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1 Introduction

LeRoy and Porter (1981) and Shiller (1981) calculated the time series for asset prices

using the simple present value formula — the current price of an asset is equal to the

expected discounted present value of its future dividends. Using a constant interest

rate to discount the future, they showed that the variance of the observed prices

for U.S. equity exceeds the variance implied by the present value formula (see figure

1). This is the excess volatility puzzle. Equilibrium models of asset pricing deliver

a generalized version of the present value formula. In Lucas (1978), for instance,

the discount factor is stochastic and depends on the intertemporal marginal rate

of substitution (IMRS) of the representative consumer. There have been several

attempts to explain the excess volatility puzzle. LeRoy and LaCivita (1981) and

Michener (1982) examine the role of risk aversion. Flavin (1983) and Kleidon (1986)

examine whether small sample bias can statistically account for violations of the

variance bound. Marsh and Merton (1986) try to resolve the puzzle with different

statistical assumptions on the dividend process.1 Shiller (1984) and Ingram (1990)

explore whether the existence of rule-of-thumb traders can account for the excess

volatility.

In related work, Mehra and Prescott (1985) showed that for reasonable values

of risk aversion the Lucas asset pricing model cannot reproduce the observed equity

premium. This is the equity premium puzzle. Resolutions of the equity premium

puzzle have followed two distinct paths. One approach was to retain the complete

frictionless markets framework of Lucas, but abandon the separability assumptions

in the preferences. Prominent examples of this approach are Weil (1989) and Epstein

and Zin (1991), who use state non-separable preferences, and Constantinides (1990),

who uses time non-separable preferences. The second approach to resolving the equity

1West (1988) develops a volatility test that circumvents the above small sample
bias and dividend process criticisms and shows that the observed stock prices are
indeed too volatile.
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premium puzzle abandons the complete frictionless markets framework.2 Aiyagari

(1993), Lucas (1994) and Heaton and Lucas (1996) are examples of this approach.

The frictions in these models include uninsured idiosyncratic risks and transaction

costs.

This paper follows the frictions approach. Our purpose is to examine the quanti-

tative effect of search frictions in product markets on asset prices. We combine several

features from Shi (1997) and Lagos and Wright (2002) in a model without money.

Households prefer special goods and general goods. Special goods can be obtained

only via trade in decentralized markets. This trading process involves search and

bargaining. Similar to Shi and Lagos-Wright, the search frictions make intertemporal

trade infeasible in our model. General goods can be obtained via trade in centralized

competitive markets and via ownership of an asset. There is only one asset in our

model and that is similar to a Lucas tree that yields fruits that can be consumed

directly. The asset is also used as a medium of exchange in the decentralized market

to obtain the special goods. The value of the asset in facilitating transactions in the

decentralized market is determined endogenously.3 If we shut down the decentralized

trading process (i.e., special goods and search frictions), then our model is identical

to that of Lucas (1978).

With only one asset, our model cannot address the equity premium puzzle, but

we provide parameters for which the model delivers the average rate of return on

equity and the volatility of equity price. It turns that the Lucas model can deliver

the average rate of return on equity for reasonable values of risk aversion, but it

cannot simultaneously deliver the volatility. The price-dividend ratio implied by the

model is high relative to the data while for the same risk aversion the Lucas model

underpredicts the price-dividend ratio. When we calibrate the model to deliver the

2Mehra and Prescott (1985) suggest this approach in their concluding remarks —
“Perhaps introducing some features that make certain types of intertemporal trades
among agents infeasible will resolve the puzzle.”

3See Bansal and Coleman (1996) for a reduced form model of the transaction role
of assets and its implications for asset returns.
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observed price-dividend ratio, the implied value for the medium of exchange role of

the asset is on average 14.3% above the Lucas model.

The rest of paper is organized as follows. In the next section we set up the

economic environment and derive the equilibrium asset pricing equation. In section

3, we study the quantitative implications of the model.

