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The present always gets its rights.
E. Böhm-Bawerk

1 Introduction

Most, if not all, of an individual’s decisions have consequences through time, making
it imperative for analysts to have a clear understanding of agents’ attitudes towards
time delay, and a framework for discussing these attitudes. Unsurprisingly, then, the
study of time preference has a rich history, going back at least as far as Rae (1834)
and Böhm-Bawerk (1891). In recent years, this topic has received an exceptional
amount of attention from economists, much of it questioning the canonical exponential
discounting model.1 Despite this large body of work, one straightforward question
seems to have gone almost entirely unaddressed in the economics literature: How
does one compare the attitudes of two different agents towards time delay?
Drawing a parallel to the modern theory of choice under risk and uncertainty

is telling. By the end of the 1960s, a powerful theory of comparative risk aversion
was well-established within the expected utility paradigm, thanks to the seminal
contributions of Arrow (1964) and Pratt (1964), among others. Comparative risk
aversion is now a textbook topic with a plethora of economic applications. Moreover,
it has been generalized to the context of various non-expected utility models. By stark
contrast, time preference theory at large lacks methods for comparing the attitudes
of individuals towards delay, even within the entirely standard setting of exponential
discounting.2

That there is such a lacuna may not be apparent at first glance. After all, at
least within the exponential discounting model, there is reason to view the discount
factor of an individual as a natural index of his “impatience.” This may tempt one to
view the problem of making impatience comparisons across individuals as one that is
readily settled by comparing the discount factors of the involved parties. There are
at least three problems with this position, however.
First, at a fundamental level, a comparison of attitudes towards delay should not

be tied to a particular representation of preferences. Indeed, it should be possible
to reject the exponential discounting model and still make comparisons about the
relative impatience of two or more decision makers.
Second, even if one accepts the exponential discounting model, using discount

factors to make comparisons may not always be meaningful. Consider an environment

1See Frederick, Loewenstein and O’Donoghue (2002) for a recent survey on time preferences.
2Starting with Koopmans (1960) and Koopmans, Diamond andWilliamson (1964), there has been

much work on the formalization of the notion of “impatience” and the link between this concept and
the continuity of intertemporal utility functions. (See Epstein (1987) for a related survey.) While
there is still some interest in this matter today (cf. Marinacci (1998)), these works are not helpful for
comparing the “impatience” of two decision makers. To the best of our knowledge, the only article
that studies this issue is a nice, albeit largely unknown, note by Horowitz (1992), about which more
in Sections 2 and 5.
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in which the choice objects are dated monetary outcomes. A prototypical example of
such an environment is provided by sequential bargaining, where the game ends with
each player receiving a payment. As is usual, denote the dated outcome in which x
dollars are received in period t as (x, t). Take an individual whose preferences over
dated outcomes are represented by the intertemporal utility function (x, t) 7→ αtu(x),
where u is the agent’s instantaneous utility function, and 0 < α < 1 is his discount
factor. Now choose any 0 < β < 1. One can show that the very same preferences,
which are represented by (x, t) 7→ αtu(x), can also be represented by (x, t) 7→ βtv(x),
for some instantaneous utility function v.3 Hence, the choice of the discount factor
used to represent an individual’s preferences is entirely arbitrary in this environment;
it follows that here discount factors cannot possibly form a meaningful basis for
comparing attitudes towards delay.
Third, even in contexts where the exponential discounting model is appropriate,

and discount factors are uniquely determined by preferences, making a comparison
based solely on these discount factors is questionable. Consider two infinitely lived
agents who evaluate an arbitrary consumption path (x0, x1, ...) as

P∞
t=0 δ

t
1u1(xt) andP∞

t=0 δ
t
2u2(xt). Here, unlike in the example considered above, the discount factor δi is

uniquely determined by the ith person’s intertemporal preferences, and the instanta-
neous utility function ui is uniquely determined up to a positive affine transformation.
Would it now be reasonable to compare the relative delay aversion of these individu-
als by looking only at their discount factors? To see that a positive answer would be
problematic, consider the special case in which u1(x) = x, u2(x) =

√
x, x ≥ 0, and

1 > δ1 > δ2 > 0. Suppose that each person must decide how to allocate a fixed total
wealth over time. Clearly, the first person will maximize by consuming the entire
amount in the first period, while the second person will spread her wealth through
time, since u02(0) = ∞. Thus, from an observational point of view, the first person
exhibits a much stronger bias towards the present, although the second person seems
to be the more present oriented based upon a comparison of discount factors alone.
The culprit behind the second and third points is clear. The instantaneous utility

function of an agent, along with his discount factor, plays an essential role in shaping
his attitude toward time delay. (For instance, in the last example, the square root
function induces — or reveals — a desire for consumption smoothing.) As a result, even
within the exponential discounting framework, comparing the aversion of two deci-
sion makers towards delay solely on the basis of their discount factors is troublesome.
In the literature, this difficulty has commonly been circumvented by the practice of
making impatience comparisons across decision makers only when these agents share
a single instantaneous utility function.4 As a basis for formal comparative static ex-

3The proof follows upon setting v := ulnβ/ lnα. (See Theorem 3 of Fishburn and Rubinstein
(1982).)

4For instance, studies that aim to compare the impatience of the representative members of
distinct socioeconomic classes are often forced to postulate the homogeneity of static preferences
for agents across the classes under consideration (cf. Lawrance (1991)). Similarly, in dynamic
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ercises, this practice is, as we shall see, sound. Beyond such exercises, however, it
is severely wanting. Consider, for instance, the following question: To what extent
can differences in the time series wealth profiles of two countries be explained by the
different delay aversions of the citizens of the countries? Suppose that to address the
question, each country is modeled by a representative agent. While this standard
simplification may be acceptable, there would seem to be little justification for fur-
ther assuming that the two representative agents have the same instantaneous utility
functions. Indeed, once it is admitted that the representatives of the two countries
may differ, as it must be to address the question, it is entirely arbitrary to restrict
this difference to one of discount factors. Now, one might wish to argue that, pro-
vided that the utility functions do not differ too much, differences in discount factors
will capture differences in delay aversions, so that it is an acceptable simplification
to assume the utilities are in fact identical. However, merely to formulate such an
argument an independent notion of relative delay aversion is first needed. Moreover,
the idea that one needs to keep the instantaneous utility functions of two individuals
constant to compare their delay attitudes runs into obvious difficulties the moment
we depart from the separable time preference model.
The objective of this paper is to develop rigorous techniques for comparing the

aversion of decision makers towards time delay. The discussion above and the parallel
we seek to risk theory suggests at least three constraints in this endeavor. First, the
proposed methods should not, at least at the level of their primitive definitions,
depend on the way in which intertemporal preferences are modeled. Second, these
methods should be “easy” to apply, at least within specialized models (such as that
of separable intertemporal preferences). Third, these methods should be useful in
dynamic economic analysis. That is, they should allow for rigorous comparative
statics exercises in actual economic models.5

The present paper is organized in three major parts, each of which addresses
one of the three concerns just listed. In Section 2 we introduce a very simple (par-
tial) method of comparing two agents’ eagerness to enhance earlier consumption at
the expense of future consumption, without subscribing to a particular model of in-
tertemporal preferences. Roughly speaking, we qualify individual A as more delay
averse than individual B if whenever B prefers receiving an increase in consumption

economic analysis, the implications of one party being more impatient than another is explored
almost exclusively by varying the discount factors while holding the instantaneous utility functions
constant. (Section 4 contains several examples of this nature.) Finally, to our knowledge, all
experimental studies that estimate personal discount rates work under the assumption that the
subjects have the same utility function for money.

5Recall that, in risk theory, the basic definitions of risk aversion and related concepts do not
depend on how one’s preferences over risky prospects are represented. Moreover, within specific
models (such as the expected utility model), these abstract definitions yield characterizations (via
the Arrow-Pratt coefficients, Jensen’s Inequality, etc.) that accentuate their applicability substan-
tially. Finally, there are numerous economic applications (e.g. the models of demand for insurance
and portfolio diversification) which mesh extremely well with these definitions and their characteri-
zations.
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at an earlier date to receiving an increase at a later date, A does too, ceteris paribus.
This approach to relative delay aversion is “bottom line” in nature, in that it inquires
into an individual’s desire for enhanced early consumption, without distinguishing to
what degree this desire reflects a true bias towards the present, and to what degree
it is instead a reaction to any unevenness in the individual’s underlying endowment
stream. Note in this regard that the same individual could want to borrow if his
endowment stream was increasing and lend if it was decreasing. This notion of delay
aversion should be contrasted with a “pure” time bias, namely, a psychological pref-
erence for early gratification, which may or may not overwhelm other considerations.
As we shall see, our approach easily modifies to provide an ordering which captures
a pure time preference motive instead. We term this an impatience ordering.
In Section 3 we specialize to the case of separable intertemporal utilities, and pro-

vide various characterizations of our orderings. These characterizations yield further
insight into the structure and appeal of the comparison methods introduced in Sec-
tion 2. In particular, we find that in the exponential discounting model, if one agent
is more delay averse (or impatient) than another, then her discount factor must be
lower than the latter’s, but not conversely. These characterizations are also used to
show how to transform a given separable intertemporal utility function into a more
delay averse (or more impatient) one.
In Section 4 we turn to some specific economic applications. First, we show that

in the one-sector optimal growth problem the optimal capital stock of a country can
never fall strictly below that of a more delay averse country. This generalizes a well-
known result of growth theory (cf. Becker (1983)), which was obtained originally by
varying the discount factors of agents with identical instantaneous utility functions.
Second, we show that any stationary Nash equilibrium path of an infinitely repeated
game with exponential utility maximizers remains an equilibrium path as players
become more patient. Again, this type of result has previously been pursued in the
literature by making alterations only in players’ discount factors, thus considering
a special manner in which players may change. We also derive a related result for
infinitely repeated games in which the agents are not assumed to be exponential
utility maximizers.
In our final application, we revisit a well-known result of Roth (1985) which shows

that an agent’s share in Rubinstein bargaining decreases as his utility function be-
comes more concave. Roth interprets this to mean that becoming more risk averse
harms an agent, but since there is no risk in the model, this interpretation has been
considered to be somewhat dubious. We clarify this result by showing that, in bar-
gaining environments, a concave transformation of an agent’s utility function renders
him more delay averse. Consequently, Roth’s result is properly understood as a result
about delay aversion, not risk aversion.
The paper ends with a few concluding comments collected in Section 5. All proofs

of the theoretical results are contained in the Appendix.
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2 Comparative Delay Aversion: The General Case

In this section we lay out a general framework of analysis, and introduce three different
methods of comparing the attitudes of decision makers towards time delay. Our
first method allows one to compare the delay aversion of individuals, that is, loosely
speaking, their tendency to prefer consumption streams that are skewed towards early
periods. This ordering commingles the potential consumption smoothing motive of
the individuals with their pure time preference. To concentrate on the latter effect
alone, we then refine this ordering, thereby suggesting a method of comparing the
relative impatience of individuals. Finally, in contexts where preferences are defined
on the prize-time space (such as in bargaining games and/or preemptive investment
models), we consider a further refinement of the resulting ordering.

2.1 Intertemporal Utility Functions

For expositional simplicity we develop our formalism only for infinitely-lived agents
and bounded streams of outcomes — the entire analysis adapts in a straightforward
manner to the case of finitely lived agents. Accordingly, we take an intertemporal
choice item to be a real sequence (x0, x1, ...) with xt ≥ 0 for all t, and sup{xt : t =
Z+} <∞. Of course, we think of xt as the level of consumption at time t.We denote
the set of all such real sequences as X , and endow X with the product topology.
The generic members of X are denoted as x,y, etc.; we adopt the convention of

denoting the tth term of x as xt, so that x ≡ (x0, x1, ...). By (a,x−t), we denote the
sequence y, where yt = a and ym = xm for all m 6= t. Similarly, for any k ∈ N and
distinct positive integers t1, ..., tk, the expression (at1, ..., atk ,x−(t1,...,tk)) stands for the
sequence y where yti = ati , i = 1, ..., k, and ym = xm for all m ∈ Z+\{t1, ..., tk}.
We work with strictly monotonic preferences over consumption streams, that is,

preferences for which more consumption is preferred to less at any period. Moreover,
we posit that any preference ordering can be represented by a utility function U on
X such that U |[0,a]∞ is continuous for any 0 ≤ a < ∞. Such maps are referred to as
cube-continuous in what follows.6

Definition 1. A cube-continuous and strictly increasing map U : X → R such that
U(0, 0, ...) = 0 is called an intertemporal utility function. We denote the set of
all intertemporal utility functions by U.

