both information structures.

Proof. Utility and profit are determined by τ(θ, t), as shown in equations (3.1) and (3.4). By
Theorem 1 this is independent of the information structure if mt(θ) is measurable with respect
to Ft.

Proposition 8 shows that under the optimal mechanism payoffs are independent of the
information, so long as the history of demands is known at time t. Prices, however, will be
different under different information structures. This result very much depends upon the simple
structure of the optimal solution and may fail without A1.

To consider an application of Proposition 8, recall the examples of unexpected shocks in
Section 5.3. In this example, demand may receive a permanant demand shock at time t′,
which they find out about at time t′′ ≤ t′. Proposition 8 then says that agents should be
indifferent over the announcement time, t′′. For example, in the downwards shock case, when
an ε–probability event occurs the price jumps down a lot, while if the shock does not occur the
price rises a little. These two effects exactly cancel out.

So far we have made two assumptions about agents’ information.
First, the firm and consumers possess the same information. If firms and consumers pos-

sess different information (and both know current demand) the monopolist would still like to
implement the cutoffs given by Theorem 1. If firms know more than customers the prices are
determined by customers’ information sets and payoffs are the same as with symmetric infor-
mation. However, if customers know more than firms then there may be no prices to implement
the optimal cutoffs.

Second, we assume agents know time ft(θ) at time t. Without this assumption there are
two problems. First, the firm may engage in experimentation. Second, the firm may delay
purchases until they have better information about demand.

6.2 Prices and Discount Rates

Proposition 9. Suppose A1 holds. Then increasing δt a.e. reduces price p∗s a.e., for s < t. As
δt

as→ 1 (∀t) so (p∗t −mins≥t θ∗t )
as→ 0. As δt

as→ 0 (∀t) so (p∗t − θ∗t )
as→ 0.

Proof. (a) Pick t and consider increasing δt a.e.. By backwards induction, price p∗s is indepen-
dent of δt for s ≥ t. Continuing by induction, pick s < t and suppose future prices are (weakly)
decreasing in δt. An increase in δt thus increases the utility of type θ∗s if they choose to delay,
the right hand side of equation (3.7). Thus the price p∗s decreases.

(b) Suppose δt
as→ 1 (∀t). Equation (3.7) implies that that agent waits for the lowest price,

p∗t
as→ min{θ∗t ,mins>t{p∗s}}. With the boundary condition p∗T = θ∗T this implies p∗t

as→ mins≥t θ∗t .
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(c) Suppose δt
as→ 0 (∀t). Then ∆τ(θ∗t ,t+1)/∆t

as→ 0 and the right hand side of equation (3.7)
converges to zero.

When agents are impatient (δt ≈ 0) and the firm simply sets the price equal to the current
optimal cutoff, p∗t = θ∗t . As agents become more patient consumers find it less costly to delay,
reducing the prices required to implement any sequence of cutoffs. In the limit, when agents
are completely patient, they wait for the lowest price and the price is determined by the lowest
cutoff in all future periods, p∗t = mins≥t θ∗t .

Since discount rates are allowed to be uncertain it is also easy to analyse the impact of
changes in interest rates. For example, an unexpected increase in future interest rates will
increase today’s price. Again, this depends upon the myopic nature of the optimal policy in
Theorem 1.

6.3 Best–Price Provisions and Time Consistent Pricing

Applying the revenue equivalence theorem, Proposition 10 shows that the optimal allocation
(Theorem 1) can be implemented by a best–price provision. Moreover, the best–price provision
is time consistent so the firm need not commit to a sequence of prices at time 0, so long as they
can promise to honour the best price agreement.11

A best–price provision works as follows. In each period the firm announces a price pBP
t .

If a consumer buys in period t and the price then falls, they are then given a rebate equal
to the difference of the prices. In each subsequent period s they are given a rebate equal
to min{pBP

t , . . . , pBP
s } − min{pBP

t , . . . , pBP
s−1}. In discounted terms, the consumer purchasing in

period t pays
T∑

s=t

(∆s −∆s+1)min{pBP
t , . . . , pBP

s }

Proposition 10. Suppose A1 holds. Then the firm’s optimal policy under a best–price provision
is to set pBP

t = M−1
t (0) inducing the same allocation and profits as Theorem 1. This policy is

time consistent.

