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Abstract

I examine the identification and estimation of the payoffs of agents in two-sided matching models. Koopmans

and Beckmann (1957), Shapley and Shubik (1972) and Becker (1973) introduce assignment models with

endogenous prices that have the property that all stable matches are socially optimal. I show how to work

with the social planning problem to ease estimation. I prove a new result that translates a local definition of

social optimality into a statement about matching probabilities from the econometrician’s viewpoint. Local

social optimality then underlies the identification and consistency proof for a semiparametric maximum score

estimator of total match payoffs for the assignment game. The estimator is for a market with prices, but

does not require data on prices, so is useful for studying marriage and inter-firm contracts where the details

of transfers and contracts are not public. Also, the estimator is computationally tractable because it avoids

solving a matching mechanism. The estimator can be applied to markets where the number of potential

matches is very large, including markets with one-to-many and many-to-many matching. Identification and

estimation rely on an assumption of i.i.d. errors at a marketwide level, but the assumption can be significantly

relaxed to allow for agent-specific fixed effects over matching partner nests specified by the econometrician.

I also present Monte Carlo studies.

1 Introduction

Koopmans and Beckmann (1957), Gale and Shapley (1962), Shapley and Shubik (1972) and Becker (1973) in-

troduced the study of two-sided matching of heterogeneous agents. Examples include the matching of workers

to firms, men to women, families to houses, students to colleges, bidders to multiple objects for sale in an auc-

tion, and upstream to downstream firms. A desirable property of a matching assignment is that it be stable: no

two parties should want to deviate from their assigned partners and match outside of the assignment. A typical

data set for a matching market lists a series of observed matches and some characteristics about the parties in

the match. Economists have interests in using the data to estimate the preferences of agents in the market over

potential matches. Compared to a model of single-agent discrete choice, estimating a matching model presents
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additional complications because the actions of agents to match may preclude the possibility that other agents

can match with the same parties. More simply, agents on the same side of the market are rivals, and the choice

set of any agent is endogenously determined by those agents on the other side willing to match with it.

Applying single-agent methods, such as the well-known logit and probit discrete choice estimators, to matching

markets may give misleading results. For example, it would be incorrect to infer from the fact that most college

students do not attend elite universities that most students do not like such institutions. Another possibility

is that most students do not have the credentials to attend such a university, so the elite university is not in

their choice set. One approach to addressing the endogeneity and even the unobservability of choice sets is

to make educated guesses about the equilibrium choice sets of agents. Even if these guesses are correct, the

resulting single-agent estimator is inconsistent, because the choice sets are a function of unobserved factors

affecting match payoffs. If the original matching model has i.i.d. errors over potential matches, the model’s

errors conditional on a certain equilibrium choice set are far from i.i.d.

In this paper, I show that the total payoffs created by a match in a two-sided matching model with endogenous

prices and transferable utilities are semiparametrically identified. I study the assignment problem first intro-

duced by Koopmans and Beckmann (1957) and generalized to game theoretic forms by Shapley and Shubik

(1972) and Becker (1973) for one-to-one matching and Sotomayor (1992) for the case where agents on both

sides of the market can make multiple matches. I also provide a tractable consistent estimator for the total

surpluses of matches.

A pairwise match is an observed relationship from among a potentially large but finite set of possible matches.

Therefore there are natural links between estimating two-sided matching models and estimating single-agent

discrete choice models. In the context of multinomial discrete choice, Manski (1975) shows that, under an as-

sumption of i.i.d. stochastic payoffs across discrete choices, choice probabilities are monotonic in deterministic

payoffs. This monotonic relationship can be re-expressed locally: given two deterministic payoffs for discrete

choices, the choice with the higher deterministic payoff will be made with higher unconditional probability. A

literal extension of the single-agent monotonicity property to a two-sided matching game does not hold. Given

two matches, the match with the higher deterministic payoff may actually be realized with lower probability

if either of the two agents involved have attractive outside options. Matching a marginal student to an elite

university may create more deterministic payoffs than matching the student to a community college, but the

elite university may find it has better applicants for its available slots.

The theory of matching does, however, impose more subtle restrictions on matching probabilities. Koopmans

and Beckmann (1957) and others prove a key property of an assignment game with endogenous prices, trans-

ferable utility and one-to-one matching: any stable match of physical pairings and transfers between agents is

socially optimal. Social optimality means the economy-wide sum of match payoffs before transfers is the max-

imum achieved by any set of physical pairings. Social optimality can be seen as a version of the first welfare

theorem for a matching market with transferable utility. The implication of social optimality is that the stable

assignment in a decentralized market economy can be computed as a social planning problem, without the need

to calculate the endogenous prices underlying the stable match in the decentralized market. Sotomayor (1992)

extends the social optimality property of stable matches to the case where agents on both sides of the markets

may make multiple matches, and payoffs for multiple matches are additive across matches.

This paper shows the notion that data on observed matches represent a social optimum places empirically
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relevant restrictions on the payoffs of agents. I base my identification and estimation strategies on a concept

of local social optimality. Fix a quartet of four agents, two from each side of the market. For any two sets of

matches, social optimality implies that the pair of observed matches give a weakly greater total payoff than the

counterfactual situation where the four agents exchange partners. I prove that this statement about local social

optimality survives translation into a statement about matching probabilities when an econometrician does not

observe an i.i.d. error term at the marketwide outcomes level. Here, a probability is calculated unconditionally

over all possible market outcomes. For example, a matching probability for two pairs of matches involving four

agents in a market with 1000 agents on each of the two sides is a function of the 10002 = 1million observable

covariates entering into match surpluses. The probability involves integrating out over error terms for each of

the 1000!≈ 4.02× 102567 unique collections of physical pairings possible in the market, if only one-to-one

matches are allowed.

If the goal is to estimate the parameters in a deterministic index of match payoffs, I prove that the two matches

that together give a higher deterministic payoff than the counterfactual exchange of partners must be made

simultaneously with a greater probability than the probability of simultaneously observing the exchange of

partners. Intuitively, an agent whose typical match partner is unavailable because of a marketwide stochastic

payoff shock will more often than not pick the partner within the quartet that gives the agent a greater payoff.

I can sign the difference between matching probabilities because the outside options available from partners

other than the quartet under consideration contribute similarly to the probabilities of the two observed pairs

matching and the counterfactual exchange of partners matching.

Signing the difference between the two probabilities requires that the stochastic components of payoffs are i.i.d,

and enter at the marketwide outcome, rather than the individual match, level. The marketwide error structure

places the marketwide matching problem into a single-agent, multinomial discrete choice framework I develop

in Fox (2005), which itself is related to pioneering work on the semiparametric discrete choice models by

Manski (1975).

My new mathematical result about the link between the local social optimality of deterministic payoffs and

matching probabilities forms the basis for an identification argument. Again, fix a quartet of four agents, two

on each side of the market. If the total payoffs of the matches have continuously varying observable covari-

ates when asymptotically sampled across markets, then the total payoffs from a match are semiparametrically

point-identified. If there are not continuously varying covariates, then the parameters in the deterministic pay-

off function are set-identified (bounded). Given my results about local social optimality and unconditional

matching probabilities for a quartet of agents, the subsequent identification argument is similar to proofs in the

single agent, semiparametric discrete choice literature (Manski, 1988).

A consistent estimator based on the identification argument involves nonparametrically estimating match prob-

abilities that are functions of potentially millions or billions of observables. A major contribution of the paper

is to introduce a tractable maximum score estimator for assignment games. The estimator is semiparametric

because it does not require the assumption of parametric distributions for the stochastic portions of marketwide

errors. Importantly, the matching estimator is for market with endogenous prices, like many of the markets

studied by economists. However, prices do not enter into the definition of social optimality, so the estimator

does not actually use data on the endogenous prices. Therefore, the estimator is an excellent tool to study con-

tracting between firms, where typically the contracts involve prices that are not publicly disclosed, or marriage,
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where transfers between husbands and wives are often not observed.

