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Abstract

We study the implications of producers’ first-order conditions for the link between invest-
ment and aggregate asset prices. Calibrated to the U.S. postwar economy, the model can
generate a sizeable equity premium, with reasonable volatility for market returns and risk free
rates. The market’s Sharpe ratio and the market price of risk are very volatile. Contrary
to most models, our model generates a negative correlation between conditional means and
standard deviations of excess returns.

Twenty years after Mehra and Prescott’s paper on the equity premium puzzle there is still

no widely accepted replacement for the standard time-separable utility specification. Clearly,

representing consumer and investor preferences, as well as interpreting consumption data has

turned out to be a very difficult task. Contrary to the consumption side, the production side of

asset pricing has received considerably less attention. Focusing on the production side shifts the

burden towards representing production technologies and interpreting production data. While a

number of asset pricing studies have considered nontrivial production sectors, these have generally

been studied jointly with some specific preference specification. Thus, the analysis could not

escape the constraints imposed by the preference side. A pure production asset pricing literature

has emerged from the Q-theory of investment. However, typically, these studies focus on the link

between investment and realized stock returns. We are not aware of any study that has explicitly

determined the equity premium independently from the consumption side. This is the object of

our analysis.

In this paper we are interested in studying the macroeconomic determinants of asset prices

given by a multi-input aggregate production technology. We focus exclusively on the producers’

first-order conditions that link production variables and state-prices, with sectoral investment

playing a crucial role. We are interested in two sets of questions. First: what properties of

investment and production technologies are important for the first and second moments of risk

free rates and aggregate equity returns? Second: does a model plausibly calibrated to the U.S.
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economy have the ability to replicate first and second moments of risk free rates and aggregate

equity returns?

The work most closely related to ours is Cochrane’s work on production based asset pricing

(1988, 1991). Some of the features that differentiate our work are that we focus explicitly on

the equity premium, we use more general functional forms for adjustment cost, and we base

our empirical evaluation on the two main sectoral aggregates of U.S. capital investment, namely

equipment & software as well as structures.

We consider the problem of a representative producer that selects multiple fixed input factors.

In order to be able to pin down the state-price process, this problem needs to have two related

properties. First, markets need to be complete and the producer has to face a full set of state-

prices. Second, there needs to be as many predetermined state variables (fixed production factors)

as there are states of nature. This assumption of “complete technologies” is necessary in order to

be able to read off the full set of state-contingent prices from the production side. In most studies

with nontrivial production sectors this property is not satisfied; of course, in a general equilibrium

environment it doesn’t usually play an important role.

We calibrate our model to a two-sector representation. We use U.S. data on investment for

equipment and software, as well as for structures. This sectoral representation is convenient

because these two sectors have natural asymmetries. Indeed, we use the plausible assumption that

the capital stock for structures is more difficult to adjust than for equipment and software. As

becomes clear below, asymmetries across sectors are needed if we want to derive well-behaved—that

is positive—state prices.

We characterize sectoral asymmetries that ensure that state-prices are positive and that gen-

erate positive and sizeable equity premium. Our key quantitative findings are the following. For

unconditional moments, we can plausibly generate an equity premium of several percentage points

with risk free rates having a reasonable mean and volatility. For conditional moments, the ex-

pected excess equity return is quite volatile, usually more volatile than the risk free rate. Also

concerning excess returns, the correlation between conditional means and volatilities is negative.

The paper is organized as follows. In section 1, we present the model and in section 2 the

main asset pricing elements. Section 3 introduces functional forms. In section 4 we analyze the

theoretical links between asset prices and production data. Section 5 contains our calibration and

Section 6 the quantitative analysis.
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1 Model

The model represents the producer’s choice of capital inputs for a given state price process.

Key ingredients are capital adjustment cost and stochastic productivity.

Assume an environment where uncertainty is modelled as the realization of s, one out of a

finite set S = (s1, s2, ...sN), with st the current period realization and st ≡ (s0, s1, ...st) the history

up to and including t. Probabilities of st are denoted by π
¡
st
¢
. Assume an aggregate production

function

Y
¡
st
¢
= F

³©
Kj
¡
st−1

¢ª
j∈J , s

t, N
¡
st
¢´
,

st introduces possible stochastic technology in the production of the final good, Kj the j-th capital

stock, N labor. Capital accumulation for capital good of type j is represented by

Kj
¡
st
¢
= Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
,

where δj is the depreciation rate and Zj
¡
st
¢
is the (stochastic) technology for producing capital

goods. The total cost of investment in capital good of type j is given by

Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
.

This specification will be further specialized below to allow for capital stocks to exhibit some form

of balanced growth.

The representative firm solves the following problem taking as given state prices P
¡
st
¢

max
{I,K0,N}

∞X
t=0

∞X
st

P
¡
st
¢⎡⎣F ¡©Kj ¡st−1¢ª , st, N ¡st¢¢−w ¡st¢N ¡st¢−X

j

Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢⎤⎦

s.t. :
£
P
¡
st
¢
qj
¡
st
¢¤
: Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
−Kj

¡
st
¢
≥ 0, ∀st, j

with s0 and Kj (s−1) given and P (s0) = 1, without loss of generality. The scaling of the

multipliers is chosen so that we get intuitive values. Indeed, q represents the marginal value of

one unit of installed capital in terms of current period numeraire; in equilibrium it is also the cost

of installing one unit of capital including adjustment cost. Note that if Z has a growth trend, as

seems to be required by US data on equipment and software, then q in this sector will be trending

down—reflecting the fact that equipment and software become cheaper over time. Also note that

q is not the ratio of the market value over the book value of capital (in units of the final good),

but qZ is. Indeed, the market value of the firm (assuming one capital stock) is qK. However, the

book value (or replacement cost) of the capital stock is K/Z, where K is number of units of the

capital good and 1/Z = pI the price/value of a unit of capital in terms of the final good. For

equipment, this price pI , as well as q, will be downward trending, while qZ doesn’t trend.
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First-order conditions are summarized by

0 = −Hj,2
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
+ Zj

¡
st
¢
qj
¡
st
¢
,

qj
¡
st
¢
=
X
st+1

P
¡
st, st+1

¢
P (st)

