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1 Introduction

The goal of this paper is to understand deviations from the law-of-one-price (LOP).
Specifically, if Pij,t is the local-currency cost of good i in location j at date t, we
seek to understand

qijk,t = log
Pik,tejk,t

Pij,t
,

where ejk,t is the nominal exchange rate (equal to one if locations j and k share
the same currency). We are motivated by two observations. First, while there
exists a consensus on a number of empirical regularities about q, there is far less
of a consensus on how to interpret them from the perspective of a model. Second,
much of what we know about the behavior of q is based on time-series data, not
cross-sectional data. This is because most data on P takes the form of index
numbers, not absolute prices. Where exceptions exist, the data are confined to a
very limited cross-section of goods, i.

With this in mind, we ask if a particular model of deviations from the LOP is
consistent with properties of a broad panel dataset on local-currency prices of many
different goods and services in many different locations, both within and across
countries. What we hope to learn is whether cross-sectional data, in conjunction
with an explicit model, changes the economic interpretation of the existing body
of empirical facts about q.

Our model presumes that goods in different locations are different because of
the tradeability of the inputs required to produce them. A location-specific retail
firm combines a non-traded input (e.g., labor) and a traded input to produce a
retail good. Retail-good LOP deviations are a simple reflection of input-price LOP
deviations. The non-traded good’s relative price is assumed to reflect productivity
differences in the sense of Balassa (1964) and Samuelson (1964). The traded good’s
relative price is assumed to reflect a transport cost in the sense of Sercu, Uppal
and Van Hulle (1995). Good specificity takes the form of different input shares
between the traded and non-traded good. Location specificity takes the form of
different transport costs. We model (and measure) transport costs as being log-
linear functions of the distance between locations.

Our dataset is from the Economist Intelligence Unit. It consists of annual
data, 1990-2000, on local-currency retail prices of roughly 300 different goods and
services across 122 major cities in 79 countries. This dataset, while relatively new
to economics researchers, has been used previously by Crucini and Shintani (2002),
Parsley and Wei (2002), Rogers (2001) and Engel and Rogers (2003).

We find that both the cross-sectional and time-series properties of this dataset
are consistent with our model of retail price determination. First, the cross-
sectional mean and the cross-sectional variance (across goods, for each bilateral
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location pair) depend on productivity differences in the manner predicted by the
model. That is, there is a ‘Balassa-Samuelson effect’ in both the first and second
cross-sectional moment. Second, the impact of geographical distance (shipping
costs in our model) is consistent with the model; distance does not matter for
the cross-sectional mean, once we control for productivity differences. We label
this the ‘averaging-out property’ of the shipping cost model; if some goods are
imported and others exported, then deviations from LOP will tend to average-out
across good. Distance does matter, however, for the cross-sectional variance, as
predicted by the model. It also matters for the time-series variance, but only for
location-pairs which cross a border. We argue that this is consistent with how
nominal exchange rate variability serves to ‘trace out’ the region of relative prices
where the shipping cost model bites.

2 Data

The source of our price data is the annual Economist Intelligence Unit retail outlet
price survey. Our data begins in 1990 and ends in 2000, effectively creating (ignor-
ing missing data) a balanced 11-year panel of absolute prices for 220 goods and 84
services across 122 major cities across the globe. The total number of countries is
79 countries, with differences between the number of cities and number of countries
reflecting the fact that in 58 of the 79 countries the EIU surveys multiple cities.
The country with the most intranational observations is U.S., with 16; the next
largest number of intranational observations is 5 (Australia, China and Germany)1

The same basic data source has recently been used by Crucini and Shintani (2002),
Parsley and Wei (2002), Rogers (2001) and Engel and Rogers (2003).

Our basic data unit is Pij,t, the price, in units of local currency, of good i in
location j at time t. For most of our analysis we transform this data into qijk,t,
log deviations from the law-of-one-price (LOP) for each bilateral location-pair:

qijk,t = log(
Pik,tejk,t

Pij,t
) ,

where ejk,t is the nominal exchange rate between locations j and k, in units of
location j, and ejk,t = 1 if locations j and k are in the same country.