Consistency of the maximum score estimator comes from the social optimality property of the stable match

solution concept in assignment games. Basing estimation on the properties of the solution has several advan-

tages over the nested solution methods used in two recent papers. Sørensen (2004) estimates the total payoffs

of venture capitalists and entrepreneurial companies matching with each other, while Boyd, Lankford, Loeb

and Wyckoff (2003) study the matching of teachers to public schools. Both of these papers employ Gale and

Shapley (1962) matching models without endogenous prices, and make additional assumptions in order to

guarantee uniqueness of the stable match for every parameter value and vector of error terms. Sørensen as-

sumes that the preferences of venture capitalists and entrepreneurial companies are perfectly aligned, so that

the unique stable match can be calculated by a top-down sorting algorithm. Boyd et al. study a model with non-

aligned preferences, and impose a particular matching algorithm that picks one out of many stable matches.

By contrast, assignment games have a unique stable allocation of matches without restrictions on preferences

or the use of equilibrium selection algorithms, as the presence of endogenous prices assures that the socially

optimal allocation is chosen.1 Additionally, as the semiparametric matching estimator uses a local notion of

social optimality, it does not require data on the quotas of individuals agents, and whether particular agents can

choose to be unmatched.2

A major concern with the previous parametric nested solution approaches to two-sided matching is that they are

computationally burdensome. A nested matching mechanism must be solved for all trial parameter values and,

even more ambitiously, every combination of the set of all stochastic shocks needed for numerical integration in

order to evaluate an objective function. In a market with 1000 agents on each side with match-specific shocks,

there are 1 million such error terms. Further, the computational costs of solving the mechanism and evaluating

the likelihood scale poorly in the number of agents in the market being studied. By assuming marketwide

rather than match-specific errors, the assignment maximum score estimator introduced in this paper addresses

both computational issues. First, the estimator uses only the revealed preference conditions inherent in social

optimality, and avoids the need to nest a matching mechanism in the estimation procedure. Nested solution

methods have not been used for models with endogenous prices as a linear programming problem would have

to be solved for every trial parameter value and every vector of the stochastic errors. Sørensen (2004) computes

that if he were to modify his nested solutions method to nest the linear programming problem inherent in

assignment games, estimating a model on the same scale as his previous work (35 agents on each side of the

market) would take 800 years, even at the upper bound of the performance of a recently introduced linear

programming algorithm specialized for assignment games.

Second, the local notion of social optimality means that the maximum score estimator is consistent when

only a subset of potential matches are entered into the objective function for computational reasons. Most

nested solution estimators require covariate data on all possible matches, in order to solve the model and

compute matching probabilities that enter the objective function. Matching probabilities computed without

using the data on all available matches cannot be cleanly related to matching probabilities in the entire market.

The maximum score estimator in this paper involves pairwise comparisons between two pairs of matching

1Only the set of stable matches (not necessarily the vector of corresponding prices) is unique. There is a unique social optimum with
probability 1 because the stochastic portion of payoffs is assumed to have a distribution with no mass points.

2For example, in a labor market, in a nested solution approach, the matching algorithm requires the researcher to input the maximum
number of employees that a firm can match with, even though this quota is usually not found in the data.
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arrangements for a quartet of four agents. Local social optimality places sign restrictions on the difference

between the unconditional probabilities of the two pairs of matching arrangements. Only the sign restrictions

involving one quartet of agents are needed for identification and consistency. The assignment games maximum

score estimator can be used for matching markets where the number of possible pairings exceeds the number of

atoms in the universe, which is higher than the 352 = 1225 matches per market that nested solutions methods

have been used for.

A weakness of multinomial maximum score estimators is that consistency relies on the stochastic payoffs being

i.i.d., an assumption originating in the single agent work of Manski (1975). In the context of the single-agent,

binary-choice maximum score estimator, Abrevaya (2000) shows how to use panel data to consistently estimate

parameters on time-varying covariates in the presence of fixed effects. This identification argument can be

extended to multinomial cases using cross-sectional data if the researcher is willing to divide the potential match

partners into nests. An agent has a common fixed effect for all the match partners in a given nest. Comparing

match payoffs for partners within the same nest identifies the parameters on the observable covariates, as

the fixed effect is held constant within the nest, and does not alter the ordering of unconditional matching

probabilities for quartets that are the key implications of local social optimality.

This paper concludes by offering practical implementation advice for statistical inference. Kim and Pollard

(1990) show a class of models, that includes binary choice maximum score, converges at a3
√

n rate, and

the asymptotic distribution is not tractable for inference. Abrevaya and Huang (2005) further prove that the

standard bootstrap is inconsistent in estimators in the Kim and Pollard class, which almost certainly includes

the maximum score estimators in this paper. Therefore, I follow the advice of Delgado, Rodríguez-Poo and

Wolf (2001) for the binary choice maximum score and suggest subsampling as a consistent estimator of test

statistics. Finally, I present Monte Carlo evidence about the finite-sample performance of the assignment games

maximum score estimator.

2 Identification in Assignment Games

This section discusses how the social optimality property of stable matches in assignment games can be used

to identify the parameters in the total social surplus of a match.

2.1 Match Payoffs and Stable Matches

Consider a Koopmans and Beckmann (1957) assignment model. Let there be two sides to a matching market,

upstream firms and downstream firms. More traditional examples of one-to-many and one-to-one matching,

such as workers to employers and men to women, are special cases of the upstream-downstream model of

many-to-many matching. The estimators of this paper apply to all of these markets.3

3Lucas (1995) discusses some known results about assignment games when there are more than two sides to a match. Unfortunately,
the core of matching market can be nonempty in these cases. Abeledo and Isaak (1991) discuss how there may not exist a stable match
in a market, like the roommates problem of Gale and Shapley (1962), where matches are between agents on the same side of a market.
Ostrovsky (2004) shows how a special chain structure forn-way matching guarantees the existence of a stable chain. It is likely, although
unproven, that the estimators in this paper could be modified to apply to the Ostrovsky (2004) supply chain case, when the payoffs satisfy
the restrictions inherent in assignment games.
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If upstream firma matches with downstream firmi, it receives a structural payoff before transfers ofxup′
ai βup,

wherexup
ai represent the vector of the observable characteristics of the downstream firmi valued by upstream

firms interacted with the characteristics of the upstream firma, andβup is a vector of parameters multiplying

those characteristics. Similarly, downstream firmi receives a payoff before transfers ofxdown′
ai βdown if it matches

with upstream firma, wherexdown
ai represents characteristics observable to the econometrician. When parties

match with multiple agents, their payoff is the sum of the payoffs from each of the matches. In other words, all

matching partners are perfect substitutes for each other, and externalities across matches are ruled out. Ruling

out externalities is a serious restriction for applications to vertical relationships, as upstream and downstream

firms cannot be worried about changes in post-match competition arising from matching. Extending the theory

of two-sided matching to handle externalities is a holy grail of matching theory.

Firms matching together can exchange a transfer,pai. Transfers can be negative. Without loss of generality, say

the downstream firm pays this transfer to the upstream firm.4 Further, assume payoffs are additively separable

between other characteristics and transfers, so that an upstream firm’s final payoff isxup′
ai βup + pai, while its

matched downstream firm receivesxdown′
ai βdown− pai. Additive separability is often called transferable utility.

A notion of equilibrium used in this class of models is a stable match, which is a collection of assigned matches

and corresponding transfers where all matched parties receive greater benefit to being matched than remaining

unmatched, and the total payouts to any pair of firms exceeds the payoffs they would receive if they deviated

and matched outside of the mechanism.