Proof. A customer of type (θ, t) choose τ(θ, t) to maximise utility,

ut(θ) = max
τ≥t

E
[

T∑
s=τ

(∆s −∆s+1)[θ −min{pBP
τ , . . . , pBP

s }]
]

It is simple to verify that the agent’s optimal policy is to purchase at the first date after t such
that θ ≥ pBP

τ . Therefore consumer’s purchasing rules are characterised by Lemma 1. Profits
11Butz (1990) reaches a similar conclusion in a model with declining demand and resale. When demand is

allowed to increase, however, the introduction of resale means that the best–price provision may not be time
consistent, as shown in Section 6.3.
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are given by equation (3.4) so the optimal cutoffs are given by Theorem 1 and implemented by
setting pBP

t = θ∗t .
To prove time consistency, let the time consistent cutoffs be denoted by θBP

t . At each point
in time t, the firm chooses pBP

t to maximise profits from period s ≥ t,

ΠBP
≥t = E

[∫ θ

θ

T∑
s=t

s∑

r=1

∆s1τ(θ,r)=smr(θ) dθ

]

Since θBP
t = pBP

t , we can also think of the firm choosing θBP
t directly. However notice that the

difference

Π−ΠBP
≥t = E

[∫ θ

θ

t−1∑

s=1

s∑

r=1

∆s1τ(θ,r)=smr(θ) dθ

]

is independent of θBP
t , so the choice of θBP

t also maximises total profits, Π.

7 Resale and Renting

So far it has been assumed there is no resale. This is reasonable if the good is a one–time
experience or suffers from high transactions costs. This section analyses the opposite case:
perfect resale.

Each period t the consumer obtains discounted rental utility (∆t−∆t+1)θ where ∆T+1 = 0.
As before, demand ft(θ) enters the market each period, where ft(θ) and ∆t are Ft–adapted.
Throughout this section assume that A2 holds.

Consider two alternative policies:

1. The firm rents the good at price {Rt} each period.

2. The firm sells the good, committing to a price schedule {pR
t }, where perfect resale is

possible and the seller is allowed to buy goods back.

Bulow (1982) and Butz (1990) show these policies induce the same profits and utilities.

Theorem 3. Suppose A2 holds and the monopolist either rents the good or they sell the good
and allow resale. Then the profit–maximising cutoffs are given by θR

t = m−1
≤t (0).

Proof. Both policies induce allocations of the form {θ : θ ≥ θR
t } for some θR

t ∈ [θ, θ]. When
renting (policy 1) each period can be treated separately, so at time t the good should be allocated
to {θ : m≤t(θ) ≥ 0}. Under A2 this is implemented by setting θR

t = m−1
≤t (0). The revenue

equivalence theorem implies that the optimal cutoffs are identical when the firm commits to a
sequence of sale prices and allows resale (policy 2).
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Figure 5: Resale

When the monotonicity assumption, A2, fails the firm should simply iron m≤t(θ) (∀t).
The rental price under the optimal strategy is Rt = (1− δt)m−1

≤t (0). The optimal price path
with resale, pR

t , can be derived from the AR(1) system,

(θR
t − pR

t ) = E [(θR
t − pR

t+1)δt+1|Ft]

Hence the resale price is the geometric sum of future rental values, as given by equation
(5.1). Hence, if limits exist, the resale price converges to the average–demand price, pA :=
limt→T m−1

≤t (0). After enough time the resale market grows very large and the firm loses the
ability to discriminate.

7.1 The Effect of Resale

Figure 5 can be used to assess the effect of resale. With resale, troughs and peaks are treated
symmetrically, and the cycles decrease in amplitude as the size of the resale market engulfs
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new production. In the limit, the resale price converges to the average–demand price. Without
resale, price cycles are highly asymmetric and are stationary. The reason for this difference
is that with resale a low valuation consumer may buy if they anticipate the price to rise, and
so all previous generations remain active. In contrast without resale only the high demand
generations remain active.

Proposition 11. Suppose A2 holds. Then cutoffs and profits are lower with resale than without
resale. Moreover, resale has no effect on allocations if and only if demand is weakly decreasing
with probability 1.

Proof. (a) Since {1, . . . , t} ∈ A(t), θR
t ≤ θ∗t by Theorem 2.