·
©
FKj

¡©
Kj
¡
st
¢ª
, st, st+1,N

¡
st, st+1

¢¢
−Hj,1

¡
Kj
¡
st
¢
, Ij
¡
st, st+1

¢
, Zj

¡
st, st+1

¢¢
+ (1− δj) qj

¡
st, st+1

¢ª
,

and for N ,

FN
¡©
Kj
¡
st−1

¢ª
, st, N

¡
st
¢¢
− w

¡
st
¢
= 0

so that substituting out shadow prices we have

1 =
X
st+1

P
¡
st+1|st

¢⎡⎣ FKj

¡©
Kj
¡
st
¢ª
, st, st+1, N

¡
st, st+1

¢¢
−Hj,1

¡
Kj
¡
st
¢
, Ij
¡
st, st+1

¢
, Zj

¡
st, st+1

¢¢
+ (1− δj)

Hj,2(Kj(st),Ij(st,st+1),Zj(st,st+1))
Zj(st,st+1)

⎤⎦
·
"

Zj
¡
st
¢

Hj,2 (Kj (st−1) , Ij (st) , Zj (st))

#
,

for each j, where the notation P
¡
st+1|st

¢
shows the price of the numeraire in st+1 conditional

on st and in units of the numeraire at st. From this condition we define the investment return

RIj
¡
st, st+1

¢
implicitly through

P
st+1

P
¡
st+1|st

¢
RIj
¡
st, st+1

¢
= 1. RIj

¡
st, st+1

¢
is the return we

get in st+1 from adding one (marginal) unit of capital of type j in state st. The first-order condition

shows that in equilibrium adding one marginal unit of a given type of capital produces a change

in the profit plan that is worth one unit.

We will specialize the model to have 2 capital inputs and 2 states of nature in each period. In

addition to complete markets, that is the producers ability to sell contingent output for each state

of nature, we also need to satisfy the requirement of “complete technologies”, that is the ability to

move resources independently between all states of nature. The complete technology requirement

is needed if we want to be able to recover all state prices from the producers first-order conditions.

2 From investment returns to state prices

Representing the first-order conditions in matrix form we have⎡⎣ RI1 ¡st, s1¢ RI1
¡
st, s2

¢
RI2
¡
st, s1

¢
RI2
¡
st, s2

¢
⎤⎦⎡⎣ P ¡s1|st¢

P
¡
s2|st

¢
⎤⎦ = 1, or compactly: RI ¡st¢ · p ¡st¢ = 1

so that the state price vector is obtained from matrix inversion

p
¡
st
¢
=
¡
RI
¡
st
¢¢−1

1.
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Clearly, it isn’t necessarily the case that this matrix inversion is feasible nor that state prices are

necessarily positive. In particular, as further discussed below, the requirement for positive state

prices forces us to rule our certain parameterizations.

In this environment, the risk free return is given by:

1/Rf
¡
st
¢
= 1p

¡
st
¢
= P

¡
s1|st

¢
+ P

¡
s2|st

¢
.

It is easy to check the matrix algebra to see that if for one of the investment returns the realized

return is not state-contingent RIj
¡
st, st+1

¢
= RIj

¡
st
¢
, then, as is implied by no-arbitrage, it equals

the risk free rate, RIj
¡
st
¢
= Rf

¡
st
¢
. The close relationship between risk free rates and expected

returns to the capital stocks can be illustrated in the following case. Without loss of generality,

in the two-state case, we can write

R1
¡
st, s1

¢
= R̄1

¡
st
¢
− ε1

¡
st
¢
, and R1

¡
st, s2

¢
= R̄1

¡
st
¢
+ ε1

¡
st
¢

R2
¡
st, s1

¢
= R̄2

¡
st
¢
− ε2

¡
st
¢
, and R2

¡
st, s2

¢
= R̄2

¡
st
¢
+ ε2

¡
st
¢
.

Of course, ε0s could be positive of negative, and R̄j
¡
st
¢
is not necessarily the (probability weighted)

mean. With some algebra, it is easy to see that

Rf
¡
st
¢
=
R̄1
¡
st
¢
ε2
¡
st
¢
− R̄2

¡
st
¢
ε1
¡
st
¢

ε2 (st)− ε1 (st)
,

so that if R̄1
¡
st
¢
= R̄2

¡
st
¢
then we have

Rf
¡
st
¢
= R̄1

¡
st
¢
= R̄2

¡
st
¢
.

That is to say that if the average realized returns are equal for both capital stocks, then this

average return also equals the risk free rate.

Now consider expected capital returns:

E
£
R1
¡
st, st+1

¢
|st
¤
= R1

¡
st, st+1

¢
· π0

¡
st+1|st

¢
E
£
R2
¡
st, st+1

¢
|st
¤
= R2

¡
st, st+1

¢
· π0

¡
st+1|st

¢
,

where π0
¡
st+1|st

¢
is the state-contingent probability vector. Note, so far, we had not needed

any probabilities. The aggregate equity return [XXX introduce some notation that makes

clear this is the market return with dividends etcXXX] (the return to the representative firm)

can be obtained as the value weighted average of the individual returns—given the homogeneity

assumptions introduced below—and thus

E
£
R
¡
st, st+1

¢
|st
¤
=
X
j

qj
¡
st
¢
Kj
¡
st
¢

[
P
i qi (s

t)Ki (st)]
·E
£
Rj
¡
st, st+1

¢
|st
¤
.
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While the two capital stocks will usually grow at different rates, the value share of each capital

stock may still be stationary because the q0s can be trending too. This is typically implied by the

growth restriction discussed below. Alternatively, the aggregate return can be nonstationary even

with stationary state prices.

The highest sharpe rate (market price of risk) also has a simple expression. Starting from state

prices we introduce the stochastic discount factor m
¡
st+1|st

¢
by dividing and multiplying through

by π
¡
st+1|st

¢
, so that

P
¡
st+1|st

¢
=

Ã
P
¡
st+1|st

¢
π (st+1|st)

!
π
¡
st+1|st

¢
= m

¡
st+1|st

¢
π
¡
st+1|st

¢
.