6Put differently, U is cube-continuous if and only if the restriction of U to any Hilbert cube in X
is continuous. (Recall that a compact subset [a, b]∞ of X is called a Hilbert cube in X for any real
numbers a and b with 0 ≤ a < b.) Hence, the term “cube-continuous.”
Given that X is endowed with the product topology, the continuity of a real map on X is much

more demanding than its cube-continuity. For example, the map f : X → R defined by f(x) :=P∞
t=0 δ

txσt is not continuous for any choice of 0 < δ, σ < 1, but it is cube-continuous for any such
choice of δ and σ.
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The requirement U(0, 0, ...) = 0 is merely a normalization that simplifies the
exposition.

2.2 Comparative Delay Aversion

Consider an individual, A, facing a fixed endowment stream ω ∈ X . Suppose that he
has won a prize which gives him the choice between an additional consumption of 100
in period s or 120 in period s+ 1. Without knowing his preferences and endowment,
we cannot, of course, predict which of the two options he prefers, but suppose that, in
fact, he favors consuming an additional 100 in period s. Thus, we understand that A
does not consider it to be worth waiting an extra period beyond s in order to receive
the larger amount of 120. Now consider an individual, B, in identical circumstances,
but, who is known to dislike delay more than A does. Naturally, we expect that she
too will consider the larger amount of 120 to be insufficient compensation for waiting
an extra period, and, instead, will prefer receiving 100 in period s.
The fact that the above thought experiment was couched in terms of payments

made to the individuals is not essential. Precisely the same reasoning would apply
in terms of payments made by them. Suppose that individual A prefers paying b
dollars at time t to paying a dollars at an earlier date s. Individual B, who faces the
same objective circumstances as Agent A, but is more delay averse, should also prefer
making the later payment to the earlier one.
Of course, there is nothing special in a particular choice of endowment stream,

payments, and time periods. These considerations prompt the following definition.

Definition 2. An intertemporal utility function V ∈ U is more delay averse than
U ∈ U, if, for any given (s, t) ∈ Z2+ with s < t and any ω ∈ X ,

U(ωs+ a,ω−s)
½
≥
>

¾
U(ωt+ b,ω−t) implies V (ωs+ a,ω−s)

½
≥
>

¾
V (ωt+ b,ω−t)

(1)
for all a, b ≥ 0, and

U(ωt− b,ω−t)
½
≥
>

¾
U(ωs− a,ω−s) implies V (ωt− b,ω−t)

½
≥
>

¾
V (ωs− a,ω−s)

(2)
for all ωs ≥ a ≥ 0 and ωt ≥ b ≥ 0. We denote this situation by U - V. We say that
V is strictly more delay averse than U , and write U ≺ V, if U - V but not
V - U.7

7Formally speaking, - should be viewed as the binary relation on U defined by (U, V ) ∈- iff V
is at least as delay averse as U. In turn, ≺ is the asymmetric part of -.
We should note that, from a formal point of view, Definition 2 contains a redundancy. Given that

here we are working with all endowment streams ω, the second part of this definition (i.e. the part
that concerns (2)) is implied by its first part, and vice versa. (See Lemma 1 in the Appendix.) We
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The first condition of this definition says that if agent B is more delay averse
than agent A, then B prefers receiving an earlier payment to a (possibly different)
later payment whenever A does.8 The second condition says that the relatively delay
averse B prefers making a later payment whenever A does.

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 1a: If a person prefers the consumption path on the left, so would a more delay averse person. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1b: If a person prefers the consumption path on the right, so would a more delay averse person. 
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maintain this redundancy here, because these two parts of the definition are conceptually distinct.
Moreover, in the following subsections we will work with particular subsets of endowment streams,
and this redundancy will disappear.

8Naturally, we say that agent B is more delay averse than agent A if B’s intertemporal utility
function is more delay averse than A’s.
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A few remarks on the mathematical structure of the binary relation- are in order.
This relation is a vector preorder on U; that is, - is a reflexive and transitive binary
relation on U such that U - V iff λU +W - λV +W for all λ > 0 and U, V,W ∈ U.9
Moreover, this ordering is continuous in the sense that if U - V holds andW is close
enough to U uniformly, then W - V. The following proposition summarizes these
facts.

Proposition 1. - is a vector preorder on U. Moreover, if (Un) and (Vn) are any
two sequences in U with Un - Vn for all n, and U and V are intertemporal utility
functions with Un → U uniformly and Vn → V uniformly, then U - V.

It is not difficult to see that our delay aversion ordering - is not complete. In
Section 3 we will encounter a few interesting intertemporal utility functions that
cannot be compared on the basis of this preorder.

2.3 Single-Crossing and Investments

To the best of our knowledge, the only other preorder introduced in the literature
to compare the attitudes of two individuals towards time delay is that of Horowitz
(1992). While Horowitz formulates his ordering in a continuous time framework, it
is easy to adapt it to the present discrete time setting.10 First we need to introduce
the auxiliary concept of single-crossing streams.

Definition 3. For any x,y ∈ X , we say that y single-crosses x from above, if
there exists a t∗ ∈ N such that ym ≥ xm for all m = 0, ..., t∗ − 1, and ym ≤ xm for all
m = t∗, t∗ + 1, ... .

Horowitz’s idea is that if one individual favors a consumption stream that single-
crosses another from above, then so should a more delay averse person. This is the
content of the following definition.

Definition 4. An intertemporal utility function V is single-crossing more delay
averse than U ∈ U if, for any x,y ∈ X ,

U(y)

½
≥
>

¾
U(x) implies V (y)

½
≥
>

¾
V (x)

whenever y single-crosses x from above.

9Throughout this paper, we refer to any reflexive and transitive binary relation as a preorder and
ordering interchangeably.
10Horowitz’ choice to model time continuously proves to be unfortunate in a number of respects.

Most notably, within the standard exponential discounting model it results in a quite limited or-
dering, which applies only when the decision makers have the same instantaneous utility functions.
As will become clear shortly, this contrasts markedly with the results we obtain. (More on this in
Section 5.)
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A comparison of - and the single-crossing ordering readily reveals that the latter
implies the former. Indeed, our ordering is defined in terms of particularly simple
single-crossing consumption streams while Horowitz’s ordering uses all single-crossing
streams. This suggests that the latter ordering might be significantly more demanding
than -. In fact, however, these two orderings are equivalent.

Theorem 1. For any intertemporal utility functions U and V, V is more delay averse
than U if and only if V is single crossing more delay averse than U .

The simplicity of the comparisons involved in the definition of the ordering - is
an obvious advantage — one which we exploit in deriving many of the results of the
subsequent sections. Theorem 1 shows that this simplicity comes at no conceptual
cost.11

There are, of course, other ways of thinking about the notion of relative delay
aversion. Notably, one may wish to base this notion on the comparative investment
behavior of decision makers. Since an investment is a form of delayed gratification,
relatively delay averse people should undertake relatively few investments, and con-
versely. In fact, this point of view is completely consistent with that of the delay
aversion ordering -.
Consider a person with initial endowment stream ω who has an investment oppor-

tunity that costs a ≤ ωs units of consumption in period s, and yields returns xi ≥ 0
in ensuing periods. If he undertakes the investment, he ends up with ω0,

ω0 := (ω0, ..., ωs−1, ωs − a, ωs+1 + x1, ωs+2 + x2, ...).

In concert with intuition, if this person prefers ω to ω0 (that is, chooses not to
undertake the associated investment), then any more delay averse person does too.
This fact follows immediately from Theorem 1, since ω single crosses ω0 from above.
The converse is also true. Suppose that, whenever person A prefers an ω ∈ X to an
ω0 obtained from ω through an investment, as above, then person B does as well.
Then B must be more delay averse than A.12

11An analogy may be helpful here. In risk theory, the notion of mean preserving spreads is used
to get a basic handle on ranking lotteries on the basis of their riskiness. While the simplicity of
this method is appealing, its usefulness seems limited, for in practice it is unlikely that one would
deal with two lotteries one of which is derived from the other by means of a single mean preserving
spread. In this regard, the second order stochastic dominance ordering seems superior. A celebrated
result, however, tells us that these two methods are formally equivalent. Theorem 1 has the same
flavor. It shows that the simpler (and apparently less applicable) ordering - is equivalent to the
more complicated (but apparently more applicable) ordering of Horowitz.
12This claim follows from the fact that person B prefers (ωt + b,ω−t) to (ωs + a,ω−s) , s < t,

whenever A does, since (ωt + b,ω−t) can be viewed as an investment relative to the endowmendt
stream (ωs + a,ω−s).
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2.4 Comparative Impatience

Consider an agent whose endowment stream is (0, 10, 10, ...), and who receives a lump
sum award of 10 which he may add to his consumption in any single period. Suppose
he chooses to consume the 10 in period zero. In so doing, he is certainly exhibiting
some aversion towards delay, but how much does this choice really tell us about his
attitude towards time? Arguably, very little. After all, his decision to consume the 10
immediately may stem more from a reaction to the uneven endowment stream than a
taste for early gratification. Indeed, it would hardly seem surprising, or inconsistent,
if the same person informed us that he would have consumed the additional 10 in
period one, rather than period zero, had his endowment stream been (10, 0, 10, 10, ...)
instead of (0, 10, 10, ...).
The same ambiguity arises when making comparative statements. Consider agents

A and B, both with the endowment stream (10, 0, 10, ...). Suppose that Agent A
chooses to consume an additional 10 immediately, while Agent B waits one period.
Then Agent A is certainly acting in a more delay averse manner than Agent B,
but does that mean that A has the greater bias towards the present per se? Not
necessarily. It may well be that the two agents are equally present oriented, but that
Agent B has a stronger reaction to the uneven endowments.
Our definition of relative delay aversion (purposely) makes no attempt to disen-

tangle the various motives that go into an agent’s allocation decisions. Rather, it
blends them to yield a very strong notion: One agent is more delay averse than an-
other if and only if his behavior is always more biased towards the present. While
this universal requirement may seem quite demanding, as we will see in Section 3,
it is significantly less stringent than the common practice of holding an agent’s in-
stantaneous utility function fixed while varying his discount factor (in the case of
the exponential discounting model). Furthermore, it is in the spirit of many prior
intertemporal analyses. Of the earlier major thinkers about time preferences, Böhm-
Bawerk (1891) and Fisher (1930) were particularly clear about the attitudes of an
individual towards time delay being a consequence of two effects: a reaction to an
uneven endowment stream and a preference for early consumption.13 In line with this
point of view, the notion of delay aversion commingles these two effects.
At the same time, many authors, including Friedman (1976), Olson and Bailey

(1981), and Stigler (1987), wished to concentrate on agents’ pure time preferences.14

13In the words of Böhm-Bawerk (1891) - also quoted by Olson and Bailey (1981) - “A first principal
cause capable of producing a difference in value between present and future goods is ... if a person
suffers in the present from appreciable lack of certain goods, or of goods in general, but has reason
to hope to be more generously provided for at a future time, then that person will always place a
higher value on a given quantity of immediately available goods than on the same quantity of future
goods. ... a second phenomenon of human experience ... is the fact that we feel less concerned about
future sensations of joy and sorrow simply because they do lie in the future, and the lessening of
our concern is in proportion to the remoteness of that future.”
14To this end, working with exponential utilities, these authors define an individual’s “absolute

impatience” by considering his marginal rate of substitution between earlier and later consumption
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Our methodology also affords a means for isolating pure time biases. Recall that the
delay aversion ordering - is defined through simple choice problems relative to all
endowment streams, however uneven these streams may be. It is due to this fact
that it picks up influences besides pure time considerations. The latter effect can be
isolated by comparing the preferences of agents only when their endowment streams
are neutral with respect to time, as in the following definition. (See Figure 2.) We
reserve the term impatience for this pure time notion.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2a: If a person prefers the consumption path on the left, so would a more impatient person. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2b: If a person prefers the consumption path on the right, so would a more impatient person. 
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Definition 5. Let U and V be two intertemporal utility functions. We say that V

along constant endowment streams.
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is more impatient than U, if (1) and (2) hold for all endowment streams ω ∈ X
such that ω0 = ω1 = · · ·. If V is more impatient than U but not conversely, we say
that V is strictly more impatient than U.

Note that by its very definition, this impatience ordering is a refinement of our
delay aversion ordering.15 Like -, this ordering is a vector preorder on U which is
continuous (relative to the topology of uniform convergence).

2.5 Comparative Delay Aversion in Cryogenic Environments

In intertemporal decision theory, there are two basic frameworks. The first of these is
the one we have worked within so far, namely, that of infinite (or finite) consumption
paths. The second of these takes as its basic choice alternatives dated outcomes
that specify the receival date and amount of a given consumption item.16 This setup
corresponds to that of a large number of intertemporal choice experiments in which
subjects are asked to compare receiving two sums of money at two different time
periods, and are presumed not to consider the intervening periods. This setup is
also used for modeling bargaining games and preemptive investment scenarios, where
disagreement (or non-investment) periods are abstracted away from, with incomes in
those periods taken to be zero. Put differently, these models maintain that the agents
solve their associated problems as if they were “frozen” during intervening periods,
making what we term cryogenic comparisons.
In this alternative framework an agent makes comparisons among consumption

paths that are necessarily of the form (a,0−s), where a ≥ 0, s ∈ Z+ and 0 := (0, 0, ...).
Consequently, within this framework it makes sense to apply the comparison methods
considered above only with respect to such consumption paths. This prompts the
following modification of our delay aversion ordering.