(b) Using Theorem 1, profits without resale are

Π = E
[∫ θ

θ

T∑

s=1

∆sM
+
s (θ)dθ

]
= E

[∫ θ

θ

T∑

t=1

(∆t −∆t+1)
t∑

s=1

M+
s (θ) dθ

]

changing the order of summation and noting ∆s =
∑T

t=s(∆t −∆t+1). Profits with resale are

ΠR = E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)m+
≤t(θ) dθ

]

= E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
max

{
0,Mt(θ) +

t−1∑

s=1

M+
s (θ)

}]
dθ

]

≤ E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
max{0,Mt(θ)}+

t−1∑

s=1

max{0,M+
s (θ)}

]
dθ

]

= E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
t∑

s=1

M+
s (θ)

]
dθ

]
= Π

where the second line uses equation (4.2) and the third uses Jensen’s inequality.
(c) Proposition 3 shows θ∗t = m−1

≤t (0) if and only if m−1
≤t−1(0) ≥ m−1

t (0) a.e..

With resale Coase (1972) and Bulow (1982) argue that the renting achieves the same profits
as selling, as shown in Theorem 3. Without resale, Proposition 11 shows renting can achieve
the same profits as selling if and only if demand is weakly decreasing.

With linear demand curves (Example 5 in Section 5.4) the quantity sold each period is
unaffected by resale. Resale then increases allocative efficiency and welfare (see Appendix A.3).
More generally, the welfare effect of introducing resale is ambiguous, as shown by Example 8.

Example 8. Suppose T = 2 and δ is constant. (a) Suppose θ1 = 1 with mass 1 and θ2 ∼ U [0, 4].
With resale cutoffs are (θR

1 , θR
2 ) = (1, 1) yielding welfare (8 + 15δ)/8. Without resale cutoffs
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are (θ∗1, θ
∗
2) = (1, 2) and welfare is (8 + 12δ)/8, lower than with resale. (b) Suppose θ1 ∼ U [0, 2]

and θ2 = 2 with mass 1. With resale cutoffs are (θR
1 , θR

2 ) = (1, 2) yielding welfare (6 + 10δ)/8.
Without resale cutoffs are (θ∗1, θ

∗
2) = (1, 2) and welfare is (6 + 16δ)/8, higher than with resale.

4
With linear demand curves, resale increases welfare, reduces profits and therefore increases

consumer surplus. However, it is not the case that all consumers are better off. To see this
consider a two–period model with increasing demand. The first (low–demand) cohort prefers
no resale since they then avoid being pooled with the second (high–demand) cohort. For the
same reason the second generation prefers resale.12 This idea can be generalised to the following
result, where ut(θ) is utility of type (θ, t) without resale, and uR

t (θ) the utility with resale (and
when renting).

Proposition 12. Suppose A2 holds and consider the utility of generation t.
(a) If m−1

s (0) is decreasing in s a.e. for s ≤ t, then ut(θ) ≥ uR
t (θ) a.e..

(b)If m−1
s (0) is decreasing in s a.e. for s ≥ t, then ut(θ) ≤ uR

t (θ) a.e..

Proof. With resale utility is

uR
t (θ) = E

[∫ θ

θ

T∑
s=t

(∆s −∆s+1)1x≥θR
s

dx

]
(7.1)

Without resale utility (3.1) is

ut(θ) = E
[∫ θ

θ

T∑
s=t

(∆s −∆s+1)1x≥θ∗(s;t) dx

]
(7.2)

(a) Consider generation t and suppose m−1
s (0) is decreasing in s for s ≤ t. Pick t′ ≥ t, where

θ∗(t′; t) = min{m−1
A(t)

(0), . . . , m−1
A(t′)

(0)}. Decreasing demand for s ≤ t implies that A(t) =

{1, . . . , t} so ∪t′
s=tA(s) = {1, . . . , t′}. Using Lemma 2 pick a subset of periods {t1, . . . , tn} ⊂

{t, . . . , t′} such that ∩iA(ti) = ∅ and ∪iA(ti) = {1, . . . , t′}. Since m{1,...,t′}(θ) =
∑

i mA(ti)
(θ),

Lemma 3 implies that θR
t′ = m−1

{1,...,t′}(0) ≥ mini m
−1
A(ti)

(0) = θ(t′; t). Equations (7.1) and (7.2)

imply ut(θ) ≥ uR
t (θ).

(b) Consider period s and s + 1 where m−1
s (0) ≥ m−1

s+1(0). If A(s + 1) = {s + 1} then
θ∗s ≥ m−1

s (0) ≥ m−1
s+1(0) = θ∗s+1, contradicting the fact that s 6∈ A(s + 1). We must therefore

have s ∈ A(s + 1) which implies θ∗s ≥ θ∗s+1.

