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Abstract

Recent advances in monetary theory incorporate some decentralized and some cen-

tralized trade. These models have an essential role for money and also allow one to

easily add key ingredients from more standard macro models. However, existing pa-

pers consider only cases that dichotomize: allocations in centralized and decentralized

markets are independent, which implies monetary policy has no e¤ect on consumption,

investment, employment, or output in the centralized market. We analyze natural gen-

eralizations of the model without this special property, and hence with more interesting

positive and normative policy implications. We also compare di¤erent mechanisms for

monetary exchange, including bargaining and competitive markets.
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1 Introduction

We believe that much progress has been made over the last 15 years or so in modeling explic-

itly the microfoundations of monetary exchange. There is now a large literature analyzing

models that go beyond previously prominent reduced-form approaches, such as imposing a

cash-in-advance constraint, which says people simply �have to�use money to acquire certain

goods, or sticking money into preferences or technology, which says people are �happier or

more e¢ cient�when they use money. A representative paper in the microfoundations lit-

erature provides details about the underlying environment �preferences (over consumption

goods, not assets), technology, the pattern of meetings, information, and so on �that give

rise to outcomes where agents may choose endogenously to use certain objects as media of

exchange, and attempts to derive conditions under which certain institutions, like monetary

exchange per se or certain monetary policies, lead to higher output and welfare. Modeling

explicitly the frictions in a model that can make money essential seems like progress.

It is still the case, however, that many mainstream macroeconomists continue to use

the reduced-form approach. This was clearly understandable in the early days of the mi-

crofoundations literature, for a variety of reasons �not least of which was that papers in

this literature needed (or at least used) some very strong assumptions about things like

the amount of money and goods agents were allowed to inventory, and also because they

were so focused on the process of exchange they abstracted from many of the ingredients

that more standard macro models routinely incorporate, like physical capital, labor markets,

competitive �rms, trends or shocks in productivity, etc. These features looked not only un-

conventional and perhaps aesthetically unpleasing to some economists, but more importantly

they seemed to preclude analyses of many macroeconomic issues, including monetary policy

as it is usually conceived.1

1As Azariadis (1993) describes the situation, �Capturing the transactions motive for holding money

balances in a compact and logically appealing manner has turned out to be an enormously complicated

task. Logically coherent models such as those proposed by Diamond (1982) and Kiyotaki and Wright (1989)

tend to be so removed from neoclassical growth theory as to seriously hinder the job of integrating rigorous

monetary theory with the rest of macroeconomics.�And as Kiyotaki and Moore (2001) more recently put it,

�The matching models are without doubt ingenious and beautiful. But it is quite hard to integrate them with
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More recent work in monetary theory has gone some way towards reducing the distance

between monetary models with microfoundations and mainstream macro. Examples include

the models in Shi (1997) and Lagos and Wright (2003) that do away with the arti�cial

restrictions on inventories in the earlier models, with a minimum loss (perhaps a gain) in

tractability. Some details in these two models di¤er a lot �in particular, Shi assumes that

the fundamental decision-making unit is a family with a continuum of members that provide

intrahousehold insurance against the luck of the trading process, which by the law of large

numbers implies the useful result that every household of the same type starts each trading

round with the same real balances, while Lagos and Wright assume individuals have periodic

access to centralized markets, which by the assumption of quasi-linear utility delivers the

same result. But either approach allows us to much more easily analyze standard questions

concerning, say, optimal monetary policy and the welfare cost of in�ation.

Still, the base-line models in Shi (1997) and Lagos and Wright (2003) do not look much

like mainstream macro, as represented by, e.g., the neoclassical growth model and its many

applications to business cycles, public �nance, development, and so on. One reason is that

those models use a very di¤erent price-determination mechanism: since the literature on the

microfoundations of money has long been based on the notion that bilateral (or at least

relativey small group) trade is a key element contributing to the essentiality of a medium

of exchange, rather than competitive Walrasian pricing, this literature adopted one of the

mechanisms commonly used in search-theory, usually bargaining or price posting. Another

reason is that those models are still missing some of the staple ingredients in standard macro

models, including labor markets, capital investment, etc. So while these newer models do

allow us to address some more conventional issues, they are still pretty far removed from the

mainstream, and hence most practitioners continue to ply the reduced-form approach.

The goal of this project is to continue the integratation of monetary theory with main-

stream macro, in two ways. First, following up on a line in Rocheteau and Wright (2003),

we explore the implications of using competitive pricing rather than, say, bargaining in the

Lagos-Wright model, not only in the centralized market but in all markets. This allows one

the rest of macroeconomic theory �not least because they jettison the basic tool of our trade, competitive

markets.�
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to disentangle which results come from explicitly incorporating frictions into the physical

environment (e.g. from assumptions on specialization, information, etc.) and which come

from imposing a particular non-competitive price-determination mechanism. Moreover, it

turns out that using competitive pricing dramatically simpli�es the workings of the model,

and this allows us to pursue our second line �which is that given the basic Lagos-Wright

structure, one can without much di¢ culty add �rms, labor, and capital markets, basically

integrating a prototypical monetary model with the neoclassical growth model.2

This second line was also pursued in Aruoba and Wright (2003), but the results there

are quite special because the way that model was speci�ed implies a very strong dichotomy:

one can solve independently for the allocations in the centralized and decentralized markets.

This dichotomy result is problematic for several reasons. First, in some sense it means that

the model has really not integreated monetary theory and standard macro at all �at best, it

shows that they may under certain assumptions coexist without getting in each other�s way.

Second, it has stark policy conclusions: changing monetary policy a¤ects prices and quantities

in the decentralzied market, but has no impact on any variable in the centralized market.

In particular, aggregate employment and investment are independent of money. We show

here that the dichotomy is not general: small and natural changes in the speci�cation lead to

versions of the model with rich feedback between the centralized and decentralized markets,

and hence where monetary policy has interesting implications for aggregate consumption,

employment and investment.

The rest of the paper is organized as follows. In Section 2 we describe the basic model

and derive the equilibrium under two di¤erent pricing structures: bilateral bargaining and

competitive pricing. Optimal monetary policy is discussed as is the impact of changes in

the money growth rate on consumption, investment and output. Section 3 extends the basic

model by introducing market speci�c capital and by changing the production technology of

capital. Section 4 outlines our calibrtion and Section 5 presents our welfare results. Finally,

Section 6 concludes.
2It is also possible to add capital to the basic Shi model, as in Shi (1999) or Faig (2001), e.g., but it seems

to us slightly easier and perhaps more natural to do so in the Lagos-Wright version because the centralized

markets are already up and running.
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2 The Basic Model

The environment is similar in spirit to the framework introduced in Lagos and Wright (2003)

�hereafter denoted LW. There is a [0; 1] continuum of in�nite-lived agents. Time is discrete,

and each period is divided into two subperiods called day and night. The di¤erences between

these subperiods is as follows. First, at night agents trade in frictionless markets, while by

contrast during the day trade occurs in markets with various degrees of frictions, depending

on the version of the model. One friction that is present in all versions is a double coincidence

problem, generated here by taste and technology shocks. Another such friction is that agents

are assumed to be anonymous in day markets, which precludes standard credit arrangements,

because they cannot be enforced (Kocherlakota 1998; Wallace 2001). These two frictions

make money essential. Additionally, while the night market is always perfectly competitive,

we will consider two alternative mechanisms for the day market: competitive price taking,

and bilateral bargaining.

At night goods can be either consumed or invested as capital, and productive capital

and labor services are rented to �rms in competitive markets. During the day labor is not

traded in the market, because the technology used by �rms at night does not operate during

the day; however, agents�own labor e¤ort e may be used as an input into an individual

technology in the day market. In the base model capital is also not traded in the day market

(but it is in one extension considered below). The assumption is that once put in place

capital cannot be physically moved to the location where the day market meets. Although

capital is not physically present, agents individual technologies for producing during the day

still depend in general on k.3 We write q = f(k; e) for the individual technology during the

day, and Q = F (K;H) for the production function operated by �rms at night.

