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Abstract

The paper presents some methods that allow to compute approximations to optimal
Ramsey problems that are more precise than the solutions usually found in the litera-
ture. The methods are illustrated with a recent sticky-price model of optimal monetary
and fiscal policy under commitment. The paper shows how to compute higher order ap-
proximations in a neighbourhood of the steady state curve (the set of all deterministic
states, not just one of them). and also how to compute the stochastic solution around a
full transition path of the Ramsey policy. The methods should be applicable to a wide
range of models of optimal fiscal and monetary policy.
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1 Introduction

Important progress has been made in recent years on the theory of optimal Ramsey
taxation. A number of papers (e.g., Benigno and Woodford, 2003;Schmitt-Grohé and
Uribe, 2004a; Schmitt-Grohé and Uribe, 2005; ) investigates joint optimal monetary and
fiscal policy under incomplete markets and price rigidities, which provides an interesting
and realistic framework. These models cannot be solved exactly by analytical means,
and even the numerical solution raises some important technical problems. The existing
literature usually solves the model by local approximations of first or second order. The
aim of this paper is to provide a set of tools that allow higher order global approximations
to the solution. The basic technique used are projection methods (Judd 1998, Ch. 11).
To apply them successfully, it is necessary to choose carefully the state space on which
to approximate the solution.

To illustrate the working of the methods, I apply them here to a prominent model
of the recent literature (Schmitt-Grohé and Uribe 2004a). But the techniques applied
are quite general, and suitable for an important class of models.

Contrary to many models that can be satisfactorily solved by local approximation
techniques, a full solution to models of optimal fiscal and monetary policy requires
global approximation techniques for two reasons. First, optimal Ramsey policies with
commitment usually do not have a time invariant solution in the natural state space.
To make them recursive, the state space has to be enlarged by some costate variables,
typically the Lagrange multipliers of the dynamic household first order conditions. In
the first period of the problem, the value of the costates is equal to 0 (Marcet and
Marimon 1998). In the starting period, we will in general be far away from a steady
state, so that a local approximation around some steady state cannot be expected to
give a reasonable approximation to the general problem, starting in period 0. Second,
problems of optimal fiscal policy with government debt usually do not have a unique
deterministic steady state. The level of government debt in steady state depends in
general on the initial condition and the full transition path to the steady state. These
models then have a continuum of deterministic steady states, which can be indexed by
the level of government debt. This means that over time the solution of the stochastic
model will wander far away from any given steady state, so that a local approximation
around one of the steady states will probably become very inaccurate after some time.

With respect to the first problem, the literature usually confines itself to computing
the stochastic steady state policy, which is the often called the “optimal policy from a
timeless perspective” (Woodford 1999). This is obviously a restriction, since what we
get is only a part of the full solution. With respect to the second problem, the literature
only considers simulations of the model with a limited time horizon, such that the model
solution probably stays close to the steady state about which the approximation was
taken. This is good enough in many applications, but it can hardly be recommended as
a general procedure, and it is often difficult to check whether the obtained solution is
accurate enough for the specific purpose.

address some economic questions that need high-precision solution

1.1 Computer programs

The programs to do the computations in this paper need some symbolic differentiation,
for which i use MuPAD, a free computer algebra system available at http:www.mupad.de.
Most of the code is written for FastMat, which is a new matrix oriented language writ-
ten by myself, with a syntax that is highly compatible to Matlab, but has some useful
extras (apart from, obviously, not yet having many things that Matlab has). Fastmat
is in general faster than Matlab. Right now, it is not yet ready for public use, but will
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be made available early next year. Some of the programs can be used with Matlab after
small modifications. To compute the log-linear approximations, I adapted routines from
Uhlig’s toolkit (Uhlig 1998) and from the CompEcon toolkit of (Miranda and Fackler
2002). The programs will be in nice shape and ready for public use later this year
(November or December). If you are interested in obtaining programs, please email me
at michael.reiter@upf.edu.

2 The model

The model that I investigate here is taken from Schmitt-Grohé and Uribe (2004a). I
will therefore describe the model only very briefly. A more detailed description and
discussion can be found in the original source.

2.1 The policy problem

The basic question that the model wants to answer is how a government should optimal
react to spending and technology shocks. Basically, the government has three options:
varying taxes, varying the inflation rate and varying government debt. Varying taxes is
bad, because excess burden is a convex function of taxes, so we prefer smooth marginal
tax rates. By creating surprise inflation, the government can pass on shocks to the
holders of nominal bonds. The resulting inflation variability is costly if there is some
degree of prices stickiness. Varying government debt obviously has its limits.