12Naive intuition might suggest that first (low–demand) generation are better off under resale since they have
the option to sell to second (high–demand) generation. However this is incorrect: the firm knows the first
generation will resell and raises prices in the first period. Hence the agents with relatively low valuations, who
buy in period 1 and resell in period 2, exert a negative externality on the high valuation agents from the first
generation who buy and never resell.
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Consider generation t and suppose m−1
s (0) is decreasing in s for s ≥ t. Then θ∗s decreases

in s and, for any s ≥ t, θ∗(s; t) = θ∗s ≥ θR
s . Equations (7.1) and (7.2) imply ut(θ) ≤ uR

t (θ).

With demand cycles Proposition 5 shows that without resale the optimal price exceeds the
average–demand price. In contrast, the optimal price with resale converges to the average–
demand price. Eventually all consumers must therefore prefer resale.13

Proposition 13. Suppose demand follows K deterministic cycles of length T < ∞, and A2
holds. Then limt→KT [uR

t (θ)− ut(θ)]/∆t ≥ 0 and limt→KT [WR
t −Wt]/∆t ≥ 0.

Proof. The average–demand price is pA = m−1
{1,...,T}(0). After the first cycle θs

t ≥ pA. From
(7.1) and (7.2) the difference in utility for type (θ, t) thus satisfies

lim
t→KT

[uR
t (θ)− ut(θ)] ≥ lim

t→KT

KT∑
s=t

(
∆s

∆t
− ∆s+1

∆t

)∫ θ

θ

[
1x≥θR

s
− 1x≥pA

]
dx = 0

since limt→KT θR
t = pA and every convergent sequence is cauchy. Then apply Proposition 5.

Similarly, for the welfare calculation:

lim
t→KT

[WR
t −Wt] ≥ lim

t→KT

KT∑
s=t

(
∆s

∆t
− ∆s+1

∆t

) ∫ θ

θ

[
1x≥θR

s
− 1x≥pA

]
θ dFt = 0.

7.2 Best–Price Provisions and Resale

Section 6.3 shows that without resale a best–price provision can achieve the same profits as
committing to a sequence of prices in a time–consistent manner. Butz (1990) argues that a
best–price provision is also time consistent when resale is allowed. This paper, however, assumes
that prices fall over time. In contrast, Example 9 that when prices can increase a best–price
scheme is not time consistent.

Example 9. Suppose T = 2, δ is constant and A2 holds. If demand is decreasing (m−1
1 (0) ≥

m−1
2 (0)) the subgame perfect outcome is θ∗1 = m−1

1 (0) and θ∗2 = m−1
{1,2}(0). If demand is not

decreasing (m−1
1 (0) ≤ m−1

2 (0)) the subgame perfect outcome is θ∗1 ≥ m−1
1 (0) and θ∗2 < m−1

{1,2}(0).
Hence the commitment solution is time consistent under a best–price policy if and only if
demand is decreasing. See Appendix A.4 for a proof. 4

When demand is increasing the commitment price pR
t increases over time. A little extra

production in the second period then lowers the price below pR
2 but does not lead to rebates.

Hence the firm does not internalise the effect of this extra production on its first period self.
13Using discounted utility, Proposition 13 is trivial.
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The firm can, however, achieve the maximal profit from Theorem 3 in a time consistent
manner through renting or a price–updating policy. Price–updating works as follows: In period
t the firm chooses a price pPU

t and agents choose whether to purchase or not. In each subsequent
period s an agent who owns the good is asked to pay pPU

s+1 − pPU
s , so decreasing the price leads

to rebates, while increasing the price leads to surcharges.

Proposition 14. Suppose there is resale and A2 holds. The firm’s optimal policy under a price–
updating scheme is to set pPU

t = m−1
≤t (0) inducing the same allocation and profits as Theorem

3. This policy is time consistent.

Proof. By purchasing the good in period t and reselling it at time t + 1 an agent must pay
(1 − δt+1)pPU

t , taking into account the price updating and capital gain. The scheme is thus
identical to renting with a rental price (1− δt+1)pPU

t and is thus time consistent.