Then, ruling out arbitrage implies Et
¡
m
¡
st+1|st

¢
Re
¡
st, st+1

¢¢
= 0, for ∀Re

¡
st, st+1

¢
defined as

excess returns. It is then easy to see that

max
E
£
Re
¡
st, st+1

¢
|st
¤

Std [Re (st, st+1) |st]
=

vuuutP
st+1

P (st+1|st)2 /π (st+1|st)hP
st+1

P (st+1|st)
i2 − 1.

3 Functional Forms

In this section, we present the functional forms and the simulation strategies.

A. The production function

We start with a basic production function

Y
¡
st
¢
= FK1

¡
K1
¡
st−1

¢
, st
¢
+ FK2

¡
K2
¡
st−1

¢
, st
¢
+ FN

¡
N
¡
st
¢
, st
¢
,

which we restrict further below to accommodate balanced growth.

B. The investment cost function

We will use the following specification

H (K, I, Z) = H (K/Z, I) = H (1, ZI/K) · (K/Z)

so that it is homogenous of degree 1 in I and K/Z, as is needed for balanced growth. We use

Zj
¡
st
¢
= Zj

¡
st−1

¢
· λZj (st), with λZj (st) following a two-state Markov process.1

The functional form is assumed to be

H (1, ZI/K) · (K/Z) =
½
b

ν
(ZI/K)ν + c

¾
(K/Z) ,

1Given the capital accumulation equation, and as we further discuss below, IZ and K are cointegrated, and so

are I and K/Z.
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with b, c > 0, v > 1 and ZI/K ≥ 0.2

As can easily seen, this function is (1) convex in I for v > 1. (2) adjustment cost and the

direct cost for additional capital goods are separable, trivially so because H (1, ZI/K) · (K/Z) =

[H (1, ZI/K)− ZI/K + ZI/K] · (K/Z) = [H (1, ZI/K)− ZI/K] · (K/Z) + I ≡ C (1, ZI/K) ·

(K/Z)+I. And we impose that C (1, ZI/K) ≥ 0—that is, the pure adjustment cost is nonnegative.

The different parameters have roughly the following functions. v determines the cost of choos-

ing volatile production investment plans. For a given investment process, it determines the volatil-

ity of the market price of capital. The parameters b and c are used to obtain target average values

for the average qZ (marginal cost) and for the total cost.

With this specification, we have the marginal cost given as

HI (K, I, Z) = H2 (1, ZI/K) = b (ZI/K)
ν−1

and we can easily check convexity with respect to investment

HII (K, I, Z) = b (v − 1) (ZI/K)ν−2 (Z/K) > 0 for b > 0 and v > 1.

The case of no-adjustment cost is given by setting v = b = 1, c = 0, so that

H (1, ZI/K) · (K/Z) = I.

From the first-order condition we obtain a relationship between the investment rate and the

marginal cost of capital

qZ = HI (K, I, Z) = b (ZI/K)
ν−1 .

Normalizing Z to 1,the elasticity (quantity elasticity of a price) of qwith respect to I/K is

∂q

∂ (I/K)

I/K

q
= v − 1.

C. Stationarity of returns and simulation strategy

We want returns to be stationary. This imposes some restrictions on technologies and the

growth processes. We also describe here the state space used for our simulations. Consider the

investment return for capital stock j given our functional forms

RIj
¡
st, st+1

¢
= Zjt ·

FKjj

¡
Kj,t+1, s

t+1
¢

b (ZjtIj,t/Kj,t)
v−1 + (Zj,t/Zj,t+1) ·

b
¡
1− 1

v

¢
(Zj+1tIjt+1/Kjt+1)

ν + c

b (ZjtIj,t/Kj,t)
v−1

+(Zj,t/Zj,t+1) · (1− δj) ·
b (Zjt+1Ij,t+1/Kj,t+1)

v−1

b (ZjtIj,t/Kj,t)
v−1 ,

2 In order to allow for ZI/K < 0, we can introduce a cofficient d such that H (1, ZI/K) = b
v
(ZI/K + d)v + c.

For our empirical implementations this has not been useful sofar.
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where we have used a more compact notation. The first term represents the marginal product,

the second the adjustment cost reduction next period (growth option) and the third, the leftover

capital. In sum, this return can be written as a function of the following

RIj
¡
st, st+1

¢
= RIj

⎛⎜⎜⎜⎝
ZjtIj,t/Kj,t, Zjt+1Ij,t+1/Kj,t+1

ZjtF
Kj
j

¡
Kj,t+1, s

t+1
¢

Zj,t+1/Zj,t,

⎞⎟⎟⎟⎠ .
A sufficient set of conditions for RIj

¡
st, st+1

¢
to be stationary is that each of the 3 different

composite variables is stationary. Let us consider each of these terms separately.

First, Zj,t+1/Zj,t, as seen above, is stationary by assumption. Second, given the specification of

the productivity growth rates as finite elements Markov chains, and assuming that sectoral invest-

ment growth rates also follow finite element Markov chains, that is, Ij
¡
st, st+1

¢
= Ij

¡
st
¢
λIj (st+1),

it can easily be shown that for appropriate starting points, ZjtIj,t/Kj,t is bounded. Third, we will

make the assumption that

ZjtF
Kj
j

¡
Kj,t+1, s

t+1
¢
≡ Aj .

This assumption guarantees stationarity and allows us to focus our analysis on investment dynam-

ics. The implication of this assumption is that to the extent that capital gets cheaper to produce

over time, that is as Zj increases, it also becomes less productive at the margin in physical terms,

so that in value terms, the marginal product remains constant.3

Stationarity of sectoral investment returns is not sufficient for stationarity of aggregate asset

returns. Indeed, as shown in equation, the aggregate return equals a weighted average of the

sectoral returns. For stationarity, the weights need to be stationary too. Aggregate returns are

given by

R
¡
st, st+1

¢
=
X
j

b(ZjtIj,t/Kj,t)
v−1

Zj,t
Kj,t+1P

i
b(ZitIi,t/Ki,t)

v−1

Zi,t
Ki,t+1

Rj
¡
st, st+1

¢
.