To generate a double coincidence problem we adopt the following speci�cation for tastes

3As an example of capital that enters the production function even though it is physically not present

and hence not tradable at a given location, think about logging on to your computer from a remote site. The

only reason for making capital immobile here is to preclude it from serving as a medium of exchange in the

day market; an even simpler alternative would be to interpret k as human capital, but this would obviously

change the empirical implications. See Waller (2004) and Lagos and Rocheteau (2002) for models in which

capital can be used as money.
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and technology during the day: for each agent, with probability � he wants to consume

but cannot produce, with probability � he can produce but does not want to consume,

and with probability 1 � 2� he can neither produce nor consume. This is equivalent for

many purposes to the standard speci�cation in the search literature of random bilateral

matching, where there is a probability � of wanting to consume a good produced by a

random partner. We frame things here in terms of random tastes and technology rather

than random matching simply because it helps some of the discussion to follow, especially

the comparison across the di¤erent pricing mechanisms. In any case, due to the double

coincidence problem and anonymity, money is essential.4 The supply of money is M and

changes according to M+1 = (1 + �)M , where we use a subscript +1 to denote next period.

New money injected via lump sum transfers (or taxes if � < 0) in the night market.

Instantaneous utility at night is U(x)�Ah where x is consumption, h is labor hours and

A is a constant.. Utility during the day is random: with probability � an agent wants to

consume and has utility u(q) where q is consumption; with probability � an agents is able

to produce and has utility ��(e) where e is labor e¤ort; and with probability 1� 2� utility

is 0. We assume that U(x), u(q), and �(e) have the usual properties. Linearity in h is not

important, in principle, but it does generate a huge gain in tractability: as in LW, it allows

us to derive nice analytical results.5 Separability across (x; q; e) facilitates the presentation

somewhat, but is not otherwise important, as we show in the Appendix. The discount factor

across periods is � 2 (0; 1); to reduce notation there is no discounting between subperiods,

but this is easy to relax (see Rocheteau and Wright 2003).

In the analysis below it is convenient to write the agent�s disutility of e¤ort as the utility

cost of producing goods using capital. Let c(q; k) denote the cost in terms of utility from

producing q units of output using k units of capital. The cost function is obtained as follows:

for a given k, solve q = f(e; k) for e =  (q; k) and let c(q; k) = �[ (q; k)]. Notice cq > 0,

ck < 0, cqq > 0, and ckk > 0 under the usual monotonicity and convexity assumptions on f

4We mean essential in the technical sense, that (desirable) allocations can be achieved with money that

cannot be achieved without money, subject to the relevant resource and incentive feasibility conditions (again

see Kocherlakota 1998 or Wallace 2001).
5Rogerson (1988) shows that having utility linear in h is equivalent having general preferences, indivisible

labor, and employment lotteries; the same is true here.
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and �, and have cqk < 0 under the additional restriction fefk�00 > �0 (fkfee � fefek), which

always holds in the case where k is a normal input, including the case fke > 0.6

We analyze the model by �rst considering the night market and then the day market.

At night, if r is the rental rate on capital and w the real wage, pro�t maximization implies

r = FK(K;H) and w = FH(K;H), and constant returns implies equilibrium pro�ts are zero.

Normalize the price of the capital/consumption good to 1 and let � be the relative price of

money. Let W (m; k) and V (m; k) denote the value functions of agents entering the night

market and day market, respectively, with money and capital (m; k). Then the problem of

an agent in the night market is

W (m; k) = max
x;h;m+1;k+1

U(x)� Ah+ �V (m+1; k+1)

s:t: x = rk + wh+ �(m+ �M �m+1) + (1� �) k � k+1;

where � is the depreciation rate, (m+1; k+1) is the money and capital taken out of the market,

pre-transfer, and �M is the transfer. Eliminating h using the budget equation, we have

W (m; k) =
A

w
[�(m+ �M) + (r + 1� �) k]

+ max
x;m+1;k+1

�
U(x)� A

w
(x+ �m+1 + k+1) + �V (m+1; k+1)

�
:

6Given q = f(k; e) implies e =  (q; k), @e=@q =  q = 1=fe > 0 and @e=@k =  k =

�fk=fe < 0. Also,  qq = �fee=f3e > 0,  kk = �1
�
f2e fkk � 2fefk + f2kfee

�
=fe > 0, and  kq =

(fkfee � fefek) =fe. Hence, cq = �0=fe > 0, ck = ��0fk=fe < 0, cqq = 1 (fe�
00 � �0fee) =f3e > 0,

ckk = �
�
�0
�
f2e fkk � 2fefk + f2kfee

�
� f2k�00

�
=f2e > 0 and ckq = [�fefk�00 + �0 (fkfee � fefek)] =fe. Say-

ing k is normal means that in the problem minwe + rk s:t: f(k; e) � q, the solution satis�es @k=@q =

�(fkfee � fefek) > 0.
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The �rst order conditions for the choice variables are7

x : U 0(x) =
A

w

m+1 :
A�

w
= �Vm(m+1; k+1) (1)

k+1 :
A

w
= �Vk(m+1; k+1):

A key result is that, given prices, W is linear in m and k,

Wm(m; k) =
A�

w
(2)

Wk(m; k) =
A (r + 1� �)

w
: (3)

Moreover, it should be clear from the above that the choice of (m+1; k+1) is independent

of (m; k), and this makes the distribution of money and capital holdings degenerate in

equilibrium. Intuitively, the linearity of utility in h in an LW environment eliminates wealth

e¤ects, and this makes all agents choose the same (m+1; k+1) regardless of (m; k).8 While

models with nondegenerate distributions are worth studying, for some questions it seems

reasonable to abstract from distributional issues and study representative agent models �rst.

This is what we get from the linearity of utility in h.

We now proceed to the day market. The value function is

V (m; k) = �Vb(m; k) + �Vs(m; k) + (1� 2�)W (m; k) (4)

7The second order conditions are complicated, and generally ambiguous, since they involve second deriva-

tives of V which can involve third derivatives of u and c, at least under the bargaining mechanism. Following

the methods in LW, one can show that V is concave if the bargaining power parameter � is close to 1, or if

we impose additional conditions on preferences and technology (in LW c was normalized to be linear and u0

was assumed log concave). We avoid these details and simply assume V is concave in the bargaining model,

but again this is always true for � close to 1.
8Actually, in addition to linearity in h, we also require V strictly concave and an interior solution; see LW

for technical assumptions to guarantee these results. The assumptions needed for interiority involve initial

conditions: if (m; k) is very disperse across people, then the rich remain rich and the poor remain poor

for several periods; if we start with (m; k) not too disperse, however, we converge quickly to a degenerate

distribution and stay there.
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where

Vb(m; k) = u(qb) +W (m� db; k)

Vs(m; k) = �c(qs; k) +W (m+ ds; k)

are the value functions when one is a buyer and seller, respectively, and qb and db are the

amounts of output and money agents expect to exchange when buying, and qs and ds are the

amounts when selling, to be determined below.9 Using the result in (2) that Wm = A�=w,

we have

V (m; k) = �

�
u(qb)� db

A�

w
� c(qs; k) + ds

A�

w

�
+W (m; k):

Di¤erentiating with respect to m and k yields the envelope conditions

Vm(m; k) = �

�
u0
@qb
@m

� A�

w

@db
@m

�
+ �

�
�cq

@qs
@m

+
A�

w

@ds
@m

�
+
A�

w
(5)

Vk(m; k) = �

�
u0
@qb
@k

� A�

w

@db
@k

�
+ �

�
�cq

@qs
@k

� ck +
A�

w

@ds
@k

�
+
A (r + 1� �)

w
: (6)

It remains to specify how prices are determined in the day market, so that we can substitute

for the derivatives in the above expressions. This will di¤er across the two versions of the

model presented below.