Figure 1 shows estimates of the density function for qijk,t for 1990, 1995, 2000;
both international city pairs and U.S. city pairs (the graph is quite similar for
intranational pairs more broadly). We see what is obvious to anyone who has
ever traveled between two locations: the LOP is not very useful for describing the

1Specifically, the number of intranational cities are (ordered from the most available cities to
the least): United States (16), Germany, China and Australia (5), Canada (4), Saudi Arabia (3)
and France, Italy, Russia, Spain, Switzerland, UK, India, Japan, Vietnam, New Zealand (2).
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properties of qijk,t. Moreover, as one might expect, price dispersion is considerably
higher across international locations. Much of the existing literature has therefore
proceeded by describing a number of interesting empirical regularities inherent in
the international relative price distribution. The difficulty with this lies in moving
from empirical regularities to economic interpretation. Our approach, therefore,
will be to (i) briefly list a set of interesting empirical regularities, and then (ii)
flesh out their economic interpretation using a simple production function which
relates deviations from LOP in retail prices to deviations from LOP in non-traded
inputs (such as labor) and transport costs. At each step we compare and contrast
the properties that exist within countries and across countries.

Our data on qijk,t display the following features. In each case, specific details
are deferred until the relevant section of the paper. For properties 1 to 5 we average
over time work with qijk ≡ T−1 ∑T

t=1 qijk,t. We use the notation Ei(qijk | jk) and
Var i(qijk | jk) to denote the cross-sectional mean and variance (across goods for
each location-pair jk). Similarly Var t(qijk,t | ijk) denotes the (unconditional) time-
series variance for a given good i and location-pair jk.

1. The Balassa-Samuelson Effect for the Mean. The cross-sectional mean Ei(qijk | jk)
— or in words the average relative price of goods in location k in units of
goods in location j — is positively related to income in location k less income
in location j.

2. The Balassa-Samuelson Effect for the Variance. The cross-sectional variance
V ari(qijk | jk) increases in the absolute income difference between locations
j and k.

3. The Averaging-Out Property. Once we control for income differences, Ei(qijk | jk)
is close to zero. That is, for most bilateral location-pairs with similar wealth
levels, there tends to be as many overpriced goods as underpriced goods.

4. Distance Does Not Matter for the Mean. Intranationally, the average price,
Ei(qijk | jk), does not depend on the distance between locations j and k.
Internationally it does, but not once we control for income/productivity dif-
ferences.

5. Distance Matters for Cross-Sectional Dispersion. Var i(qijk | jk) is increasing
in the log of geographical distance between locations j and k. This is true
for both intra and international location-pairs. Moreover, the magnitude of
the relationship is not affected by the existence of a border.

6. Distance Does Not Matter For Intranational Time-Series Dispersion. For in-
tranational city-pairs, Var t(qijk,t | ijk) does not depend on relative distance.
This is also true of Var t(qijk,t − qijk,t−1 | ijk), the variance of the change

in the relative price. The latter was the focus of Engel and Roger’s (1996)
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study. Their conclusion, based on very different data, was opposite ours. We
are still trying to understand the reasons for the differences.

7. Distance Matters For International Time-Series Dispersion. If a border sep-
arates locations j and k, the variance Var t(qijk,t | ijk) depends positively on
the distance between locations j and k. The same applies for the (above)
variance in the relative-price change. A ‘border effect,’ therefore is not sep-
arately identified from a distance effect (in our data). There seems to be an
interaction effect.

We now demonstrate that each of these empirical regularities is consistent
with a retail-good production technology where deviations from LOP are sustained
through non-traded intermediate inputs and traded intermediate inputs which are
subject to transport costs.

3 Model

This section builds a simple partial equilibrium model retail price determination
at the level of individual goods sold in local markets. We assume that trade occurs
in intermediate inputs (goods) and retail firms combine local inputs with traded
inputs for sale in the local market (allowing for trade in the final products involves
a trivial logical extension).

3.1 The Retailer’s Problem

In the notation that follows, we drop the time index to conserve notation and rein-
troduce it when we discuss time series properties. The retail production function
is assumed to take the form:

Yij ≡ (Nij)
αi (Tij)

1−αi .

where Nij is a non-traded (i.e. local) input while Tij is an input which is either
exported from or imported into location j.