Definition 6. Let U and V be two intertemporal utility functions. We say that V is
cryogenically more delay averse than U, if for any given (s, t) ∈ Z2+ with s < t,

U(a,0−s)
½
≥
>

¾
U(b,0−t) implies V (a,0−s)

½
≥
>

¾
V (b,0−t)

for all a, b ≥ 0. In this case we write U -0 V .

Note that this definition simply asks that condition (1) hold only when the initial
endowment stream is identically zero.17 Thus, while still partial, the “cryogenically
more delay averse than” ordering-0 is a significant refinement of the “more impatient
15We note that (1) may hold for all constant endowment streams, while (2) does not. Thus, in

contrast to Definition 2, there is no redundancy in Definition 5.
16See, for instance, Lancaster (1963), Fishburn and Rubinstein (1982), Rubinstein (2003), and

Prelec (2004), among others.
17Condition (2) holds vacuously here, since no payments can be made from a starting point of 0.
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than” ordering (which is itself a refinement of -). We should note that, within the
context of bargaining theory, a stationary version of this ordering is used by Osborne
and Rubinstein (1994).

3 Comparative Delay Aversion: The Separable Case

In this section we specialize to the context of separable intertemporal utility functions,
and obtain characterizations of the three comparison methods we introduced above.
Most of the applications of Section 4 will derive from the results of this section.

3.1 Separable and Exponential Intertemporal Utility Func-
tions

The most prevalent types of intertemporal utility functions in economic analysis posit
the separability of the evaluation of time and outcomes, and presume an additively
separable form. In the rest of this paper we refer to such members of U succinctly
as separable. To define this subclass formally, let us call a function δ : Z+ → (0, 1] a
discount function if δ is strictly decreasing, δ(0) = 1 and δ(0)+δ(1)+··· <∞.18 We
refer to a continuous and strictly increasing map u : R+ → R as an instantaneous
utility function provided that u(0) = 0 and u(∞) =∞.19 The class of all discount
functions is denoted by D and the class of all instantaneous utility functions by U . At
times we will work with differentiable members of U . The following class will receive
particular attention:

V := {u ∈ U : u is continuously differentiable and u0|(0,∞) > 0}.

Note that any member u of V has an inverse u−1 which is continuously differentiable
with a finite positive derivative on (0,∞).20
A map U : X → R is called a separable intertemporal utility function if

there exists a (u, δ) ∈ U ×D such that

U(x) =
∞X
t=0

δ(t)u(xt) for all x ∈ X . (3)

18The convergence of the series
P∞

t=0 δ(t) ensures that the map x 7→
P∞

t=0 δ(t)u(xt) is real-valued
on X whenever u is a continuous function on R+. The assumption that δ is strictly decreasing is
standard in the literature; it amounts to saying that people dislike time delay in general. We adopt
this formulation here to conform with the literature, but note that the main results of this section
would remain valid in the absence of this assumption as well.
19The assumption u(∞) =∞ considerably simplifies the subsequent analysis, but is not essential

for it. In particular, the “if” part of every characterization theorem we report below remains valid
without this assumption.
20u−1 is also right-differentiable at 0, but its right-derivative at 0 may belong to {0,∞}.
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We denote the class of all separable intertemporal utility functions by Usep. It is easy
to verify that Usep ⊆ U.21 In what follows, by the tuple (u, δ) in U ×D, we mean the
separable intertemporal utility function induced by u and δ by way of (3). We use
the notation (u, δ) and U interchangeably when (3) holds.
Perhaps the most important subclass of Usep is the one consisting of exponential

intertemporal utility functions. Formally, an exponential intertemporal utility
function is defined as a map U : X → R with

U(x) =
∞X
t=0

δtu(xt) for all x ∈ X , (4)

where u ∈ U and 0 < δ < 1. In this case, δ is called a discount factor. The class of
all exponential intertemporal utility functions is denoted by Uexp. Obviously, Uexp ⊆
Usep. Again, by the tuple (u, δ) in U × (0, 1), we mean the exponential intertemporal
utility function induced by u and δ through (4), and hence, with a slight abuse of
terminology, we refer to any such pair (u, δ) as an “exponential intertemporal utility
function.”
In recent years, a large amount of experimental data has been gathered which

questions the exponential discounting model in particular, and the stationarity of time
preferences in general. This has led economists to give serious consideration to certain
generalizations of the exponential discounting model.22 Most of these generalizations,
such as the quasi-hyperbolic and hyperbolic discounting models, still carry the form
of a separable intertemporal utility function (viewed as representing the commitment
preferences of the individuals), and will thus be captured by our results that pertain
to Usep. It is, however, fair to say that the exponential discounting model remains
the most widely used framework in dynamic economic analysis, and hence we will
emphasize the exact nature of our subsequent results for this specific model.

3.2 Characterizations of the Delay Aversion Ordering

We begin by providing alternative characterizations of our “more delay averse than”
ordering - in the case of separable intertemporal utility functions.

Theorem 2. For any two separable intertemporal utility functions (u,α) and (v,β),
the following two statements are equivalent:
21The nontrivial part of the argument is to establish the cube-continuity of the map defined by

(3) for some (u, δ) ∈ U × D. To this end, fix an arbitrary a > 0, and define f := U |[0,a]∞ . We
wish to show that f is continuous (in the product topology). Take any x ∈ [0, a]∞ and ε > 0.
Since

P∞
t=0 δ(t) < ∞, there is a T ∈ N such that

P∞
t=T+1 δ(t) < ε/2u(a). Moreover, since u

is continuous, there is a neighborhood O of x such that O is open in the product topology and
|u(xt)− u(yt)| < ε/2

PT
t=0 δ(t) for all y ∈ O and t = 1, ..., T. A straightforward application of the

triangle inequality yields |f(x)−f(y)| < ε for any y ∈ O. We thus conclude that f is continuous.
Since a > 0 was arbitrary in this discussion, it follows that U is cube-continuous.
22A very good survey about the recent developments in time preference theory is provided by

Frederick, Loewenstein and O’Donoghue (2002).
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(a) (v,β) is more delay averse than (u,α);
(b) There exists a map h : R+ → R+ such that v = h ◦ u and

h

µ
x+

α(t)

α(s)
y

¶
≥ h(x) +

β(t)

β(s)
(h(y + z)− h(z)) (5)

for all (s, t) ∈ Z2+ with s < t and x, y, z ≥ 0.
Moreover, if u and v belong to V, then either of the above statements is equivalent

to either of the following statements:
(c) There exists a continuously differentiable map h : R+ → R+ such that v = h ◦ u
and

inf{h0(x) : x > 0} ≥
µ
β(t)/β(s)

α(t)/α(s)

¶
sup{h0(x) : x > 0} for all (s, t) ∈ Z2+with s < t.

(6)

(d)
β(s)

β(t)

v0(x)
v0(y)

≥ α(s)

α(t)

u0(x)
u0(y)

for all (s, t) ∈ Z2+ with s < t and x, y ≥ 0.

A basic result of risk theory states that a given von Neumann-Morgenstern utility
function is at least as risk averse as another if and only if the former is a concave
transformation of the latter. This observation enables one to generate more risk
averse utility functions from a given von Neumann-Morgenstern utility function and
leads to useful characterizations of the “more risk averse than” ordering in the case
of differentiable utility functions (via the Arrow-Pratt coefficients).
Theorem 2 provides analogous results for the preorder -. Part (b) tells us that

(v,β) is more delay averse than (u,α) iff v is a particular transformation of u. This
transformation is captured by the functional inequality (5) which, of course, incor-
porates the influence of the discount functions α and β. This inequality is extremely
useful. In particular, it allows us to obtain (d) by means of a straightforward appli-
cation of the Inverse Function Theorem.
The statement in (d) of Theorem 2 is easily interpretable. Think of x as con-

sumption in period s and y as consumption in period t > s. The statement then says
that (v,β) - (u,α) iff (v,β) has a larger marginal rate of intertemporal substitu-
tion of (the earlier) sth period consumption for (the later) tth period consumption,
regardless of the levels of consumption at periods s and t.23

While the instantaneous utility function and the discount function of an agent
both contribute to the determination of his attitude towards delay, the following
corollaries point to a greater contribution on the part of the discount function.

23For Fisher (1930), a person is delay averse - he uses the term “impatient” - in an absolute sense,
if his marginal rate of intertemporal substitution is always greater than one. Part (d) of Theorem
2 shows that, in an obvious way, our notion of relative delay aversion is the logical extension of
Fisher’s definition to comparisons.
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Corollary 1. For any separable intertemporal utility functions (u,α) and (v,β),

(u,α) - (v,β) only if
α(t)

α(s)
≥ β(t)

β(s)
for all (s, t) ∈ Z2+ with s < t.

In particular, (u,α) - (v,β) only if α ≥ β.

As we argued in the Introduction, and as Examples 1 and 2 below confirm, dis-
count factors are not sufficient for making delay aversion comparisons (for exponential
utility maximizers). On the other hand, as Corollary 1 shows, they are necessary for
such comparisons. More precisely, if agent A is more delay averse than agent B, then
A’s discount factor is lower than that of B.24 It follows that, while the instantaneous
utility function can undo the effect of the discount factor, it cannot reverse it: If
agent A has a lower discount factor than agent B, then either A is more delay averse
than B, or the two agents cannot be ranked.

The next corollary shows that the common comparative static exercise of lowering
an agent’s discount factor while holding his instantaneous utility function constant
amounts to rendering the agent more delay averse. At the same time, for preferences
that are separable but not exponential, lowering an agent’s discount function every-
where is not sufficient to render him more delay averse. In that case, the relative
discount functions α(t)

α(s)
and β(t)

β(s)
must also be considered.25 The corollary also shows

that holding an agent’s discount factor constant while changing his instantaneous
utility function (in a nontrivial manner), results in a noncomparable agent.

Corollary 2. For any separable intertemporal utility functions (u,α) and (v,β),

(u,α) - (u,β) if and only if
α(t)

α(s)
≥ β(t)

β(s)
for all (s, t) ∈ Z2+ with s < t.

Moreover,

(u,α) - (v,α) if and only if u = θv for some θ > 0.

The next corollary is a simplification — and trivial consequence —of Theorem 2 for
the case of exponential intertemporal utility functions.26

24This assertion follows from the fact that αt

αs ≥
βt

βs for all 0 < s < t iff α ≥ β.
25In fact, it is sufficient that α(t+1)

α(t) ≥
β(t+1)
β(t) for all t ≥ 0.

26The substance of the corollary was investigated by Horowitz (1992) in a continuous time frame-
work. As noted earlier, he finds the rather limited result that two agents are comparable if and only
if their instantaneous utilities are positive affine combinations of each other. We return to this issue
in Section 5.
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Corollary 3. Let (u, α) and (v, β) be exponential intertemporal utility functions
with u, v ∈ V. The following statements are equivalent:27
(a) (v, β) is more delay averse than (u, α).
(b) There exists a continuously differentiable map h : R+ → R+ such that v = h◦u

and

inf{h0(x) : x > 0} ≥ β

α
sup{h0(x) : x > 0} (7)

(c)
v0(x)
βv0(y)

≥ u0(x)
αu0(y)

for all x, y > 0.

We conclude with three simple exponential discounting examples, illustrating the
applicability of the above results.

Example 1. Let u, v ∈ V be instantaneous utility functions such that u0(0+) = ∞
and v0(0+) < ∞. Regardless of the values of the discount factors α and β, (u, α)
and (v, β) cannot be ranked on the basis of -. This follows immediately from the
equivalence of the statements (a) and (c) in Corollary 3.
More generally, if u and v in V are such that the right derivative of the function

h := v ◦ u−1 at 0 (or at any other point in R+) belongs to {0,∞}, then (u, α) and
(v, β) cannot be ranked by - . k

Example 2. For any 0 ≤ σ < 1, define the instantaneous isoelastic utility function
uσ ∈ U by

uσ (x) :=
x1−σ

1− σ
,

and let U0 := {uσ : 0 ≤ σ < 1}. This class is widely used in intertemporal macroe-
conomic models. Let us take two exponential intertemporal utility functions (uσ1 , α)
and (uσ2 , β) in U0 × (0, 1). When can these intertemporal utility functions be ranked
by -? The answer is only when the agents have identical instantaneous utility func-
tions.28 More precisely, (uσ1 , α) - (uσ2, β) if and only if σ1 = σ2 and α ≥ β. The
“if” part follows from Corollary 2. To prove the “only if” part, observe that the right
derivative of h := uσ1 ◦ u−1σ2 at 0 belongs to {0,∞} unless σ1 = σ2. (Recall the last
observation made in Example 1.) k
27Corresponding to (b) of Theorem 2, we also have that (v, β) is more delay averse than (u, α) iff

there exists a map h : R+ → R+ such that v = h ◦ u and h (x+ αy) ≥ h(x) + β(h(y+ z)− h(z)) for
all (s, t) ∈ T and x, y, z ≥ 0.
28In practice, however, it may be possible to order this class more completely. Note that the

definition of delay aversion implicitly allows for any possible consumption stream. Suppose, however,
that there is reason to believe that agents’ consumptions in any single period always lie within certain
bounds, say for all time periods s, xs ∈ [xmin, xmax] . Then it makes sense to restrict (1) of Definition
2, to a, b, and ω such that xmin ≤ ωs+c ≤ xmax for all s, where c = a, b, and similarly for (2). With
this restricted definition, it will be possible to compare some members of this class with different
instantaneous utilities.
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The examples above provide instances of the incompleteness of the delay aversion
ordering -. The next example provides an instance in which - applies in a nontrivial
manner.