2 The Environment

Consider a discrete-time non-monetary economy with special goods and general goods,

decentralized day markets and centralized night markets, and aggregate uncertainty.

The special and general goods and the day and night markets are similar to Lagos

and Wright (2002). There are H ≥ 3 types of households and there is a continuum of

households in each type. The type size is normalized to one. A type h household con-

sumes only good h but produces only good h+1. The utility from consuming c units

of the special good is u(c). The utility function is increasing and strictly concave, and

satisfies u(0) = 0, u0(0) =∞ and u0(∞) = 0. To produce q units of the special good,

households incur q units of disutility. The special goods are non-storable between

periods.

There is an infinitely lived asset (Lucas tree) in this economy that yields dividends

(fruits) each period. Fruits are general goods and they follow an exogenous stationary

stochastic process. The utility from consuming d units of fruits is U(d), where U(·)

is increasing and strictly concave. Note that there is no cost to producing the fruits.

The fruits are also perishable. Each household is initially endowed with one (divisible)

tree.

Special goods are exchanged in a decentralized market in daytime where agents

meet in pairs randomly, as in standard search theory. The random matching technol-

ogy combined with the household preferences rules out barter in pairwise meetings.

Furthermore, there is no public record of transactions to support any credit arrange-
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ments. Thus, in pairwise meetings special goods are exchanged for trees. General

goods are available for trade only in the centralized market at night. The night

market is frictionless and trees are exchanged for general goods at the competitive

equilibrium price p.

Time is indexed by t = 0, 1, ... The discount factor between periods is β. There is

no discounting between day and night.

Random matching during the day will typically result in non-degenerate distrib-

utions of asset holdings. In order to maintain tractability, we use the device of large

households along the lines of Shi (1997). Each household consists of a continuum

of worker-shopper (or, seller-buyer) pairs. Buyers cannot produce the special good,

only sellers are capable of production. We assume the fraction of buyers = fraction of

sellers = 1
2
. Let α = 1

H
. Then, the probability of single coincidence meetings during

the day is 1
4
α. Each household sends its buyers to the decentralized day market with

take-it-or-leave-it instructions (q, s) — accept q units of special goods in exchange for

s trees. Each household also sends its sellers with “accept” or “reject” instructions.

There is no communication between buyers and sellers of the same household during

the day. After the buyers and sellers finish trading in the day, the household pools

the trees and shares the special goods across its members each period. By the law of

large numbers, the distribution of trees and special goods are degenerate across house-

holds. This allows us to focus on the representative household. The representative

household consumption of the special good is α
4
q.

2.1 Timing of events in each period

• The representative household starts the period with a trees.

• It observes the aggregate state d (fruits per tree), but the fruits are not available

for trade during the day.

• The household determines the take-it-or-leave-it offer (q, s). It allocates s trees
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to each buyer in the household and provides trading instructions to its sellers

and buyers.

• The sellers and buyers from households of all types are randomly matched in

the decentralized market. In single coincidence meetings, the sellers produce

the special good in exchange for trees from the buyers.

• Each household then pools its purchases and consumes the special goods.

• Next, each household enters the centralized market at night with its new asset

balance and fruits. Households trade fruits and trees in the centralized com-

petitive asset market (much like the standard consumption based asset pricing

model) at price p.

• Then, they consume the fruits and end the period with a0 trees.

2.2 Optimization

We begin with the representative household’s instructions to its buyers and sellers.