Two examples may help to fix ideas. Suppose Yij is a men’s haircut in Nashville.
The traded input, Tij, might be shampoo. The local inputs are the labor of the
barber and the rental cost of the barber shop. If Yij was a PC sold in Gateway
country, the traded input would be the PC itself and the local inputs would be
sales personnel and the rental cost of the building housing the sales operation. The
value of α is expected to be much closer to one for the haircut than the computer.
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The cost function is the solution to the following minimization problem at each
date:

min
{Nij, Tij}

Cij = PN
j Nij + P T

ij Tij (1)

s.t.(Nij)
αi (Tij)

1−αi ≥ Yij (2)

where Cij is the cost of producing good i in location j; PN
j is the cost of a non-

traded input, common to all goods but differing across locations; P T
ij is the price

of the traded input into production of retail good i in location j.

We have adopted two standard assumptions. The first is that factor mobility is
much higher across sectors within a location than across locations – PN

j is location-
specific, not good-specific. The second assumption is that retailers in all locations
produce good i using the same production technology – αi is good-specific, not
location-specific.

3.2 Retail Price Determination

Under constant returns to scale, the cost function takes the form: Yij · Ci(Pij , 1)

where Yij is the output level, Pij =
(
PN

j , P T
ij

)
and Ci(Pij , 1) is the unit cost

function. Under the assumption of perfect competition, the unit cost is also the
retail price:

Pij = (PN
j )αi (P T

ij )(1−αi ) .

To compare this good and location specific price to the price of an identical good
sold in another location we work with the bilateral real exchange rate at the level
of an individual good (ie. qijk = ln(EjkPij/Pik)):

qijk = αiqN
jk + (1 − αi)qT

ijk. (3)

As the equation makes clear, this price deviation is a linear combination of anal-
ogous deviations in the non-traded and traded input prices. The weights in the
linear combination are the shares of non-traded and traded inputs in production,
which add up to unity under our assumption of constant returns to scale.

The retailer solves the same problem in each period so it is valid to add time
subscripts to Equation (3) to reflect changes are input costs. When we use qijk it
should be understood that we have averaged the good-by-good real exchange rate
across time (i.e. qijk = T−1 ∑

t qijk,t) at the outset, thereby eliminating the role of
time series variation which is discussed separately.
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3.3 The Balassa Samuelson Effect and Trade Costs

Equation (3) amounts to little more than an accounting device, relating input
prices to output prices. To push the model further in a structural direction we
make two assumptions about the properties of the relative prices on the right-
hand-side of equation (3).

The first assumption is that non-traded relative prices reflect productivity dif-
ferences across locations. This assumption is based on the logic of the Balassa
Samuelson (1964) effect. Because we lack reliable data on productivity we use
zjk ≡ log(yj/yk) as a proxy for non-traded productivity difference or qN

jk.

The second assumption is that traded intermediate inputs satisfy the Law-of-
One-Price up to a trade cost. Moreover, we assume that trade costs are related to
distance as follows: log(1+τ i

jk) = log(Dβi

jk) when the source is location k and the
destination is location j. Thus the log the deviation for the traded relative price is

qT
ijk =log{(1+τijk)I

i
jk} = Ii

jklog(1 + τijk) = Ii
jkβ

i log Djk where Ii
jk is an indicator

variable for the direction of the trade flow (equal to 1 if goods travel from k to j,
and −1 if good go from j to k.

Combining these two assumptions we arrive at the observable implications of
a slightly more structured retail model:

qijk = αizjk + (1 − αi)βiI
i
jk log Djk. (4)

where 0 < αi < 1 and βi > 0.

We see that for give given bilateral pair, the Balassa-Samuelson effect has a
common sign, but the magnitude of the impact varies with the share parame-
ter. Greater distance between locations also increases price dispersion, but the
magnitude and the sign depend on specifics related to the good.

4 Properties of the Mean

We begin with an analysis of the cross-sectional mean Ei(qijk|jk), where it is
understood that we have averaged the good-by-good real exchange rate across
time (i.e. qijk = T−1 ∑

t qijk,t) at the outset.