Example 3. Take any exponential intertemporal utility function (u, α). We wish to
find a (v, β) ∈ U × (0, 1) such that (u, α) ≺ (v, β). This can be done for an arbitrarily
chosen β ∈ (0, α). For instance, from Corollary 3 we have (u, α) ≺ (h ◦ u, β) for any
continuous differentiable concave function h : R+ → R+ with h0(∞) ≥ β

α
h0(0+).

3.3 Characterizations of the Impatience Ordering

We turn now to the impatience ordering of Section 2.4. We first state the analogue
of the first part of Theorem 2 for this ordering.

Theorem 3. Let (u,α) and (v,β) be separable intertemporal utility functions.
Then, (v,β) is more impatient than (u,α) if and only if there exists a map h : R+ →
R+ such that v = h ◦ u and

h

µµ
1− α(t)

α(s)

¶
x+

α(t)

α(s)
y

¶
≥
µ
1− β(t)

β(s)

¶
h(x) +

β(t)

β(s)
h(y) (8)

and

h

µµ
1− α(t)

α(s)

¶
y +

α(t)

α(s)
x

¶
≤
µ
1− β(t)

β(s)

¶
h(y) +

β(t)

β(s)
h(x) (9)

for all (s, t) ∈ Z2+ with s < t and y ≥ x ≥ 0.

Technically speaking, functional inequalities (8) and (9) are much less binding
than (5), because they depend on two variables (x and y) while (5) depends on three
variables (x, y, and z).29 Notice that since α(t)

α(s)
∈ (0, 1), (8) is a functional inequality

that resembles the definition of concavity. Indeed, if α ≥ β, this inequality is trivially
satisfied by any concave and increasing function on R+. On the other hand, (9) is a
functional inequality more in line with convexity. Consequently, these two functional
inequalities act as checks and balances, and tell us that if (v,β) is to be more impatient
than (u,α), then v cannot be a “too concave” or “too convex” transformation of u,
where the permissible amount of concavity and convexity (or, more generally, the
variation in slope) depends on the discount functions α and β.
While the influence of the instantaneous utility functions is smaller for impa-

tience comparisons than for delay aversion comparisons, this influence is nevertheless
present. Since our impatience ranking is meant to reflect agents’ pure time prefer-
ences, and these are habitually thought of as measured by the discount functions,
this may at first seem surprising. Yet, there is no mystery here. In the separable

29Both (8) and (9) (when stated for all y ≥ x ≥ 0) are special cases of (5) (when stated for all
x, y, z ≥ 0), as can be shown by a suitable change of variables.
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intertemporal utility model, the instantaneous utility functions inherently play a role
that goes beyond modeling static preferences - they are not really instantaneous in
character. It is thus hardly surprising that they take active roles in determining the
pure time preferences of a decision maker.
The use of Theorem 3 is similar to that of Theorem 2. In particular, the exact

analogues of the corollaries we deduced from Theorem 2 in the previous subsection
can be obtained from Theorem 3 for our impatience ordering.

Corollary 4. Let (u,α) and (v,β) be separable intertemporal utility functions. If
(v,β) is more impatient than (u,α), then α(t)

α(s)
≥ β(t)

β(s)
for all (s, t) ∈ Z2+ with s < t.

Moreover, (u,β) is more impatient than (u,α) iff (u,α) - (u,β), and (v,α) is more
impatient than (u,α) iff u = θv for some θ > 0.

As in the case of delay aversion, the discount and utility functions contribute
asymmetrically to the determination of the impatience of an individual. Once again,
no two individuals with the same discount function but cardinally non-equivalent
instantaneous utilities can be ranked, this time according to their relative impatience.
On the other hand, two individuals with the same instantaneous preferences may be
ranked, in which case the impatience and delay aversion orderings coincide.30

In the differentiable case, Theorem 2 provides easy necessary and sufficient con-
ditions for checking if a given separable intertemporal utility function is more delay
averse than another. Unfortunately, we were unable to derive a similar character-
ization for our impatience ordering. Nevertheless, the following result reports an
easy-to-check sufficient condition for the exponential discounting model, and also
specializes Theorem 2 to this setting.

Corollary 5. Let (u, α) and (v, β) be exponential intertemporal utility functions
such that u, v ∈ V. Then, (v, β) is more impatient than (u, α) if and only if there
exists a map h : R+ → R+ such that v = h ◦ u,

h ((1− α)x+ αy) ≥ (1− β)h(x) + βh(y) (10)

and
h ((1− α) y + αx) ≤ (1− β)h(y) + βh(x) (11)

for all y ≥ x ≥ 0. Moreover, if u, v ∈ V and h := v ◦ u−1 satisfies

max
n
α
β
, 1−β
1−α
o
h0(y) ≥ h0(x) ≥ min

n
β
α
, 1−α
1−β
o
h0(y), (12)

for all y ≥ x ≥ 0, then (v, β) is at least as impatient as (u, α).
30It is natural that- and the “more impatient than” orderings coincide in comparing the separable

intertemporal utility functions (u,α) and (u,β). Loosely speaking, the consumption smoothing
motive is identical in any two such utility functions, so the difference in attitudes towards time
delay is due only to the differences in impatience.
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We now give two applications of this corollary. The first application supplies a
transformation h which yields more impatient utility functions. The second appli-
cation provides examples of impatience ranked utility functions which were earlier
found to be non-comparable by our delay aversion ordering. This example also shows
that the sufficient conditions of Corollary 5 are not necessary.

Example 4. Take any k > 0 and θ > 0, and define hθ : R+ → R+ by h(x) := kxθ.
We claim: (1) For any θ ≥ 1, hθ satisfies (10) and (11) for all y ≥ x ≥ 0 if and only
if αθ ≥ β; and (2) For any 1 ≥ θ > 0, hθ satisfies (10) and (11) for all y ≥ x ≥ 0 iff
1− β ≥ (1− α)θ.
We prove only the first claim, the proof of the second one being analogous. Fix

any θ ≥ 1. Since hθ is a strictly increasing convex function, it readily satisfies (11)
for all y ≥ x ≥ 0. Thus, all we need to show is that (10) holds for all y ≥ x ≥ 0 iff
αθ ≥ β. For any x ≥ 0, let us define the map fx : [x,∞)→ R by

fx(y) := ((1− α)x+ αy)θ − (1− β)xθ − βyθ.

For any y > x ≥ 0, we have

d

dy
fx(y) = αθ((1− α)x+ αy)θ−1 − βθyθ−1 ≥ αθ(αy)θ−1 − βθyθ−1 = θyθ−1(αθ − β),

so it follows that if αθ ≥ β then fx is an increasing function for x ≥ 0. Since fx(x) = 0,
we have fx([x,∞)) ≥ 0 for all x ≥ 0 if αθ ≥ β. Conversely, if αθ < β, then d

dy
f0(y) < 0

for small enough y > 0. Then, f0(y) < 0 for small enough y > 0; that is, hθ fails to
satisfy (10) for x = 0 and small y > 0. k

Example 2. [Continued] Consider the class U0 × (0, 1) of exponential intertemporal
utility functions considered in Example 2. We saw earlier that no two members of
this class with distinct instantaneous utility functions can be ranked in terms of delay
aversion. In contrast, any two such members can be ranked in terms of impatience
for appropriate discount factors. Put precisely, if 0 < σ1 ≤ σ2 < 1, then

(uσ2, β) is more impatient than (uσ1, α) if and only if (1− β)
1

1−σ2 ≥ (1− α)
1

1−σ1 ,

while if 0 < σ2 ≤ σ1 < 1, then

(uσ2, β) is more impatient than (uσ1, α) if and only if α
1

1−σ1 ≥ β
1

1−σ2 .

To prove this, let θ := 1−σ2
1−σ1 , and define h : R+ → R+ by h(x) := (1−σ1)θ

1−σ2 xθ. Clearly,
uσ2 = h ◦uσ1, so by Theorem 4, (uσ2 , β) is more impatient than (uσ1, α) iff h satisfies
(10) and (11) for all y ≥ x ≥ 0. It follows from the results of Example 4 that h does
indeed satisfy these two inequalities. k
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3.4 Characterizations of the Cryogenic Delay Aversion Or-
dering

We turn now to the “cryogenically more delay averse than” ordering -0. It is evident
from its definition that this preorder is substantially more complete than our delay
aversion and impatience orderings. The following attests to this.

Theorem 4. For any separable intertemporal utility functions (u,α) and (v,β),
we have (u,α) -0 (v,β) if, and only if, there exists a map h : R+ → R+ such that
v = h ◦ u and

h

µ
α(t)

α(s)
x

¶
≥ β(t)

β(s)
h(x) for all (s, t) ∈ Z2+ with s < t and x ≥ 0. (13)

For any exponential intertemporal utility functions (u, α) and (v, β), we have (u, α) -0
(v, β) if and only if there exists a map h : R+ → R+ such that v = h ◦ u and

h (αx) ≥ βh(x) for all x ≥ 0.

The functional inequality (13) is a special case of the functional inequalities (5)
and (8), pointing to the fact that the preorder -0 behaves quite differently from our
two previous orderings.
One striking difference is that the analogue of Corollary 1 is false here — it is

possible that the exponential intertemporal utility function (v, β) is cryogenically
more delay averse than (u, α) even if β > α.31 Another important difference is that it
may be possible to rank two separable intertemporal utility functions that have the
same discount function. To identify exactly when this occurs, we need to recall the
following definition from the theory of functional inequalities: A function f : R+ →
R+ is said to be star-shaped if f(λx) ≤ λf(x) for all x ≥ 0 and λ ∈ [0, 1]. One
can show that f is star-shaped iff f(0) ≤ 0 and x 7→ f(x)/x is an increasing map on
R++. Thus, if f is convex and f(0) ≤ 0, then f is star-shaped (but not conversely).
Recall that an instantaneous utility function v ∈ U is said to be less convex than
u ∈ U if v = h ◦ u, where −h is some convex function. By analogy, we say that v is
less star-shaped than u if v = h ◦ u, where −h is a star-shaped function.

Corollary 6. For any instantaneous utility functions u, v ∈ U , we have (u, δ) -0
(v, δ) for all δ ∈ D if and only if v is less star-shaped than u. In particular, for any
u, v ∈ V

(u, δ) -0 (v, δ) for all δ ∈ D if and only if
u0(x)
u(x)

≥ v0(x)
v(x)

for all x > 0. (14)

31Example. Let 1/4 < α < 1/2, and define u(x) := x and v(x) :=
√
x. Clearly, h := v ◦ u−1 =

v while
√
αx ≥ 1

2

√
x for all x ≥ 0. It follows from Theorem 4 that (u, α) ≺0 (v, 1/2), even though

α < 1/2.
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The following is almost an immediate consequence of the previous result.

Corollary 7. For any exponential intertemporal utility functions (u, α) and (v, β),
we have (u, α) -0 (v, β) whenever α ≥ β and v is less star-shaped than u. In partic-
ular, (u, δ) -0 (v, δ) whenever v is a concave transformation of u.

In the next section we will use this result in an application within the context of
bargaining theory.32

4 Applications

This section is devoted to four applications of the delay aversion and impatience
orderings introduced above, and the characterizations thereof. In our first application,
we compare the optimal capital accumulation path of a given country with that of a
more delay averse country in the one-sector optimal growth problem. In our second
application, we compare the optimal consumption path of a given individual with
that of a more delay averse individual, and a more impatient individual, in a standard
investment problem. Finally, we turn to game theory, and explore the implications
of increasing a player’s delay aversion, and impatience, in the contexts of repeated
games and bargaining environments.