Koopmans and Beckmann (1957) prove the amazing result that, under the assumption of transferable utility,

any stable match is socially optimal, meaning that the total sum of non-transfer structural payoffs is the max-

imum that can be achieved by an allocation of upstream to downstream firms.5 Social optimality can be seen

as an implication of the first welfare theorem for markets with transferable utility. The proof of social opti-

mality uses the fact, in linear programming, cost minimization is the dual to output maximization. The social

efficiency result has been proved for the case where both sides of the market can make multiple matches (a

number not greater than some fixed, agent-specific quota) and payoffs are additively separable across matches

by Sotomayor (1992).6

The fact that in this class of models all stable matches are socially optimal leads me to focus on an identification

method that relies on social optimality, rather than stable matches. Transfers do not affect a social planner’s

calculation of whether an assignment of physical pairings is socially optimal, so they play no more role in my

identification and estimation strategy. Thus, my identification arguments are for markets with prices, but they

do not use data on prices. The estimator is thus an excellent tool to study relationships between firms, where

the financial terms of contracts are usually not disclosed publicly. The estimator can also apply to the marriage

market case studied in Becker (1973), where economists believe there are procedures within marriages to

transfer consumption between spouses, but data on such transfers are hard to collect.

Under this payoff structure, the total payoff from a match of upstream firma and downstream firmi is

xup′
ai βup+xdown′

ai βdown.

4While Shapley and Shubik (1972) allow for prices to satisfy economy-wide feasibility constraints, individual rationality constraints
inherent in the notion of a stable assignment imply that the total payments to agents in a match will equal the total surplus from that match,
or that prices in a stable assignment can be thought of as transfers between two parties in a match.

5This result is Corollary 8.8 in the usual reference on two-sided matching, Roth and Sotomayor (1990).
6A reference that is more easily available online is Sotomayor (1999).
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Only the total structural payoff of two agents in a match is relevant for computing whether a match could be

part of a socially optimal allocation. It is not possible to use social optimality alone to distinguish whether large

upstream and downstream firms are likely to match because large upstream firms value large downstream firms

or because large downstream firms value large upstream firms.

Further, social optimality depends on only the portion of the payoff of a match that depends on the interaction

of characteristics between the matching firms. Therefore, I introduce the new notation for the portion of match

characteristics affecting social optimality

x′aiβ = xup′
ai βup+xdown′

ai βdown, (1)

where it understood that the composite characteristic vectorxai combines linearly dependent terms inxup
ai and

xdown
ai andβ also combines the corresponding parameters inβup andβdown for the linearly dependent terms of

xup
ai andxdown

ai .7

Note that I have not assumed that agents to a match have the same preferences over the match, or that agents

split some surplus in fixed proportion, which together are assumptions Sørensen (2004) cleverly exploits to

prove that his nested matching mechanism produces a unique stable match. A unique stable assignment is

important when estimating a Gale and Shapley (1962) two-sided matching model without prices. By con-

trast, uniqueness arises naturally in assignment games with endogenous prices when covariates entering match

payoffs have continuous distributions, so that feasible match assignments will sum to the same social optimal

payoff value with probability 0.

2.2 Marketwide and Local Social Optimality

As discussed above, the presence of transferable utility (transfers are additively separable from other covariates)

ensures that any stable assignment of upstream firms to downstream firms maximizes the sum of marketwide

payoffs from all assigned matches. Matching theory takes as given a matrix of match payoffs, where an

individual cell in the matrix is the payoff of a match between upstream firma and downstream firmi, x′aiβ. The

optimal assignment can then be computed as a social planning problem that maximizes total payoffs subject to

feasibility constraints, namely the quota, or number of matches, that each agent can make.

Let U be the set of upstream firms in a matching market, and letD be the set of downstream firms in the same

market. Defineyai to be the indicator variable equal to 1 if firmsa andi are assigned to match, and 0 otherwise.

The social planning problem is easier to solve ifyai can be any real number between 0 and 1. At the solution,

yai will be either 0 or 1 for all matching possibilities. The social planner chooses the set ofyai ∈ [0,1] for all

upstream and downstream firms to maximize

∑
a

∑
i

(
x′aiβ

)
yai

7If the number of matches each firm will make at a stable allocation is preset, and no firm remains unmatched, then social optimality
will not depend on the presence of unobserved intercept terms in match payoffs. The payoff of a downstream firm with intercepts can
be written asxup′

ai βup+ ξup
a + ωup

i , whereξup
a is a fixed payoff of firma that it gets regardless of its match, andωup

i is a fixed payoff any
upstream firm gets for matching with downstream firmi. Likewise, downstream firms can have payoffsxdown′

ai βdown+ξdown
a +ωdown

i . It is
not possible to use local social optimality to identify these intercepts, but the parameterβ in the portion of deterministic surplus that affects
social optimality can still be identified despite the presence of the intercepts.
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subject to the feasibility constraints that all agents are under their quotas, or

∑
i

yai = qup
a ∀a∈U

∑
i

yai = qdown
i ∀ i ∈ D.

The quota of an upstream firma, qup
a , is the number of downstream firms thata can physically match with at

one time. Because the coefficients and constraints are all linear inyai, this is a linear programming problem

that is relatively easy to solve once.

Note that the above feasibility constraints allow agents to be unmatched. If an agent does not use up his quota,

the agent is said to match with some finite number of dummy agents that represent that those quota spots are

unfilled. Call these outcomesya0 = 1, for some example upstream firma and the dummy agent 0. The quota

of the dummy agent 0 is unlimited. The payoff to being unmatched is normalized to 0 above, but this can

be weakened in an empirical application, which can treat being unmatched as another matching partner with

observable characteristics.

In this paper, I will solve an inverse problem. I am interested in taking data that I assume come from a

(decentralized) solution to the linear programming problem, and produce estimates of the parametersβ in x′aiβ.

In markets with tens, hundreds, thousands, millions or billions of potential matches, repeatedly solving a linear

programming problem is too computationally expensive to nest into an estimation algorithm.

The solution to the social planner’s problem implies many restrictions for two upstream and two downstream

firms at a time. If both matches ofa and i andb and j are observed, then a (possible) local implication of

social optimality is that the total surplus of two matches exceeds the total surplus froma matching with j and

b matching withi.

Definition 1. Matches between upstream firm a and downstream firm i, and upstream firm b and downstream

firm j, are locally socially optimal when

x′aiβ+x′b jβ ≥ x′a jβ+x′biβ. (2)

Consider a hypothetical solution to the marketwide social planning problem wherea matches withi and not

j, andb matches withj and noti. If the local social optimality inequality condition is not satisfied, havinga

match with j andb match withi would improve total surplus from the quartet, without disturbing the matches

of firms outside of the quartet. In a market where only one-to-one matching is allowed, itemizing over all

possible quartets (a, b, i and j) will produce the definition of social optimality for the entire market, as long as

remaining unmatched is considered a potential matching partner, where appropriate. In a market with many-

to-one or many-to-many matching, local social optimality for all quartets is a weak implication of market-level

social optimality, as local social optimality does not considerb deviating to match withi while a remains

matched withi.

Definition 1 implies that components of payoffs that are not interactions between the characteristics of upstream

and downstream firms do not contribute to social optimality. To see this, consider a payoff characteristicxa,

that only depends on a characteristic of the upstream firma. One interpretation is that all downstream value
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the characteristic identically. In this case, all payoffs for matches witha increase by the same value,xa times

its parameter, and thus this term appears on both sides of the inequality in equation (2), and therefore cancels

out from both sides. If there is a term such asxa in the characteristic vector, then the parameter multiplyingxa

cannot be identified, but as it cancels out from the local social optimality condition, other parameters can be

identified. Thus payoffs are partially identified.8

For some policy questions, the cancellation of characteristics that are not interactions between the character-

istics of upstream and downstream firms is an empirical advantage. Many datasets lack covariate data on all

important characteristics of upstream and downstream firms. If some of these characteristics affect the level of

match surplus of all matches equally, they difference out, and do not affect the optimal assignment of upstream

to downstream firms. Therefore, if the policy questions of interest to the investigator are not functions of these

unobserved characteristics, than differencing them out leads to a great deal of empirical robustness to missing

data problems.

2.3 Marketwide Assignment Error Terms

This paper solves an inverse problem to identify the parametersβ in the deterministic payoffsx′aiβ. In any

empirical investigation, there is not data on all characteristics relevant to an observed outcome. Therefore, the

econometrician needs to introduce errors so that the model can fit the data.