A sufficient (and necessary) condition for stationarity, given our previous assumptions, is that

K1,t+1/Z1,t and K2,t+1/Z2,t are cointegrated. Given that the investment capital ratios ZjtIj,t/Kj,t

are stationary, this is equivalent to I1,t and I2,t being cointegrated. Setting investment expendi-

ture growth rates equal across sectors, that is λI1 (st+1) = λI2 (st+1), guarantees that I1,t and I2,t

are cointegrated. To summarize, because individual quantities have stochastic trends, we end up

choosing identical investment expenditure growth realizations across sectors to guarantee station-

arity of aggregate equity returns. However, we are free to choose the realizations for λZ1t and λZ2t

independently. This is less restrictive than it might appear for several reasons. As seen above,

3This is related to one of the properties implied by Greenwood, Hercowitz and Krusell’s balanced growth path.
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what matters for the investment returns is the behavior of the product λI1t λZ1t and not λI1t indi-

vidually. That is to say that the important element in the calibration is to fit the process of real

investment growth rather than the growth in investment expenditure. Moreover, for our empirical

counterparts, as shown below, the historical volatilities of λI1and λI2 are nearly identical, and

realizations of the two growth rates are strongly positively correlated. Alternatively, we could

introduce additional components for each process that have purely transitory effects and would

thus not need to be restricted to ensure balanced growth. However, given the requirement to

keep the number of states small, the additional flexibility introduced in this way would be rather

limited

To summarize, we have

RIj
¡
st, st+1

¢
=

Aj

b (ZjtIj,t/Kj,t)
v−1 (3.1)

+(Zj,t/Zj,t+1) ·
b
¡
1− 1

v

¢
(Zj+1tIjt+1/Kjt+1)

ν + c

b (ZjtIj,t/Kj,t)
v−1

+(Zj,t/Zj,t+1) · (1− δj) ·
b (Zjt+1Ij,t+1/Kj,t+1)

v−1

b (ZjtIj,t/Kj,t)
v−1 .

that is to say

RIj
¡
st, st+1

¢
= RIj

⎛⎜⎜⎜⎝
ZjtIj,t/Kj,t,

Z1t+1I1,t+1/K1,t+1,

Zj,t+1/Zj,t,

⎞⎟⎟⎟⎠ .
For simulation the, following representation is useful:

RIj
¡
st, st+1

¢
= RIj

¡
st,Kj

¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢
;λI (st+1) ,λ

Zj (st+1)
¢
for j = 1, 2.

Indeed, returns are function of state variables and shock realizations. Seven variables are a suffi-

cient statistic for the current state of the economy st, namely st,K1
¡
st−1

¢
,K2

¡
st−1

¢
, I1
¡
st
¢
, I2
¡
st
¢
,

Z1
¡
st
¢
, Z2

¡
st
¢
. Clearly Kj

¡
st
¢
matters too, but it is a function of the state variables. The proba-

bility distribution of the shocks is summarized by st, the realization of the return does not depend

on st. With a law of motion for the exogenous state st+1, the law of motion for the rest of the

variables follows

Ij
¡
st, st+1

¢
= Ij

¡
st
¢
λI (st+1) for j = 1, 2

Zj
¡
st, st+1

¢
= Zj

¡
st
¢
λZj (st+1) for j = 1, 2

Kj
¡
st
¢
= Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
for j = 1, 2.

As initial conditions, we will set K2
¡
s−1
¢
= Z1

¡
s0
¢
= Z2

¡
s0
¢
= 1, and K1

¡
s−1
¢
is set equal to

the historical average of the ratio of the value of capital in this sector relative to the other sector.

Initial investment levels are set at their implied steady state values.
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4 What determines the equity premium?

Here we examine the model elements that are key in generating a positive equity premium.

We also discuss the properties needed to guarantee that in our simulations state prices are always

positive, given the processes for investment and productivity. In this analysis we focus on the

ability of sectoral differences in adjustment cost parameters vj , and depreciation rates δj to deliver

interesting properties. This focus is guided by the fact that for these two parameters, differences

are first-order given the chosen sectoral calibration with equipment & software on one side and

structures on the other. We examine additional asymmetries in our quantitative evaluation. The

main findings of this section is that the asymmetry in the adjustment cost parameter v is crucial

to generate a positive equity premium and to guarantee positive state prices. Sectoral differences

in depreciation rates seem less important.

It is easy to show that the relative state prices in the two-state case are given by

P
¡
st, s1

¢
P (st, s2)

=
RI2
¡
st, s2

¢
−RI1

¡
st, s2

¢
RI1 (s

t, s1)−RI2 (st, s1)
. (4.1)

We start with some basic properties of the model:

1. As is clear from equation 4.1, each capital stock has to do (absolutely) better in one specific

state. If it weren’t the case, then one of the derived state prices would be negative, which

is inconsistent with equilibrium. Indeed, if one type of investment were to generate a higher

return in both states, then resource would be moved into this type of capital from the other.

2. If more of a given type of investment is added, its (marginal) return goes down. This is

because installation costs increase due to the assumption of convex adjustment cost.4 In

case the marginal product has decreasing returns, there is an additional effect that generates

diminishing returns.

3. As is clear from equation 4.1, the state with the higher price has less dispersed returns.

Assume that from a relative price of one, the price of one state increases. Capital is then

allocated to the sector that has an absolute advantage in this state from the other sector. By

doing this, the higher return capital lowers its return and the lower return capital increases

its return. Both of these contribute to lowering the dispersion in the considered state.

To focus on risk premiums, the price ratio has to be compared to the ratio of the probabilities.

Given that a reasonable empirical specification is not far from iid we consider here the case where
4Moreover, next periods capital stock is larger leading to a reduction in the investment capital ratio and thus a

reduction of the value of the having installed capital and also a reduction in the value attached to growth option,

as can easily be seen.
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π(.,s1)
π(.,s2)

= 1, so that ratio of state prices equals the ratio of the stochastic discount factor

P
¡
st, s1

¢
P (st, s2)

=
m
¡
st, s1

¢
m (st, s2)

.

Without loss of generality, we take state 2 to be the high growth state. State 2, is then also the

state where realized returns are higher. This is because with convex adjustment cost, installed

capital has become more valuable. Therefore to have a positive equity premium, the relative price

of a state 2 payout has to be low, this is achieved by having high dispersion in state 2. That is to

say, to have a positive equity premium, the high growth states needs to generate more dispersed

returns than the low growth state.