4.1 Optimal Growth Theory

Consider two countries (planners, etc.), each with an initial capital stock k0 > 0, and
each with access to a twice differentiable production technology f : R+ → R+, where
f(0) = 0, f 0 > 0 and f 00 ≤ 0. In every period t, each country must decide how to divide
its capital stock kt between consumption ct and investment it, where kt = f(it−1),
t = 1, 2, .... (There is no capital depreciation.) The preferences of Country 1 over
consumption paths is represented by the exponential intertemporal utility function
(u, α), and those of Country 2 by (v, β).We assume that u is twice differentiable and
that u0 > 0, u00 < 0 and u0(0+) =∞, and similarly for v. The optimization problem
of Country 1 is to choose nonnegative sequences (c0, c1, ...) and (i0, i1, ...) in order to

Maximize
∞X
t=0

αtu(ct) such that c0 + i0 = k0, and ct + it = f(it−1), t = 1, 2, ...

The problem of Country 2 is formulated analogously.
We denote the optimal consumption and investment paths of Country j = 1, 2

by (cj0, c
j
1, ...) and (i

j
0, i

j
1, ...), respectively. The optimal capital accumulation path of

32The converse of Corollary 7 is false. For instance, define u, v ∈ U by u(x) := √x and v(x) := x.
Clearly, h(x) = x2 for all x ≥ 0, where h := v ◦ u−1. Thus, h (αx) ≥ βh(x) holds for all x ≥ 0 iff
α ≥
√
β. Hence, (u, α) ≺0 (v, β) may hold even when v is more convex than v.
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Country j is denoted by (kj0, k
j
1, ...), j = 1, 2. The question we address here is this: If

Country 2 is more delay averse than Country 1, how do their capital accumulation
paths compare?
The optimal consumption and investment paths of Countries 1 and 2 are deter-

mined by the following Ramsey-Euler equations:

u0(c1t ) = αu0(c1t+1)f
0(i1t ) and v0(c2t ) = βv0(c2t+1)f

0(i2t ), t = 0, 1, ...

Since (u, α) - (v, β), these equations and Corollary 3 yield

β

α

u0(c1t )f
0(i2t )

u0(c1t+1)f 0(i
1
t )
=

v0(c2t )
v0(c2t+1)

≥ β

α

u0(c2t )
u0(c2t+1)

, t = 0, 1, ...

so that
u0(c1t )f

0(i2t )
u0(c2t )f 0(i1t )

≥ u0(c1t+1)
u0(c2t+1)

, t = 0, 1, ... (15)

Now suppose the optimal capital stock of Country 1 falls strictly below that of Coun-
try 2 at some period, and let T ∈ N be the first period at which this happens.
That is, k1t ≥ k2t for all t = 0, ..., T − 1 and k1T < k2T . Clearly, i

1
T−1 < i2T−1 and

c1T−1 > c2T−1. Since f
00 ≤ 0 and u00 < 0, we have

u0(c1T−1)f
0(i2T−1)

u0(c2T−1)f 0(i
1
T−1)

< 1 and, by (15), also
u0(c1T )
u0(c2T )

< 1. Thus c1T > c2T . Since k
1
T < k2T , we then also have i

1
T < i2T , and repeating

the previous argument yields c1T+1 > c2T+1. Continuing this way inductively, we find
that (c1T , c

1
T+1, ...) > (c

2
T , c

2
T+1, ...). This contradicts the optimality of the consumption

path (c20 , c
2
1 , ...) for Country 2, since, given that k

1
T < k2T , it is feasible for Country 2

to consume (c1T , c
1
T+1, ...) instead of (c

2
T , c

2
T+1, ...).

It follows that k1T < k2T cannot hold for any T ∈ N. Put differently: In the standard
optimal growth problem, the optimal capital stock of a country can never fall strictly
below that of a more delay averse country.
This generalizes a well-known result in the literature, in which the two countries

are assumed to have the same instantaneous utility function, and to differ only in
their discount factors (Becker (1983)). Moreover, as can be seen from the above
argument, not only is the assumption that the two countries have the same utility
function unnecessarily restrictive, it does not even simplify the analysis.
Note that the above result extends immediately to the case of countries with

preferences that are separable but not exponential (with virtually the identical argu-
ment). Since the optimal plans, as viewed from period zero, may then not be time
consistent, this extension is best interpreted as concerning countries that can commit
to their plans

4.2 The Investment Problem

Consider two individuals, Persons 1 and 2, each with an initial wealth w > 0. The
preferences of Person 1 (resp. Person 2) over consumption streams are represented
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by the exponential intertemporal utility function (u, α) (resp. (v, β)), which satisfies
the assumptions made in the previous subsection. In period t, both individuals must
decide how much of their wealth they should place in a savings account that yields
an interest rate r > 0. The problem of Person 1, which we refer to as his standard
investment problem, is to choose nonnegative sequences (c0, c1, ...) and (i0, i1, ...) in
order to

Maximize
∞X
t=0

αtu(ct) such that c0 + i0 = w, and ct + it = (1 + r)it−1, t = 1, 2, ...

The standard investment problem of Person 2 is formulated analogously.
It follows immediately from the analysis of the previous subsection that, if Person

2 is more delay averse than Person 1, then in the optimum solution Person 1 will have
at least as much wealth as Person 2 at every period. We can say more here: In the
standard investment problem, the optimal consumption path of an individual single
crosses that of a less delay averse individual from above. Again, this generalizes
a result in which both people are assumed to have the same instantaneous utility
(Horowitz (1992)).
To see this, let us again denote the optimal consumption paths of Person j = 1, 2

by (cj0, c
j
1, ...), and assume that (u, α) - (v, β). In the present setting, (15) becomes

u0(c1t )
u0(c2t )

≥ u0(c1t+1)
u0(c2t+1)

, t = 0, 1, ... (16)

Now consider a period T such that c1T ≥ c2T . By concavity of u, we have
u0(c1T )
u0(c2T )

≤ 1,

so it follows from (16) that
u0(c1T+1)
u0(c2T+1)

≤ 1, so that c1T+1 ≥ c2T+1. Proceeding inductively

yields c1t ≥ c2t for all t = T, T + 1, .... Put differently, once the optimal consumption
of Person 1 exceeds that of Person 2, it must continue doing so in the subsequent
periods as well, and hence the claim stated above.
A natural question is whether this claim remains true under the weaker assumption

that Person 2 is more impatient than Person 1. Interestingly, the answer is no. In
fact, the optimal consumption path of Person 2 may then even single cross that of
Person 2 from below.
To illustrate, let us simplify the investment problem at hand by setting w = 1 and

r = 0, and letting u := uσ1 and v := uσ2 for some 0 < σ1, σ2 < 1, where uσ (x) := x1−σ
1−σ

as in Example 2 of Section 3.2. With this specification, the optimal consumption path
of person j = 1, 2 is found as ((1−γj), γj(1−γj), γ2j (1−γj), ...), where γ1 = α1/σ1 and
γ2 = β1/σ2. Therefore, the optimal consumption path of Person 2 single crosses that
of Person 1 from below if α1/σ1 < β1/σ2 . Notice that this implies σ2 > σ1. Recall from
the continuation of Example 2 in Section 3.3 that when σ2 > σ1 Person 2 is more
impatient than Person 1 if (1−β)

1
1−σ2 ≥ (1−α)

1
1−σ1 . Therefore, for any specification
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of 0 < β < α < 1 and 0 < σ1 < σ2 < 1 such that

α1/σ1 < β1/σ2 and (1− β)
1

1−σ2 ≥ (1− α)
1

1−σ1 , (17)

the optimal consumption path of Person 2 single crosses that of Person 1 from below,
even though Person 2 is the more impatient of the two.33

4.3 Repeated Games

When a single-shot game is repeated, new equilibrium possibilities arise as players
trade off present and future gains. In some general sense, one expects that the more
people value the future, the greater will be the equilibrium set. In this section we
address this issue.
Let n ∈ {2, 3, ...}. Consider an arbitrary (single-shot) game G := (N, {Ai, pi}i∈N),

where N := {1, ..., n} is the set of players, Ai is the action space of player i, A :=
A1 × · · · × An is the outcome space, and pi : A→ R is the function that maps each
outcome to a monetary payoff. For each i ∈ N , let mi denote a pure strategy profile
that minmaxes player i in the game G. For any a ∈ A and i ∈ N , let BRi (a) denote
a best response of player i to a ∈ A. We assume that the set of minmax strategies
and the sets of best responses are always nonempty.
Let (G, {Vi}i∈N) be the infinitely repeated game in which the stage game is G and

Vi ∈ U is the intertemporal utility function that player i ∈ N uses to evaluate her
monetary payoff streams. Note that although it is standard to model the players in
repeated games as exponential utility maximizers, we do not impose that restriction
here. On the other hand, we restrict ourselves to pure strategies as we have not
considered individuals’ attitudes towards risk in this paper. Let Si stand for the set
of all pure strategies of player i ∈ N. Formally, for any i ∈ N, a strategy si ∈ Si is
a sequence (s0i , s

1
i , ...) where s

0
i ∈ Ai and sti : A

t → Ai for each t ∈ N. We let S :=
S1×·· ·×Sn, and for any s ∈ S, write st for (st1, ..., s

t
n) which is a map from At into A.

Any strategy profile s ∈ S inductively defines an outcome path (a0(s), a1(s), ...) for the
repeated game (G, {Vi}i∈N) as follows: a0 (s) := s0 and at (s) := st (a0 (s) , ..., at−1 (s)),
t = 1, 2.... A Nash equilibrium of this game is a strategy profile s ∈ S such that

Vi (pi (a0(s), pi (a1 (s)) , ...)) ≥ Vi (pi (a0 (si, s−i) , pi (a1 (si, s−i)) , ...))

for all si ∈ Si and i ∈ N.34 The corresponding outcome path is a called a Nash
equilibrium outcome path.

33The inequalities in (17) are compatible. For instance, they are satisfied for σ1 = 1/4, σ2 = 1/2,
α = 1/2, and any β ∈ (0.25, 0.35).
34If each Vi is a time consistent utility function, then this is just the standard definition of an

equilibrium. Otherwise, it presupposes that players commit to their strategies in period 0. The
reader who is perturbed by this latter case is free to restrict his or her attention to (possibly non-
separable) time consistent utility functions.
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The simple intuition that the equilibrium payoff set is larger with less delay averse
players is not in general correct, even for exponential utility maximizers. Indeed,
Sorin (1986) shows that an equilibrium payoff stream need not remain one, even
in the simple case of exponential utility maximizers whose discount factors increase
while their utility functions remain constant. However, our next proposition shows
that the intuition is correct, even outside the exponential discounting model, provided
that each player gets at least his minmax payoff in every period along the equilibrium
path.35

Proposition 2. Suppose that (a0, a1, ...) is a Nash equilibrium outcome path of the
repeated game (G, {Vi}i∈N) such that

pi (at) ≥ pi (mi) for all i ∈ N, t = 0, 1, ...

Then (a0, a1, ...) is also a Nash equilibrium outcome path of the repeated game
(G, {Ui}i∈N), where Ui ∈ U is less delay averse than Vi for each i ∈ N.

To see this, note first that since an intertemporal utility function is increasing
in single period payoffs, the most efficient “threat” against a potential deviator is
to minmax him for the remainder of the game. That is, the path (a0, a1, ...) is an
equilibrium of (G, {Vi}i∈N) if and only if for each player i ∈ N ,

Vi (pi (a0) , pi (a1) , ...) ≥ Vi (pi (BRi (a0)) , pi (mi) , pi (mi) , ...)

and

Vi (pi (a0) , pi (a1) , ...) ≥ Vi (pi (a0) , ..., pi (ak−1) , pi (BRi (ak)) , pi (mi) , pi (mi) , ...)

for all k ∈ N. Note that since pi (at (s)) ≥ pi (mi) for all t, the path (pi (a0) , pi (a1) , ...,
pi (ak−1) , pi (BRi (ak)) , pi (mi) , pi (mi) , ...) single crosses (pi(a0), pi (a1) , ...) from above.
It follows immediately from Theorem 1 that Ui - Vi implies

Ui (pi (a0) , pi (a1) , ...) ≥ Ui (pi (BRi (a0)) , pi (mi) , pi (mi) , ...)

and

Ui (pi (a0) , pi (a1) , ...) ≥ Ui (pi (a0) , ..., pi (as−1) , pi (BRi (ak)) , pi (mi) , pi (mi) , ...)

for each i ∈ N and k ∈ N. Thus (a0, a1, ...) is an equilibrium path for (G, {Ui}i∈N),
as claimed.
35For exponential utility maximizers, it follows from Theorem 3 of Abreu, Pearce, and Stacchetti

(1990) that if players have access to a public randomization device, then any equilibrium payoff of
an infinitely repeated game remains an equilibrium payoff as the players’ discount factors increase,
holding their instantaneous utility functions constant.
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In the previous subsection, we saw that making changes in peoples’ impatience,
rather than their delay aversion, may result in radically different conclusions. In the
present context, however, changes in impatience and delay aversion may yield similar
results, at least within the exponential discounting model. The following proposition
shows that with exponential utility maximizers, any stationary equilibrium path of an
infinitely repeated game remains an equilibrium path as players become less impatient,
even if they do not become less delay averse.