Before pursuing equilibrium, however, as a benchmark we begin with the planner�s prob-

lem, unconstrained by the assumption that agents are anonymous, so that we can simply

enforce whatever exchange we like without using money. The planner�s problem is described

by

J(k) = max
x;h;q;k+1

U(x)� Ah+ �u(q)� �c(q; k) + �J(k+1) (7)

s:t: x = F (k; h) + (1� �)k � k+1

Substituting for x and di¤erentiating, the �rst order conditions are

h : A = U 0(x)Fh(k; h)

k+1 : U 0(x) = �J 0(k+1)

q : u0(q) = cq(q; k)

(8)

9It should be clear how exactly the same equation would emerge from a random matching model (see

LW, for example).
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The envelope condition is

J 0(k) = U 0(x)[Fk(k; h) + 1� �]� �ck(q; k);

and the Euler equation is

U 0(x) = �U 0(x+1)[Fk(k+1; h+1) + 1� �]� ��ck(q+1; k+1) (9)

It is clear that the solution has q = q�(k) where q�(k) satis�es u0(q) = cq(q; k). Given this,

the other control variables (k+1; h; x) satisfy relatively standard conditions, the �rst equation

in (8), (9), and the constraint in (7).

2.1 Equilibrium I: Bargaining

Here we consider a mechanism used in much recent work in monetary theory, where agents

bargain bilaterally. While the results are more complicated under bargaining than the com-

petitive mechanism presented below, bargaining is arguably a very natural solution concept

in models with frictions, and also serves to highlight certain e¤ects that the competitive

mechanism masks. Thus, here each agent with a desire to consume is matched with one who

can produce. Since they - in particular, the buyers - are anonymous, trade must be quid

pro quo meaning they must pay with cash. The buyer transfers d dollars to the seller in

exchange for q units of output, where (q; d) are determined via the generalized Nash solution

with the bargaining power of the buyer denoted � and threat points given by continuation

values. In general, (q; d) depends on the assets of buyer and seller, (mb; kb) and (ms; ks).10

There are two obvious feasibility conditions for the exchange: q cannot exceed the output of

the seller, q � f(e; ks), and d cannot exceed the money holdings of the buyer, d � mb.

The buyer�s payo¤ from the trade is u(q)+W (mb�d; kb) and his threat pointW (mb; kb).

Thus, his surplus is

Sb = u(q) +W (mb � d; kb)�W (mb; kb)

= u(q)� d�A=w;

10Note that while all agents have the same (m; k) in equilibrium, we still need to ask what happens if a

given individual deviates o¤ the equilibrium path.
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by virtue of (2). The seller�s payo¤is�c(q; ks)+W (ms+d; ks) and his threat pointW (ms; ks).

Thus his surplus is

Ss = �c(q; ks) +W (ms + d; ks)�W (ms; ks)

= �c(q; ks) + d�A=w:

The bargaining problem can be written

max
q;d

S�bS
1��
s s.t. d � mb:

As in LW, one can show that in equilibrium with ks = K for all agents the constraint holds

with equality, d = mb. Also as in LW, this further implies q � q�(ks) where q�(ks) is the

solution to u0(q) = cq(q; ks), typically with strict inequality q < q�(ks) (here the inequality

is strict unless � = 1 and we follow the optimal monetary policy). To solve the bargaining

problem, insert d = mb and take the �rst order condition with respect to q to get

�Ssu
0(q) = (1� �)Sbcq(q; ks):

Then insert Sb and Ss and rearrange as �mb = g(q; ks)w=A, where

g(q; ks) �
�c(q; ks)u

0(q) + (1� �)u(q)cq(q; ks)

�u0(q) + (1� �)cq(q; ks)
: (10)

Hence, q = q(mb; ks), where the function q(mb; ks) is given by the solution to A�mb=w =

g(q; ks) (the dependence on prices w and � as well as the parameter A is implicit). This

implies the key derivatives we need in (5) and (6) are given by @q=@mb = A�=wgq > 0 and

@q=@ks = �gk=gq > 0, where

gq =
cqu

0[�u0 + (1� �)cq] + �(1� �)[u� c][u0cqq � cqu
00]

[�u0 + (1� �)cq]2
> 0 (11)

gk = �
cku

0 [�u0 + (1� �)cq] + cqk(1� �)u0 (u� c)

[�u0 + (1� �)cq]
2 < 0 (12)

(we also have @q=@ms = @q=@kb = 0, @db=@mb = 1, and @ds=@mb = @db=@ks = @ds=@ks = 0).

Thus, if the buyer brings more cash or the seller brings more capital to a meeting, more output

gets traded. Notice that in general the price is non-linear: if the buyer brings half as much

money, he does not get half as much q: For � = 1, g(q; ks) = c(q; ks), which makes things a
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lot simpler: gq = cq and gk = ck, and so therefore @q=@mb = A�=wcq and @q=@k = �ck=cq.

In this case, if marginal cost cq is constant, pricing is linear: if you spend another dollar you

get another unit of q.11

Inserting (m; k) = (M;K) and the derivatives, (5) and (6) become

Vm(M;K) = �
u0(q)A�

gq(q;K)w
+
(1� �)A�

w

Vk(M;K) =
A (r + 1� �)

w
� �(q;K);

where (q;K) = ck(q;K)gq(q;K)�cq(q;K)gk(q;K)
gq(q;K)

< 0. Substituting these into the �rst order con-

ditions for m+1 and k+1 in (1), and inserting the equilibrium prices � = g(q; ks)w=MA,

r = FK(K;H), and w = FH(K;H), we arrive at the equilibrium conditions

g(q;K)

M
= �

g(q+1; K+1)

M+1

�
1� � + �

u0(q+1)

gq(q+1; K+1)

�
(13)

U 0(x) = �U 0(x+1)[FK(K+1; H+1) + 1� �]� ��(q+1; K+1): (14)

The other equilibrium conditions come from the �rst order condition for x in (1) and the

resource constraint on total output

A = U 0(x)FH(K;H) (15)

x = F (K;H) + (1� �)K �K+1: (16)

A monetary equilibrium is de�ned as (positive, bounded) paths for (q;K+1; H; x) satis-

fying (13)-(16), given the initial K0. A nonmonetary equilibrium also always exists, which

satis�es q = 0 instead of (13), (14) with (�) = 0, and (15)-(16), which are simply the

equilibrium conditions for the standard nonmonetary growth model (with h entering utility

linearly). Returning to monetary equilibria, consider the case where M+1 = (1 + �)M with

� constant, so that it makes sense to focus on a steady state, de�ned as a constant solution

(q;K;H; x) to (13)-(16). De�ning the rate of time preference � and the nominal interest rate

i such that � = 1
1+�

and 1 + i = (1 + �)(1 + �), we can simplify the steady state conditions

11We can also simplify the bargaining solution by setting � = 0, but then mb = 0 and the monetary

equilibrium breaks down. The reason � = 1 does not symmetrically imply ks = 0 is that the same capital is

used in the day and night market in this version of the model.
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as12

1 +
i

�
=

u0(q)

gq(q;K)
(17)

�+ � = FK(K;H)� �
(q;K)

U 0(x)
(18)

A = U 0(x)FH(K;H) (19)

x = F (K;H)� �K: (20)

First, one simple special case of our model is the speci�cation in Aruoba and Wright

(2003), where capital does not enter the daytime technology, c(q;K) = c(q). In this case

g(q;K) = g(q), (q;K) = 0, and the equilibrium conditions are

g(q)

M
= �

g(q+1)

M+1

�
1� � + �

u0(q+1)

g0(q+1)

�
U 0(x) = �U 0(x+1)[FK(K+1; H+1) + 1� �]

A = U 0(x)FH(K;H)

x = F (K;H) + (1� �)K �K+1:

This model displays a strong dichotomy: the �rst equation determines the path for q and

the other three determine the paths for (K+1; H; x) independently. An implication of this

feature is that M , which enters only the �rst equation, a¤ects q but not (K+1; H; x); that is,

investment, employment and consumption in the night market is independent of monetary

policy.