In a model without monetary policy, Barro (1979) has argued that government debt
should be used to smooth tax rates over time, and that optimal debt and taxes ap-
proximately follow a random walk. Marcet and Scott (2003) find that this is a good
approximation for US policy. However, Lucas and Stokey (1983) address the same ques-
tion in a model with complete markets, and show that the Barro result does not hold:
optimal taxes and debt are not random walks, but inherit the stochastic properties of
the shocks. In a world of complete markets, the government has enough instruments
to insure against shocks, and need not use debt for that purpose. Aiyagari, Marcet,
Sargent and Seppälä (2002) show that the complete markets assumption is essential: if
markets are incomplete in the sense that the only debt instrument that the government
has is riskless real debt, than we are approximately back at the Barro result.

The situation changes once we allow for nominal government debt. When prices
are flexible, unexpected inflation turns out to be a good shock absorber, passing on the
burden to the holders of nominal debt, such that the real allocation comes very close to
the allocation under perfect markets (G.A. Calvo, 1990, G.A. Calvo, 1993 V.V. Chari,
1991, Schmitt-Grohé and Uribe, 2004a). The question then is whether this result holds
up under some form of price stickiness. In that case, varying inflation is costly, and it
is a priori not clear in which direction the tradeoff between varying taxes or varying
inflation is solved. The conclusion of Schmitt-Grohé and Uribe (2004a) is that it is
unambiguously solved toward keeping inflation stable and varying taxes (although it
has to be modified somewhat when wages are sticky, cf. for example Schmitt-Grohé and
Uribe, 2005).

2.2 Long-run debt dynamics

The random-walk property of debt is (if at all) only approximately true. The theoretical
analysis of a simpler model (Aiyagari et al. 2002) shows that in the very long run, the
Ramsey government accumulates enough assets to finance government expenditures by
interest revenues. One could call this “government precautionary savings”: very high
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levels of debt force the government to adopt very high marginal tax rates with an
ever increasing excess burden, and from some point on, the government may even be
unable to serve the debt. Since adverse spending or technology shocks drive us in
this direction, a prudent government wants to stay away from this dangerous region
and steadily decrease its debt level (build up assets). How important is government
precautionary savings quantitatively? At current debt levels, how much would optimal
debt reduction on average be? Quantifying precautionary saving is rather subtle. It is
clear that one needs a global approximation to answer the question reliably, and the
solution probably needs to be quite accurate. In the following I will try to see how far
we can go in this direction.

2.3 The model: outline

• Households choose consumption, leisure, and money

• Money reduces the transaction costs of consumption purchases

• Firms: imperfect competition, price adjustment costs

• Government solves Ramsey problem under full commitment, government expendi-
tures exogenous

• Instruments:

– Tax rate on labor income

– Nominal debt, not state contingent

– Money supply

• AR(1) processes for technology and government expenditures

2.4 The Household/Firm

The economy is populated by a representative household/firm with infinite horizon. It
maximizes discounted expected utility E0

∑

∞

t=0
βtU(Ct, ht) where

U(c, h) = ln(c) + δ ln(1 − h) (1)

where c is Dixit-Stiglitz aggregate of intermediate consumption goods, and h is labor
input.

Each household owns an intermediate goods firm. The firm works with linear tech-
nology (a tilde always characterizes variables relating to the firm):

Yt = zth̃t (2)

where productivity zt is an exogenous productivity parameter that is common to all
firms and follows the AR(1) process

ln zt = λz ln zt−1 + εz
t , εz

t ∼ N(0, σ2
εz) (3)

Money demand is motivated by transaction costs in consumption purchases. Define
the consumption velocity of money as

νt ≡ Ptct/Mt (4)

Greater real money holdings (reduction in ν) save transaction costs, which we assume
are of the following form:

s(ν) = Aν + B/ν − 2
√

AB (5)
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Price stickiness is introduced into the model by a quadratic price adjustment cost
function following Rotemberg (1982):

PACt =
θ

2

(

P̃t

P̃t−1

− 1

)2

(6)

From the properties of a Dixit-Stiglitz aggregator it is well know that the demand for a

firm’s product can be written as Y d
(

P̃t/Pt

)

. Each firm then yields the following cash

flow:

CFt =
P̃t

Pt

Ytd

(

P̃t

Pt

)

− wth̃t (7)

Bonds are one-period and nominally risk free. Define Rt as the risk-free nominal
interest factor, such that a dollar of dividends in t + 1 costs R−1

t dollars in t. The
budget constraint of the household/firm is then

Ptct (1 + s(νt)) + Mt + R−1
t Dt+1 =

Mt−1 + Dt + Pt [CFt − PACt] + (1 − τt)Ptwtht (8)

Since in symmetric equilibrium there is no bond trade among households, we have
Dt = Rt−1Bt−1.