Clearly, if a member of the household is not in a single coincidence meeting, the in-

struction is not to trade. The instruction to the buyers in single coincidence meetings

is a the take-it-or-leave-it offer (q, s). For another household’s seller to be indifferent

between accepting and rejecting the buyer’s offer in the random match, (q, s) has to

satisfy the seller’s participation constraint:

Ωs− q = 0, (1)

where Ω is the other household’s valuation of the asset. The first term on the left

hand side is the gain to the seller from obtaining s trees in the trade. The second

term is the disutility from q units of the special good. The take-it-or-leave-it offer will

leave no surplus for the seller, so the right hand side is 0 (since u(0) = 0). We will

assume that the seller will accept the offer whenever he is indifferent. An additional
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restriction on the offer is that the total number of trees allocated to the buyers by

the representative household cannot exceed the number of trees that the household

started the period with:
1

2
s ≤ a. (2)

This is because (i) the decentralized market does not support credit arrangements,

so the buyer cannot short-sell the asset and (ii) the buyer is temporarily separated

from other members of the household, so he cannot borrow from the other members

of the household. We can eliminate s by combining the two constraints (1) and (2):

1

2

³ q
Ω

´
≤ a.

The representative household’s instruction to its sellers in single coincidence meet-

ings are straightforward. Suppose that the buyer from the other household offers

(Q,S). The instruction is, if the surplus from (Q,S) is non-negative, accept the offer

and produce Q units of the special good; otherwise, reject the offer and do not trade.

The representative household’s problem then is described by the following dynamic

program:

v(a, d) = max
q,x,a0

u
³α
4
q
´
− α

4
Q+ U(x) + βEd0|dv(a

0, d0) (3)

s. t.
1

2

³ q
Ω

´
≤ a (4)

x+ pa0 =
n
a+

α

4
S − α

4

³ q
Ω

´o
(p+ d) , (5)

where Q is the amount of the special good obtained by the buyers from other house-

holds and S is the number of trees obtained by the sellers from other households.

The second constraint is the wealth constraint for the household. Note that p is the

relative price a tree in terms of the fruits in the centralized night market.

Remark 1 If α = 0 (i.e., no search frictions or special goods), then our model is

identical to that of Lucas (1978). In this case, the asset has positive value since

it yields dividends. The presence of search frictions (α > 0) implies an additional

“liquidity” value to the asset.
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Uniqueness, concavity and differentiability of v(·) follows from theorems 9.6, 9.7,

and 9.8 in Stokey, Lucas and Prescott (1989).

2.3 Equilibrium

Definition 2 An equilibrium consists of a sequence {qt, xt, st, at+1}∞t=0 , given initial

asset holdings, such that

1. Given other households’ offers and valuations, each household’s choices solve

the dynamic program (3);

2. The choices and the asset valuations are the same across households;

3. The centralized markets clear for all t: xt = dt, at+1 = 1.

Let α
2
λ be the multiplier on the constraint (4). The first order conditions for the

representative household with respect to q and a0 are as follows.

u0(
α

4
q) =

1

Ω
{(p+ d)U 0(x) + λ} (6)

pU 0(x) = βEd0|d
∂v(a0, d0)

∂a0
(7)

In these conditions, we have used the wealth constraint (5) to substitute for x. Note

that if the no-short-sales constraint (4) does not bind, then λ = 0. The envelope

condition for a implies that

∂v(a, d)

∂a
= (p+ d)U 0 (x) +

α

2
λ (8)

Using (6) to substitute for λ in (8), we get

∂v(a, d)

∂a
=
³
1− α

2

´
(p+ d)U 0 (x) +

α

2
u0
³α
4
q
´
Ω.

We can rewrite (7) using the above expression for ∂v
∂a
:

pU 0(x) = βEd0|d

n³
1− α

2

´
(p0 + d0)U 0 (x0) +

α

2
u0
³α
4
q0
´
Ω0
o
. (9)
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We have to now impose the equilibrium conditions on (9). The valuation of the

asset, Ω, by other households in the decentralized market during the day, has to equal

the valuation, ω, by the representative household, in equilibrium. We can determine

ω as follows. An additional unit of asset obtained in the decentralized market yields

d fruits at night; the asset can also be sold for p fruits in the centralized market at

night. On the margin these additional fruits are valued at U 0(x). In equilibrium, the

general goods market clearing at night implies x = d. Hence,

ω = Ω = (p+ d)U 0 (d) .