8 Conclusion

This paper characterises the monopolist’s pricing strategy under demand variation. When new
demand grows stronger the price rises quickly, unhindered by the presence of old consumers.
In contrast, when new demand becomes weaker, the price falls slowly as customers delay their
purchases. This asymmetry between rises and falls, leads to an increase in the price level which
harms consumers and reduces welfare below that induced by a monopolist who charged the
optimal monopoly price against the average level of demand.

There are a number of papers that analyse how markups change over the business cycle
(e.g. Rotemberg and Woodford (1999)). This paper, however, has said little about how prices
and quantities relate. Example 5 in Section 5.4 shows that with linear demand curves the
optimal quantity equals the myopic quantity. That is, sales are pro-cyclical and consumer’s
ability to delay their purchases has no affect on the path of sales. On the other hand, sales are
counter-cyclical in the back–to–school example in the Introduction. Each September there is
an influx of price sensitive agents, leading to a price reduction.

In this paper the movement of the markup over time is determined by marginal revenue.
In this sense one can separate how markups move over time and the level of output. Hence
if periods of high and low output are viewed as booms and recessions, there is no necessary
link between markups and the cycle. To make predictions of this sort one by needs to further
restrict the possible sequence of demand curves, either through theoretical or empirical means.
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A Omitted Material

A.1 Properties of the Consumer’s Maximisation Problem

Lemmas 4 establishes some properties of the agent’s utility maximisation problem (2.1).
Denote the set of maximisers by τ̂(θ, t). Comparing two stopping rules, let τH ≥ τL if

τH(ω) ≥ τL(ω) (a.e.–ω ∈ Ω). Comparing two sets of stopping rules, τ̂H ≥ τ̂L in strict set order
if τ ′ ∈ τ̂H and τ ′′ ∈ τ̂L imply that τ ′ ∨ τ ′′ ∈ τ̂H and τ ′ ∧ τ ′′ ∈ τ̂L.

Lemma 4. The consumer’s optimal purchase decision has the following properties:
(a) τ̂(θ, t) is a nonempty sublattice and contains a greatest and least element.
(b) Every selection from τ̂(θ, t) is decreasing in θ.
(c) If tH ≥ tL then τ̂(θ, tH) = τ̂(θ, tL) ∩ {tH , . . . , T}, in states where the latter is nonempty.
Hence τ̂(θ, t) is increasing in t in strict set order.

Proof. (a) Nonemptiness of τ̂(θ, t) follows from Klass (1973, Theorem 1). The set of optimal
rules is characterised by Klass (1973, Theorem 6) and contains a least and greatest element.
The least element can be found by using the rule: stop when current utility is weakly greater
than the continuation utility (Chow, Robbins, and Siegmund (1971, Theorem 4.2)). Since the
set of purchasing times is a lattice and ut(θ) is modular in τ , the set of maximisers is a sublattice
by Topkis (1998, Theorem 2.7.1).

(b) ut(θ) has strictly decreasing differences in (θ, τ) since δt < 1, and is modular in τ . Hence
every selection is decreasing by Topkis (1998, Theorem 2.8.4).

(c) If in states A ∈ F , τ ∈ τ̂(θ, tL)∩{tH , . . . , T} maximises the utility of (θ, tL) it must also
maximise the utility of (θ, tH) who has a smaller choice set.

Let τ∗(θ, t) be the least element from τ̂(θ, t). If τ ∈ τ̂(θ, t) then τ∗ = τ (a.e.–θ) for any state
ω, by Lemma 4(b). Consequently we can assume the consumer chooses purchasing rule τ∗(θ, t)
without loss of generality. Several properties of τ∗(θ, t) are described in Lemma 1.

A.2 Optimal Mechanism

This section derives the optimal mechanism where agents have private information about their
valuation θ and birth date t. The optimum can be implemented by a price mechanism and is
hence the same as that analysed in the paper. For simplicity, this section assumes constant
discounting and known demand.

Suppose there is an agent with type (θ, t) ∈ [θ, θ] × {1, . . . , T} drawn from density f(θ, t).
Consider the direct revelation mechanism. Agent (θ, t) reports type (θ̃, t̃). The mechanism is
then defined by a purchase decision τ(θ̃, t̃) ∈ {1, . . . , T,∞} and a payment y(θ̃, t̃) ∈ <. Agent
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(θ, t) is has utility

u(θ̃, t̃|θ, t) = θ∆τ(θ̃,t̃) − y(θ̃, t̃) if τ(θ̃, t̃) ≥ t

= −∞ if τ(θ̃, t̃) < t

The [IR] constraint states that
u(θ, t|θ, t) ≥ 0

The [IC] constraint states that
u(θ, t|θ, t) ≥ u(θ̃, t̃|θ, t)

The analysis can be extended to N agents whose types are IID draws from f(θ, t). However
the assumption of constant costs implies that each agent can be treated separately (see Segal
(2003)).14 This means there is no reason to make price at time t depend upon past sales.