We now examine which parameter configurations can contribute to a positive equity premium

and generate positive state prices. We focus on differences across sectors in the adjustment cost

curvature and the depreciation rates—everything else being symmetric across the two sectors. For

this analysis we consider a second-order Taylor approximation of the investment return at the

steady-state around the mean of investment growth. We assume that only investment expenditure

growth is allowed to vary, but not the marginal product nor investment specific technology shock.

As a starting point, we rewrite equation 3.1 for the investment return more compactly as

R
¡
I 0
¢
=

1

qZ

½
A1 +

¡
Z/Z 0

¢ ∙
b

µ
1− 1

v

¶¡
Z 0I 0/K 0¢ν − c+ (1− δ) b

¡
Z 0I 0/K 0¢v−1¸¾ .

A second-order Taylor approximation is obtained by assuming that all investment capital

ratios are at their steady state values ZIj/Kj = Z 0I 0j/K
0
j = ZIj/Kj = (λIλZ − 1) + δ and with

qZ = b
³
ZI/K

´v−1
:

R
¡
∆λI

¢
= R̄+ C ·∆λI + B

2
·
¡
∆λI

¢2
+ o

³¡
∆λI

¢2´
where ∆λ ≡

³
λ0 − λ̄

0
´
, with λ̄0 the center point of the approximation, here the mean, R̄ a constant

given below, and

C = v − 1

B =

µ
1

λI

¶2µ 1

λZ

¶
·
n
λIλZ (v − 1)2 − (1− δ) (v − 1)

o
.

Because we have already assumed iid shocks, the size of the up and down deviations from the

mean in a two-state setting are identical, that is, we have

∆λj (s2) = −∆λj (s1) ≡ ∆λj , for each j ∈ (1, 2) ,

moreover, assuming equal investment growth volatility in the two sectors, we have

∆λ1 = ∆λ2 = ∆λ.
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Finally, we introduce these approximations into the ratio determining relative state prices,

P (., s1)

P (., s2)
=

RI2 (., s2)−RI1 (., s2)
RI1 (., s1)−RI2 (., s1)

=
[C2 − C1]∆λ+

h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1) (∆λ)

2
i
+ o(.)

[C2 − C1]∆λ−
h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1) (∆λ)

2
i
+ o(.)
(4.2)

=
CC +BB + o(.)

CC −BB + o(.)

As shown by equation 4.2, in order to have positive prices, we need CC >> 0 or << 0.

CC needs to be sufficiently fare away from 0 so that despite the dispersion induced by BB, the

numerator and the denominator always have the same sign. Moreover, CC should not be too

sensitive to the state of the economy, to ensure that this property is satisfied everywhere. For a

positive equity premium, if CC > 0, we need BB > 0, so that the price of the low state, that is

state 1, is higher (mutatis mutandum for CC < 0).

We will now check the conditions on v and δ needed to generate these properties. In our

calibration we will have equipment and software as sector 1 and structures as sector 2. Our

calibration will be one where structures depreciate less and are more costly to install, that is,

δ2 < δ1 and that v2 > v1.

Positive prices. With equally volatile investment growth across sectors we need to check

what type of asymmetry has the ability to generate positive prices. Given

C = v − 1,

clearly, asymmetry in v is needed. Moreover, the level of δ has no effect.

Positive equity premium. Given that CC > 0, if B2 > B1and R̄2 > R̄1, then the equity

premium is positive. Thus we check if our specification of the asymmetry for δ and v contributes

to this outcome. Remember, in our calibration, δ2 < δ1 and v2 > v1; and let us therefore consider

the derivatives with respect to these two parameters. Using again ZI/K = (λIλZ − 1) + δ, we

have

B =
¡
Z/Z 0

¢
(v − 1)

h
(v − 1)

³
IZ/K

´
+ (v − 2) (1− δ)

i
=

µ
1

λZ

¶
(v − 1) b [(v − 1) ((λIλZ − 1) + δ) + (v − 2) (1− δ)]

=

µ
v − 1
λZ

¶
[(v − 1) ((λIλZ − 1) + δ) + (v − 2) (1− δ)]

= (v − 1)2 λI −
µ
v − 1
λZ

¶
(1− δ) .

Now take the derivatives. First for v

∂B

∂v
=

µ
1

λI

¶2µ 1

λZ

¶
·
h
λIλZ (v − 1)2 − (1− δ) (v − 1)

i
=

µ
1

λI

¶2µ 1

λZ

¶
· [2λIλZ (v − 1)− (1− δ)]
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if v >
£
1
2 [(1− δ) /λIλZ ] + 1 < 1.5

¤
, then

∂B

∂v
> 0.

So that it is enough for v > 1.5 for this to hold. Then for δ

∂B

∂δ
=

µ
1

λI

¶2 v − 1
λZ

> 0 , if v > 1.

Given the signs of the derivatives, the asymmetry in v helps generate a positive equity premium,

while the asymmetry in δ does not. What about quantitative importance of the two opposing

effects? The following example shows that moving v from 2 to 5 is quantitatively more important

than moving δ between .05 and .15. Indeed, ∂B
∂δ ∆δ = (v − 1) .1 = .2, ( if v = 3), while

∂B
∂v∆v ≈

[3] 3 = 9. Thus, we conclude that the selected asymmetry should contributed positively to the

equity premium.

In our calibration we set R̄2 and R̄1 independently from other parameters. As discuss below,

this implicitly consists in picking values of Aj so that target values of R̄j are achieved. Given the

limited amount of direct information about Aj , we choose this approach.Alternatively, we could

set Aj at some given value, and then let R̄2 be determined endogenously. In this case, an analysis

like the one performed here for B can be carried out assuming that Aj are equal across sectors.

5 Calibration

The majority of the parameter values are picked to be consistent with quantity data alone,

without including any information from asset prices. For the rest of the parameters, asset pricing

moments are used for calibration. We first present a short summary of our baseline calibration,

details are provided thereafter.