There are several approaches one could take to incorporating error terms into a two-sided matching model.

The nested matching mechanism estimators used by Boyd et al. (2003) and Sørensen (2004) make the match

payoffs equal tox′aiβ + εai, whereεai is an i.i.d. across matches error term. Unfortunately, repeatedly solving

the entire optimal assignment linear programming problem for all hypothetical combinations of values of the

εai for upstream firms and downstream firms is not possible. If there are 1000 upstream firms and 1000 down-

stream firms, there are 1 million unobserved random variablesεai. Even if there are only around 35 upstream

and downstream firms, Sørensen suggests nesting a linear programming problem will require 800 years for es-

timation, as evaluating the linear programming problem even once is somewhat expensive (on the order of 0.7

seconds for a specialized assignment games routine), and the linear programming problem must be evaluated

thousands or millions of times in numerical integration over the 352 = 1225 errors in the 35 firm case.

I address this scalability problem by placing the error terms at the marketwide allocation level. Each set

of assignments of upstream to downstream firms, including the probability of being unmatched, results in a

payoff, for marketwide assignmentE, of ∑cg∈E x′cgβ, where the indexcg∈ E represents an assigned match in

E. If there are 1000 upstream firms and 1000 downstream firms in a one-to-one matching market without the

option of remaining unmatched, the total number of marketwide assignments of physical pairingsE is 1000!,

or 4.02×102567, which is a very large number. I introduce an error term for each marketwide allocation, so the

final perceived marketwide payoff of assignmentE is

∑
cg∈E

x′cgβ+ εE.

8One way of identifying (or at least bounding, if covariate assumptions below are not met) the coefficient onxa in payoffs is if
unmatched upstream firms are observed, and unmatched firms do not value their own characteristicxa. Thenxa is implicitly multiplied by
an indicator variable equal to 1 if a match partner is not the null set, and 0 if the match partner is remaining unmatched. In this case,xa is
truly not a characteristic valued equally by all downstream firms, as being unmatched is treated as a type of firm.
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This transforms a complex two-sided matching market estimation problem into a single-agent discrete choice

problem. A social planner considers the sum of deterministic payoffs generated by any marketwide matching

assignment,∑cg∈E x′cgβ, and adds a random error term to the final payoff.

For a minute, consider the case of single-agent discrete choice, and say agenta decides between discrete

choices such asi and j. The multinomial maximum score estimators of Manski (1975), Matzkin (1993) and Fox

(2005) allow the estimation of single-agent discrete choice models without imposing a particular parametric

functional form for the disturbance term. An important assumption is, however, that the error termsεai are i.i.d.

across choices for a given agent. The functional form for the disturbances can be completely different across

observationally distinguishable agents, so that agents from Texas might have Laplace errors, and agents from

Illinois might have multimodal, mixed normal errors with much smaller variances. In notation, the error terms

have a common distribution functionF (εai | xa), wherexa is all of the covariates for agenta.

Returning to the two-sided matching case. Adding, say, an outrageous1000! error terms at the marketwide

allocationE level instead of “only” 1 million error terms at the individual matchai level is somewhat arbitrary

from the viewpoint of matching theory, as the random errorsεE are not assigned to the payoffs of any individual

agents. However, tractable estimation prevents me from itemizing all 1000! outcomes, or even all components

entering a single outcome in markets with many upstream firms and downstream firms. This paper will show

estimation can proceed with data on only two upstream firms and two downstream firms per market, even if the

true size of the markets are much larger. This requires that the errors be i.i.d. across marketwide assignments.

If instead I had included match specific error terms, the payoffs to overall marketwide outcomes would be

statistically correlated. The same match-specific error termεai would appear in multiple outcomes, asa can

match withi in many situations involving changes in the matching arrangements of the other firms in the market.

Eliminating correlation across market outcomes, and therefore the assumption of marketwide assignment errors

εE is critical to the semiparametric identification and estimation strategy taken by this paper, as the result that

the probability of observing a given marketwide outcome is monotone in∑cg∈E x′cgβ requires i.i.d. errors across

outcomes.

Assumption 1. For all marketwide assignments E of upstream to downstream firms, and including the option

of remaining unmatched where appropriate, let the random variableεE be i.i.d. across choices for a given

market. Let the random variableεE have a continuous distribution F(εE | Xh) with full support and no mass

points. LetεE have a corresponding density f(εE | Xh).

The distribution function of the error terms can vary across markets with potential market observablesXh. I

defineXh in more detail in the next section.

While i.i.d. stochastic error terms is a restrictive assumption if the observable covariates have low explanatory

power for predicting matches, Section 3.5 discusses how to relax Assumption 1 by allowing for firm-specific

fixed effects over pre-specified nests of match partners.

2.4 The Definition of a Market

The use of asymptotic theory to prove identification of the assignment maximum score estimator requires me

to choose whether the limiting population is observing a matching market with an infinite number of agents, or
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observing an infinite number of matching markets, each with a finite number of firms. A market with an infinite

number of firms changes the character of the matches that will be observed; it is much simpler to consider a

population with an infinite number of markets.

Each marketh is distinguished by its characteristics,Xh, its observed set of matches, and the unobserved

stochastic error terms generating the observed matches. The vectorXh is a particularly important construct

in understanding the theoretical properties of the estimator I will introduce below.Xh contains most of the

exogenous characteristics of a matching market.

Definition 2. The vector of most of the exogenous characteristics of matching market h is Xh.

• Xh contains the number of upstream, Uh, and the number of downstream firms, Dh, in market h.

• For each pair of an upstream firm a and downstream firm i, Xh contains the vector of (potentially)

observable characteristics xaih entering into the total match surplus.

• Characteristics entering the value of remaining unmatched also enter into Xh.

• Xh also contains the quota, qdown
ih or qup

ah, the number of matches each firm can make.

If there are 1000 upstream firms and 1000 downstream firms,Xh contains 1 million vectors of covariatesxai as

well as other data. The stochastic payoff termsεE are exogenous from a matching theory standpoint, but are

specifically excluded fromXh.

In order to solve the social planner’s linear programming problem for a given realization of all the error terms,

every component ofXh must be observable. Consider a (computationally intractable) parametric or semi-

parametric pseudo-maximum likelihood procedure that involves a nested solution to the linear programming

problem for all combinations of error term values and unknown payoff parametersβ. Every component ofXh

would be needed to solve the model and therefore for parametric identification and consistency. Identification

in this paper relies on the local social optimality property of the observed stable match, and I will show in

Section 3 that not every component ofXh must be observable for identification and estimation. One important

example is the quota of each agent is not needed, as I will discuss in Section 3.4.

In the theory of two-sided matching, a market is the collection of agents who may physically match with each

other. In many applications, the definition of a market may be unclear to the econometrician. In fact, the

definition of the relevant market is an important issue in most anti-trust litigation. However, the economic

theory of two-sided matching is only developed for the case where a market is well-defined, and that is how

this paper will proceed.

2.5 Unconditional Quartet Match Probabilities in Assignment Games

The local social optimality condition in Definition 1 needs to be transformed into a statement about matching

probabilities in order to be useful for empirical work, as the stochastic components of marketwide payoffs, the

ε’s, are not observed in data.9

9As the econometrician does not observeεE, the matching probabilities are from the econometrician’s point of view, not the agents or
the social planner in the model, who can implicitly calculate the gains to any potential match. This distinguishes assignment games from
search models, where an agent must spend time to sample more match partners.
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If there are 1000 upstream firms and 1000 downstream firms in a one-to-one matching market without the

option of remaining unmatched, the total number of marketwide allocations of physical pairings is 1000!, or

4.02×102567. Let the massive set of all feasible marketwide allocations beZh. The unique socially optimal

allocationEh satisfies,

∑
ckh∈Eh

x′ckhβ+ εEh ≥ ∑
ckh∈Zh

x′ckhβ+ εZh ∀ allocationsZh 6= Eh, Zh ∈ Zh, (3)

which states that the sum of the payoffs of a socially optimal allocation is greater than other feasible alloca-

tions, where feasible allocations enforce the quotas of agents. The inequality in equation (3) transforms the

computation of the social optimum into a single-agent discrete choice problem with extra i.i.d. additive errors.