Taking a simple average of both sides of the retail pricing equation, we arrive
at:

qjk = azjk + bjk log Djk. (5)

where a =
∑N

i=1 αi and bjk = N−1 ∑N
i=1(1 − αi)βiI

i
jk.
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4.1 Balassa Samuelson Effects

Ignoring the role of trade costs for the moment, the average deviation reduces to:
qjk = azjk. Since the parameter a is constant across bilateral pairs by virtue of the
common production function, the variance in the mean across jk is simply a scaled
version of the variance in income/productivity across locations. Consider a bilat-
eral pair countries with identical (vastly different) levels of income/productivity,
we would expect the average Law-of-One-Price deviation to be zero (very large).
Another way to visualize this effect is to plot qjk = azjk against income. We expect
a strong positive correlation and as Figure 2 amply demonstrates we find one.

4.2 Distance and Trade Costs

Consider, next the implications of the trade cost model and distance. The multi-
plier on distance is bjk = N−1 ∑N

i=1(1−αi)βiI
i
jk. The dependence on jk is due to

the fact that despite the assumption that the production and trade cost parameters
are independent of location, trade flows obviously are not.

However, the jk subscripts represent little more than a nuisance because we
argue that the coefficient itself is expected to equal zero on a bilateral basis.
We refer to this notion as the ‘averaging out’ property of traded good relative
prices. The easiest way to see this is to suppose that the production and trade
cost parameters are common across goods and an equal number of goods are
imported and exported. Then the expression is literally equal to zero: (1 −

α)βN−1
{∑N/2

i=1 (−1) +
∑N

i=(N/2)+1 1
}

= 0. While some interesting asymmetries

may give rise to positive or negative coefficient, we expect this property of aver-
aging out of the deviations to prevail for quite general production and trade cost
configurations.

4.3 Findings

Figure 3 plots the qjk against bilateral distance. It appears that distance matters
internationally, but not internationally. This visual impression is confirmed by a
simple pair of regression estimates:

|qjk| = (0.0276)0.244 + (0.0031)0.0044 log Djk + εjkinternational (6)

|qjk| = (0.0433)0.130 − (0.0059)0.0044 log Djk + εjkintranational. (7)

We use the absolute value of qjk so that the coefficient on distance has a consistent
sign across bilateral pairings.

Beginning with the international data we find evidence that distance matters as
it should based on the trade cost model. However, the magnitude of the coefficient
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is small: going from cities that are neighbors to 100 miles apart adds 1% to the
price differential, going and additional 2400 miles is needed to add another 0.5%!
Controlling for distance, though, the intercept is both highly economically and
statistically significant. Thus even after conditioning on distance (a proxy for
trade costs), we resoundingly reject the Law-of-One-Price.

The intranational data tells a different story. The distance coefficient is of
the wrong sign and statistically insignificant. Using the same interpretation as
we did for the international context we reject the Law-of-Price, but unlike the
international data distance plays no role at all.

Combining the two results there appears to be a border involving an increase
in the unconditional variance in price levels across locations and an increase (from
zero) in the impact of geographic distance on price differences.

According to our retail model, though, income/productivity disparities play
an independent role. Re-estimating with the absolute value of the log of relative
income across bilateral pairs, we have:

|qjk| = (.0272)0.2537 − (.0031)0.0022 log Djk + (.0031)0.0447|zjk| + εjkinternational(8)

|qjk| = (0.0433)0.130 − (0.0059)0.0044 log Djk + εjkintranational (9)

where we have simply repeated our results for the intranational case because we
lack data on income levels across regions within countries (assuming that income
differences are small across regions within countries, this should not be too prob-
lematic, but we will rectify this for the U.S. where we know such data is available).

The absolute deviations of the log of relative income has a positive coefficient
as expected. The distance coefficient is no longer not statistically significant as
we would expect if the income ratio was effective in picking up the impact of non-
traded goods, based on the ‘averaging out’ property for traded good prices. It
is also interesting to note that the reduction in the magnitude of the coefficient
on distance coefficient (it actually becomes negative) is consistent with a positive
correlation between distance and income differentials.2

5 Properties of Cross-Sectional Variance

Next we examine the cross-sectional variance: V ari(qijk|jk) which, in the model,
is given by:

V ari(qijk|jk) = a′(zjk)
2 + b′(log Djk)

2. (10)

a′ = V ar(αi) and b′ = vari

{
(1 − αi)I

i
jkβi

}
.