Of course this does not mean policy is super neutral in Aruoba and Wright (2003): the

path of M a¤ects q, and q is a real variable. For example, in steady state q satis�es

1 +
i

�
=
u0(q)

g0(q)
:

>From this it follows that @q=@i < 0 as long as the steady state q is unique (which is

true under certain conditions addressed in LW). Moreover, we know that q < q� in any

equilibrium, where q� is the e¢ cient quantity de�ned by u0(q�) = c0(q�). Hence, we maximize

welfare by making i as small as is consistent with equilibrium. This turns out to be the

12This expression for i satis�es the Fisher equation, which eliminates arbitrage opportunities from holding

nominal versus real assets.
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Friedman Rule, i = 0; which requires the money growth rate �F to satisfy (1+�F )(1+�) = 1

(for any � < �F equilibrium does not exist; see LW). Hence, the optimal policy is � = �F

and it implies u0(q) = g0(q). However, �F does not yield the �rst best outcome unless � = 1,

since in the case � = 1, g(q) = c(q) and so � = �F implies u0(q) = c0(q). When � < 1 the

Friedman Rule corrects the dynamic wedge associated with impatient agents holding non-

interest-bearing money, but monetary policy cannot correct a second distortion identi�ed in

LW as a hold-up problem in the bargaining game when � < 1.

The dichotomy in Aruoba and Wright is very special, and does not hold in the generaliza-

tion where k enters the cost function sinceK and q both appear in (13) and (14), and there is

no way to solve independently �rst for q and then the other variables. Naturally, the e¢ cient

investment decision not only takes into account the fact that K a¤ects productivity in the

night technology, but also productivity in the day technology. A change in the growth rate

of M a¤ects q and this in turn a¤ects the return to K. Intuitively, an increase in in�ation

(nominal interest rates) reduces the return to trading in the day, which a¤ects the value of

capital in that market and hence investment. But the same capital is used in both day and

night production, and so an increase in in�ation a¤ects productivity and hence employment

and output in the night markets.

However, in the case � = 1, notice that (q;K) = 0. This means that, although the model

is not dichotomous, it is recursive: (14)-(16) can be solved for (x;K+1; H) independently of

q, and the solution is exactly the path from the standard (nonmonetary) model; then, given

the path for capital, (13) determines the path for q. In this case, anything that a¤ects capital

a¤ects the value of money, but there is no feedback in the other direction from q to K. For

example, in steady state we have

@q

@K
=

cqk
cqu00 � u0cqq

> 0

(anything that increasesK raises the value of money). An implication is that monetary policy

a¤ects q, but not investment, employment or consumption in night markets. Intuitively, what

happens when � = 1 is that sellers get none of the gains from trade, so they realize none of

the cost savings from bringing extra capital into the day market (another holdup problem)

and hence the investment decision is based solely on returns in night production.
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This holdup problem in the demand for capital is general (it does not only apply in the

extreme case � = 1) and will cause K to diverge from its e¢ cient level. This represents an

additional distortion over and above the usual ine¢ ciency that arises when � > �F , and the

holdup problem in money demand that arises when � < 1. Normally these holdup problems

are resolved if one sets � correctly (this is the insight of Hosios (1990) and others), but here

it cannot be done: � = 1 is required to resolve the holdup problem in the demand for money,

but this is the worst possible case for the holdup problem in the demand for capital.13 When

capital reduces the cost of producing day goods, this should be taken into account when

investing in K, but whenever � > 0 the investor has to share the cost savings with the buyer

and hence under-invests. There is obviously no way to set � to both 1 and 0 to eliminate

both holdup problems in the bargaining game. In the next section we consider an alternative

pricing mechanism that does.14

2.2 Equilibrium II: Competitive Pricing

The idea of using competitive (Walrasian) price-taking behavior as an alternative to bargain-

ing in search-type monetary models was explored in Rocheteau and Wright (2003). There it

was assumed that agents were randomly allocated trade opportunities in the sense of access

to markets but in these markets, rather than having agents bargain bilaterally, there is an

auctioneer who sets prices to equate supply and demand. It is legitimate to consider this

pricing mechanism and still assume anonymous traders so as to rule out credit and main-

tain an essential role for money.15 In fact, this mechanism can be reinterpreted in terms

of �competitive search equilibrium��an equilibrium concept used by others in nonmone-

tary search theory. In Rocheteau and Wright (2003), this mechanism actually dominates

Walrasian pricing due to a �search externality�at the entry decision; since we do not have

an entry decision here the allocations are the same under the two mechanisms - Walrasian

pricing and competitive search - we present things in terms of the simpler story.

13When � = 0, we have (q;K) = ck(q;K), which yields the e¢ cient investment decision, given q but also

yields q = 0:
14In addition to LW, see Rauch (2000), and Camera, Reed and Waller (2003) for discussions of holdup

problems in monetary models.
15See also Levine (19xx), Kocherlakota (2003), and Temzilides (19xx) for related models.
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The value function for the day market before the shocks are realized has the same form

as in (4) except now Vb(m; k) and Vs(m; k) are di¤erent. The buyer�s problem is

Vb(m; k) = max
qb;d

u(qb) +W (m� d; k)

s:t: pqb = d and d � m

and the seller�s problem is

Vs(m; k) = max
qs
�c(qs; k) +W (m+ pqs; k):

These are standard competitive demand and supply problems with p taken parametrically.

In equilibrium qb = qs = q because we have conveniently assumed there are the same number

� of buyers and sellers.

The buyer�s choice satis�es u0(q) = pWm(M � pq; k) = pA�=w if the constraint is not

binding and q =M=p if it is, where we have inserted the equilibrium condition m =M , and

Wm = A�=w (which we can do because the night market here is exactly the same as before).

The seller�s choice satis�es cq(q; k) = pWm(M + pq; k) = pA�=w. If the buyer�s constraint

is not binding, the equilibrium q solves u0(q) = cq(q; k), or q = q�(k); if the constraint

is binding, the equilibrium solves cq(q; k) = A�M=wq. It is again easy to show that the

constraint will be binding in equilibrium.

The next step is to di¤erentiate (??) with respect to m to get

Vm(m; k) = � [u0(q)� pA�=w]
@q

@m
+ A�=w

= �
u0(q)

p
+ (1� �)A�=w

where we have used @q=@m = 1=p since the buyer�s constraint is binding. Similarly,

Vk(m; k) = ��ck(q; k) + A(r + 1� �)=w:

Inserting Vm and Vk into the �rst-order conditions in (1) and rearranging yields the analogs

16



to (13)-(14) for this model:16

cq(q;K)q

M
= �

cq(q+1; K+1)q+1
M+1

�
1� � + �

u0(q+1)

cq(q+1; K+1)

�
(21)

U 0(x) = �U 0(x+1) [FK(K+1; H+1) + 1� �]� ��ck(q+1; K+1) (22)

The other equilibrium conditions are the same, and we repeat them here for convenience:

A = U 0(x)FH(K;H) (23)

x+K+1 = F (K;H) + (1� �)K: (24)

Monetary equilibrium is now de�ned by (positive, bounded) paths for (q; x;K+1; H) satis-

fying (21)-(24) given the initial K0. The di¤erence between the bargaining and competitive

pricing models is in the di¤erence between (13)-(14) and (21)-(22). They di¤er because

g(q;K) 6= cq(q;K)q and gq(q;K) 6= cq(q;K) in the �rst pair of equations and because

(q;K) 6= ck(q;K) in the second pair. Suppose we concentrate for now on steady states.17

Then in the competitive pricing model we have

1 +
i

�
=

u0(q)

cq(q;K)
(25)

�+ � = FK(K;H)� �
ck(q;K)

U 0(x)
(26)

while in the bargaining model we have

1 +
i

�
=

u0(q)

gq(q;K)
(27)

�+ � = FK(K;H)� �(q+1; K+1): (28)

Competitive pricing signi�cantly alters the model: (25) and (27) are the same i¤ � = 1;

and (26) and (28) are the same i¤ � = 0. In this way, competitive pricing is able to eradicate

the holdup problem in both the money demand and investment decisions. The idea is that in

16In this model it is easy to verify the second order conditions must hold; the di¤erence is that now pricing

is linear so we do not need any conditions on third derivatives the way we do in the bargaining model with

� < 1.
17In steady state the di¤erence between g(q;K) and cq(q;K)q across the two models is irrelevant. This is

not so out of steady state. For example, even if � = 1, so that g(q;K) = c(q;K), (13) and (21) di¤er as long

as c(q;K) 6= cq(q;K)q �i.e. as long as c is nolinear in q.
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the competitive model agents take the price as given; their individual choices have no e¤ect

on the terms of trade. Since both holdup problems are eliminated under Walrasian pricing,

the only distortion remaining is the dynamic wedge associated with discounting, and under

the Friedman rule i = 0 we get the �rst best.