2.5 The government

Government expenditures gt are exogenous, and unproductive following the AR(1) pro-
cess

ln gt = (1 − λg)ḡ + λg ln gt−1 + εg
t , εg

t ∼ N(0, σ2
εg ) (9)

The are financed by

• a labor income tax at rate τt

• one-period debt Bt, which is nominal and non-contingent (real debt is then state-
contingent)

• money Mt

The government budget constraint is

Mt + Bt = Mt−1 + Rt−1Bt−1 + Pt(gt − τtwtht) (10)

2.6 The government Lagrangian

The Lagrangian of the government problem is (Schmitt-Grohé and Uribe 2004a, p.223)

L =E0

∞
∑

t=0

βtU(Ct, ht) + λf
t

[

ztht − (1 + s(νt))ct − gt −
θ

2
(πt − 1)2

]

+ λb
t [λt − βρ(νt) Et (λt+1/πt+1)]

+ λs
t

[

ct

νt

+ bt +

(

mctzt +
Uh(ct, ht)γ(νt)

Uc(ct, ht)

)

ht −
ρ (νt−1bt−1)

πt

− ct−1

νt−1πt

− gt

]

+ λp
t

[

β Et
λt+1

λt

πt+1 (πt+1 − 1) +
ηztht

θ

(

1 + η

η
− mct

)

− πt (πt − 1)

]

+ λc
t [Uc(ct, ht) − λtγ(νt)] (11)

5



where

γ(ν) ≡ 1 + s(ν) + ν ∗ s′(ν)

ρ(ν) ≡ 1/(1 − ν2 ∗ s′(ν))

mct ≡ wt/zt

bt ≡ Bt/Pt

πt ≡ Pt/Pt−1

Here mct stands for “marginal costs”.

2.7 State variables

For a nonlinear approximations of the model, it is crucial to reduce the number of state
variables as much as possible. It turns out that we need 5 state variables:

• Endogenous

– Real government debt + money:

at−1 ≡ (Mt−1 + Rt−1Bt−1)/Pt−1 (12)

We see from the household budget constraint (8) and the government budget
constraint (10) that Mt−1 and Bt−1 only enter in the combination Mt−1 +
Rt−1Bt−1, so the two can be aggregated into one state variable at−1 after
dividing equations by the price level.

– Costate: lagrange multiplier of HH euler equation for bonds λb

– Costate: lagrange multiplier of HH euler equation for prices λp

• Exogenous

– Productivity zt

– Government expenditures gt

It is also useful to reduce the number of control variables. I found it convenient
to work with the variables c, mc, Pi, ν and λs and eliminating other variables by the
following definitions:

ht ≡ ((1 + s(νt))ct + gt +
θ

2
(Pit − 1)2)/zt

λt ≡ Uc(ct, ht)/
(

1 + s(νt) + νts
′(νt)

)

Rt ≡ 1/(1 − ν2
t s′(νt))

τt ≡ 1 + Uh(ct, ht)/(λtztmct)

mt ≡ ct/νt

bt ≡ (at − mt)/Rt

which are either definitions or can be solved for from static first order conditions. Ex-
pressing the Lagrangian in this reduced set of variables, the first order conditions become
very lengthy. The only reasonable way to proceed is to use a computer algebra system to
derive symbolically the first derivatives of the Lagrangian, and put the resulting equa-
tions in the program. Good algebra systems have an option to produced “optimized
code”, that means, it computes the equations efficiently by computing and storing ap-
propriate intermediate results. The output will be in either C or Fortran language, but
porting this into Matlab syntax is trivial.
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2.8 Calibration

Following Schmitt-Grohé and Uribe (2004a, Section 4.1), these are the parameter values
used:

Parameter Values

β 1/1.04
η −6
θ 4.375
δ 2.9
A 0.0111
B 0.07524
ḡ 0.04
λg 0.9
λz 0.82
σ2

εg 0.0302
σ2

εz 0.0229
The time period of the model is a year. The parameter for η implies a steady state

markup of 20%. In the benchmark steady state (about which Schmitt-Grohé and Uribe
(2004a) approximate), production is 0.2, government debt (excluding money) is 44%
of production, and government consumption is also 20% of production on average (ḡ).
The consumption velocity of money turns out to be about 3.18, so that total real debt
(including money) is about 70% of annual GDP. Price stickiness parameters follow the
estimates in Sbordone (2002). For a more detailed justification of the calibration, see
Schmitt-Grohé and Uribe (2004a, Section 4.1).