The errors need to be integrated out to calculate the probability, from the point of view of an econometrician,

of an assignment maximizing the deterministic payoffs of agents and the marketwide error term. The definition

of local social optimality involves a quartet of agents. Therefore, I introduce the concept of a quartet matching

probability.

Definition 3. In a matching market h with characteristics Xh, consider the quartet of upstream firms a and b

and downstream firms i and j. LetEh (ai,b j)⊆Zh be the set of all allocations in h where a matches with i and

b matches with j. Then the unconditional quartet match probability is

P(ai,b j | Xh) = ∑
E∈Eh(ai,b j)

Probεh (Eh solves social planner’s discrete choice problem) , (4)

where the social planner’s discrete choice problem is defined in equation (3).

P(ai,b j | Xh) is the unconditional probability, from the econometrician’s point of view, ofa matching withi and

b matching with j. CalculatingP(ai,b j | Xh) involves integrating out the vector of all marketwide assignment

specific error terms,εh
E, or, alternatively, all allocations inZh wherea does not match withi andb does not

match with j.

The quartet matching probabilities are computed holding fixed the large vectorXh of all observable market

characteristics. AsXh can have millions or billions of elements, an estimator that involves computing quartet

match probabilities will not be tractable. Quartet match probabilities are well defined if there is a unique

socially optimal match with probability 1.

The reason for specifying the joint probability of two matches is because the estimator focuses on the local

social optimum property of exchanging two matches. More formally, proving that an extremum estimator is

consistent requires showing that the probability of the objective function has a unique relevant extremum at the

true parameter value. The probability limit of the maximum score objective function will involve terms such as

P(ai,b j | Xh).

2.6 Monotonicity of Matching Probabilities under Local Social Optimality

A key insight of Manski (1975) for single-agent discrete choice models is that the i.i.d. property implies

that choice probabilitiesP(i | X) are monotone in the deterministic part of utilityx′aiβ, so observed choices
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should, more often than not, have greater deterministic linear indices than unobserved choices. Consider a

agent making a standard, single-agent, multinomial discrete choice from a setJ of choices. Fix two choices,

i and j, from the setJ of all choices. Under a single-agent version of Assumption 1,x′iβ > x′jβ if and only

P(i | X) > P( j | X) .10

A literal extension of the monotonicity of outcome probabilities does not hold in matching models, as a matchai

that gives a higher deterministic payoffx′aiβ than another matchb j may not be observed with higher frequency

if either a or i has good outside options. However, for semiparametric identification, I need to find a similar

monotonicity property for an assignment game. It turns out that social optimality of an assignment game

implies that there will be local socially optimal matching in a probabilistic sense. Given two upstream firms

and two downstream firms, it is more likely that the combination of two matches with the higher deterministic

payoff, sayx′aiβ+x′b jβ, will be observed than the alternative combination, which in this case has a total payoff of

x′a jβ+x′biβ. The following theorem is to my knowledge new and is the key mathematical property of assignment

models that allows their semiparametric identification and estimation. The theorem holds for one-to-one and

many-to-one matching.

Theorem 1. Consider two upstream firms, a and b, and two downstream firms, i and j, all in a one-to-one

or many-to-one matching market h with endogenous prices, transferable utility, and utility for an agent who

makes multiple matches that is additive across matches. Under Assumption 1,

x′aihβ+x′b jhβ > x′a jhβ+x′bihβ,

if and only if

P(ai,b j | Xh) > P(a j,bi | Xh) .

The proofs of theorems are collected in Appendix A. The intuition for the proof is understandable. Under the

conditions in the theorem, there are the same number of marketwide assignmentsE1 wherea matches withi

andb matches withj as assignmentsE2 whena matches withj and whenb matches withi. These assignments

have payoffs of the form

x′aihβ+x′b jhβ+ ∑
cg∈E1\{ai,b j}

x′cghβ+ εhE1

and

x′a jhβ+x′bihβ+ ∑
cg∈E1\{a j,bi}

x′cghβ+ εhE2.

As the maximum number of possible matches, the quota, of firmsi and j is not violated by switching the

matching partners ofa andb, for every set of other matchesE1\{ai,b j}, there is an identical setE1\{a j,bi}.
It can be shown by simple integration that the marketwide assignmentsE1 and E2 happen with the same

probability.

For many-to-many matching, Theorem 1 does not hold, because the theorem does not rank assignments of the

form

x′aihβ+x′b jhβ+x′a jhβ+ ∑
cg∈E1\{ai,b j}

x′cghβ+ εhE1,

10The proof is Case (b) of Step 2 on pages 212-213 of the consistency theorem in Manski (1975), and relies on writing the functional
form for choice probabilities in terms of an integral over the error terms in the model.
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which is an event that contributes to the calculation ofP(ai,b j | Xh) but notP(a j,bi | Xh), vs. assignments of

the form

x′a jhβ+x′bihβ+x′b jhβ+ ∑
cg∈E1\{a j,bi}

x′cghβ+ εhE2,

which contributes to the calculation ofP(a j,bi | Xh) but notP(ai,b j | Xh).

The arguments from the cases of one-to-one and many-to-one matching about assignments wherea matches

with i and notj andb matches withj and noti still hold. Therefore, let

P̄(a j,bi | Xh) = ∑
E∈Eh(ai,b j)∩Eh(ai,b j,a j)∩Eh(ai,b j,bi)

Probεh (Eh solves social planner’s discrete choice problem)

be the probability ofa matching withi, b matching with j, buta not matching withj andb not matching with

i. Here,Eh (ai,b j,a j) is the set of marketwide assignments wherea matches withi, b matches withj, anda

matches withj. Then the following corollary to Theorem 1 holds.

Corollary 1. Consider two upstream firms, a and b, and two downstream firms, i and j, all in a many-to-many

matching market h with endogenous prices, transferable utility, and utility for an agent who makes multiple

matches that is additive across matches. Under Assumption 1,

x′aihβ+x′b jhβ > x′a jhβ+x′bihβ,

if and only if

P̄(ai,b j | Xh) > P̄(a j,bi | Xh) .

The proof is also in the appendix.

2.7 Identification Using Covariates for Only One Quartet

The following identification arguments are written for one-to-one and many-to-one matching. However, all the

following arguments hold for many-to-many matching ifP̄(a j,bi | Xh) replacesP(a j,bi | Xh).

Point identification is showing that an there is only one parameterβ0 that could generate the data for an infinite

number of observed markets. If there are an infinite number of markets, there are also an infinite number of

identical markets, and the matching probabilitiesP(ai,b j | Xh) are observable. Given the matching probabil-

ities, Theorem 1 places restrictions on the set of deterministic payoffsx′aihβ that are consistent with the data.

Without additional assumptions than made in Theorem 1, the identified set of parameter vectors is

B =
{

β ∈ Θ | x′aihβ+x′b jhβ > x′a jhβ+x′bihβ whenP(ai,b j | Xh) > P(a j,bi | Xh) ∀Xh,a,b, i, j
}

. (5)

Without any restrictions onXh, I can only prove that this setB exists, and that it is not the entire spaceΘ of

theoretically possible parameters. In other words,β is set-identified, and we can use Theorem 1 to identify

bounds onβ, or the boundaries ofB. Note that the outcomes of discrete choice models (in this case, matches)

are qualitative and have no natural cardinalization. Therefore,Θ will impose location and scale normalizations,

as only the parameter vectorβ/‖β‖ is identifiable from discrete matches.
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Most applied economists prefer to report point estimates rather than estimates of sets. Manski (1975), Manski

(1988) and other authors have discussed the semiparametric point-identification of discrete choice models,

where semiparametric means that the distribution of the stochastic error termsεhE are not specified. This

section follows that tradition by showing sufficient conditions on the variation in the data that allow point

identification of the parameters. Point identification means that the identified setB is a single vector, and that

vector isβ0, the parameter that generates the data.