Comparing (9) with (22), the investment decision is not distorted in the competitive

monetary equilibrium except to the extent that q is wrong. The �rst order condition for

q in (8) says that the e¢ cient solution is q = q�(k). From (21), for this to be true in the

competitive monetary equilibrium we require

M+1

M
= �

cq(q+1; K+1)q+1
cq(q;K)q

;

in particular, in a steady state we require the Friedman rule. Hence, the steady state of

the competitive monetary equilibrium achieves the �rst best outcome at i = 0: the value

of money is given by q = q�(k), and then investment, employment and consumption are all

e¢ cient. By comparison, in the bargaining model, even at i = 0, q was too low due to the

holdup problem in money demand that occurs whenever � < 1, and k is too low due to the

holdup problem in investment that occurs whenever � > 0.

To close this section, we mention that even though the above equations determine the ag-

gregate variables (q; x;H;K+1), the individual values of these variables di¤ers across agents.

First, only a measure � of the population consume q and have m = 0 when they enter the

night market. A group also of measure � are sellers each period and enter the night market

with m = 2M , while a group of measure 1� 2� did not trade and enter with m =M . These

agents all choose the same x, k0 and m0, but supply di¤erent amounts of labor,

h =

8>>><>>>:
H + A�

w
M for buyers

H � A�
w
M for sellers

H otherwise

(29)

where H is aggregate hours.

2.3 Example

To obtain more insight on how in�ation a¤ects the steady state of the economy, we construct

an example using explicit functional forms. Analysis of the general model is contained in
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the appendix. For ease of presentation, we focus on the competitive pricing equilibrium.

Consider the following functional forms:18

F (K;H) = K�H1�� 0 < � < 1

U(x) = lnx

u(q) =
q1�

1� 
0 <  < 1

c(q;K) = q'K1�' ' > 1:

Let | = K=H denote the capital-labor ratio. Then equations (19), (20), (25) and (26) can

be solved to obtain

x =
(1� �)

A
|� (30)

K =
(1� �)|

A (1� �|1��)
with K > 0,

@K

@|
> 0 for | <

�
1

�

� 1
1��

(31)

q =

�
�

' (i+ �)

� 1
'�1+

�
(1� �)|

A (1� �|1��)

� '�1
'�1+

(32)

�+ � =
�

|1��
+ �

�
�

' (i+ �)

��


[(1� �) =A]1�� ('� 1) (1� �|1��)�

|���
(33)

� N(|)

where � = '
'+�1 < 1:

Equation (33) determines the solution for | which can then be used to determine the

steady state values of x; q;K and H: It is straightforward to show that for � � � N(|) is

a monotonically decreasing function in | that approaches in�nity as |! 0 and approaches

zero as | ! +1. Thus, a unique equilibrium value of | exists. For � = 0; we obtain the

non-stochastic steady state corresponding to Hansen�s (1985) RBC model. With � > 0;

capital creates additional value in production during the day market which leads agents to

accumulate more capital on the margin. An increase in the money growth rate decreases

N(|) for any given value of |: Consequently, greater money growth raises i and reduces

the steady state value of | which in turn lowers x;K; and q: Furthermore, from (31), H =

18The cost function below is obtained when �(e) = e and q = e�k1�� where 0 < � < 1: As a result,

' = 1=� > 1:
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(1� �) = [A (1� �|1��)] which is increasing in |. So agents also work less in the night market

when money growth is higher.19

The intuition for these results is the following. An increase in in�ation lowers the value

of money and the quantity of goods traded in the day market. Since production is lower,

the marginal value of capital in the day market falls and so agents accumulate less capital in

the night market. The reduction in capital reduces the real wage and so agents work less in

the night market. Since the planner�s problem is replicated only under the Friedman rule,

i = 0; then any i > 0 is clearly welfare reducing.

3 Alternative Speci�cations

3.1 Two Capital Goods

So far, the same stock of physical capital k was an input to both day and night production.

However, it would also seem reasonable to assume that di¤erent types of capital are needed

to produce each good. In this section we modify the baseline model to allow for two types of

capital: k is used to produce goods at night and a new type of capital z is used to produce

day goods. Production of both capital stocks requires an investment at night; k and z are

both traded solely in the night market and are not mobile. The two capital stocks can also

depreciate at di¤erent rates, � for k and ! for z.

The problem in the night market is now

W (m; k; z) = max
x;h;m+1;k+1;z+1

U(x)� Ah+ �V (m+1; k+1; z+1)

s:t: x = � (m�m+1 + �M) + wh+ rk + (1� !) z + (1� �) k � k+1 � z+1:

Eliminating h; this can be written as

W (m; k; z) =
A

w
[� (m+ �M) + (r + 1� �) k + (1� !) z]

+ max
x;m+1;k+1;z+1

U(x)� A

w
(x+ �m+1 + k+1 + z+1) + �V (m+1; k+1; z+1):

19For � > �; N(|) can be U-shaped implying that multiple equilibria may exist.
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The �rst order conditions are

x : U 0(x) =
A

w
(34)

m+1 :
�

w
= �Vm(m+1; k+1; z+1)

k+1 :
A

w
= �Vk(m+1; k+1; z+1)

z+1 :
A

w
= �Vz(m+1; k+1; z+1)

and the envelope conditions are given by

Wm(m; k; z) =
A

w
� (35)

Wk(m; k; z) =
A

w
(r + 1� �)

Wz(m; k; z) =
A

w
(1� !)

As with k, (34) shows that agents take the same amount of z out of the night market.

Hence the distribution of (m; k; z) will be degenerate in equilibrium. In the day market,

everything is as before except we replace c(q; k) with c(q; z). The bargaining solution is still

given by (10) with the substitution of z for k,

A�m

w
= g(q; zs) �

�c(q; zs)u
0(q) + (1� �)u(q)cq(q; zs)

�u0(q) + (1� �)cq(q; zs)
:

As before it can be shown that buyers spend all of their money balances so that d = m:

The value function in the day market is the same as before except there is an extra state

variable, and z replaces k: The envelope conditions are

Vm(m; k; z) =
A

w
�

�
1� � + �

u0 (q)

gq(q; z)

�
Vk(m; k; z) =

A

w
(r + 1� �)

Vz(m; k; z) =
A

w
(1� !)� �(q; z)

where (q; z) = cq(q;z)gz(q;z)�cz(q;z)gq(q;z)
gq(q;z)

< 0: Again, if � = 1 then (q; z) = 0, and if � = 0,

(q; z) = �cz(q; z):

The same methods used above to close the model with bargaining reduces the equilibrium
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conditions to

g(q; Z)

M
= �

g(q+1; Z+1)

M+1

�
1� � + �

u0(q+1)

gq(q+1; z+1)

�
(36)

U 0(x) = �U 0(x+1)[FK(K+1; H+1) + 1� �] (37)

U 0(x) = �U 0(x+1)

�
��(q+1; Z+1)

U 0(x+1)
+ 1� !

�
(38)

A = U 0(x)FH(K;H) (39)

x+K+1 + Z+1 = F (K;H) + (1� �)K + (1� !)Z (40)

Equation (36) is equivalent to (13) with Z replacing K: Equation (37) is the standard equi-

librium condition for k+1 in the one-sector growth model. Equation (38) is the equilibrium

condition for z+1.