2This classic results is derived as follows. Let the true regression be: yi = bxi + czi + εi. If we
estimate: yi = bxi + czi + εi then the difference between the OLS estimate b̂ and the true one is:
b̂ − b = (x′x)−1x′zc. In our context c > 0 and if x′z > 0 the OLS estimate is upwardly biased.
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5.1 Balassa Samuelson Effects

Taking the Balassa Samuelson effect in isolation of the trade cost give us:

V ari(qijk|jk) = a′(zjk)
2. (11)

Thus the variance of Law-of-One-Prices around the mean is increasing in the
income/productivity gap. Thus if we select a location pair with very similar in-
comes there will be very little variation in the size of the deviations across goods.
If we take location pairs with vastly different incomes we will find that the Law-
of-One Price deviations are more heterogenous across goods. In other words, the
qijk are expected to be heteroscedastically distributed with a known form of the
heteroscedasticity, namely equation (11). Plotting the cross-sectional standard de-
viation of relative prices for each bilateral pair against the absolute value of the
logarithm of relative income gives us the positive association we expect to find.
Locations with similar income levels have low price dispersion, as income dispari-
ties rise, the deviations become more dispersed across goods for that bilateral pair
(see Figure 4).

5.2 Distance and Trade Costs

Obviously we will not have an averaging out property in the second moment of
the distribution since the summations in the variance expression involve squared
terms. The second term in the V ari(qijk|jk) expression simplifies somewhat once
we impose the condition that the mean is zero (which is plausible given our earlier
analysis of the mean):

b′ =
N∑

i=1

(1 − αi)2(βi)2

where we have exploited the fact that (Ii
jk)

2 = 1. Unfortunately, the coefficient
does not reduce conveniently to a simple function of the average value of either
the production parameter or the elasticity of trade cost with respect to distance.
If either of the parameters αi or βi were constant across goods, we would identify
the average value of the other parameter up to a scalar (the scalar being the value
of the other parameter). If we had traded good prices on the left-hand-side we
would be able to estimate the average βi . In any case, it must be true that b′ > 0.
Thus distance is expected to matter for the second moment properties of the cross-
section. Figure 5 plots V ari(qijk|jk) against bilateral distance. We see the positive
relationship implied by the above algebra.
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5.3 Findings

Turning to our regression results, we see that both relative income and distance
matter as the theory predicts. We find that the distance coefficient falls in the
international case when we add relative income, but remains highly statistically
significant. Recall that it became insignificantly different from zero in the analysis
of means, which was predicted by the averaging out property. The second moments
should be affected by distance and they are. Moreover, the impact of distance is
quite similar across the two panels as long as we control for income disparities in
the international specification. The coefficient on the distance variable is 0.0012
internationally versus 0.0008 intranationally. Given the standard error on the
intranational distance coefficient we probably cannot reject the hypothesis that
the two coefficients are equal (had we not controlled for income we might have
been able to claim distance matters more internationally).

Var i(qijk | jk) = a + b(log Djk)
2 + cz2

jk + residuals

Intercept (log Djk)
2 z2

jk

International Locations 0.1562 0.0016
(0.0067) (0.0001)

International Locations 0.1497 0.0012 0.0202
(0.0057) (0.0001) (0.0004)

Intranational Locations 0.0416 0.0008
(0.0092) (0.0002)

Economically, the magnitude of the coefficients is large. If we go from a distance
of 100 kilometres to 1000 kilometres, the predicted increase in the cross-sectional
standard deviation is (0.0012(log 1000)2 − (log 100)2)1/2 = 0.178. This is a signif-
icant fraction of the overall cross-sectional standard deviation of 0.52. Similarly,
if we consider a location with income 4 times that of another (a relatively small
income gap), the predicted increase (vis-a-vis locations with the same income) is
(0.0202(log 4)2)1/2 = 0.20, again a significant fraction of the overall level of price
dispersion.