3 The deterministic model

3.1 Steady states

The results show that some variables are almost constant across steady states. In the
stochastic model, we can expect those variables to be stationary. Among them are
inflation and money velocity.

Other variables, mainly the labor tax rate, income, labor input and consumption,
vary substantially across steady states and will appear non-stationary in the simulations
of the stochastic model.

What these results show again is that the inflation tax is a very poor way of making
money in the steady state: the Ramsey government prefers raising the tax rate to 40%
rather than increasing inflation beyond its level of about -0.1%.

3.2 Transition paths in the deterministic model

A very useful intermediate step in the analysis is to solve the deterministic version of
the model. From this we first learn how fast the solution converges to a steady state,
to what is often called the “timeless perspective”. If we converge very quickly, it lends
some support to the idea that “policy from a timeless perspective” is the right concept
for practical policy purposes. We will see that this is in fact the case for the current
model. Second, by solving the model starting from many different starting points, we
can trace out the relevant part of the state space, which is essential for obtaining an
accurate solution of the model (cf. Section 4.1).

There are many techniques to compute the solution of the deterministic model (Judd
1998, Ch. 16). My favourite is the most direct one: solve for all the equations of the
model simultaneously, for a finite time horizon that is long enough to reach a steady
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Figure 1: Results for different steady states; x-axis: real debt+money, a
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state, such that a steady state condition can be imposed at the end of the finite horizon.
In our model, what I do concretely is the following. For the 8 model variables a, λb, λp,
c, mc, Pi, ν and λs, we get in each period 8 first order conditions from the derivatives
of the Lagrangian (11).

Given are a0 (arbitrary starting point), λb
0 = 0 and λp

0
= 0. That the costate variables

start at 0 has the following interpretation (Marcet and Marimon 1998). The costates
measure the effect of the earlier commitment of the planner on the current solution.
In the first period, there are no earlier binding commitments that the planner has to
follow, therefore the Lagrange multipliers are 0.

Choosing a time horizon of T , I solve a problem of 8T + 3 equations in 8T + 3
unknowns. The unknowns are

• at, λb
t , λp

t , ct, mct, Πt, νt and λs
t for t = 1, . . . , T .

• νT+1, cT+1 and ΠT+1

The equations are

• The derivative of (11) w.r.t. at, λb
t , λp

t , ct, mct, Πt, νt and λs
t for t = 1, . . . , T .

• The derivative of (11) w.r.t. cT+1, ΠT+1 and λs
T+1

.

I choose T = 200, which is far more than enough to come close to a steady state.
This results in 1603 equations in 1603 unknowns, which may look like a formidable
computational problem. However, the Jacobian of the equation system is very sparse,
since in any equation only a few different variables enter. To solve this system efficiently1,
one therefore needs

• an automatic differentiation tool that takes the sparsity into account, so that the
Jacobian can be computed quickly

• an efficient way to solve the linear equation for the Newton step, taking into
account the sparsity of the Jacobian. It turns out that direct sparse methods are
much better than iterative methods such as GMRES. A very good non-commercial
package that does this is UMFPACK (currently version 4.4), which is also used by
Matlab (in this application, it proved to be about twice as fast as SuperLU, which
is another free package).

In the first periods, the planner is not yet bound by earlier promises, and can use
some “outrageous” policies to raise a lot of money to reduce the public debt burden,
exploiting quasi-fixed factors as much as possible. In our model, the central planner
wants to choose a very high inflation rate in the first period, thereby expropriating
the owners of nominal government debt. Although in the current model the inflation
rate would not go to infinity in the first period, due to the quadratic price adjustment
costs, inflation would still be unrealistically high. I therefore follow the usual practice
and impose a (basically arbitrary) restriction on inflation, namely an upper bound of
10%. With this inequality constraint, the problem is not a pure root-finding problem
any longer, but has a complementarity subproblem. I convert the problem back into
a root-finding problem by smoothing the complementarity part (more concretely, the
derivative of the Lagrangian w.r.t Πt) using Fischer’s equation (Miranda and Fackler
2002, Section 3.8).