In steady state we get

1 +
i

�
=

u0(q)

gq(q; Z)
(41)

�+ ! = ��(q; Z)FH(K;H)
A

(42)

�+ � = FK(K;H) (43)

A = U 0(x)FH(K;H) (44)

x = F (K;H)� �K � !Z (45)

This model also does not display the dichotomy in Aruoba-Wright, even though k has no

direct e¤ect on q production. Since investment in z is done in the night market, it has to be

�nanced by changes in x, h or k+1.20

For � = 1, gq(q; z) = cq(q; z) and (q; z) = 0. Then from (41) we see that the Friedman

rule generates the e¢ cient quantity, conditional on z; q� = q�(z). However, when � = 1;

z = 0. The reason is that z only has value in q production, and when � = 0 sellers get no

surplus from selling q. Since z is costly, agents do not accumulate any. This is an extreme

outcome of the holdup problem; if z is a necessary input for q production, then for � = 0

the holdup problem causes q production and the monetary equilibrium to collapse.
20However, when z does not depreciate, ! = 0, the model is recursive since k, h and x are determined by

(43), (44) and (45) independently of q and z. Changes in k, h and x will a¤ect q and z but not vice-versa.

Since monetary policy changes q; this will change the steady state level of z but will have no e¤ect on k; h;

and x in the night market. In this sense, when ! = 0 the dichotomy reappears.
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With Walrasian pricing, once again the holdup problems on money and capital are elim-

inated and we get

1 +
i

�
=

u0(q)

c0(q; Z)
(46)

�+ ! = ��cz(q; Z)FH(K;H)
A

(47)

As with bargaining, the dichotomy is broken. Consequently, changes in the money growth

rate will a¤ect the choice of z which a¤ects x, h and k+1. Intuitively, we expect that an

increases in the money growth rate � raise i, which lowers q thereby reducing the incentive

to invest in z.

3.2 Example

Again, we use explicit functional forms to gain insight as to how monetary policy a¤ects the

economy. We use the same functional forms as before except that Z now replaces K in the

cost function. For presentation purposes we look at the equilibrium with Walrasian pricing.

Using the speci�ed functional forms as before, (43), (44) and (46) yield

K = H

�
�

�+ �

� 1
1��

x =
1� �

A

�
�

�+ �

� �
1��

q = Z
'�1

'�1+

�
�

' (i+ �)

� 1
'�1+

implying that the capital-labor ratio is uniquely pinned down which in turn determines the

equilibrium level of consumption. Using these expressions (47) yields

Z =

�
�

' (i+ �)

� 1


"
� ('� 1) (1� �)

A (�+ !)

�
�

�+ �

� �
1��
# 1
�

where � = '
'+�1 < 1 as before: So Z is pinned down. Finally, (45) yields

H = �

(
1� �+ A!

�
�

' (i+ �)

� 1

�
� ('� 1) (1� �)

A (�+ !)

� 1
�
�

�

�+ �

��(1��)
�(1��)

)

where � = �+�
A[�+(1��)�] :
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How does policy a¤ect this economy? An increase in the money growth rate above the

Friedman rule increases the nominal interest rate. An increase in i again lowers the value of

money and thus the quantity of goods produced in the day market. As before, this reduces

the marginal value of a unit of Z so there is less investment. Since agents need fewer resources

for investment, they work less in the night market and so there is less K. Aggregate output

in the night market falls however, the capital-labor ratio is una¤ected which leaves the real

wage and consumption unchanged. Since aggregate output falls but consumption stays the

same, the saving rate declines.

3.3 Capital Produced in the Day

In the previous models, all investment occurred at night, and so money is not needed to pay

for capital goods. It is known that in reduced form models it makes a di¤erence if one has to

pay for capital goods with cash; e.g. Stockman (1981). To consider this e¤ect in our model,

we modify things by assuming that investment occurs in the day market where agents are

anonymous and therefore money is essential for trade. Suppose that agents do not consume

the output of the day market at all but instead use it as an intermediate input that can

be transformed into capital k for production at night, where without loss of generality we

assume q can be transformed one for one into k.21 As in the previous sections, a fraction �

have the ability to produce the intermediate input, and the same fraction have the ability to

transform it into capital, but no agent can do both. Once capital is produced it is immobile,

as in the other models, and so it cannot serve as a medium of exchange.

Capital is productive in the night market, where it will be rented to competitive �rms,

but not the day market �i.e. c(q; k) = c(q). Since trade is anonymous, money is needed to

buy capital, as in Stockman�s model. The night market problem is

W (m; k) = max
x;h;m+1

U(x)� Ah+ �V (m+1; k)

st x = wh+ (r + 1� �) k + �(m+ �M �m+1):

21See Shi (1999) for a related model.
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We assume for now that k is not traded in this market. Substituting for h we obtain

W (m; k) = max
x;m+1

U(x)� A

w
[x� (r + 1� �) k � �(m+ �M �m+1)] + �V (m+1; k):

The �rst-order conditions are given by

x : U 0(x) =
A

w
(48)

m+1 :
A

w
� = �Vm(m+1; k):

Note that since individual k is obtained in the day market in this model, individual capital

holdings depend on the random shocks. Hence, there is a distribution of k across agents.

Since the �rst-order condition for m+1 is not independent of one�s capital holdings it is not

obvious at this stage if the distribution of money holdings is degenerate. We demonstrate

below that it is. The envelope conditions are still given by (2) and (3).

One can assume agents bargain just as in the earlier model, but the surpluses are di¤erent.

The buyer gives up d units of money and acquires q units of intermediate goods which is

transformed into k = d units of capital. Hence his surplus is Sb = W (m�d; k+q)�W (m; k) =

q(r + 1 � �)A=w � �dA=w. Similarly, the seller�s surplus is Ss = �c(q) +W (m + d; k) �

W (m; k) = �c(q) + �dA=w. Notice these surpluses and hence (q; d) are independent of the

individuals�capital holdings and the seller�s money holdings. Again one can show d = mb.

Then the �rst-order condition for q can be written

mb� = g(q; r; w) =
�c(q) + (1� �)qc0(q)

� (r + 1� �)A=w + (1� �)c0(q)
(r + 1� �)

and @q=@mb = �=gq(q; r; w).

The value function in the day market is now

V (m; k) = �

Z n
W [m� d; k + q (m)] +W (m+ ~d ( ~m) ; k)� c [q ( ~m)]

o
dF( ~m)

+ (1� 2�)W (m; k)

= �

�
q (m) (r + 1� �)

A

w
� d�

A

w

�
+ �

Z �
�c [q ( ~m)] + ~d ( ~m)�

A

w

�
dF( ~m) +W (m; k)

where F( ~m) is the distribution of money holdings across agents and ~d ( ~m) is the money

received by a randomly encountered buyer holding ~m units of money. The integration is
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only with regards to ~m since capital holdings are irrelevant for the payo¤s in bargaining.

The envelope condition is

Vm(m; k) = �

Z �
(r + 1� �)

A

w

@q(m)

@m
� �

A

w

@d

@m

�
dF( ~m) +

A

w
�

= � (r + 1� �)
A

w

@q(m)

@m
� ��

A

w
+
A

w
�

=
A

w
�

�
1� � + �

r + 1� �

gq(q; r; w)

�
:

Since Vm(m; k) is independent of the buyer�s capital holdings, then it must be the case that

the choice of money taken out of the night market according to (48) is the same for everyone

�the distribution of m is again degenerate regardless of whether or not the distribution of

capital is degenerate.