The mathematical argument for point identification focuses on the detailed covariates of only one quartet of

firms in each market. To first-time readers of this paper, this may seem shocking, but the intuition follows

naturally from the intuition for the identification of single-agent discrete choice models, as I will discuss below.

To this end, make the following assumption about the identities of the relevant quartet and the corresponding

variation in the observable data. I first need to split the vector of characteristicsxai entering into the total match

payoff of upstream firma and downstream firmi into xai = (x1,ai,x−1,ai), wherex1,ai is the first component of

the vector, andx−1,ai is all other covariates.

Assumption 2. For every matching market, the econometrician sees the market characteristics Xh, and in

particular observes two particular upstream firms a and b, and two particular downstream firms i and j.

The joint distribution of the vectors of the characteristics entering into match surpluses is g
(
xai,xa j,xbi,xb j

)
.

Furthermore, define the random variable y≡ x1,ai +x1,b j −x1,a j −x1,bi, where x1,ai is the first covariate of the

vector of characteristics.

• The random variable y is assumed to have a continuous conditional density g
(
y | x−1.ai,x−1.a j,x−1.bi,x−1.b j

)
with positive support on the entire real line and no mass points.

• The parameterβ1 on characteristic 1 is nonzero.

• The support of the distribution of the entire set of characteristics
{

xai,xa j,xbi,xb j
}

does not lie in a

proper linear subspace ofRd, where d= dim
{

xai,xa j,xbi,xb j
}

.

The sampling rule for the data,g, should be seen as an implication of the sampling rule for the characteristics

of all matches in the entire marketXh. This includes whatever rule is being used to assign firms in different

markets to the slots of the abstract firmsa, b, i and j. The special random variabley is assumed to be freely

varying conditional on the other characteristics of the matches. The existence of such a freely varying covariate

is required for point identification of semiparametric discrete choice models (Manski, 1988; Horowitz, 1998).

Intuitively, the support condition fory means there exist a continuum of moment restrictions (one for each

value of the characteristics), and moment restrictions that are relevant for every potential value of the unknown

parametersβ. In the case of two-sided matching, the number of possible matches in an entire matching market

is large, but still finite. Itemizing over the entire set of possible match quartets only provides the finite number of

inequality moments from Theorem 1. On the other hand, adding additional observations with new continuous

characteristicsy from an infinite number of new markets (the exercise in identification) creates a continuum

of restrictions from Theorem 1. Thus, semiparametric point identification takes advantage of continuously

varying covariates such asy and does not require examination of the entire set of possible matches.

Assumption 2 states that the vector of the characteristics of all firms and matchesXh is observable. This

assumption is made to conceptualize the set of observationally equivalent markets in order to observe quartet
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match probabilitiesP(ai,b j | Xh). Section 3.4 argues that, in the case of the quota of matches each firm can

make, the observability of all elements ofXh is a convenience, and not a necessity.

Identification is stated in the following theorem, and the theorem is proved in Appendix A.4.

Theorem 2. Under the assumptions of Theorems 1 and and Assumption 2, the true parameterβ0 from the data

generating process is uniquely identified up to the choice of location and scale normalizations in the setΘ.

3 Semiparametric Estimation of Total Match Payoffs

The previous section shows that the parameters multiplying the observable characteristics in total match payoffs

are semiparametrically identified under the assumptions of i.i.d. stochastic payoffs across marketwide assign-

ments and the availability of a particular freely varying covariate. By following the identification argument,

one can construct a potentially consistent estimator of the parameter in the data generating process,β0. The

researcher nonparametrically estimates quartet match probabilitiesP(ai,b j | Xh) by using data across markets.

Then the researcher uses the estimates of quartet match probabilities to estimateB, the identified set using the

conditions of Theorem 1. As data on more markets appear, the estimate ofB converges to the true parameter

β0, if the conditions for identification are met, and under possible additional regularity conditions.

Given thatXh may have millions of elements, the dimensionality ofP(ai,b j | Xh) means that nonparametric

estimation is not a tractable strategy for typical datasets. This section provides a more practical maximum score

estimator. The maximum score estimator works directly with the parameter vectorβ, and does not involve

auxiliary nonparametric estimates or estimates of sets. A small downside is that consistency of the maximum

score estimator requires somewhat stronger properties for the covariates. In particular, most of Assumption 2

must hold for all quartets of firms that enter the objective function, rather than just the one quartet needed for

identification in Theorem 2.

3.1 The Assignment Maximum Score Estimator for One-to-One and One-to-Many

Matching

First consider the case of one-to-one and one-to-many matching. Define the assignment maximum score esti-

mator to be any parameter vectorβ ∈ Θ that maximizes the objective function

QH (β) =
1
H

H

∑
h=1

∑
a∈Uh

Uh

∑
b=a+1

∑
i∈Dh

∑
j∈Dh, j 6=i

1[ai,b j match inh]1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
, (6)

whereH is the number of such markets observed by the econometrician,Uh is the set of upstream firms

in marketh, and likewiseDh is the set of downstream firms in marketh. The termUh is also the number

of upstream firms in marketh, and is included to prevent duplicate quartets of firms from appearing in the

objective function. The terms 1[·] are indicator functions equal to 1 when the condition in brackets is true,

and 0 otherwise. The dependent variable from the assignment game is 1[ai,b j match inh], which is equal to 1

when firmsa andi and also firmsb and j match simultaneously in marketh.

16



Consider the case of one-to-one matching. A non-stochastic notion of social optimality implies that if upstream

firm a matches with downstream firmi, and upstream firmb matches with downstream firmj, then the sum

the payoffs for the observed matches must be greater than the payoffs from the quartet exchanging partners.

Theorem 1 extends local social optimality to the stochastic case where there are i.i.d. error terms across

marketwide assignments. If the local social optimality condition is met for an observed pair of matches at

some trial vector of parametersβ, the score of correct predictions within the quartet increases by 1. The

assignment maximum score estimator is any vector of payoff parameters that receives the highest score for

not violating predictions of Theorem 1’s version of local social optimality for observed match quartets. As

the objective function is a step function, there will always be more than one global maximum; finding one is

sufficient for estimation.

As proved below, maximizingQH (β) produces a consistent estimator of the true population parameter vector

β0. In practice, one uses a numerical optimization package to compute a maximum of the objective function.

In a finite sample, only the observed match quartets make positive contributions to the objective function.

However, in many applications the number of observed match quartets will be so large that the evaluation of

the functionQH (β) will be too computationally expensive for this estimator to be practical. For example, if

there are 1000 upstream firms and 1000 downstream firms in a one-to-one matching market without the option

of remaining unmatched, there are 1000 observed matches and the number of distinct quartets making positive

contributions to the objective function is 999+998+ . . .+1, or 499,500.

Fox (2005) proves that a single-agent multinomial maximum score estimator is consistent when using only a

subset of all of the theoretical model’s choices in estimation. Here, I extend the single-agent results to show

that the assignment games maximum score estimator is consistent when only a subset of potential matches are

considered in estimation. Given that the identification argument in Section 2.7 requires data on only one quartet

per market, it is not too surprising that subset estimation is possible with an appropriately constructed estimator.

Note that even for a small number of choices, evaluation of the matching maximum score objective function

will be much quicker computationally than nested solution estimators, which require the nested solution to

a matching algorithm for every parameter vector and vector of stochastic payoff terms, and to date do not

allow for endogenous prices. The maximum score objective function involves only multiplication, addition and

pairwise comparisons.