Lemma 5. A mechanism 〈τ, y〉 is incentive compatable and individually rational if and only if
the following hold:
[IR] u(θ, tL|θ, tL) ≥ u(θ, tH |θ, tH) ≥ 0. If τ(θ, tL) ≥ tH then u(θ, tL|θ, tL) = u(θ, tH |θ, tH) ≥ 0,
for tH ≥ tL.
[ICFOC] Utility is given by (3.1).
[positivity] τ(θ, t) ≥ t.
[θ–monotonicity] τ(θ, t) is decreasing in θ.
[non–discrimination] If τ(θ, tL) ≥ tH then τ(θ, tL) = τ(θ, tH), for tH ≥ tL (θ–a.e.).

Proof. Necessity. Fix tH ≥ tL. If τ(θ, tL) ≥ tH [IR] follows from [IR] and the [IC] constraint
for (θ, tL) and (θ, tH). If τ(θ, tL) < tH [IR] follows from [IR] and the [IC] constraint for (θ, tL).
[positivity] follows from [IR]. [ICFOC] and [θ–monotonicity] follow from [IC] with t̃ = t.

To show [non–discrimination] suppose tH ≥ tL and τ(θ, tH) 6= τ(θ, tL) ≥ tH for θ ∈ B, where
B has positive measure. The [IC] constraints for (θ, tH) and (θ, tL) imply that u(θ, tH |θ, tH) =
u(θ, tL|θ, tL). Pick an open interval B′ ⊂ B of positive measure (Royden (1988, p.63)). For any
θ ∈ B′ [ICFOC] implies ∫ θ

inf(B′)
∆τ(x,tL) −∆τ(x,tH) dx = 0

Therefore ∆τ(x,tL) = ∆τ(x,tH) a.e. (Royden (1988, p.105)) and ∆t < 1 implies τ(x, tL) = τ(x, tH)
a.e.. Thus we have a contradiction.

Sufficiency. [IR] follows from [IR] and [ICFOC]. To verify [IC] we consider four cases.
While the analysis of each is quite similar, all four are presented for completeness.

14Segal (2003) also shows the assumption that there is a continuum of agents is also sufficient to treat every
agent separately.
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First suppose (θ, t) copies type (θL, tL) where θ ≥ θL and t ≥ tL. If τ(θL, tL) < t then [IR]
implies [IC]. Instead suppose τ(θL, tL) ≥ t. [θ–monotonicity] implies τ(x, tL) ≥ t for x ≤ θL.
[IR] implies u(θ, t|θ, t) = u(θ, tL|θ, tL) and [non–discrimination] implies τ(x, t) = τ(x, tL) for
x ≤ θL. From [ICFOC], u(θL, t|θL, t) = u(θL, tL|θL, tL) and

u(θ, t|θ, t) = u(θL, tL|θL, tL) +
∫ θ

θL

∆τ(x,t) dx

≥ u(θL, tL|θL, tL) +
∫ θ

θL

∆τ(θL,tL) dx

= u(θL, tL|θL, tL) + [u(θL, tL|θ, t)− u(θL, tL|θL, tL)]

= u(θL, tL|θ, t)

where the second line uses [θ–monotonicity] and [non–discrimination].
Second, suppose (θ, t) copies type (θH , tL) where θ ≤ θH and t ≥ tL. If τ(θH , tL) < t then