6 Properties of the Time-Series Variance

Up to now we have examined how the cross-sectional mean and variance — across
goods i — of qijk,t varies across location-pairs jk. That is, we’ve examined
Ei(qijk,t | jk, t) and Var i(qijk,t | jk, t). We now turn to the time-series variance
for each good i, Var t(qijk,t | i, jk) using the stochastic trade cost model of Sercu,
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Uppal and Van Hulle (1995) and Lee (2003). We also examine the time-series
variance of the change in qijk,t, Var t(qijk,t − qijk,t−1 | i, jk). The latter was the
focus of Engel and Rogers (1996).

Time-series variation in our model can arise propfrom one of four sources:
variation in input shares, αi, non-traded input prices, PN

ij,t/P
N
ik,t, traded input

prices, P T
ij,t/P

T
ik,t, and nominal exchange rates, ejk,t. We ignore the first and second

because input shares and relative income are unlikely to vary much at the annual
frequency. We focus on the third and fourth; the interaction between nominal
exchange rate variability and the trade-cost model of the price of traded inputs.

Re-introducing the time notation into equation (3), we have

qijk,t = αiq
N
jk,t + (1 − αi)q

T
ijk,t. (12)

In order to emphasize the role of nominal exchange rates, we write this as,

qijk,t = αi(log ejk,t + log
PN

ij,t

PN
ik,t

) + (1 − αi)q
T
ijk,t ,where (13)

|qT
ijk,t| = | log ejk,t + log

P T
ij,t

P T
ik,t

| ≤ τ i
jk = βi log Djk . (14)

This is no more than an alternative way of stating the trade cost model underlying
qT
ijk,t. Nevertheless, it emphasizes an important link between time-series variation

in nominal exchange rates, ejk,t, and the local-currency price ratios of traded and
non-traded inputs; ejk,t can move independently of PN

ij,t/P
N
ik,t, but not of P T

ij,t/P
T
ik,t.

Moreover, the latter effect will depend on distance.

We formalize this in the following proposition (yet to be proven and/or tightened-
up).

Proposition. Suppose that, for each location-pair jk, we have

1. Initial cross-sectional dispersion (across goods i) at time t in qT
ijk,t such that

the same fraction, f > 0, of the distribution is truncated at ±τ i
jk

2. For international locations Var t(log ejk,t | jk) is large relative to Var t(log P T
ij,t/P

T
ik,t | i, jk),

for all goods i

3. Sufficient cross-sectional variance in trade costs τ i
jk = βi log(Djk)

Then,

(i) Var i(q
i
jk,t | jk, t) = 0 is monotonically increasing in the trade cost τjk and,

therefore, in log distance log(Djk).
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(ii) Var t(q
i
jk,t | jk, i) is (somehow) ‘less dependent’ on τjk if Var t(ejk,t) = 0

Statement (i) says that, both intra and internationally, we should expect to
find that the cross-sectional variance depends on distance. This is what we found
in Section 5. Statement (ii) says that we should expect to find stronger distance
effects in the international time-series variances than the intranational time-series
variances. The intuition is simply that nominal exchange rate variability induces
time-series variation in qT

ijk,t which ‘traces out’ a cross-sectional pattern in trade

costs τ i
jk. As an extreme example, suppose that the (initial) cross-sectional vari-

ance in intranational LOP deviations depends on distance but that the traded
and non-traded input ratios never change. Then, trivially, the time-series vari-
ance would be zero and would be independent of distance. In contrast, if nominal
exchange rate variability induces variation in P T

ij,t/P
T
ik,t across international loca-

tions, then distance will matter: locations separated by larger distances leave room
for larger movements over time before the arbitrage bounds are hit.

6.1 Empirical Results

Beginning with summary statistics, Figures 6 and 7 show, for each good, the
average (across locations) amount of time-series volatility we find in qijk,t. That

is, the top graph plots, for each i,
∑Ni

jk Var t(qijk,t | jk, i)1/2/Ni, where Ni is the
number of location-pairs for good i and Var t(qijk,t | jk, i) is the sample variance
for good i and location-pair jk.