Using the equilibrium values for Ω and x, we can write (9) as

pU 0(d) = βEd0|d

n
(p0 + d0)U 0 (d0)

h
1− α

2
+

α

2
u0
³α
4
q0
´io

.

Hence, the equilibrium sequence of asset prices satisfy

ptU
0(dt) = βEt

n
(pt+1 + dt+1)U

0 (dt+1)
h
1− α

2
+

α

2
u0
³α
4
qt+1

´io
. (10)

Again, note that if α = 0, then the above asset pricing equation is identical to that

of Lucas (1978). In the presence of search frictions, the price in the competitive asset

market accounts for the future liquidity value of the asset as well.4

To solve for the equilibrium sequence {qt}, we have to account for two possible

scenarios. If the constraint (4) does not bind in period t, then λt equals zero and

u0(α
4
qt) = 1. Denote the solution to this equation as q∗. Note that the solution does

not depend on the aggregate state and, hence, is time-invariant. Furthermore, if qt =

q∗ for all t, then the search frictions are irrelevant for the asset pricing implications

and the price sequence in our model is the same as in Lucas (1978). If the constraint

(4) binds in period t, then

qt = 2 (pt + dt)U
0 (dt) . (11)

4Vayanos andWang (2002), Duffie, Garleanu and Pedersen (2003) and Weill (2003)
consider search frictions in the asset market and present models of liquidity premium.
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3 Quantitative Implications

To examine the quantitative implications of our model, we restrict the utility functions

to be of the CRRA class,

u (c) =
c1−σ

1− σ

U (x) =
x1−δ

1− δ

where 0 < σ < 1 and 0 < δ <∞ are the coefficients of relative risk aversion. Hence,

q∗ is the unique solution to
¡
α
4
q
¢−σ

= 1.

When the no-short-sales constraint (4) binds, q = 2(p+d)d−δ. In our computation

later we will assume that the constraint (4) binds for all t. Thus, we combine (10)

and (11) and write the asset pricing equation for these functional forms as

ptd
−δ
t = βEt

½
(pt+1 + dt+1) d

−δ
t+1

∙
1− α

2
+

α

2

nα
2
(pt+1 + dt+1) d

−δ
t+1

o−σ¸¾
. (12)

With the equilibrium values for the price sequence we can compute the quantities

{qt} and we will verify ex-post whether the constraint (4) is indeed binding for all

periods.

3.1 Numerical method

To compute the price sequence, we follow the Monte Carlo simulation method pro-

posed by Judd (1998). Since we need to generate the sequence of prices over sample

period, we compute the asset price in each period given the realized data up to that

period instead of the pricing function.

First rewrite the pricing equation (12) as

pt = βEt

⎧⎪⎨⎪⎩
¡
1− α

2

¢ ³
dt+1
dt

´−δ
(pt+1 + dt+1)

+
¡
α
2

¢1−σ
dσδt+1

³
dt+1
dt

´−δ
(pt+1 + dt+1)

1−σ

⎫⎪⎬⎪⎭ . (13)

Since the current price is a non-linear function of future prices for σ ∈ (0, 1), it is

difficult to write the current price as a function of expected future dividend streams.
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We overcome this problem by approximating part of the pricing equation. The

term (pt+1 + dt+1)
1−σ can be written as (pt+1/dt+1 + 1)

1−σ d1−σt+1 , and we linearize

(pt+1/dt+1 + 1)
1−σ around its mean w + 1. The first order Taylor expansion of

(pt+1/dt+1 + 1)
1−σ is:µ

pt+1
dt+1

+ 1

¶1−σ
≈ (1− σ) (w + 1)−σ

µ
pt+1
dt+1

+ 1

¶
+ σ (w + 1)1−σ . (14)

(The mean price-dividend ratio, w, is 22.75 in our sample.) Plug (14) into (13) to

obtain

pt = βEt

⎧⎪⎨⎪⎩ (pt+1 + dt+1)
³
1− α

2
+ (1− σ)

¡
α
2

¢1−σ
(w + 1)−σ dσδ−σt+1

´³
dt+1
dt

´−δ
+σ

¡
α
2

¢1−σ
(w + 1)1−σ d1+σδ−σt+1

³
dt+1
dt

´−δ
⎫⎪⎬⎪⎭ .