A. Summary

The table lists the parameters to calibrate and the chosen baseline values:

ρ, fr = [0.2, 0.9]⎡⎣ λI (s1)

λI (s2)

⎤⎦ =

⎡⎣ 0.9601

1.1058

⎤⎦ ,
⎡⎣ λZe (s1)

λZe (s2)

⎤⎦ =
⎡⎣ 1.0069

1.0069

⎤⎦ ,
⎡⎣ λZs (s1)

λZs (s2)

⎤⎦ =
⎡⎣ 1.0069
1.0069

⎤⎦
δe, δs = [0.112, 0.031]

(Ke/Ze) / (Ks/Zs) = 0.6

νe = 2.5, νs = 4.5, be, bs, ce, cs : qss = 1.5

A1, A2 : so that Rss = 1.021
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ρ and fr are the first-order autocorrelation and the frequency of realizations that are below

the mean relative to above the mean. A set of parameters is chosen based on direct empirical

counterparts; namely,
¡
λI ,λZe,λZs, ρ, fr

¢
, (δe, δs), (Ke/Ze) / (Ks/Zs). For the baseline calibra-

tion, the variance of the investment specific productivity shocks is set to zero, we present results

with non-zero variance below. In order to replicate steady-state values for q, we pick (be, bs), with

the lowest possible cost, which determines (ce, cs). For the curvature parameters, based on casual

empiricism, we assume: νe < νs; with the exact values picked to maximize the model’s fit. Finally,

A1, and A2 are picked to minimize the impact of hard to measure quantities and to help the model.

B. Details of different parts of calibration

(i) Investment and productivity processes We consider the empirical counterparts of three quan-

tities

I · Z ≡ Investment ( addition to capital stock in units of capital good)

I ≡ Investment expenditure in units of numeraire final good (consumption)

Z ≡ Investment-specific technological change

1/Z = pI = PI/PC : Replacement cost (not including adj. cost) for capital, also bookvalue.

We will use the following time series: the quantity index of investment in each sector to give

us IZ, the deflator of investment goods and the deflator of nondurables and services to jointly

give us Z for each sector. We use annual data for these 3 series, for equipment and structures,

covering 1947-2003.

The calibration of the investment growth process is in two steps. First, the probability matrix

is determined to match the serial correlation and the frequency of low and high growth states.

These two moments do not depend on the shock values themselves but only on the probabilities.

Specifically, the two diagonal elements of the probability matrix are given as

π11 =
ρ+ fr

1 + fr
; π22 =

1 + fr · ρ
1 + fr

,

where ρ ≡ autocorelation and fr ≡ p1/p2, that is the relative frequency of state 1 (the recession

state). For the relative frequency we have counted the number of realizations of investment

growth below its mean: there are 26/56 for equipment and 27/56 for structures. This gives a

relative frequency for recessions compared to expansions of .9 (assuming 26.5/56 recessions). The

first order serial correlations of the growth rates of investment are 0.13 and 0.28, respectively. The

common ρ is set at the average of 0.2.

Second, we select 6 values for the realized growth rates of investment expenditure and the sector

specific technological progress. As discussed above, equal growth realizations for λI are required
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for balanced growth, but given that λI does not enter any formula alone, this isn’t a major

constraint. The 6 values are picked to match a weighted average of the empirical counterparts of

the means and variances for IjZj and Zj . This represents a total of 8 moments. Historical means

and standard deviations equal

µIZe − 1 = 5.71% σIZe = 7.81%

µIZs − 1 = 2.29% σIZs = 6.86%

µZe − 1 = 1.82% σZe = 2.56%

µZs − 1 = −0.44% σZs = 2.35%.

With transparency in mind, we chose a baseline calibration that eliminates all asymmetries that

are not crucial. In particular, for investment, we set the mean and the standard deviation in both

sectors at the average across sectors, so that the model counterparts are µIZe = µIZs = 1.04, and

σIZe = σIZs = 0.0733. Means and standard deviations for the investment specific technological

change are set at µZe = µZs = 1.0069, and σZe = σZs = 0. In this case, all moments can

be matched with the values given in the table above. Given that we are limited to a two-state

representation, investment growth rates in the model are perfectly correlated; the correlation

between the empirical counterparts is 0.6.

We also present results for a calibration that seeks to match as closely as possible the 8

means and standard deviations above. We minimize the equally weighted average of the squared

deviations of the model’s moments from their empirical counterparts. As shown in the appendix,

this can be done reasonably well. The empirical correlations of sectoral investment with its specific

technological growth are 0.43 and −0.32, while the correlations of the technological growth across

sectors is 0.3. Clearly, due the limited degrees of freedom in our two state process we cannot

match all these moments. As we show below, for most quantities of interest, this consideration is

quantitatively second order.

(ii) Depreciation rates We need the constant depreciation rates for equipment and software as

well as for structures: (δe, δs). We can directly compute depreciation rates from the Fixed Assets

tables, and take the mean. We get 13.06% and 2.7% for 1947-2002. Because NIPA’s depreciation

includes physical wear as well as economic obsolesence, we adjust the data to take into account

that the model depreciation covers only physical depreciation. To do this we add the price increase

in the capital good. So that

δt =
Dt
Kt
+ pI,t/pI,t−1 − 1 =

Dt
Kt
+ (Zt−1/Zt − 1) ,
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with Dt depreciation according to NIPA. This adjustment decreases depreciation by 1.82% for

equipment and -0.44% for structures.

(iii) Relative size of capital stocks The ratio of the capital stocks, (Ke,t/Ze,t) / (Ks,t/Zs,t), is

needed only for computing aggregate returns, which, as we have seen, are a function of the

price weighted sum of the of the two capital stocks. In the model, the ratio of the physi-

cal capital stocks Ke,t/Ks,t is trending, while the ratio of the bookvalues of the capital stocks

(in terms of the consumption good) (Ke,t/Ze,t) / (Ks,t/Zs,t) is not trending. For calibration, we

will have the ratio of bookvalues replicating roughly the average of the historical values. This

will be implemented in the following way. We normalize Ze,0 = Zs,0 = Ks,0 = 1, and set

Ke,0 = mean ((Ke,t/Ze,t) / (Ks,t/Zs,t)) · (Ks,0/Zs,0) /Ze,0 = mean ((Ke,t/Ze,t) / (Ks,t/Zs,t)).