3.3 Results

Figure 2 displays all the combinations of at, λb
t and λp

t that were obtained in the solution
of the deterministic model, starting from a wide range of values for a0, the initial level of

1With 1603 equations, even a naive interpretation in Matlab, computing the Jacobian by forward differ-
encing and ignoring the sparseness is quite feasible.
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real public debt (including money). The Lagrange multipliers are always set to 0 in the
first period, which is what theory commands. Figures 3 and 4 show the projections into
(a, λb)- and (a, λp)-space, respectively. In each case, the straight line that is separate
from the other points represents the different starting values (with the multipliers set
to zero).

The results in Figures 2 to 4 are interesting for at least two reasons. First, they show
us that the optimal solution converges to one of the steady states very quickly. From
most starting points, we are very close to a steady state already in the second period.
Only when we start from very high debt levels, there is a more protracted transition
period. With very high debt levels, the government chooses a high inflation rate for
several periods, as can be seen from Figure 5. The reduction in the real value of the
debt is then more important than the price adjustment costs that results from high
inflation. As mentioned above, the quick convergence to a steady state makes it even
more plausible that a policy maker should act like being in a steady state (“policy from
a timeless perspective”).

What these results also show is that, apart from the very first period, the relevant
state space in which the solution of the model lives is rather small. This is something
we have to take into account when designing a global approximation to the solution.

4 Global stochastic approximations

4.1 Methods

Recently, perturbation methods have become a popular tool (Collard and Juillard, 2001;
Jin and Judd, 2002; Chen and Zadrozny, 2003; Schmitt-Grohé and Uribe, 2004b) to
compute higher-order approximations for many types of models. Perturbations provide
local higher-order approximations about some object like a steady state or a path. Most
applications only apply a perturbation around a deterministic steady state, although
Judd (1998, Part IV) makes clear that the method is much more general.

For computing global approximations, the obvious tool are projection methods (cf.
Judd, 1992 or Judd, 1998, Ch. 11). What I want to stress here is that projection
methods are extremely flexible. Besides global solutions, they also allow to get local
solutions around a given steady state (or set of steady states, or a deterministic path,
as shown below), simply by approximating the relevant functions on a very small state
space around those objects. Applied in this way, projection methods can be used to
obtain the same approximations that perturbation methods give. Of course, there is
the issue of which method is computationally more efficient. A good implementation
of perturbation methods should be more efficient than a projection method to obtain
local approximations, although I am not sure that the difference would be big, for the
following reason. When approximating a function on a very small grid, the projection
method converges in very few Quasi-Newton steps, whenever one has starting values
from a locally valid approximation (for example a linear approximation, as explained in
Section 4.1.6). Experience shows that the Jacobian of the residuals has to be computed
only once in this case.f If the projection method is well implemented, making use of
automatic differentiation (only Jacobians needed!) just as perturbation methods do, it
may be quite efficient.

Projection methods give us the freedom to choose the state space on which we want
to approximate the solution, which can be a narrow or a large region around a steady
state, a set of steady states, a deterministic path etc. We can choose big noise or small
noise. In other words, one set of tools allows a wide variety of solutions, and this is
what I will explore in the following.

10



−3

−2

−1

0

1

2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
−1

−0.5

0

0.5

debtLb

L
p

Figure 2: Deterministic model, possible combinations of (a, λb, λp)

11



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

debt

Lb

Figure 3: Deterministic model, possible combinations of (a, λb)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

debt

Lp

Figure 4: Deterministic model, possible combinations of (a, λp)

12



Figure 5: Deterministic model, transition period

For the implementation of the projection method, we have to discuss the following
issues:

1. State space on which to approximate

2. Which variables to approximate

3. Basis functions

4. Weighting functions

5. Root-finding algorithm

6. Starting values

4.1.1 State space

A straightforward application that tries to approximate the relevant functions in the
natural state space runs into severe trouble. The problem is that a rectangular domain
in the state variables a, λb, λp, z, g, if it is big enough to cover a relevant range of a,
contains many extreme, and irrelevant, combinations of a, λb and λp. The lesson from
Figures 2–3 was that, in the deterministic model, only very special combinations of
those variable will ever occur, even if we start from a very wide range of possible initial
values. With exogenous shocks, we expect to stay rather close to the (a, λb, λp)-values
that appear in the deterministic model, given that aggregate shocks are not huge.