(15)

Let

Ft+1 = 1− α

2
+ (1− σ)

³α
2

´1−σ
(w + 1)−σ dσδ−σt+1

Gt+1 = σ
³α
2

´1−σ
(w + 1)1−σ d1+σδ−σt+1

so (15) becomes

pt = βEt

(
[(pt+1 + dt+1)Ft+1 +Gt+1]

µ
dt+1
dt

¶−δ)
. (16)

The no-bubbles solution can be obtained by repeated substitution of prices using (16)

i.e.,

pt = Et

∞X
j=1

βj

(µ
dt+j
dt

¶−δ "Ã jY
i=1

Ft+i

!
dt+j +

Ã
jY

i=1

Ft+i−1

!
Gt+j

#)
. (17)

where Ft is defined to be 1.

Given the price sequence {pt}, we can calculate the asset returns by

Rt+1 =
pt+1 + dt+1

pt
.
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The key problem now is to calculate the expectation in (17). This can be done

by estimating the stochastic process for dividend assuming the dividend is trend

stationary and simulating the sequence of dividends.5 (See Figure 2.)

1. Assume that the log of dividends follows a trend stationary process:

ln dt+1 = b0 + b1 ln dt + b2t+ ηt+1 (18)

where ηt+1 is the disturbance with mean 0.

2. For each period t, use data in period t as the initial value to simulate a time

series for dividends of length 200. That is, generate a sequence dt+j, j =

1, ..., 200 using the coefficients in (18) and drawing the disturbances ηt from its

empirical distribution. (An alternative is to draw these disturbances under the

assumption that η is normally distributed.) Plug the appropriate values into

(17) to calculate

200X
j=1

βj

(µ
dt+j
dt

¶1−δ "Ã jY
i=1

Ft+i

!
dt+j +

Ã
jY

i=1

Ft+i−1

!
Gt+j

#)
.

3. Repeat step 2 many times. The number of replications we use is 1000. The

average value of these 1000 calculations is pt.

4. Repeat step 2 and 3 for periods t+ 1, t+ 2, ..., until the end of sample period.

Using the time series of p calculated from above steps, we can compute the rate of

return sequence {Rt+1} for the whole sample period. This will allow us to calculate the

unconditional moments of prices and returns. Two issues about this calculation are

worth noting. The first is whether the bubble term will indeed converge to zero. The

parameters we use in the following sections will satisfy this requirement. The product

β200
³
dt+200
dt

´−δ ³Q200
j=1 Ft+j

´
is very close to zero and, hence, a time series of length

200 provides a good approximation for the infinite sum in (17). The second issue is

5See DeJong and Whiteman (1991) for evidence on trend stationarity.
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the number of replications used to calculate the expectation. When we quadruple the

number of replications to 4000, our results are unchanged.

3.2 Data and Parameters

The data are all in real terms and obtained from Shiller’s website. The sample period

is 1871-1995. We measure the asset prices and dividends by the S&P 500 prices

and per capita dividends. We measure the volatility of a variable by the standard

deviation of the detrended time series of the variable. The average rate of return

on equity in this sample is 8% and the standard deviation of the equity price is 81.

The mean growth rate of dividend is 1.91% and the standard deviation of detrended

dividend is 1.61.

Other than the coefficients in the trend stationary process, we have three pref-

erence parameters, σ, δ, and β, and one parameter α that describes the extent of

departure from the standard asset pricing model. The estimates of the coefficients

are

b0 = 0.308

b1 = 0.802

b2 = 0.002

and the variance of η is 0.0136.