[IR] implies [IC]. Instead suppose τ(θH , tL) ≥ t. [θ–monotonicity] implies τ(x, tL) ≥ t for x ≤
θH . [IR] implies u(θ, t|θ, t) = u(θ, tL|θ, tL) and [non–discrimination] implies τ(x, t) = τ(x, tL)
for x ≤ θH . From [ICFOC], u(θ, t|θ, t) = u(θ, tL|θ, tL) and

u(θ, t|θ, t) = u(θH , tL|θH , tL)−
∫ θH

θ
∆τ(x,tL) dx

≥ u(θH , tL|θH , tL)−
∫ θH

θ
∆τ(θH ,tL) dx

= u(θH , tL|θH , tL)− [u(θH , tL|θH , tL)− u(θH , tL|θ, t)]
= u(θH , tL|θ, t)

where the second line uses [θ–monotonicity].
Third, suppose (θ, t) copies type (θL, tH) where θ ≥ θL and t ≤ tH . [non–discrimination]

implies τ(θ, tL) ≤ τ(θ, tH). Hence [IR] and [non–discrimination] imply that u(θL, t|θL, t) ≥
u(θL, tH |θL, tH). From [ICFOC],

u(θ, t|θ, t) ≥ u(θL, tH |θL, tH) +
∫ θ

θL

∆τ(x,t) dx

≥ u(θL, tH |θL, tH) +
∫ θ

θL

∆τ(θL,tH) dx

= u(θL, tH |θL, tH) + [u(θL, tH |θ, t)− u(θL, tH |θL, tH)]

= u(θL, tH |θ, t)

where the second line uses [θ–monotonicity] and [non–discrimination].
Fourth, suppose (θ, t) copies type (θH , tH) where θ ≤ θH and t ≤ tH . [IR] and [non–
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discrimination] imply that u(θ, t|θ, t) ≥ u(θ, tH |θ, tH). From [ICFOC],

u(θ, t|θ, t) ≥ u(θH , tH |θH , tH)−
∫ θH

θ
∆τ(x,tH) dx

≥ u(θH , tH |θH , tH)−
∫ θH

θ
∆τ(θH ,tH) dx

= u(θH , tH |θH , tH)− [u(θH , tH |θH , tH)− u(θH , tH |θ, t)]
= u(θH , tH |θ, t)

where the second line uses [θ–monotonicity].

A.3 Linear Demand: Example 5

The model has particularly clean predictions when demand is linear: ft(θ) = 1 on [0, 2bt], where
bt ∈ [10, 20]. This latter constraint means that any sum of collection of marginal revenues is
strictly quasi–increasing and continuous on [0, 20]. Consequently the results that use A2 also
hold with linear demand.

Allocations, quantities and payoffs under optimal policy. Marginal revenue is mt(θ) = 2(θ−
bt), so Theorem 2 implies the optimal cutoff is

θ∗t =
1

|A(t)|
∑

s∈A(t)

bs =: bA(t)

where |A(t)| is the number of elements in the upper active set.
To derive quantity sold let us use the following construction (which is also used in Propo-

sition 12). Using Lemma 2 pick a subset of periods {t1, . . . , tn} ⊂ {1, . . . , t − 1} such that
∩iA(ti) = ∅ and ∪iA(ti) = {1, . . . , t − 1}. Then for generation s ∈ A(ti), θ∗(t − 1; s) = bA(ti)

.
By Lemma 2, we then have A(t) = ∩n

i=kA(ti) ∪ {t} for some k ∈ {1, . . . , n}. In period t sales
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are made to agents born after period tk−1 and the quantity sold is

Qt =
∑

tk−1<s≤t−1

[θ∗(t− 1; s)− θ∗(t; s)] + [2bt − θ∗(t; t)]

=
n∑

i=k

∑

s∈A(ti)

[bA(ti)
− bA(t)] + [2bt − bA(t)]

=




n∑

i=k

∑

s∈A(ti)

bA(ti)
+ bt


−


 ∑

s∈A(t)

bA(t)


 + bt

=


 ∑

s∈A(t)

bs


−


 ∑

s∈A(t)

bs


 + bt = bt

Welfare from sales in period t equals,

∆t

∑

s≤t

∫ θ∗(t−1;s)

θ∗(t;s)
θ dθ =

∆t

2

[
n∑

i=k

|A(ti)|b2
A(ti)

+ 4b2
t − |A(t)|b2

A

]

Allocations, quantities and payoffs under complete discrimination. Suppose the firm can
completely discriminate between generations, as in Example 2. In period t an agent buys if
they are from generation t and θ ≥ bt. Hence quantity bt is sold in period t. This is the same
as under the optimal policy (see above).