The idea is therefore to approximate the solution on a set that is the Cartesian
product of

1. a range of (a, λb, λp)-values around the set of steady state realizations of (a, λb, λp).

2. A reasonable range for the exogenous variables (z, g).
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This can be achieved by use of the following variable transformation:
For any variable x other than a, define x∗(a∗) as the x in the steady state were

a = a∗. Then define

x̃t(at) ≡ xt − x∗(at) (13)

The state vector is then St ≡
(

at−1, λ̃
b
t−1, λ̃

p
t−1

, zt, gt

)

, and the variables we approximate

(cf. Section 4.1.2) are also defined in deviations from the respective steady state.
To implement this, I do the following. I compute the deterministic steady states, for

a grid of possible values of real government obligations ai, i = 1, . . . , N stst. I compute
the set of relevant variables (states and controls) X(ai) at any point in the grid. Then
I approximate any variable x ∈ X as a function of a by fitting a cubic spline through
the values x(ai) on the grid. The spline approximation then serves for x∗(a) in (13).

4.1.2 Variables to approximate and residuals

At each point in the state space S ∈ S, five variables have to be approximated: c(S),
mc(S), Π(S), ν(S) and λs(S). Each approximation is a linear combination of the basis
functions laid out in Section 4.1.3. To those 5 variables, there are 5 first order conditions
(the derivative of the Lagrangian w.r.t. at, λb

t , λp
t , mct and νt). These are the residuals

that are then minimized by the projection method.
Given S and those five variables, the value of next period’s endogenous state variables

at, λb
t and λp

t , can be solved linearly from the three remaining first order conditions (the
derivative of (11) w.r.t. ct, Πt and λs

t ).

4.1.3 Basis functions

In our state vector St ≡
(

at−1, λ̃
b
t−1, λ̃

p
t−1

, zt, gt

)

, a is a variable that can wander around

a lot (roughly a random walk), while the other variables should be stationary (this is
the advantage of λ̃b

t , λ̃
p
t over λb

t , λ
p
t ). Then it is a natural idea to use as basis functions

the tensor product of

• quadratic or higher complete polynomial basis in λ̃b
t(at), λ̃

p
t (at), zt, gt about the

point (0, 0, z∗, g∗).

• higher order polynomial or spline basis in a

4.1.4 Minimum residuals

The residuals defined in Section 4.1.2 are minimized in the sense of the Galerkin method
(Judd 1992). To compute the integrals I have tried both quadrature grids and the
interpolation grids, but the results are very close.

4.1.5 Root finding

I use an implementation of Broyden’s algorithm similar to Press, Flannery, Teukolsky
and Vetterling (1986, Section 9.7), somewhat adapted and translated into Matlab syntax.

4.1.6 Starting values

For practical purposes, it is extremely important to get good starting values for the
approximation parameters.

1. A (log-)linear approximation about any of the deterministic steady states can be
obtained in the usual way (I used Uhlig’s toolkit, any other toolkit would do it).
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2. For quadratic or higher approximations about any deterministic steady states, we
obtain starting values from the linear approximation in the following way: Choose
a grid of points G in the relevant neighbourhood of the steady state. For the
approximation of any variable c, compute the values of the linear approximation
of c at the points of G. Collect the values in the vector y. Compute the values of
all the basis functions at the points G, and collect them in the matrix B. Compute
the coefficients of the approximating function by the linear regression (B ′B)−1B′y.

3. To get starting values for the global approximations, I did the following steps:

• I choose a grid of points aj , j = 1, . . . , N , at each of which I compute a
quadratic approximation of the control variables (second degree complete
polynomial) of the solution, as explained above.

• I choose a grid of points in λ̃b
t , λ̃

p
t , zt, gt, denoted by s1, . . . , sn. Then, for

each j = 1, . . . , N , each l = 1, . . . , n and each relevant variable x, I select an
estimate x∗(aj , sl) as the value of x obtained from the local quadratic solution
at the steady state of aj.

• I compute an estimate x̂(a, s) by fitting a flexible functional form to the points
x∗(aj , sl). Concretely, as a basis for the function approximation, I was using
the tensor product of a B-spline basis in a and a complete second degree
polynomial basis in s. Other choices are possible, of course.