Proposition 3. If (a, a, ...) is a Nash equilibrium outcome path of the repeated
game (G, {(vi, βi)}i∈N), then (a, a, ...) is also a Nash equilibrium outcome path of the
repeated game (G, {(ui, αi)}i∈N), where (ui, αi) ∈ Uexp is more patient than (vi, βi) ∈
Uexp for each i ∈ N.

To see this, note that (a, a, ...) is an equilibrium path for (G, {(vi, βi)}i∈N) if and
only if, for each i ∈ N ,

1

1− βi
vi (pi (a)) ≥ vi (pi (BRi (a))) +

βi
1− βi

vi (pi (mi)) ,

that is,
vi (pi (a)) ≥ (1− βi) vi (pi (BRi (a))) + βivi (pi (mi)) . (18)

Now suppose that (ui, αi) is more patient than (vi, βi) , and let hi := vi ◦u−1i for each
i ∈ N. Then (18) and the functional inequality (11) of Corollary 5 yield

hi(ui (pi (a))) ≥ (1− βi)hi(ui (pi (BRi (a)))) + βihi(ui (pi (mi)))

≥ hi((1− αi)ui(pi(BRi (a))) + αiui(pi (mi)))

for each i ∈ N. Since h is increasing,

ui (pi (a)) ≥ (1− αi)ui(pi(BRi (a))) + αiui(pi (mi)) for all i ∈ N.

Thus, (a, a, ...) is an equilibrium path for (G, {(ui, αi)}i∈N), as was sought.

4.4 Bargaining Theory

Roth (1985) argues that in Rubinstein’s bargaining model, a player’s equilibrium
share decreases as he becomes more risk averse. This result is generally regarded
in the literature as somewhat difficult to interpret, given that Rubinstein bargaining
does not involve any risk.36 In this section, we argue that Roth’s result is in fact
properly understood as a result about delay aversion, not risk aversion.

36Roth himself recognizes this difficulty and claims that the game should be viewed as having
“strategic risk”. However, the concept of strategic risk is ill-defined, and the connection between
this concept and the concavity of a player’s static utility function is left unexplored.
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Consider the standard complete-information alternating-offers bargaining game
where the size of the pie is 1. The utility function of the first mover, player 1, is a
concave function u ∈ U , and his discount factor is α ∈ [0, 1]. The utility function of
the second mover, player 2, is also a concave function w ∈ U , and her discount factor
is δ ∈ [0, 1]. Under this specification, there is a unique subgame perfect equilibrium
of the game. Let (x, 1− x) be the equilibrium offer of player 1, and (1− y, y) that of
player 2. The values of x and y are determined as the unique solution of the following
nonlinear equation system in [0, 1]:

αu(x) = u(1− y) and δw(y) = w(1− x). (19)

Since player 1 is the first mover, the realized equilibrium allocation is (x, 1− x).
Now replace player 1 with a player whose utility function is v ∈ U and discount

factor is β ∈ [0, 1]. Suppose that (u, α) -0 (v, β), that is, this new player is cryogeni-
cally more delay averse than the original player 1. We denote the equilibrium offer
of the (new) player 1 by (x0, 1−x0), and that of player 2 by (1− y0, y0). The values of
x0 and y0 are determined as the unique solution of the following nonlinear equation
system in [0, 1]:

βv(x0) = v(1− y0) and δw(y0) = w(1− x0) (20)

The realized equilibrium allocation is (x0, 1− x0).
Since the main force behind the equilibrium outcomes in the Rubinstein bargaining

game is the attitudes of the players towards time delay, a natural conjecture is that
the cryogenically more delay averse agent (v, α) should perform less successfully than
the agent (u, α), that is, x ≥ x0. That this is indeed true follows from a general
result (Proposition 126.1) of Osborne and Rubinstein (1994). Here we provide an
alternative proof using Theorem 4.
Observe first that (19) and (20) yield

x = 1− w−1(δw(y)) and x0 = 1− w−1(δw(y0)).

Letting A := y−w−1(δw(y)) and A0 := y0−w−1(δw(y0)), we may write 1−y = x−A
and 1 − y0 = x0 − A0. Now, towards deriving a contradiction, assume that x0 > x.
Then y > y0, so since the map a 7→ a − w−1(δw(a)) is increasing on R+,37 we have
37The claim is not trivial only when 0 ≤ δ < 1. In that case, define φ : R+ → R by φ(a) :=

a − w−1(δw(a)), and notice that φ(0) = 0 and φ(a) > 0 for all a > 0 (since w(0) = 0 and w is
strictly increasing). Take any a > b > 0. Since w is strictly increasing, w(a) > w(b), and therefore,
convexity of w−1 entails that

φ(a)

w(a)− δw(a)
=

w−1(w(a))− w−1(δw(a))
w(a)− δw(a)

≥ w−1(w(b))− w−1(δw(b))
w(b)− δw(b)

=
φ(b)

w(b)− δw(b)
.

But (1− δ)w(a) > (1− δ)w(b) and φ(b) > 0, so we have φ(b)/(w(b)− δw(b)) > φ(b)/(w(a)− δw(a)),
and combining this with the previous inequality yields φ(a) > φ(b).
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A ≥ A0. Since u is strictly increasing and concave,

u(x0 −A0)− αu(x0) ≥ u(x0 −A)− αu(x0)
≥ α(u(x0 −A)− u(x0)) + (1− α)u(x0 −A)

≥ α(u(x−A)− u(x)) + (1− α)u(x0 −A)

> α(u(x−A)− u(x)) + (1− α)u(x−A)

= u(x−A)− αu(x)

= 0

where the last equality follows from (19). Thus, u(1− y0) = u(x0 − A0) > αu(x0), so
by (20) we have

βh(u(x0)) = βv(x0) = v(1− y0) = h(u(1− y0)) > h(αu(x0)),

where h := v ◦ u−1. Letting z := u(x0), we see that βh(z) > h(αz), which contra-
dicts (v, β) being cryogenically more delay averse than (u, α), in view of Theorem 4.
Conclusion: In the Rubinstein bargaining model, a bargainer’s share decreases as be
becomes cryogenically more delay averse.
Now let us revisit Roth’s result on increasing risk aversion. When Roth performs

his comparative static, he takes a concave transformation of one player’s instanta-
neous utility function, holding the player’s discount factor constant. Presumably, the
discount factor is held constant in order to fix the player’s attitude towards time.
However, fixing the discount factor does not accomplish the task. Rather, as Corol-
lary 7 shows, a concave transformation of the instantaneous utility function holding
the discount factor constant, makes a player cryogenically more delay averse. Hence,
Roth has actually established a special case of the above result; a non-concave but
star-shaped transformation would have yielded him the same conclusion.38

5 Concluding Comments

The Decision Interval. The analysis above makes it clear that the instantaneous
utility functions may contribute substantially to an agent’s aversion to delay. As one
might suspect, the extent of this contribution, and hence the incompleteness of the
preorder -, depends upon the decision interval involved in the agent’s choices.
To illustrate, take any exponential intertemporal utility function (u, α) ∈ V×(0, 1)

and assume that this function represents the preferences of a person who makes his
consumption decisions once a year. Thus, α refers to the annual discount rate, while
u is best interpreted as the individual’s annual flow payoff from consuming a constant
amount throughout the year. Now suppose the individual makes his decisions every

38We should note that Osborne and Rubinstein’s general analysis does not reveal any insight into
Roth’s result; Corollary 7 is essential in this regard.
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K years instead (with his consumption again being constant within a decision period).
Then the appropriate discount factor to use is αK . (For instance, if she decides twice
a year then K = 1

2
, and the accompanying discount factor is α

1
2 .) Let uK denote the

corresponding instantaneous utility function, which must be modified to reflect the
fact that the payoff flow is now over K years.39 Similarly, let

¡
vK , β

K
¢
represent an

individual whose yearly intertemporal utility function is (v, β) ∈ V × (0, 1), and who
makes his decisions every K years instead.
Using Corollary 3 one can show that

¡
uK, α

K
¢
-
¡
vK , β

K
¢
can hold only if there

exists a map h such that v = h ◦ u and

inf{h0(x) : x > 0} ≥
µ
β

α

¶K

sup{h0(x) : x > 0}.

Clearly, whenK is small, this condition is difficult to satisfy. In particular, ifK is very
small, then

¡
β
α

¢K ≈ 1, so that h must be approximately linear. That is, for very small
decision intervals, the two agents can be ranked only if their instantaneous preferences
are essentially the same. In the limit, when K = 0, the ordering - is extremely
incomplete;

¡
uK , α

K
¢
-
¡
vK , β

K
¢
only if u and v are positive affine transformations

of each other. Hence obtains the aforementioned result that in continuous time only
instantaneously equivalent agents can be ordered (Horowitz (1992)).40 At the other
extreme, when K is large (as when the decision intervals are generations), the above
inequality becomes easy to satisfy. In fact, if the derivatives of u and v are bounded
by strictly positive numbers, then, for large enough K we have

¡
uK , α

K
¢
-
¡
vK , β

K
¢

if and only if α ≥ β.

Delay Aversion with Risk. Our entire analysis has been confined to the context of
intertemporal decision problems in the absence of risk. A natural avenue of further
research is the extension of the delay aversion theory introduced here to environ-
ments in which the consumption streams are stochastic. The basic definitions of
relative delay aversion, impatience and cryogenic delay aversion are all applicable
to intertemporal preferences over stochastic streams, so the present work provides a
good starting point for such a study.41

Delay Aversion with Time Consistency. The general approach in this paper en-
compasses both preference structures that yield time consistent choices and those

39Formally, uK := (1−αK)
(1−α) u. Note that a constant consumption x in every period then results in

the total utility of 1
1−αα

(1−αα)
(1−α) u(x) =

1
1−αu(x), which is independent of K.

40At the other extreme, when K becomes very large, the above inequality becomes easy to satisfy.
In fact, if u and v are two instantaneous utility functions whose derivatives are uniformly bounded
by strictly positive numbers, then, for large enough K:

¡
uK , α

K
¢
- (vK , βK) if and only if α ≥ β.

41Interesting issues will arise involving disentangling the effects of delay aversion and risk aver-
sion. Similar issues arise in separating the consumption smoothing and risk aversion motives in
intertemporal choice theory with risk (cf. Epstein and Zin (1989)).
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that yield time inconsistent choices. As we saw, in the standard optimal growth
problem (Section 4.1), the capital stock of a country will always be below the capital
stock of a more delay averse country if (i) both countries are exponential utility max-
imizers, whether or not they can commit to their plans, or (ii) both countries have
separable but not exponential preferences, and can commit to their plans. It would
be interesting to see if the time consistent choices (i.e., the no-commitment choices)
for countries that cannot commit, and have non-exponential separable preferences,
have the same property.
Another worthwhile avenue of research is the extension of the theory we presented

for separable time preferences to the context of recursive preferences which, per force,
induce time consistent intertemporal plans.

6 Proofs

6.1 Proofs for Section 2

We begin with the following preliminary result which will facilitate some of the sub-
sequent arguments.

Lemma 1. For any U, V ∈ U, the following statements are equivalent:
(a) U - V ;
(b) For any given x ∈ X and (s, t) ∈ Z2+ with s < t,

U(xs + a, xt − b,x−(s,t))
½
≥
>

¾
U(x) implies V (xs + a, xt − b,x−(s,t))

½
≥
>

¾
V (x)

for all a, b ≥ 0 with xt ≥ b;
(c) For any given ω ∈ X and (s, t) ∈ Z2+ with s < t,

U(ωs+ a,ω−s)
½
≥
>

¾
U(ωt+ b,ω−t) implies V (ωs+ a,ω−s)

½
≥
>

¾
V (ωt+ b,ω−t)

for all a, b ≥ 0.
Proof. That (a) implies (c) is obvious. To prove (c) implies (b), take any x ∈ X ,
(s, t) ∈ Z2+ with s < t, and fix any a, b ≥ 0 with xt ≥ b. Define ω := (xt − b, x−t),
and notice that (ωs + a,ω−s) = (xs + a, xt − b,x−(s,t)) and (ωt + b,ω−t) = x. That
(c) implies (b) is thus evident from this change of variables. It remains to prove that
(b) implies (a). To this end, take any ω ∈ X , (s, t) ∈ Z2+ with s < t, fix any a, b ≥ 0,
and assume first that U(ωs + a,ω−s)

©≥
>

ª
U(ωt + b,ω−t). Define x := (ωt + b,ω−t),

and notice that (xs + a, xt − b,x−(s,t)) = (ωs + a,ω−s). It thus follows from (b) that
V (ωs+ a,ω−s)

©≥
>

ª
V (ωt+ b,ω−t). On the other hand, suppose that ωs ≥ a ≥ 0 and

ωt ≥ b ≥ 0, and U(ωt − b,ω−t)
©≥
>

ª
U(ωs − a,ω−s). Defining x := (ωs − a,ω−s) and

applying (b) we find V (ωt − b,ω−t)
©≥
>

ª
V (ωs − a,ω−s). Thus U - V. ¥
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Proof of Theorem 1. We only need to prove the “only if” part of the assertion.
Take any U, V ∈ U such that U - V. For any t∗ ∈ N, define T (t∗) := {(x,y) ∈ X 2 :
U(y) ≥ U(x), y single crosses x from above and |{m ∈ Z+ : ym > xm}| ≤ t∗}. We
wish to show that

V (y) ≥ V (x) for all (x,y) ∈ T (t∗), t∗ = 1, 2, ...