We set β = 0.96. We searched for α, σ and δ to match the observed average

rate of return on equity and standard deviation of the asset price. There are several

restrictions on these parameters. Recall that we have assumed u(0) = 0, so σ must be

less than 1. The number of types of special goods in our model is assumed to be 3 or

more (H ≥ 3), so α ≤ 1
3
. Finally, we have assumed that the no-short-sales constraint

binds, so we have to verify that our equilibrium quantities and prices satisfy (11).
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3.3 Results

For the benchmark parameters in the table below the average rate of return on the

asset is 8% and the standard deviation of the asset price is 84.

Table 1. Benchmark Parameters

β α σ δ

0.96 0.03 0.11 3.0

Recall that the mean return in the data is 8% and the standard deviation of the asset

price is 81. In figure 3, we illustrate the equilibrium price sequence implied by the

model. In figure 4 we illustrate the price-dividend ratio. The mean price-dividend

ratio in the data is 22.75 while the model implies a mean of 26.

In figures 5 and 6, we plot the price sequence implied by the model as we vary the

parameters σ and α. (The other parameters β and δ are fixed at their benchmark

values.) Changes in σ affect the curvature of the utility function associated with the

special consumption good. As σ increases, the asset price volatility increases. As we

move farther away from the standard frictionless asset pricing model (increase in α),

the asset price volatility increases. The price-dividend ratio exhibits a similar pattern.

Figures 7, 8 and 9 illustrate the effects of σ and α on the average rate of return, the

volatility and the price-dividend ratio. The table below present a summary of the

comparative dynamics associated with changes in σ and α.
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Table 2. Comparative dynamics (β = 0.96 and δ = 3)

Average rate of return (%)

σ

α 0.05 0.10 0.13 0.15

0.01 8.96 8.71 8.53 8.39

0.03 8.70 8.19 7.85 7.63

0.05 8.51 7.82 7.45 7.31

0.10 8.13 7.33 7.75 8.99

Std. deviation of the asset price

σ

α 0.05 0.10 0.13 0.15

0.01 62.2 66.8 70.9 74.5

0.03 66.9 80.2 93.7 108

0.05 71.4 95.3 126 173

0.10 82.8 158 662 6000

Mean Price-dividend ratio

σ

α 0.05 0.10 0.13 0.15

0.01 20.8 22.1 23.3 24.3

0.03 22.2 26.0 29.8 33.6

0.05 23.5 30.2 38.5 49.9

0.10 26.8 46.6 127 639

The standard asset pricing model (α = 0) delivers the observed average rate of

return on equity for risk aversion δ = 2.65. In figure 10, we plot the price sequence

for this case. The standard deviation of the asset price, however, is 53 while the

observed volatility is 81. In figure 11, we illustrate the price-dividend ratio. The

mean price-dividend ratio implied by the standard asset pricing model is 20.7 while

the observed mean is 22.75. Changes in δ affect the price sequence as shown in figure

12. As α approaches zero in our model, the average rate of return and the volatility

in our model approach the values in the Lucas model.

It is clear from comparing the price-dividend ratio in figure 4 to that in figure 11

that the asset in our model has a significant value as the medium of exchange. To

compute the “liquidity premium” of the asset, we calibrate the model to match the

observed mean price-dividend ratio. Holding β, α and δ at their benchmark values,

when we decrease σ to 0.06, the mean price-divided ratio implied by the model is the
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same as in the data. These new parameters imply an average equity return of 8.6%

and a price volatility of 69. We then calculate the asset prices for a model with α = 0

and β and δ set at their benchmark values. This is, of course, the standard asset

pricing model. (Note from (12) that the value of σ is irrelevant for this calculation.)