We use Current-Cost Net Stocks of Fixed Assets from the BEA. With this data, for the period

1947-2002, mean ((Ke,t/Ze,t) / (Ks,t/Zs,t)) = 0.6. This is to say that the value of equipment is 0.6

of the value of structures.

(iv) Adjustment cost and marginal product To parameterize the adjustment cost function, we

choose the following procedure sequentially:

1) Pick v to get good results for asset prices under the restriction that νe < νs. Specifically,

the selected values roughly generate the highest equity premium with the lowest (reasonable)

return volatility, by also guaranteeing positive state prices. More formal searches have selected

very similar parameter combinations.

2) Pick b so that qZ 0s are consistent with average values reported in the literature.

3) c is then picked to minimize the overall amount of output lost due to adjustment cost.

In addition, to casual empiricism, there is also other evidence that suggests that adjustment

costs are larger for structures than for equipment and software. In particular, the fact that the

serial correlation of the growth rates is somewhat higher for structures than for equipment can

be interpreted as an expression of the desire to smooth investment over time due to the relatively

high adjustment cost.

There are many examples of studies that estimate qZ. Lindenberg and Ross (1981) report

averages for two-digit sectors for the period 1960-77 between .85 and 3.08. Lewellen and Badrinath

(1997) report an average of 1.4 across all sectors for the period 1975-91, Gomes (1999) reports an

average of 1.56. Based on this we will use a steady-state target value for qZ of 1.5 for both sectors.

One problem with using empirical studies to infer about the required heterogeneity in the sectoral

costs is that most studies consider adjustment costs by sector of activity. For our analysis, we

would need information about the adjustment cost by type of capital for a representative firm.
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The marginal product coefficients A1 and A2 are set implicitly so as to have the steady-state

return Rss given by equation ?? equalized in the two sectors and to replicate the mean risk free

rate.

(iv).1 Calibrate b and c to fit target qZ at steady state I/ (K/Z). From the capital accumulation

equation we have

IZ/K = K 0/K − (1− δ) ,

For a deterministic steady-state, the growth rate of capital equals the growth rate of investment.

Based on this, we define the steady-state investment/capital ratio as

IZ/K =
¡
λIλZ − 1

¢
+ δ,

where we use the mean of λIλZ implied by the model as the empirical counterpart for λIλZ , and

the depreciation rate described above. From the first-order condition in steady-state, we have that

qZ = b
³
IZ/K

´v−1
, (5.1)

which we use to fix b = qZ/
¡¡
λIλZ − 1

¢
+ δ
¢v−1

.

Finally, we set c so that, roughly speaking, the total cost is minimized. The total cost is

increasing in c, so we will pick the lowest possible c. This is done by making the total cost equal

to zero at the point where the marginal cost is equal to zero. Clearly, if c where set lower than

this, there would be a region where the total cost is negative. Specifically, we first find the IZ/K

for which the marginal cost is zero, that is where qZ = 1, and using equation 5.1 as

ZI/Kno-cost =
¡
1/b
¢1/(v−1)

,

we set the total cost to zero at this level of ZI/Kno-cost

b

v
(IZ/Kno-cost)

v + c = IZ/Kno-cost

c = IZ/Kno-cost −
b

v
(IZ/Kno-cost)

v

c =
¡
1/b
¢1/(v−1) − b

v

³¡
1/b
¢1/(v−1)´v

.

6 Quantitative findings

The key asset pricing moments we are interested in are first and second unconditional moments

for equity and risk free returns. We also consider time-varying means and volatilities.

Table 1 presents the model implications from the baseline calibration as well as empirical

counterparts for a set of unconditional moments. Model results are based on sample moments of
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a very long (40000 years) simulated time series. For unconditional moments, the key finding is

that the model is able to generate an equity premium of several percentage points with reasonable

volatility for the equity return as well as for the risk free rate. The model’s mean Sharpe ratio

is about one third of the one that is implied in the historic equity premium. Given the higher

adjustment cost curvature for structures relative to equipment and software, as expected structures

have a higher return volatility and a higher risk premium than equipment and software.

The model is able to generate considerable time-variation in conditional risk premiums. Indeed,

the standard deviation of the one-period ahead conditional equity premium is at 4.83%, which is

considerably higher than the standard deviation of the risk free rate at 2.97%. There is a variety

of empirical studies measuring return predictability, with a variety of conclusions. For instance,

Campbell and Cochrane (1999) report R20s of 0.18 and 0.04 for regressions of excess returns

on lagged price-dividend ratios at a one-year horizon for the periods 1947− 95 and 1871− 1993,

respectively. Combining theR2 with the volatility of the excess returns,
√
R2std

¡
R−Rf

¢
provides

an estimate of the volatility of the conditional equity premium. Setting R2 = 0.1 this would be
√
0.1× 0.17 = 5.27%. Thus, the model’s value of 4.83% is close.

What is driving expected excess returns? In general, assuming the absence of arbitrage, we

have that

Et

³
Rt+1 −Rft

´
=

σt (mt+1)

Etmt+1
σt (Rt+1) ρt (mt+1, Rt+1) .

Possibly, return volatility can drive risk premiums, but this doesn’t seem empirically relevant.

According to Lettau and Ludvigson (2004) this is not the case for the US postwar period. Indeed,

they find strong negative correlations between conditional means and volatilities. Our model is

consistent with this fact. Indeed, for the baseline calibration the correlation between conditional

means and volatilities is −0.34. This negative correlation seems very robust to parameter changes.

Most standard models cannot replicate this finding. With CRRA utility and lognormal con-

sumption, expected returns are given by

Et

³
Rt+1 −Rft

´
= γ · σt

¡
lnC 0/C

¢
· σt (Rt+1) · ρt (mt+1, Rt+1) .

5

In the Mehra-Prescott setup, all terms in the equation are roughly constant, with the correla-

tion, ρt (mt+1, Rt+1), roughly equal to one. In Campbell and Cochrane’s model,
σt(mt+1)
Etmt+1

displays

considerable variation. However, as is clear from their Figures 4 and 5, conditional means and

volatilities are positively correlated.