Under complete discrimination welfare from sales in period t equals,

∆t

∫ 2bt

bt

θ dθ =
3
2
∆tb

2
t

This is less than welfare without complete discrimination since Jensen’s inequality implies

n∑

i=k

|A(ti)|
|A(t)| b

2
A(ti)

+
1

|A(t)|b
2
t ≥ b2

A(t)

Hence the welfare generated at each point in time is larger without discrimination, and welfare
across all periods must also be larger, independent of the discount rate. Profit is larger and
welfare lower under discrimination, so consumer surplus must also be lower.

Allocations, quantities and payoffs under resale/renting. Suppose the good can be resold.
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Theorem 3 implies that the time t cutoff is given by

θR
t =

1
t

∑

s≤t

bs

The quantity sold up to period t is
∑

s≤t(2bt − θR
t ) =

∑
s≤t bs. Hence quantity bt is sold in

period t. This is the same as without resale (see above).
Welfare with resale in period t is

(∆t −∆t+1)
∑

s≤t

∫ 2bt

θR
t

θ dθ = (∆t −∆t+1)
∑

s≤t

[
2b2

t − [θR
t ]2

]

In rental terms, welfare in period t without resale is

(∆t −∆t+1)
∑

s≤t

∫ 2bt

θ∗(t;s)
θ dθ = (∆t −∆t+1)

∑

s≤t

[
2b2

t − [θ∗(t; s)]2
]

Welfare is then greater with resale since

∑

s≤t

[θ∗(t; s)]2 ≥ 1
t


∑

s≤t

θ∗(t; s)




2

=
1
t


∑

s≤t

bs




2

=
1
t

[
tθR

t

]2
=

∑

s≤t

[θR
t ]2

where the first equality uses the fact that the firm sells quantity bt each period under Theorem
1. Intuitively, welfare is higher with resale since the same quantity is allocated more efficiently.
With resale, profits are lower and welfare higher, so consumer surplus is also higher.

A.4 Best–Price Policy with Resale: Example 9

Suppose T = 2, δ is constant and A2 holds.15 For convenience let us drop the “BP” superscripts.
Fix the period 1 price and cutoff (p1, θ

∗
1). In period 2 the firm chooses p2 inducing cutoff

θ∗2 = p2. p2 is chosen to maximise

Π2 = p2[F {1,2}(p2)− F 1(θ∗1)]− F 1(θ∗1)max{0, p1 − p2}

The optimal choice of p2 is then given by

p∗2 = m−1
{1,2}(0) if p1 ≥ m−1

{1,2}(0) (A.1)

< m−1
{1,2}(0) if p1 < m−1

{1,2}(0)

15A full characterisation of the subgame perfect equilibrium can be obtained from the author.
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Thus p∗2 ≤ max{p1,m
−1
{1,2}(0)}.

In period 1 consumers’ purchasing decision depends upon the current price p1 and their
expectation of the second period price p2. The utility of agent θ∗1 who buys in period 1 and
sells in period 2 is

(1− δ)θ∗t − p1 + δp2 + δ max{0, p1 − p2} (A.2)

Since agent θ∗1 must be indifferent between buying and not, setting (A.2) equal to zero yields
the first period price

p1 = (1− δ)θ∗1 + δ max{θ∗1, p2} (A.3)

Fix θ∗1 and consider two cases. First suppose θ1 ≥ m−1
{1,2}(0). Equation (A.3) implies

p1 ≥ θ∗1 ≥ m−1
{1,2}(0). Equation (A.1) implies θ∗2 = p∗2 = m−1

{1,2}(0).
Second suppose θ∗1 < m−1

{1,2}(0). Since p∗2 ≤ m−1
{1,2}(0), equation (A.3) implies p1 < m−1

{1,2}(0).
Equation (A.1) implies θ∗2 = p∗2 < m−1

{1,2}(0).
Now let us examine the optimal period 1 cutoffs. First, suppose demand is decreasing.

The firm can choose θ∗1 = m−1
1 (0) ≥ m−1

{1,2}(0) which induces θ∗2 = m−1
{1,2}(0) in period 2. This

implements the commitment optimum and is therefore optimal in period 1.
Next, suppose demand is not decreasing. If the firm chooses θ∗1 = m−1

1 (0) < m−1
{1,2}(0) the

optimal period 2 choice is p∗2 < m−1
{1,2}(0) and the firm overproduces. Hence the commitment

optimum is not implementable. It can be shown that the period 2 cutoff θ∗2 is increasing in
period 1 cutoff θ∗1. It follows that the optimal period 1 cutoff satisfies θ∗1 > m−1

1 (0).
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