The assignment games maximum score estimator using only a subset of potential matches in estimation is

defined to be any parameter vectorβ ∈ Θ that maximizes

Qsub
H (β) =

1
H ∑

h∈H
∑

a∈Usub
h

Uh

∑
b=a+1,b∈Usub

h

∑
i∈Dsub

h

∑
j∈Dsub

h , j 6=i

1[ai,b j match inh]1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
, (7)

where againUh andDh are the sets of upstream and downstream firms in a matching marketh, andUsub
h and

Dsub
h are subsets of those firms that have been arbitrarily selected by the econometrician to enter the objective

function in order to reduce the computational cost of evaluating the objective function.11 If Usub
h = Uh and

Dsub
h = Dh, the subset estimator simplifies to the non-subset matching maximum score estimator introduced

above. It is easiest to think of the subset maximum score objective function as simply the full maximum score

11The summation∑Uh

b=a+1,b∈Usub
h

means that terms not inUsub
h are skipped in computation of the subset objective function.
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objective function with some match quartets dropped. If the subsetsUsub
h andDsub

h are fixed (as a function of

market characteristicsXh), I prove below that the matching maximum score estimator using only a subset of

potential match quartets in estimation consistently estimatesβ0.

To clarify, the subset matching maximum score estimator does not rely on randomly sampling an estimation

choice set for each agent, nor computing choice probabilities conditioning on a subset of choices, as the single-

agent logit sampling estimator of McFadden (1978) does. Instead, for all firms (in a market captured byXh)

there is one common set of quartets that enters the objective function. Some pairwise comparisons between the

deterministic payoffs of quartet matches are excluded for computational or data reasons, and the identification

argument in Section 2.7 shows that identification does not require covariates data on all quartets.

3.2 The Assignment Maximum Score Estimator for Many-to-Many Matching

The estimator for many-to-many matching is somewhat more complex, as the estimator must rule out as-

signments where there are three or four matches for quartet members. The assignment games estimator for

many-to-many matching is any parameter vectorβ ∈ Θ that maximizes

Qsub
H (β) =

1
H ∑

h∈H
∑

a∈Usub
h

Uh

∑
b=a+1,b∈Usub

h

∑
i∈Dsub

h

∑
j∈Dsub

h , j 6=i

1[inh; ai,b j match, a jdonotmatch, b jdonotmatch]

· 1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
. (8)

Corollary 1 does not consider the situations where more than two matches happen within the quartet, so the

assignment games maximum score estimator must not either.

Note that the many-to-many objective collapses to equation (7) in the case of one-to-one or one-to-many match-

ing. Therefore, the many-to-many objective function can be considered to be more general.

3.3 Consistency

To apply a lemma from asymptotic theory,12 we need the following assumptions about the data generating

process.

Assumption 3. The number of possible matching quartets does not have an infinite mean across markets.

Further the distribution G(Xh) of observable covariates, including the numbers of upstream and downstream

firms, is identical and independent across markets.

It is a standard technical requirement for extremum estimators that the parameter space must be compact.

Assumption 4. The parameter vectorβ is known to lie in a compact spaceΘ, which also imposes location and

scale normalizations.

12Lemma 2.4 from Newey and McFadden (1994), which appears in the proof of Theorem 3.
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Following Assumption 2, one suggestion for the scale normalization is to normalize the parameterβ1, which

multiplies the components of continuously varying characteristic for a specified quartety and is already as-

sumed to be nonzero, to values of±1. If the sign ofβ1 is not known from economic theory, it can be supercon-

sistently estimated by estimating the model twice, once whereβ1 is fixed at−1, and once whereβ1 is fixed at

1. The final estimates for all parameters correspond to the sign ofβ1 with the highest objective function value.

Consistency of the maximum score estimator requires stronger assumptions than identification. Identification

requires Assumption 2, which requires there to be a freely varying function of covariatesy for at least one

quartet of firms. Consistency requires that such ay exist for all quartets that have been entered into the objective

function. For any quartet, there are likely to be markets such thatx′aiβ0 + x′b jβ
0 = x′a jβ0 + x′biβ

0. Without

the existence of such ay for one quartet, there may be a positive probability for the set of markets where,

at the true parameter vector, the total deterministic payoffs from one set of match equals the payoffs from

the exchange of partners. Markets wherex′aiβ0 + x′b jβ
0 = x′a jβ0 + x′biβ

0 do not make positive contributions

to the objective function evaluated at the true parameter value. Choosing some alternative parameter value,

β̃ ∈ Θ, may make these markets contribute positively to the objective function.13 If so, it is possible that̃β
maximizes the probability limit of the objective function, which violates a condition for proving consistency of

the maximum score estimator.

With this argument in mind, I make the following covariate assumption.

Assumption 5. The conditions of Assumption 2 hold for every quartet of two upstream and two downstream

firms that enters the objective function. One exception is that data on whether a firm may remain unmatched,

or on the total quota of matches that a firm may make, is no longer required to be observable for any quar-

tet. Another exception is that covariate data not entering the objective function for computational or pure

unavailability reasons is also not required to be observable.

If the researcher knows that, ex ante, some quartets have covariates with only discrete distributions, for exam-

ple, then the researcher can ensure consistency by excluding those problematic quartets. Adding more quartets

to the model may make the estimator inconsistent if the quartets themselves are not sufficient for identifica-

tion. This lack of consistency is a property of the maximum score objective function, and does not affect the

identification arguments in Section 2.7. Section 3.4 discusses quotas in more detail.

The following theorem states that semiparametric assignment maximum score estimator is consistent, including

when a subset of possible match quartets are used in estimation.

Theorem 3. Under the assumptions of Theorem 1 and Corollary 1, as well as Assumptions 3, 4 and 5, any

argumentβH ∈ Θ that maximizes the subset assignment games maximum score objective function, equation

(8), is a consistent estimator forβ0, the true parameters in the total deterministic payoff of a match.

As discussed above, the many-to-many objective function, equation (8), is a generalization of equation (7).

13The specific argument relies on the fact that strict inequalities,>, enter the maximum score objective function. If weak inequalities,
≥, entered the maximum score objective function instead, markets wherex′aiβ0 + x′b jβ

0 = x′a jβ0 + x′biβ
0 would make contributions of

P(ai,b j | Xh)+P(a j,bi | Xh) to the probability limit of the objective function. An alternative parameter vectorβ̃ ∈ Θ that maximized the
instances of such equalities might raise the total objective function value, and be a global maximum of the probability limit of the objective
function. See the proof of Theorem 3 for more details about proving the probability limit of the objective function has a unique maximum
at the true parameter value,β0.
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The proof is in Appendix A.4. The most economically interesting part of the proof proves the true pa-

rameter valueβ0 maximizes the probability limit of the objective function. The probability limit has many

terms that look likeP(ai,b j | Xh) ·1
[
x′aiβ+x′b jβ > x′a jβ+x′biβ

]
. Each quartet in the estimation subset appears

twice: once as just listed, and once with the matches within the quartet exchanged, leavingP(a j,bi | Xh) ·
1
[
x′a jβ+x′biβ > x′aiβ+x′b jβ

]
. With the support condition, Assumption 5, ties in the indicator functions happen

with probability 0. So for any parameter vector, one of the indicator variables must be 1, and the other then

become 0. The highest objective function value can be achieved by having the larger of the two probabilities

multiply the 1, and the smaller of the two probabilities multiply the 0. Therefore, a global maximum of the

function is found by using Theorem 1 to show that the true parameter vectorβ0, which generatesP(ai,b j | Xh),
implements this assignment. Note that nowhere in the argument does the itemization of all matches play a role,

so the estimator is consistent when only a subset of matches are included for computational or data unavail-

ability reasons.

3.4 Quotas

A quota is a fixed number of other agents that an agent may match with. As a requirement of nesting a matching

mechanism into a parametric estimator, a researcher must make often unverifiable assumptions about the size of

the quota of each agent in their estimation sample. Sørensen (2004) assumes that all agents (venture capitalists,

in his example) use all of their quota, so the quota is equal to the number of observed matches for each venture

capitalist. Boyd et al. (2003) study the hiring of public school teachers, and argue that state laws mandate that

a fixed number of teachers must be hired based upon an exogenously specified number of students attending a

school.