(The case U(y) > U(x) implies V (y) > V (x) for all (x,y) ∈ T (1) ∪ T (2) ∪ · · · is
analogous.) The proof will be by induction on t∗.
Take any (x,y) ∈ X 2 and define σ := sup{max{xi, yi} : i = 1, 2, ...}. Since U and

V are cube-continuous, U |[0,σ]∞ and V |[0,σ]∞ are continuous functions. We will use
this fact below.
Assume first that (x,y) ∈ T (1). If x = y, there is nothing to prove, so let x 6= y.

Then we have |{m ∈ Z+ : ym > xm}| = 1. Without loss of generality, we assume
y0 > x0. Let S := {m ∈ N : yi < xi}, and to focus on the nontrivial case, suppose
that S is an infinite set. We define s1 := minS and sm := minS\{s1, ..., sm−1}, m =
2, 3, .... By monotonicity of U, we have U(x0+(y0−x0), ys1 ,x−(0,s1)) > U(y) ≥ U(x).
Therefore, by continuity of U and the Intermediate Value Theorem, there exists a
ξ1 ∈ (0, y0 − x0) such that

U(x0 + ξ1, ys1 ,x−(0,s1)) = U(x) ≤ U(y).

By Lemma 1, then, we have

V (x0 + ξ1, ys1,x−(0,s1)) ≥ V (x).

Similarly, there exists a ξ2 > 0 such that

U(x0 + ξ1 + ξ2, ys1, ys2 ,x−(0,s1,s2)) = U(x0 + ξ1, ys1,x−(0,s1)) ≤ U(y),

and hence Lemma 1 yields

V (x0 + ξ1 + ξ2, ys1, ys2 ,x−(0,s1,s2)) ≥ V (x0 + ξ1, ys1 ,x−(0,s1)) ≥ V (x).

Proceeding inductively, we obtain a sequence (ξm) of positive numbers such that

U(z(m)) ≤ U(y) and V (z(m)) ≥ V (x),

where

z(m) :=

µ
x0 +

mP
i=1

ξi, ys1, ..., ysm ,x−(0,s1,...,sm)

¶
, m = 1, 2, ...

Since U(z(m)) ≤ U(y) for each m, the monotonicity of U implies z0(m) ≤ y0, m =
1, 2, ... . Being an increasing sequence, then, (z0(m)) must converge to some a ∈
(0, y0] as m→∞. Consequently, for any ε > 0, continuity of V |[0,σ]∞ guarantees the
existence of some M1 > 0 such that

|V (z(m))− V (a, z(m)−0)| <
ε

2
for all m ≥M1.
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On the other hand, notice that (a, z(m)−0) → (a,y−0) as m → ∞ (in the product
topology). Thus, since V |[0,σ]∞ is continuous, there exists an M2 ∈ N such that

|V (a, z(m)−0)− V (a,y−0)| <
ε

2
for all m ≥M2.

Therefore, we find

|V (z(m))− V (a,y−0)| ≤ |V (z(m))− V (a, z(m)−0)|+ |V (a, z(m)−0)− V (a,y−0)|
< ε

for allm ≥ max{M1,M2}.Then, since V (z(m)) ≥ V (x) for allm,we have V (a,y−0) >
V (x) − ε. Since ε > 0 is arbitrary here, we may conclude that V (a,y−0) ≥ V (x).
But V is increasing and y0 ≥ a, so V (y) ≥ V (a,y−0), which yields V (y) ≥ V (x), as
sought.
Now, as the induction hypothesis, assume that there exists a k ∈ N such that

V (y) ≥ V (x) holds for all (x,y) ∈ T (k). Take any (x,y) ∈ T (k + 1). If x = y, there
is nothing to prove, so let x 6= y. Then we have {m ∈ N : ym > xm} 6= ∅. Without
loss of generality, assume y0 > x0. Since (x,y) ∈ T (k + 1), U(y) ≥ U(x) and there
exists an M ∈ N such that ym ≥ xm for all m = 0, ...,M − 1, and ym ≤ xm for all
m ≥M. If ym = xm for each m ≥M, then V (y) ≥ V (x) holds by monotonicity of V,
so we assume that ym < xm for some m ≥M. In that case, by using the monotonicity
and continuity of U |[0,σ]∞, we can find a w ∈ X such that U(w) = U(x), and

x0 < w0 ≤ y0, xm ≤ wm ≤ ym, m = 1, ...,M−1, and wm = ym, m =M,M+1, ...

Notice that, by monotonicity of U, we have

U(w0,x−0) > U(x) = U(w) ≥ U(w0, x1, ..., xM−1,w−(0,...,M−1)).

Therefore, by continuity of U |[0,σ]∞, there exists a z ∈ X such that U(z) = U(x), and

z0 = w0, zm = xm, m = 1, ...,M − 1, and xm ≥ zm ≥ wm, m =M,M + 1, ...

Since (x, z) ∈ T (1), we have V (z) ≥ V (x). Moreover, since |{m ∈ Z+ : wm > xm}| ≤
k + 1 and {m ∈ Z+ : wm > zm} = {m ∈ Z+ : wm > zm}\{0}, we have {m ∈ Z+ :
wm > zm} ≤ k, that is, (z,w) ∈ T (k). It follows that V (w) ≥ V (z) by the induction
hypothesis. But, by monotonicity of V, V (y) ≥ V (w), so we have V (y) ≥ V (x), as
sought. ¥

For any intertemporal utility function U ∈ U, x ∈ X and (s, t) ∈ Z2+ with s < t,
we define χUs,t,x : R+ → R+ by

χUs,t,x(b) := sup{a ≥ 0 : U(xs + a,x−s) ≤ U(xt + b,x−t)}.

Since U is cube-continuous, for any b ≥ 0 we have χUs,t,x(b) <∞ iff U(xs + a,x−s) =
U(xt + b,x−t).
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Lemma 2. For any U, V ∈ U, we have U - V if and only if

χUs,t,x ≥ χVs,t,x for all x ∈ X and (s, t) ∈ Z2+ with s < t. (21)

Proof. Let U - V, fix any x ∈ X and (s, t) ∈ Z2+ with s < t, and pick an arbitrary
b ≥ 0. Suppose first that χVs,t,x(b) =∞. This means that V (xs+a,x−s) ≤ V (xt+b,x−t)
for all a ≥ 0. Since U - V , this is possible only if U(xs + a,x−s) ≤ U(xt + b,x−t) for
all a ≥ 0 as well, so it follows that χUs,t,x(b) = ∞. Assume then that χVs,t,x(b) < ∞.
There is nothing to prove if χUs,t,x(b) =∞, so suppose χUs,t,x(b) is finite. Then U - V
implies

V (xs + χUs,t,x(b),x−s) ≥ V (x) = V (xs + χVs,t,x(b),x−s).

Since V is increasing, we have χUs,t,x(b) ≥ χVs,t,x(b) as sought.
Conversely, assume that (21) holds, take any x ∈ X and (s, t) ∈ Z2+ with s < t,

and pick any a, b ≥ 0 such that U(xs + a,x−s) ≥ U(xt + b,x−t). In this case χUs,t,x(b)
and χVs,t,x(b) are finite, and we have

U(xs + a,x−s) ≥ U(xt + b,x−t) = U(xs + χUs,t,x(b),x−s).

It follows that a ≥ χUs,t,x(b) ≥ χVs,t,x(b) by monotonicity of U and (21). So, V (xs +
a,x−s) ≥ V (xs + χVs,t,x(b),x−s) = V (x). (If U(xs + a,x−s) > U(xt + b,x−t), then
a > χUs,t,x(b) ≥ χVs,t,x(b) , and hence V (xs + a,x−s) > V (xs + χVs,t,x(b),x−s) = V (x).)
¥

Lemma 3. For any Un, U ∈ U, n = 1, 2, ..., if Un → U uniformly, then

χUns,t,x → χUs,t,x for all x ∈ X and (s, t) ∈ Z2+ with s < t.

Proof. Fix any x ∈ X and (s, t) ∈ Z2+ with s < t. For each n ∈ N we define the real
functions fn and f on R+ by

fn(a) := Un(xs + a,x−s) and f(a) := U(xs + a,x−s).

Since each Un and U are cube-continuous, each fn|[0,σ] and f |[0,σ] are continuous for
each σ > 0, which means that each fn and f are continuous real maps on R+.
Finally, pick an arbitrary b ≥ 0. In what follows, let y := (xt + b,x−t) and

cn := χUns,t,x(b) for each n.
Assume first that χUs,t,x(b) < ∞ (i.e. U(y) = f(χUs,t,x(b))). We claim that in this

case there must exist an N ∈ N such that cn < ∞ for all n ≥ N. If there does
not exist such an N, then cn = ∞ for infinitely many n. Without loss of generality,
suppose this is the case for all n. Then, lima→∞ fn(a) = sup fn(R+) ≤ Un(y). Since
Un(y)→ U(y) = f(χUs,t,x(b)), it follows that

lim
n→∞

lim
a→∞

fn(a) ≤ f(χUs,t,x(b)).
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Yet, since fn → f uniformly and f is strictly increasing,

lim
n→∞

lim
a→∞

fn(a) = lim
a→∞

lim
n→∞

fn(a) = lim
a→∞

f(a) > f(χUs,t,x(b)),

contradiction.
Without loss of generality, let N = 1, that is, cn < ∞ for all n. Then, fn(cn) =

Un(y) → U(y) so, for an arbitrarily fixed ε > 0, there exists an N1 ∈ N such that
|fn(cn)−U(y)| < ε/2 for all n ≥ N1. Moreover, since Un → U uniformly, there exists
an N2 ∈ N such that |f(a)− fn(a)| < ε/2 for all a ≥ 0 and n ≥ N2. Therefore,

|f(cn)− U(y)| ≤ |f(cn)− fn(cn)|+ |fn(cn)− U(y)| < ε

for all n ≥ max{N1, N2}. Since ε > 0 is arbitrary here, we conclude that f(cn) →
U(y) = f(χUs,t,x(b)). Since f is continuous and strictly increasing, this is possible only
if cn → χUs,t,x(b).
It remains to analyze the case χUs,t,x(b) =∞. If cn =∞ for all but finitely many n,

there is nothing to prove here, so we assume, without loss of generality, that cn <∞
for each n. As shown in the previous paragraph, we have f(cn)→ U(y) in this case.
But χUs,t,x(b) =∞ implies that sup f(R+) ≤ U(y). So, since f is increasing, (cn) must
have an increasing subsequence, which we again denote by (cn). Clearly, if cn → c∗

for some real number c∗, then

f(c∗) = f
³
lim
n→∞

cn
´
= lim

n→∞
f (cn) = sup f(R+),

which is impossible since f is strictly increasing. It follows that cn → ∞, and the
proof is complete. ¥

Proof of Proposition 1. The first claim in Proposition 1 follows readily from the
definitions. The second claim is an immediate consequence of Lemmas 2 and 3. ¥

6.2 Proofs for Section 3

Proof of Theorem 2. Let U and V stand for the intertemporal utility functions
that correspond to (u,α) and (v,β), respectively. Given any x ∈ X and (s, t) ∈ Z2+
with s < t, u(∞) =∞ guarantees that

α(s)u(xs + χUs,t,x(b)) +α(t)u(xt) = α(s)u(xs) +α(t)u(xt + b),

whence

χUs,t,x(b) = u−1
µ
u(xs) +

α(t)

α(s)
(u(xt + b)− u(xt))

¶
− xs, b ≥ 0. (22)

Similarly,

χVs,t,x(b) = v−1
µ
v(xs) +

β(t)

β(s)
(v(xt + b)− v(xt))

¶
− xs, b ≥ 0. (23)
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By Lemma 2, (22) and (23), (u,α) - (v,β) if and only if

u−1
µ
u(xs) +

α(t)

α(s)
(u(xt + b)− u(xt))

¶
≥ v−1

µ
v(xs) +

β(t)

β(s)
(v(xt + b)− v(xt))

¶
for all x ∈ X , (s, t) ∈ Z2+ with s < t and b ≥ 0. Thus, letting h := v ◦ u−1, we find
that (u,α) - (v,β) iff

h

µ
u(xs) +

α(t)

α(s)
(u(xt + b)− u(xt))

¶
≥ v(xs) +

β(t)

β(s)
(v(xt + b)− v(xt))

for all x ∈ X , (s, t) ∈ Z2+ with s < t and b ≥ 0. Making the change of variables
x := u(xs), y := u(xt+ b)− u(xt) and z := u(xt), we conclude that (u,α) - (v,β) iff

h

µ
x+

α(t)

α(s)
y

¶
≥ h(x)+

β(t)

β(s)
(h(y + z)− h(z)) for all (s, t) ∈ Z2+ with s < t and x, y, z ≥ 0,

as we sought.
Now suppose that u and v belong to V, and take any (s, t) ∈ Z2+ with s < t. If

(b) holds, then we have

h
³
x+ α(t)

α(s)
y
´
− h(x)

α(t)
α(s)

y
≥
µ
β(t)/β(s)

α(t)/α(s)

¶
h(y + z)− h(z)

y
for all x, y, z ≥ 0.