Figures 6 and 7 show a striking degree of overall variability. Across goods, the
average standard deviation for the price levels is 0.29 for international locations
and 0.21 for intranational locations. For the price changes, the averages are almost
the same: 0.28 and 0.20, respectively. Engel and Rogers (1996), in contrast, used
CPI data on bi-monthly changes in prices for Canada-U.S. locations and found
average standard deviations on the order of 0.03 (their Table 2). Even if the
price deviations follow a random walk, this translates into an annualized standard
deviation of just over 0.07. By any measure, then, the EIU data display much
more variability.3

3The two main differences appear to be (i) the inclusion of many more countries above Canada-
U.S., (ii) aggregation: the Engel-Rogers data is comprised of 14 aggregate price indices aggregated
to the level of, for instance, food, shelter, furnishings, etc.. Regarding (i), when we included only
Canada-U.S. locations, we find average standard deviations of roughly 0.23 and 0.21 for levels and
changes, respectively. The additional countries, therefore, increase the international volatilities
from roughly 0.23 to 0.28, but have very little effect on the intranational volatilities. Regarding
(ii), when we aggregate to 12 comparable aggregate indices (using equal weighting, however), we
find average volatilities of 0.09 and 0.08 for the inter and intranational, Canada-U.S. differenced
data (exactly analogous to Engel-Rogers). At the aggregated price level, therefore, the EIU
display time-series volatility which is on the same order of magnitude as the CPI data.

13



Turning to the effect of distance, Figure 8 plots Var t(qijk,t | jk, i)1/2 against log
distance, log Djk, for each good and each bilateral location-pair.4 The graph sug-
gests little, if any, relationship between distance and intranational price volatility,
and an increasing relationship for international locations. This is borne out by the
following regressions.

Var t(qijk,t | i, jk)1/2 = a + b log(Djk) + residuals

Intercept Log Distance
Intranational Locations 0.1916 0.0056

(0.0018) (0.0007)
International Locations 0.2435 0.0102

(0.0009) (0.0002)
International Locations* 0.1508 0.0375

(0.0015) (0.0004)

The third regression — the regression involving international locations with an
asterisk — uses only international locations separated by 4,400 kilometres or less.
The idea is that we don’t have intranational data on locations separated by 4,400
km or more. By definition we are not able to identify distance from border effects
for these locations. So, we throw away the extreme distance locations.

7 Conclusions

We have shown that a simple model of retail trade is consistent with many of
the properties of micro-price dispersion. Aggregate real exchange rates are not
a function of geographic distance, consistent with trade costs that ’average out
across goods.’ Variance in Law-of-One-Price deviations across goods is greater
the farther apart are locations, consistent with the model. Income differences
play an important quantitative role in both the mean and the variance. Cities
with higher incomes tend to have higher price levels. This finding is consistent
with a larger literature on absolute PPP. We also find that the variance of LOP
deviations is increasing in income differences. Our model assigns the explanation
for this to good-specific shares of non-traded inputs into retail good production.
For example, since a haircut involves a larger non-traded component to cost than

4There are 122 locations and 237 goods, which amounts to 1,749,297 unique good/location-
pair observations (122*121*237/2). However, because of our missing data criteria, we use 892,311
observations in total. Our results are not sensitive to loosening-up the missing data criteria and
increasing the number of observations substantially.
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a retail computer, price dispersion is higher for the former than the latter even
when traded inputs bear equal transportation costs.

A natural question that arises in light of our work is the role the nominal
exchange rate plays in various facets of our analysis. While we find evidence of a
border in every dimension of our work, we are unsure how much of the variation
is due to real factors or the lack of nominal price adjustment. One interpretation
of the move from fixed to flexible exchange rates is that the real barriers to retail
trade (non-traded inputs and trade costs) are made more apparent than during
a fixed exchange rate regime. In effect, the nominal variation in exchange rates
induces real exchange rates to fluctuate within the bands of arbitrage without
necessarily implying a first-order effect on real allocations. We plan to probe this
idea more extensively in future work.
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Figure 1
Distribution of LOP Deviations: log qijk,t
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Figure 2
Average Price, qjk, Against Relative Income, zjk
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Figure 3
Average Price, qjk, Against Log Distance

(squares are intranational locations, dots are international locations)
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Figure 4
Cross-Sectional Stdev, Var i(qijk | jk)1/2 Against Relative Income, zjk
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Figure 5
Cross-Sectional Stdev, Var i(qijk | jk)1/2 Against Log Distance

(squares are intranational locations, dots are international locations)
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Figure 6
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Figure 7
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Figure 8

21