Since the standard model does not assign any medium of exchange role to the asset,

the difference between the prices implied by the two models would be the premium

paid for liquidity. The mean price-dividend ratio in the standard model is 20. In

figure 13, we illustrate the liquidity premium as a fraction of the price implied by the

standard model i.e., liquidity premium = Pmodel − PLucas
PLucas

. The mean liquidity premium

implied by the model with search frictions is 14.3%.

3.3.1 The Hansen-Jagannathan Bound

In this section we examine whether the IMRS in our model satisfies the Hansen and

Jagannathan (1991) bound. Hansen and Jagannathan proposed a test that generalizes

the variance bounds developed by LeRoy and Porter (1981) and Shiller (1981). They

used asset return data to derive a lower bound on the volatility of a representative

household’s IMRS. An asset pricing model is said to be consistent with the data if

the volatility of the IMRS implied by the model is greater than the HJ bound. To

derive the bound, Hansen and Jagannathan projected the model IMRS onto a space

of contemporaneous asset returns and utilized only a necessary condition associated

with dynamic models, namely the intertemporal Euler equation. For instance, in the

Lucas model, the unconditional version of the Euler equation can be written as

ERt+1mt+1 = 1,

where Rt+1 =
pt+1 + dt+1

pt
and mt+1 = β

µ
dt+1
dt

¶−δ
.

To compute the HJ bound for the case of 1 risky asset, consider the least squares

projection of the IMRS onto the linear space spanned by a constant and contempo-
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raneous returns. The projection is of the form

m = Em+ (R− ER)θ + ν,

where Em is the mean of the model IMRS and ER is the mean asset return. The

projection error ν is orthogonal to the constant as well as contemporaneous returns,

so ERν = 0, and Eν = 0. Hence,

var(m) = θ2var(R) + var(ν)

≥ θ2var(R).

(The notation var(x) refers to variance of x.) The projection coefficient θ = Cov(R,m)
var(R)

,

where the numerator is the contemporaneous covariance between R and m. We can

rewrite θ = ERm−EmER
var(R)

. The Euler equation then implies θ = 1−EmER
var(R) . Satisfying the

HJ bound amounts to verifying whether

var(m) ≥ (1−EmER)2

var(R)
, or

std(m) ≥ 1−EmER

std(R)

for the chosen preference parameters and observed dividend data.

He and Modest (1995) and Luttmer (1996) showed that the presence of frictions

alters the HJ bound. The unconditional version of the Euler equation could be, for

instance,

ERt+1mt+1 = ψ < 1.

In this case, the lower bound on the volatility of the IMRS is ψ−EmER
std(R) . They then

choose the value of ψ that minimizes the volatility bound. Clearly, such a strategy

assumes that ψ does not depend on the model parameters. The environment described

in section 2 suggests a different approach. Suppose that we can measure the medium

of exchange transactions q. The asset pricing equation (10) can be written as

E

½µ
pt+1 + dt+1

pt

¶
β
U 0 (dt+1)

U 0(dt)

h
1− α

2
+

α

2
u0
³α
4
qt+1

´i¾
= 1.
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Rewrite this equation in the familiar form

ERt+1mt+1 = 1,

where Rt+1 =
pt+1 + dt+1

pt
and

mt+1 = β
U 0 (dt+1)

U 0(dt)

h
1− α

2
+

α

2
u0
³α
4
qt+1

´i
.

The HJ bound then is 1−EmER
std(R) , exactly the same as in the case without frictions.

However, the IMRS is very different.

4 Conclusion

In this paper, we consider an environment with search frictions in the goods market.

The asset in our model is used to facilitate trading in the goods market. This transac-

tion role makes the asset pricing implications of our model different from those in the

standard asset pricing model. We show that a “small” departure from the standard

asset pricing model can simultaneously deliver the observed average rate of return on

equity and the volatility of the asset price.
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Figure 1: Data and Shiller’s Constant Discount Factor Model
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Figure 7: Average Equity Return under different values of α and σ
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Figure 8: Standard Deviation of Asset Price under different values of α and σ
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