Let us focus now directly on the Sharpe ratio

Et

³
Rt+1 −Rft

´
σt (Rt+1)

=
σt (mt+1)

Etmt+1
ρt (mt+1, Rt+1) . (6.1)

5The approximation comes from replacing γ · σt (lnC0/C) by
p
exp [γ2vart (lnC0/C)]− 1.
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Given the volatile conditional means and the negative correlation between conditional means

and volatilities, Sharpe ratios are very volatile. According to Lettau and Ludvigson (2004), for

quarterly data, market implied Sharpe ratios have a mean of 0.39 and a standard deviation of

0.448, which implies a coefficient of variation of 0.448/0.39 = 1.15. In our model, for the baseline

calibration, this ratio equals, 0.26/0.17 = 1.56. That is, considering that our model generates

average Sharpe ratios of roughly 1/3 of the ones implied by the aggregate market, it nevertheless

has the ability to generate considerable volatility in Sharpe ratios

What drives the volatility of the Sharpe ratio? Both parts on the right hand side of equation

6.1 contribute. As shown in Table 1, the market price of risk is moving, but its mean and standard

deviation differ from those of the market’s Sharpe ratio. The mean of the market price of risk is

(obviously) larger, while the volatility is lower. Remember the model structure, given that we have

perfectly correlated shocks, the correlation ρt (mt+1, Rt+1) can only be 1 or -1. Clearly, therefore,

ρt (mt+1, Rt+1) is switching between values of 1 and -1 as a function of the state of the economy.

To further investigate this regime shifting property, note that if we make the shock process IID

the mean and standard deviation of the Sharpe ratio and the market price of risk are much closer

to each other than in the baseline case with serial correlation (and asymmetric states) as seen in

Table 2. That is to say that the occurrence of a negative (conditional) correlation between the

market return and the stochastic discount factor, and thus a negative Sharpe ratio is much rarer in

the IID case. Table 3 show results for the case with investment specific technology shocks. While

there are some quantitative differences, none of our main conclusions are affected. Note that we

did not recalibrate the rest of the rest of the model.

To further illustrate model properties, we show here model implications from feeding through

the investment realizations for the U.S. for the period 1947-2003. Given that investment growth in

our model has only two values, the fit of the driving process is not perfect. Nevertheless, as shown

in Figure 1, the fit is very good, with correlations between the model and the data of 0.78 and

0.71 for equipment and structures respectively. Figure 2 shows that the model’s generated returns

are indeed related to actually realized stock returns, with a correlation of 0.48. Figure 3 shows

conditional moments. The two panels on the left show that conditional volatility is more persistent

(and thus history dependent) than expected returns. The right hand side panel shows the market

price of risk and the market’s Sharpe ratio. Considering the 1990s, through the series of 8 high

realizations in investment growth, expected returns, and Sharpe ratios are declining over time.

The figure also shows that with a low investment growth realization, the market Sharpe ratio

becomes negative, and thus the conditional correlation ρt (mt+1, Rt+1) becomes negative. It is

interesting here to consider again the calibration with IID investment growth to further highlight
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the persistent component driving risk premiums. Figure 3b, presents the realized conditional

moments corresponding to the IID case we presented in Table 2. Here the state of the economy is

summarized by the two investment levels and capital stocks
¡
Ij
¡
st
¢
Zj
¡
st
¢
,Kj

¡
st−1

¢¢
j=1,2

. Here,

the conditional mean becomes even more persistent than the volatility. Only twice in the postwar

period does the market Sharpe ratio become negative. In the 1990s, it is at the 8th successive

realization of a high investment rate that the market Sharpe ratio becomes negative. It then

stays negative for another 3 periods, where investment growth is low. What are the elements

of the state vector that are driving this result? There is a strong negative relationship between

investment/capital ratios and Sharpe ratios, see Table 1 and 2. However, the relationship isn’t

perfect, and thus, investment and capital matter individually.

Finally, Figure 4 compares the model’s risk free rate to the realized returns of short term

Treasuries. While model and data seem to have a similar upward trend through the postwar

period, the high frequency model implications are not close to the data.

A. Sensitivity analysis

tba

7 Conclusion

tba
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Table 1
Asset Pricing Implications: Baseline calibration

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S        RE&S-Rf  RS              RS-Rf

Mean 3.17% 1.11% 0.25 0.17 1.83% 4.33%
Std 19.55% 2.97% 0.18 0.26 11.23% 25.76%

Std[E(RM-Rf|t)] 4.83% Corr(Ep , StdR) -0.34
Std[Std(RM-Rf|t)] 1.15%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , Sharpe  )

E&S 0.15 0.16 -0.86
S -0.16 -0.07 -0.59

Corr( λI, R)

E&S, S 0.98

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%



Table 2
Asset Pricing Implications: IIID case; no serial correlation, no asymmetric states

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S          RE&S-Rf  RS                 RS-Rf

Mean 3.11% 1.06% 0.18 0.17 1.79% 4.29%
Std 19.99% 2.55% 0.10 0.12 11.42% 26.13%

Std[E(RM-Rf|t)] 2.28% Corr(Ep , StdR) -0.74
Std[Std(RM-Rf|t)] 0.98%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , Sharpe  )

E&S -0.43 -0.88 -0.39
S -0.75 -0.63 -0.68

Corr( λI, R)

E&S, S 0.99

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%



Table 3
Asset Pricing Implications: with shocks to investment technology

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market  RE&S          RE&S-Rf  RS                 RS-Rf

Mean 2.05% 1.65% 0.28 0.13 1.08% 2.79%
Std 16.91% 4.14% 0.17 0.30 9.37% 22.72%

Std[E(RM-Rf|t)] 4.81% Corr(Ep , StdR) -0.11
Std[Std(RM-Rf|t)] 1.26%

Corr( IKZ , E(RM-Rf|t)  ) Corr( IKZ , Rf  ) Corr( IKZ , Sharpe  )

E&S 0.49 -0.94 0.31
S 0.07 -0.64 0.04

Corr( λI, R)

E&S, S 0.97

Real returns 1947-2003 RM                                 RM-Rf Rf Sharpe
Mean 8.35% 1.09% 0.49
Std 17.24% 2.07%
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Figure 3a: Baseline Calibration 
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Figure 3b: IID case 
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