The �rst-order condition for m+1 implies

g(q; r; w)

Mw
= �

g(q+1; r+1; w+1)

M+1w+1

�
1� � + �

r+1 + 1� �

gq(q+1; r+1; w+1)

�
: (49)

It is apparent that this model does not dichotomize �we cannnot solve for q without knowing

r = FK(K;H) and w = FH(K;H). In steady state, we have

1 +
i

�
=

FK(K;H) + 1� �

gq [q; FK(K;H); FH(K;H)]
:

If we set � = 1 then g(q; r; w) = c(q)w=A, and gq(q; r; w) = c0(q)w=A = c0(q)FH(K;H)=A,

which reduces the steady state condition to

1 +
i

�
= A

FK(K;H) + 1� �

c0(q)FH(K;H)
:

Using (19)-(20) and the steady-state condition �q = �K, a steady state with � = 1 is a pair

(K;H) solving

1 +
i

�
= A

FK(K;H) + 1� �

c0(�K=�)FH(K;H)
(50)

A = U 0 [F (K;H) + (1� �)K]FH(K;H): (51)

Using (50) and (51), it is straightforward to show that @K=@i < 0. The intuition behind

this result is that an increase in the money growth rate lowers the value of money acquired

by sellers of intermediate goods and so they produce less. Since intermediate goods are used
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to produce capital, it follows immediately that aggregate K is lower. Thus, we get a similar

result to Stockman but for a di¤erent reason.

What if agents were allowed to trade k in the night market? Notice that it is merely a

secondary market �no investment occurs, only reallocation of k. Let � denote the price of

existing capital. Then the agent�s value function in the night market satis�es

W (m; k) = max
x;m+1;k+1

U(x)�A
w
[x+ �k+1 � � (r + 1� �) k � �(m+ �M �m+1)]+�V (m+1; k+1):

The �rst order condition for k+1 is

A

w
� = �Vk(m+1; k+1)

Since wealth is linear in capital holdings and capital does not a¤ect the value of intermediate

good trades, Vk(m+1; k+1) =Wk(m+1; k+1) =
A
w+1

�+1 (r+1 + 1� �) which gives

A

w
� = �

A

w+1
�+1 (r+1 + 1� �)

This expression is independent of individual k and merely pins down the path for the price

of capital in the secondary market such that no arbitrage opportunities exist. Agents are

indi¤erent between buying or selling capital at this price and so the distribution of capital

is not pinned down without further assumptions on agents�behavior.

With competitive pricing, buyers choose how much of the intermediate good to purchase.

As before, d = m so buyers spend all of their money and acquire qb = m=p units of goods.

Sellers set marginal cost equal to the value of a marginal unit of money received in payment,

c0(qs) =
A
w
�p: In equilibrium, qb = qs = q which solves c0(q) = A�m

wq
: Following the same

methods as before, the �rst-order condition for money becomes

A

w
� = �

A

w+1
�+1

�
1� � + �A

r+1 + 1� �

c0(q+1)w+1

�
Using A

w
� = c0(q)=p and p = m=q this can be written as

c0(q)q

M
= �

c0(q+1)q+1
M+1

�
1� � + �A

r+1 + 1� �

c0(q+1)w+1

�
(52)

Comparing (49) and (52) note that the dynamics of the model under bargaining and Wal-

rasian pricing will di¤er if g(q; r; w) 6= c0(q)q and gq(q; r; w) 6= c0(q)w=A: In steady state, (52)

becomes

1 +
i

�
= A

FK(K;H) + 1� �

c0(q)FH(K;H)
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which is the same steady-state expression that arises under bargaining when � = 1. So an

equilibrium with Walrasian pricing is a pair (K;H) solving (50) and (51). Once again, there

is no dichotomy and excessive money growth, creates in�ation, raises the nominal interest

rate and lowers the equilibrium capital stock.

4 Calibration

To be completed...

5 Welfare Analysis

To be completed...

6 Conclusions

In this paper we have taken another step towards closing the gap between search models of

money and standard macro models. We have shown how deriving the demand for money

from �rst principles can be incorporated in the neoclassical growth model and how monetary

policy a¤ects aggregate output, employment and consumption. The key point of our paper is

that there are many links by which changes in the value of money in the search market spill

over to a¤ect real variables in markets that do not require the use of money for exchange.
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Appendix A
Here we consider the model with utility nonseparable in (x; q; e), but still linear in h, say

Û(x; q; e)�Ah. Since q and e are determined during the day, they are state variables in the

night market. For this section we assume that capital is not used for production during the

day so q = f(e): so we let W (m; k; q; e) now denote the value function at night,

W (m; k; q; e) = max
x;h;m+1;k+1

Û(x; q; e)� Ah+ �V (m+1; k+1)

s:t: x = rk + wh+ �(m+ �M �m+1) + (1� �) k � k+1:

Substituting for h yields

W (m; k; q; e) =
A

w
[�(m+ �M) + (r + 1� �) k] (53)

+ max
x;m+1;k+1

�
Û(x; q; e)� A

w
(x+ �m+1 + k+1) + �V (m+1; k+1)

�
:

The �rst-order conditions are given by:

x : Ûx(x; q; e) =
A

w
(54)

k+1 :
A

w
= �Vk(m+1; k+1) (55)

m+1 :
A

w
� = �Vm(m+1; k+1) (56)

Hence we again have a degenerate distribution of (m; k). More importantly for this section,

the choice of x in the night market is a¤ected by how much the agent consumed or produced

in the day market. The envelope conditions are

Wm(m; k; q; e) =
A

w
� (57)

Wk(m; k; q; e) =
A

w
(r + 1� �) (58)

Wq(m; k; q; e) = Ûq(x; q; e) (59)

We(m; k; q; e) = Ûe(x; q; e): (60)

Suppose that during the day agents meet and bargain bilaterally. The bargaining problem

is maxS�bS
1��
s subject to q = f(e) and d � m, where now we have

Sb = W (mb � d; kb; q; 0)�W (mb; kb; 0; 0)

Ss = W (ms + d; ks; 0; e)�W (ms; ks; 0; 0)
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By the usual logic, one can show d = mb. Using this and e =  (q) = f�1(q), the �rst order

condition with respect to q can be written

�SsÛq(xb; q; 0) + (1� �)SbÛe [xs; 0;  (q)] 
0(q) = 0: (61)

Agents generally choose di¤erent values of x in the night market. Letting xs, xb, and x0 be

the quantities purchased by day market sellers, buyers and non-traders, we have

Sb = Û(xb; q; 0)� Û(x0; 0; 0)�
A

w
(xb � x0 + �mb)

Ss = Û [xs; 0;  (q)]� Û(x0; 0; 0)�
A

w
(xs � x0 � �mb) :

>From the FOC for x,

Ûx(xs; 0;  (q)) =
A

w

Ûx(xb; q; 0) =
A

w

Ûx(x0; 0; 0) =
A

w

>From these we get the equilibrium choices xs = xs
�
 (q); A

w

�
, xb = xb(q;

A
w
) and x0 = x0(

A
w
).

Then we can solve (61) to obtain

A

w
�mb = g(q;

A

w
)

where

g(q;
A

w
) =

(1� �)
�
U
�
x0(

A
w
); 0; 0

�
� U

�
xb(q;

A
w
); q; 0

�	
Ue
�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

�Uq
�
xb(q;

A
w
); q; 0

�
� (1� �)Ue

�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

+
�
�
U
�
x0(

A
w
); 0; 0

�
� U

�
xs
�
 (q); A

w

�
; 0;  (q)

�	
Uq
�
xb(q;

A
w
); q; 0

�
�Uq

�
xb(q;

A
w
); q; 0

�
� (1� �)Ue

�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

+
(1� �) A

w

�
xb(q;

A
w
)� x0(

A
w
)
�
Ue
�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

�Uq
�
xb(q;

A
w
); q; 0

�
� (1� �)Ue

�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

+
�A
w

�
xs
�
 (q); A

w

�
� x0(

A
w
)
	
Uq
�
xb(q;

A
w
); q; 0

�
�Uq

�
xb(q;

A
w
); q; 0

�
� (1� �)Ue

�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

:

The key observation here is that A=w enters g. If U = U(x) + u(q) � �(e) � Ah is

separable, then g(q; A
w
) = g(q) reduces to the model in the text with no capital used in the
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day market � that is, to a model that dichotomizes. Also, for any U , if � = 1 then the

previous equation reduces to

A

w
�mb = U

�
x0(

A

w
); 0; 0

�
� U

�
xs

�
 (q);