• For a suitable grid in the state space of the global approximation, I use the
x̂(a, s) to approximate the desired functions, and then use least squares as
explained above to obtain the coefficients of the approximating polynomials.

4.2 Results

In the following, I show results for the following approximations:

• Results from loglinearization about the steady state with debt (excluding money)
equal to 0.88, which is 44% of GDP. Denoted “Linear” in the graphs.

• Results of a quadratic approximation (complete polynomials of degree 2) in a
neighbourhood of the same steady state. The variances of the exogenous shocks
are set to their calibrated values, and the state space for the exogenous variables
chosen accordingly. Denoted “Quadr. with uncert.” in the graphs.

• Results from an approximation in a neighbourhood of the steady state curve, along
the steady states where total debt (including money) ranges from 0 to 0.4 (roughly,
from 0 to 200% of GDP). The approximating functions are the tensor product of
polynomials of order 6 (degree 5) in a, and complete polynomials of order 3 to 5
(quadratic, cubic and degree 4). In the graphs, they are denoted “Global, order
6/3” etc.

To show that the higher order terms really lead to an increase in accuracy, Figure 6
shows the Euler residuals that arise from those different solution. More precisely, I
simulated the model many times for 100 years, and at each point that we reach in
the simulation, I compute the Euler residual (the residual of each of the 5 first order
conditions that we use in the projection method; note that we have eliminated 3 of the
first order conditions, since they serve to solve linearly for 3 of the variables). Figure 6
shows the average of the absolute residuals, as a function of the time in the simulation.
Conclusions:

• The quality of the linear and quadratic approximations decreases in the course of
the simulation. This was to be expected, since we approximate about one steady
state, and over time the economy wanders away from this steady state.
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Figure 6: log10 of average absolute Euler residuals, years of simulation
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• The accuracy of the “global” approximations stays about constant over time.

• Higher order brings higher accuracy. Solution “6/5” has residuals that are 1 or
2 orders of magnitude smaller than those of the locally quadratic approximation
(and 2 or 3 orders of magnitude better than the loglinear one).

The next question is whether accuracy matters for the results. Table 1 gives simulation
results of the model “Global, order 6/4”. It should be compared to “Baseline sticky

Variable Mean Std.dev. Autocorr. Corr. with GDP

τ 0.2515 1.0264 0.7474 -0.2557
Infl. -0.1581 0.1761 0.0328 -0.0894
Intr.rate 3.8360 0.5609 0.8613 -0.9457
y 0.2085 0.0072 0.8177 1.0000
h 0.2084 0.0025 0.8144 -0.0837
c 0.1682 0.0070 0.8206 0.9360

Table 1: Simulation results, approximation “Global 6/4”

price economy” part of Table 2 of Schmitt-Grohé and Uribe (2004a). We see that the
results are basically identical to those in the paper. This means, the additional accuracy
plays no role for the business cycle statistics are considered here.

Note the exact interpretation of the numbers in the table: they are sample moments
(means, standard deviations etc.) of simulations over 100 years (not standard deviations
of changes, but of absolute levels), without applying any filter. Although the variation
of tax rates (1 percentage point) is big compared to the variability of inflation, it is still
very small compared to the data: over a horizon of a century, we observe tax changes
that are much bigger than what we expect from a 1 percentage point standard deviation.
Since taxes are nonstationary, the standard deviation as reported in the table increases
in the time horizon (for 200 years, it would be about 1.4 percentage points). This is not
true for R and Π, which are approximately stationary, cf. Figure 1. The small variations
in variables help explain why even the simplest approximations are reasonably precise
in this model, with this calibration. The overall fluctuations are relatively small; if the
economy were moving further around in the state space, the inaccuracies would add up
much faster. Ongoing research shows that parameterizations of the model that yield
more realistic long-run fluctuations of the model might change those conclusions.

Let us now look at a “typical” simulation of the model, as shown in Figure 7 (in fact,
the simulation is not really “typical”, debt moves away from the steady state here more
than it does on average). We see that in the first years of the simulation, all solutions
gives almost identical results, while after about 50 years, the local approximations drift
slowly away. But it is no surprise that the business cycle statistics shown in Table 1 are
not affected by this.