Since u is differentiable, so is u−1, and hence h = v ◦ u−1 is differentiable. Conse-
quently, letting y → 0 in the statement above, we find

h0(x) ≥
µ
β(t)/β(s)

α(t)/α(s)

¶
h0(z) for all x, z ≥ 0.

Conversely, assume that (c) holds, and fix any x, y, z ≥ 0. Since h is differentiable, the
Mean Value Theorem implies that there exist a c ∈

h
x, x+ α(t)

α(s)
y
i
and a d ∈ [y, y+ z]

such that

h

µ
x+

α(t)

α(s)
y

¶
− h(x) = h0(c)

α(t)

α(s)
y and h(y + z)− h(z) = h0(d)y. (24)

Moreover, by (c), we have h0(c) ≥
³
β(t)/β(s)
α(t)/α(s)

´
h0(d). Combining these observations,

h

µ
x+

α(t)

α(s)
y

¶
− h(x) = h0(c)

α(t)

α(s)
y ≥ β(t)

β(s)
h0(d)y =

β(t)

β(s)
(h(y + z)− h(z))

as we sought.
Finally, the equivalence of (c) and (d) follows from the Inverse Function Theorem

and the fact that h = v ◦ u−1. ¥
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Proof of Corollary 1. This is a special case of Corollary 4. ¥

Proof of Corollary 2. The first claim follows immediately from Theorem 2 upon
setting h in part (b) to be the identity function on R+. The second claim is a special
case of the final assertion of Corollary 4. ¥

Proof of Corollary 3. The corollary follows immediately from Theorem 2. ¥

For any (u, δ) ∈ Usep, ω ≥ 0, and (s, t) ∈ Z2+ with s < t, define η(u,δ)s,t,ω : R+ → R+
and ς

(u,δ)
s,t,ω : [0, ω]→ [0, ω] by

δ(s)u(ω + η
(u,δ)
s,t,ω (b)) + δ(t)u(ω) = δ(s)u(ω) + δ(t)u(ω + b)

and
δ(s)u(ω − ς

(u,δ)
s,t,ω (b)) + δ(t)u(ω) = δ(s)u(ω) + δ(t)u(ω − b),

respectively. Since 0 < δ < 1 and u(∞) =∞, both of these functions are well-defined.

Proof of Theorem 3. It is an easy matter to verify that (v,β) is more impatient
than (u,α) iff

η
(u,α)
s,t,ω ≥ η

(v,β)
s,t,ω for all ω ≥ 0 and (s, t) ∈ Z2+ with s < t (25)

and
ς
(u,α)
s,t,ω ≥ ς

(v,β)
s,t,ω for all ω ≥ 0 and (s, t) ∈ Z2+ with s < t. (26)

Moreover, (25) holds iff

u−1
µ
u(ω) +

α(t)

α(s)
(u(ω + b)− u(ω))

¶
≥ v−1

µ
v(ω) +

β(t)

β(s)
(v(ω + b)− v(ω))

¶
for all ω ≥ 0, (s, t) ∈ Z2+ with s < t, and b ≥ 0. Thus, letting h := v ◦ u−1, we find
that (25) holds iff

h

µ
u(ω) +

α(t)

α(s)
(u(ω + b)− u(ω))

¶
≥ v(ω) +

β(t)

β(s)
(v(ω + b)− v(ω))

for all ω ≥ 0, (s, t) ∈ Z2+ with s < t, and b ≥ 0. Making the change of variables
x := u(ω) and y := u(ω + b), we have that (25) holds iff

h

µ
x+

α(t)

α(s)
(y − x)

¶
≥ h(x) +

β(t)

β(s)
(h(y)− h(x))

for all (s, t) ∈ Z2+ with s < t and y ≥ x ≥ 0. One can similarly show that (26) holds
iff (9) holds for all (s, t) ∈ Z2+ with s < tand y ≥ x ≥ 0. ¥
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Lemma 4. Let 0 < λ < 1. If f : R+ → R+ is continuous and

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y) for all y ≥ x ≥ 0, (27)

then it is concave.

Proof. We shall first prove an auxiliary fact. Let A0 := {0, 1} and

Am := {(1− λ)a+ λb : a, b ∈ Am−1 and a ≤ b},

m = 1, 2, .... We claim that A∞ := A0 ∪A1 ∪ · · · is dense in [0, 1].
We only consider the case 1/2 ≤ λ < 1, the argument for the remaining case being

analogous. Suppose that cl(A∞) 6= [0, 1], that is, there exists a γ ∈ (0, 1)\cl(A∞).
Since (0, 1)\cl(A∞) is an open set, we have

a := sup([0, γ] ∩ cl(A∞)) < γ and b := inf([γ, 1] ∩ cl(A∞)) > γ.

(Obviously, a, b ∈ cl(A∞) and A∞ ∩ (a, b) = ∅.) Define θ := (1 − λ)(b − a) > 0.
Clearly, there exist a0, b0 ∈ A∞ such that

a− θ < a0 ≤ a < b ≤ b0 < b+ θ.

By definition of A∞, we have (1−λ)a0+λb0 ∈ A∞. However, since (1−λ)a+λb = b−θ,
we have

(1− λ)a0 + λb0 < (1− λ)a+ λ(b+ θ) = b− θ + λθ = b− (1− λ)θ < b

and since 1/2 ≤ λ < 1,

(1− λ)a0 + λb0 > (1− λ)(a− θ) + λb

= a− θ + λ(b− (a− θ))

≥ a− θ + (1− λ)(b− (a− θ))

= a− θ + θ + (1− θ)θ

> a.

Thus, (1− λ)a0 + λb0 ∈ A∞ ∩ (a, b), a contradiction.
Lemma 4 can now be easily proved. Note first that one can easily show inductively

that (27) holds iff

f((1− µ)x+ λy) ≥ (1− µ)f(x) + µf(y) for all y ≥ x ≥ 0 and µ ∈ A∞.

Since f is continuous and cl(A∞) = [0, 1], it follows that (27) holds iff

f((1− µ)x+ λy) ≥ (1− µ)f(x) + µf(y) for all y ≥ x ≥ 0 and 1 ≥ µ ≥ 0.

That is, f is concave. ¥
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Proof of Corollary 4. Suppose that (v,β) is more impatient than (u,α), but
α(t)/α(s) < β(t)/β(s) for some (s, t) ∈ Z2+ with s < t. Let h := v ◦ u−1, α :=
α(t)/α(s) and β := β(t)/β(s). Since h is strictly increasing, α < β implies

h((1− β)x+ βy) ≥ h((1− α)x+ αy) for all y ≥ x ≥ 0.

Combining this with (8) yields

h((1− β)x+ βy) ≥ (1− β)h(x) + βh(y) for all y ≥ x ≥ 0.

Thus, by Lemma 4, h is a concave function. But, for any fixed y > x ≥ 0, (9) and
α < β entail that

h((1− α)y + αx) ≤ (1− β)h(y) + βh(x) < (1− α)h(y) + αh(x),

which contradicts the concavity of h.
The second assertion of Corollary 4 follows from Theorem 3 (with h being the

identity function) and Corollary 2.
The “if” part of the final assertion of Corollary 4 is trivial. To prove its “only if”

part, let (v,α) be more impatient than (u,α), h := v ◦ u−1, and set α := α(1). By
(8) and (9), and Lemma 4, both h and −h must be concave functions, so that h is
affine. Since, h(0) = 0, h is, in fact, a strictly increasing linear function. ¥

Proof of Corollary 5. The “only if” part of the first assertion here is immediate
from Theorem 3. To prove its “if” part, assume that (10) holds for all y ≥ x ≥ 0,
and suppose, as the induction hypothesis,

h((1− αr)x+ αry) ≥ (1− βr)h(x) + βrh(y) for all y ≥ x ≥ 0,

where r is an arbitrary positive integer. Then, for any y ≥ x ≥ 0, we have

h((1− αr+1)x+ αr+1y) = h((1− αr)x+ αr((1− α)x+ αy))

≥ (1− βr)h(x) + βrh((1− α)x+ αy)

≥ (1− βr)h(x) + βr((1− β)h(x) + βh(y))

= (1− βr+1)h(x) + βr+1h(y).

It follows that h((1− αt−s)x+ αt−sy) ≥ (1− βt−s)h(x) + βt−sh(y); that is (8), holds
for all (s, t) ∈ Z2+ with s < t and y ≥ x ≥ 0. Since one can similarly show (using this
time (11)) that (9) also holds for all (s, t) ∈ Z2+ with s < t and y ≥ x ≥ 0, the claim
follows from Theorem 3.
To prove the second assertion of Corollary 5, assume that (12) holds for all y ≥

x ≥ 0. Consider first the case β
α
≤ 1−α

1−β so that

α

β
h0(y) ≥ h0(x) ≥ β

α
h0(y) for all y ≥ x ≥ 0. (28)
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Observe that if h0(x) < β
α
h0(y) for some x, y ≥ 0, then we must have x > y ≥ 0 and

α
β
h0(x) < h0(y) which contradicts (28). Thus h0(x) ≥ β

α
h0(y) for all x, y ≥ 0, that

is, (7) holds, so by Corollary 3, (v, β) - (u, α). Hence, in particular, (v, β) is more
impatient than (u, α).
Finally, consider the case β

α
> 1−α

1−β so that (12) becomes

1− β

1− α
h0(y) ≥ h0(x) ≥ 1− α

1− β
h0(y) for all y ≥ x ≥ 0. (29)

Fix any y ≥ x ≥ 0 arbitrarily. Let z := (1− α)x + αy and define G : R+ → R+ by
G(ω) := ω

1−α −
α
1−αy. Notice that G(y) = y, G(z) = x, G(ω) ≤ ω for all ω ∈ [0, y],

and that h0(G(ω)) = (1− α) d
dω
h(G(ω)) for all ω. By (29),Z y

z

(1− α)h0(ω)dω ≤
Z y

z

(1− β)h0(G(ω))dω = (1− β)

Z y

z

(1− α)
d

dω
h(G(ω))dω,

so by the Fundamental Theorem of Calculus, we have h(y)− h(z) ≤ (1− β)(h(y)−
h(x)), which is equivalent to (10).
Now let w := (1 − α)y + αx and define H : R+ → R+ by H(ω) := ω

1−α −
α
1−αx.

Notice that H(x) = x, H(w) = y, H(ω) ≥ ω for all ω ∈ [x,∞), and that h0(H(ω)) =
(1− α) d

dω
h(H(ω)) for all ω. Then, by (29),Z w

x

(1− α)h0(ω)dω ≤
Z w

x

(1− β)h0(H(ω))dω = (1− β)

Z w

x

(1− α)
d

dω
h(H(ω))dω,

so by the Fundamental Theorem of Calculus, we have h(w)− h(x) ≤ (1− β)(h(y)−
h(x)), which is equivalent to (11).
We proved that (29) implies (10) and (11) for all y ≥ x ≥ 0. By the first part of

Corollary 5, (29) implies that (v, β) is more impatient than (u, α). ¥

Proof of Theorem 4. The proof is analogous to those of Theorems 2 and 3; it is
thus omitted. ¥

Proof of Corollary 6. The first assertion is immediate from Theorem 4. To see
the second, let h : R+ → R+ be any differentiable function with h(0) = 0. Observe

that −h is star-shaped iff d
dt

³
h(t)
t

´
≤ 0 for all t > 0, or equivalently, h0(t)t ≤ h(t)

for all t > 0. But, given any u, v ∈ V, the first assertion of Corollary 6 says that
(u, δ) -0 (v, δ) for all δ ∈ D iff −(v ◦ u−1) is star-shaped. Therefore, by the Inverse
Function Theorem, (u, δ) -0 (v, δ) for all δ ∈ D iff

v0(u−1(a))a
u0(u−1(a))

≤ v(u−1(a)) for all a > 0.

Since u−1(R++) = R++, the latter statement is equivalent to (14). ¥
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