A

w

�
; 0;  (q)

�
+
A

w

�
xs

�
 (q);

A

w

�
� x0(

A

w
)

�
:

Notice

gq(q;
A

w
) = �Ue

�
xs

�
 (q);

A

w

�
; 0;  (q)

�
 0(q) > 0

since Ux
�
xs
�
 (q); A

w

�
; 0;  (q)

	
= A

w
from the �rst order condition for x: If U = U(x; q) �

�(e)� Ah, then the �rst order conditions imply xs
�
 (q); A

w

�
= x0(

A
w
), and this becomes

A

w
�m = �[ (q)] = c(q):

The value function in the day market is given by

V (m; k) = �W (m; k; q; 0) + �W [m; k; 0;  (~q)] + (1� 2�)W (m; k; 0; 0) (62)

By the usual methods the �rst order condition for m is

A�

w
= �

A�+1
w+1

241� � + �
Uq

h
xb(q+1;

A
w+1
); q+1; 0

i
gq(q+1;

A
w+1
)

35
or

g(q; A
w
)

M
= �

g(q+1;
A
w+1
)

M+1

241� � + �
Uq

h
xb(q+1;

A
w+1
); q+1; 0

i
gq(q+1;

A
w+1
)

35
It is clear from this expression that q cannot be determined independently of w which in

turn is a function of K via w = FH(K;H). A steady-state satis�es

1 +
i

�
=

Uq

n
xb

h
q; A

FH(K;H)

i
; q; 0

o
gq

h
q; A

FH(K;H)

i
�+ � = FK(K;H)

x = F (K;H)� �K

H =
x� [FK(K;H)� �]K

FH(K;H)

and

H = �hs + �hb + (1� 2�)h0

x = �xb

�
 (q);

A

w

�
+ �xs

�
 (q);

A

w

�
+ (1� 2�)x0

�
A

w

�
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where

hs = H +
1

FH(K;H)

�
xs

�
 (q);

A

w

�
� x

�
� �M

A

FH(K;H)

hb = H +
1

FH(K;H)

�
xb

�
q;
A

w

�
� x

�
+ �M

A

FH(K;H)

h0 = H +
1

FH(K;H)

�
x0

�
A

w

�
� x

�
with hs; hb; h0 denoting the hours worked in the night market by day market sellers, buyers

and non-traders respectively. It is clear from this equation that unless q disappears from x

when aggregating over xb; xs and x0, the dichotomy is broken and changes in i a¤ect x, H

and K. So monetary policy a¤ects q and e and this spillsover to a¤ect consumption, hours

worked and capital accumulation in the night market. For � = 1, we have

1 +
i

�
=

Uq

n
xb

h
q; A

FH(K;H)

i
; q; 0

o
�Ue

�
xs
�
 (q); A

w

�
; 0;  (q)

	
 0(q)

: (63)

Under the Friedman rule, this reduces to

Uq

�
xb

�
q;

A

FH(K;H)

�
; q; 0

�
= �Ue

�
xs

�
 (q);

A

w

�
; 0;  (q)

�
 0(q)

which is the e¢ ciency condition for producing q in the day market.

Under Walrasian pricing, buyers in the day market solve the following problem

max
qb

W (mb � pqb; kb; qb; 0)

s:t: pqb � mb

where p is the money price of goods. The seller�s problem is

max
qs

W [ms + pqs; ks; 0;  (qs)]

The seller�s �rst-order condition is

Wm [ms + pqs; ks; 0;  (qs)] p+We [ms + pqs; ks; 0;  (qs)] 
0(qs) = 0

or
A�

w
p = �Ue [xs; 0;  (qs)] 0(qs)
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By the usual methods, the �rst-order condition for m becomes

g
�
q; xs(

A
w
)
�

M
= �

g
h
q+1; xs(

A
w+1
)
i

M+1

8<:1� � + �
Uq

h
xb(q+1;

A
w+1
); q+1; 0

i
�Ue

n
xs

h
 (q+1);

A
w+1

i
; 0;  (q+1)

o
 0(q+1)

9=;
In steady state

1 +
i

�
=

Uq

n
xb

h
q; A

FH(K;H)

i
; q; 0

o
�Ue

n
xs

h
A

FH(K;H)

i
; 0;  (q)

o
 0(q)

(64)

Equation (64 is equal to the bargaining steady state under bargaining with � = 1, (63).
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Appendix B

Baseline Model

Assume constant returns to scale production function for general goods. So

F (K;H)

H
= F (K=H; 1) = F (|)

where | = K=H: In the steady state of the baseline model with Walrasian pricing we have

the following four equations:

1 +
i

�
=

u0(q)

cq(q;K)
(65)

�+ � = FK(|)� �
cK(q;K)

U 0(x)
(66)

A = U 0(x)FH(|) (67)

x = H [F (|)� �|] ; (68)

>From (67) we get

x = U 0�1
�

A

FH(|)

�
(69)

which combined with (68) yields

H =
U 0�1

�
A

FH(|)

�
| [F (|)=|� �]

(70)

which implies

K =
K

H
H =

U 0�1
�

A
FH(|)

�
F (|)=|� �

(71)

>From (71) we obtain

dK

d|
=

1

F (|)=|� �

1

U 00
�

A
FH(|)

� ��AFHK(|)
FH(|)2

�
�
U 0�1

�
A

FH(|)

�
[F (|)=|� �]2

�
FK(|)|� F (|)

|2

�
Equation (65) yields

@q

@K
=

�
1 + i

�

�
cqK(q;K)

u00(q)�
�
1 + i

�

�
cqq(q;K)

> 0

@q

@i
=

c(q;K)

�
�
u00(q)�

�
1 + i

�

�
cqq(q;K)

� < 0
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Using (71) and (65) we get

u0(q) =

�
1 +

i

�

�
cq

0@q; U 0�1
�

A
FH(|)

�
F (|)=|� �

1A
) q = q(|; i)

Finally, we can rewrite (66) as

�+ � = FK(|)�
�

A
FH(|)cK

0@q(|; i); U 0�1
�

A
FH(|)

�
F (|)=|� �

1A � N(|) (72)

A steady state for the baseline model is a value | that solves (72). From this expression we

have that

@N(|)
@|

= FKK(|)

� �
A
FHK(|)cK

0@q(|; i); U 0�1
�

A
FH(|)

�
F (|)=|� �

1A
� �
A
FH(|)

�
cqK

@q

@K
+ cKK

�
@K

@|

The �rst term is negative. The second term is positive if FHK(|) is positive. The third term

is ambiguous. Thus without further restrictions on the properties of the cost function, it is

not possible to say anything about existence or uniqueness of the equilibrium.

Two types of capital

For this model with Walrasian pricing, replace c(q;K) with c(q; Z) where Z is special

capital. The steady-state conditions are

1 +
i

�
=

u0(q)

c0(q; Z)
(73)

�+ � = FK(|) (74)

�+ ! = ��cz(q; Z)
U 0(x)

(75)

A = U 0(x)FH(|) (76)

x = H [F (|)� �|]� !Z (77)
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>From (74), the steady state value of | is given by

| = F�1K (�+ �) (78)

As before (76) gives us (69) which in conjunction with (78) gives

x = U 0�1

 
A

FH
�
F�1K (�+ �)

�! (79)

Equation (73) can be written to obtain

u0(q) =

�
1 +

i

�

�
cq(q; Z)

) q = q(Z; i); with qz(Z; i) > 0 and qi(Z; i) < 0

where q is unique given Z: Consequently, (75) becomes

�+ ! = � �
A
FH
�
F�1K (�+ �)

�
cz [q(Z; i); Z] (80)

which pins down Z if a solution exists. Finally, using (77), (79) and (80) we get

x = H
�
F
�
F�1K (�+ �)

�
� �F�1K (�+ �)

�
� !Z

which reduces to

�H =
x+ !Z�

F
�
F�1K (�+ �)

�
� �F�1K (�+ �)

	 (81)

Thus, if a solution to (80) exists, then q; x;K; and H are all uniquely determined.
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