Let us finally look at the question of government precautionary saving. Figure 8
shows a simulation where all shocks are zero. We see the precautionary savings because
the government systematically reduces government debt in this case. This holds true for
all approximations except (of course) the linear one, which gives a certainty-equivalence
solution where precautionary motives don’t enter. However, the results are somewhat
disappointing in two respects. First, the precautionary saving is very small, we are
talking about a reduction of debt of about 0.1% of GDP per year. Second, this small
number is difficult to pin down: increasing the approximation order, the result seems not
yet to converge. It seems that for this subtle question even higher accuracy is needed.
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Figure 7: Typical simulation of some variables
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4.3 Value functions

We have seen that in the current model, with the current parameters, even the simplest
approximations like the linear and quadratic approximations about some steady state,
are reasonably precise. A next step is to see whether this holds true also for the value
functions that are implied by different approximations.

For that, we solve the Bellman equation

V (S; Ψ) = U(c(S; Ψ), h(S; Ψ)) + β

∫

V (S′; Ψ)Q(S, dS ′; Ψ) (14)

The parameter Ψ indicates that the value function V is based on the approximation Ψ,
which affects V both by determining current consumption and labor, and the transition
law from state S to next period’s state S ′ by the transition law Q. To facilitate the
comparison of V for different approximations Ψ, I always choose the same approximation
type for V , namely a polynomial of degree 4 in S.

Figure 9 shows results for 4 different approximations: linear approximation about
the steady state, quadratic approximation (accounting for uncertainty) about the steady
state, a global approximation of order 6/3 and a global approximation of order 6/4. In
each subplot, one state variable is varied over the range of the approximations, while all
other state variables take on their value in the benchmark steady state. Note that the
Lagrange multipliers are expressed as deviations from steady state, that means, we use
the transformations λ̃b

t , λ̃
p
t .

The value function was normalized such that changes in value can be interpreted as
permanent proportional changes in consumption. We see that starting from a govern-
ment debt (plus money) of 0.2, roughly equal to 100% of annual GDP, brings a value
loss equivalent to about a one percent permanent decrease in consumption, compared
to a starting situation where debt equals 0.1.
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The figure shows that all approximations but the linear one give very similar results.
And even the linear one differs in most cases only by approximately a constant. The
only case with a more substantial deviation is a variation in debt over a relatively wide
range, where the linear approximation indicates a wrong shape of the value function.

5 Solving for the transition path

So far we have solved for the full Ramsey solution of the deterministic model (solution
starting in period 1), and for an approximation of the stochastic model close to the
range of steady state values.

We might finally want to find the full Ramsey solution of the stochastic model. This
can be done by approximating the solution around a given deterministic transition path,
starting at s0 = (a0, 0, 0) (we denote the vector of state variables in the deterministic
model by st, and those of the full model by St; note that the Lagrange multipliers
are zero in s0). As explained in Section 3.2, we compute the deterministic solution
path s0, s1, . . . , sT , starting from s0 up to time T such that sT is in the range of our
approximations about the steady state curve. We can then compute an approximation
of the stochastic solution of the Ramsey problem, starting at S0 = (s0, z0, g0) in the
following way:

1. Start with the policy functions PT (T ) that come from the steady state approxi-
mation.

2. For t = T − 1, T − 2, . . . , 1, choose a state space as the Cartesian product of a
neighbourhood of st and Z (the state space of the exogenous variables).

3. Choose an interpolation grid on this state space. For each point on the grid,
compute the policy functions Pt (t) (the variables at, λb

t , λp
t , mct, νt, ct, Πt and

λs
t ) by solving the 8 first order conditions (the derivative of the Lagrangian w.r.t.

those variables). If necessary, an inequality constraint on Π must be enforced in
the way explained in Section 3.2.

In the first order conditions, next period’s policy functions are given by Pt+1 (t + 1),
available from the earlier step in the iteration.

4. Having computed Pt (t) on the grid points, approximate them between grid points
by polynomials etc.

5. Goto step 2.

If T is large, which means that we need many steps to reach the steady state, the
numerical stability of this procedure may be problematic. In the present model, however,
the procedure is very simple, because in the period after the staring period we are
already close to a steady state, so that T = 1 and we need only one iteration. The
implementation of the above procedure then poses no difficulties.

6 Conclusions

The paper has shown that for interesting models of optimal policy, solutions can be
computed that are substantially more precise than the first and second order approxi-
mations that are usually computed in the literature. It turns that for the model under
consideration, and with the calibration used here (as taken from the original source),
the simpler methods are sufficiently accurate to answer most of the questions that one
wants to address. Ongoing research shows that for other parameterizations of the model
(in particular tax rates that reflect the marginal tax rates in Europe), this is not longer
clear. This will be documented in future drafts of this paper.
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