By contrast, the method of estimating based upon properties of the solution considered in this paper does not

require that the econometrician specify the quota of each agent. The estimator only compares exchanging two

matches at a time. Given that the existing number of matches of any firm is under its quota, switching its

matching partner does not increase the number of partners it is matching with, and therefore does not violate

any quota.

A subtlety is that the identification argument in Section 2.7 requires knowledge of quotas. The reason is that the

quotas of firms affect quartet match probabilities, and such probabilities appear in the identification argument

based upon Theorem 1. As part of the proof of consistency, I show that the probability limit of the maximum

score objective function has a unique global maximum at the true parameter value,β0. The consistency proof

can be seen as an alternative, constructive proof of semiparametric identification. As consistency does not

require knowledge of the exact values for quotas, the assumptions of Theorem 2 are stronger than required. A

weaker, constructive version of Theorem 2 can be proved by using Theorem 1 and Assumption 2 to prove that

β0 ∈ Θ is the unique global maximum of

EXh

{
P(ai,b j | Xh,β0)1

[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
+P(a j,bi | Xh,β0)1

[
x′a jhβ+x′bihβ > x′aihβ+x′b jhβ

]}
,

which is just the probability limit of the maximum score objective function when using data on only one quartet

of firms. This objective function can be estimated by a maximum score objective function, where data onXh,
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such as quotas, do not enter the objective function directly. The constructive identification argument is a special

case of the proof of Theorem 3.

3.5 Relaxing i.i.d. Errors Through Nest-Specific Fixed Effects

The original paper by Manski (1975) on multinomial maximum score estimation relies on the assumption

of i.i.d. error across choices for a given agent, but not across agents. The two-sided matching maximum

score estimators in this paper rely on an assumption of i.i.d. errors as well. The assumption of i.i.d. errors

is particularly unappealing in matching contexts where marketwide assignments can be identical except for

the exchange of partners within a quartet. It might be reasonable to suspect that the random error terms are

correlated across similar marketwide assignments. Also, it is reasonable to suspect that individual agents might

have unobserved payoff terms that vary across match partners. The assumption of marketwide errors, needed

for the i.i.d. across marketwide outcomes property, prevents match-specific errors. Further, match-specific

errors might be correlated with partner characteristics, so that higher-quality firms also have higher levels of

unmeasured quality. This endogeneity problem goes further than just allowing for correlation of errors across

partners.

Luckily, a researcher can consistently estimate the parameters in the linear index while allowing for agent-

specific fixed effects that are constant across nests specified by the researcher. The fixed effects can be cor-

related with included covariates. Identification and estimation then proceeds by comparing alternative match

partners within the same nest, where the fixed effect is held constant and does not affect the relative ranking

of alternative match partners. This within estimator was proposed for the case of single-agent ordered choice

models using panel data by Abrevaya (2000), but the argument extends to the case of cross-sectional nests in

single-agent multinomial choice maximum score and the two-sided matching models considered in this paper.

For a assignment market with pricesh, let there be a set of nests for upstream firmsN up
h , and let the corre-

sponding set of nests for downstream firms beN down
h . Let nup

h be an individual nest for upstream firms, and

likewise letndown
h be a nest of downstream firms. In an abuse of notation, letndown

h (i) be a function that gives

the nest of downstream firmi. An upstream firma receives a payoff of

xup′
aihβup+ξup

andown
h (i)

+ paih

for matching with downstream firmi, whereξup
andown

h (i)
is a’s fixed effect for matching with downstream firms in

thendown
h (i) nest. There is a symmetric payoff function for downstream firms.

Consider the quartet of upstream firmsa andb and downstream firmsi and j. Assume thata andb are in

the same nest, andi and j are in the same nest. As an example, consider the payoffs inequality Theorem 1, a

version of local social optimality. After allowing for fixed effects, local social optimality becomes

x′aihβ+ξup
andown

h (i)
+ξdown

inup
h (a) +x′b jhβ+ξup

bndown
h ( j)

+ξdown
jnup

h (b)>x′a jhβ+ξup
andown

h ( j)
+ξdown

jnup
h (a) +x′bihβ+ξup

bndown
h (i)

+ξdown
inup

h (b)

Under the assumption thata andb as well asi and j are in the same nests, the inequalities on either side of

the above inequality are the same and therefore cancel, leaving the original deterministic notion of local social
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optimality in Theorem 1. Thus, by looking within nests, a researcher can identify the unknown total surplus

parametersβ using within-nest variation in covariates, while allowing the unobserved payoffs of firms to be

correlated with covariates, and to be correlated across similar match partners.14

The fixed effects approach is very powerful, but there are two major downsides. First, the method is only

consistent if the researcher correctly specifies the nests. Second, the inclusion of fixed effects means that the

researcher cannot identify the parameters on covariates that do not vary within nests. It should be noted that

these two drawbacks also apply to the use of fixed effects in linear regression models, and are not unique to

two-sided matching models.

4 Subsampling for Asymptotic Inference

Aside from the original work of Manski (1975) and a few others such as Matzkin (1993) and Fox (2005), the

single-agent maximum score literature has focused on the binary-choice estimator.

A typical approach in a nonlinear estimation problem is to derive the variance-covariance matrix of the limiting

normal distribution of the estimator, and to use a consistent estimator of the matrix for inference. In cases

where either the derivation or the estimation of the limiting distribution is difficult, researchers often employ a

resampling procedure known as the bootstrap to construct asymptotically valid inference.

Neither estimating the asymptotic distribution or using the bootstrap are currently useful methods for inference

for maximum score estimators. Kim and Pollard (1990) show that the binary-choice maximum score estimator

converges at the rate of3
√

n (instead of the more typical
√

n) and that its limiting distribution is too complex for

use in inference. Abrevaya and Huang (2005) show that the typical bootstrap procedure is not consistent in the

case of the class of3
√

n-consistent estimators studied by Kim and Pollard.

Delgado, Rodríguez-Poo and Wolf (2001) show that an alternative resampling procedure, subsampling, con-

sistently estimates the asymptotic distribution of test statistics for the class of3
√

n-consistent estimators studied

by Kim and Pollard. Subsampling was developed by Politis and Romano (1994), and is a procedure that, in

contrast to the bootstrap, does not rely on the smoothness of an objective function. A key step in subsampling

is that artificial datasets with fewer observations than the original data are sampled from the original data.

Delgado, Rodríguez-Poo and Wolf provide a Monte Carlo study of the relation between the finite-sample and

asymptotic coverage properties of subsampling for the binary-choice maximum score case, which appears to be

good, and provide an algorithm for selecting an appropriate number of observations in each of the subsamples.

While the literature has not provided a proper modification of the proofs of Kim and Pollard (1990) and Abre-

vaya and Huang (2005) for the multinomial maximum score, it is almost surely the case that the assignment

game maximum score estimator, under suitable regularity conditions, is a member of the class of3
√

H-consistent

estimators studied by Kim and Pollard.

An alternative procedure to subsampling is to estimate a smoothed version of the maximum score estimator.

For the single-agent binary-choice maximum score estimator, Horowitz (1992) proves that, under additional

14Theorem 1 still applies to the full quartet social surplusx′aihβ+ξup
andown

h (i)
+ξdown

inup
h (a)

+x′b jhβ+ξup
bndown

h ( j)
+ξdown

jnup
h (b)

, where the fixed effects

are treated as nuisance parameters.
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smoothness assumptions about the underlying model, a smoothed version converges at a rate close to
√

n

(the exact rate depends on the smoothing parameter) and, more importantly, is asymptotically normal with a

variance-covariance matrix than can be estimated and used for inference. Unfortunately, Monte Carlo studies

show the finite-sample performance of the asymptotic distribution is poor, and Horowitz (2002) proves the ap-

plicability of the bootstrap to refine the estimates of individual components of the variance formula. Horowitz

(2002) presents Monte Carlo evidence that the coverage properties of the bootstrap-refined asymptotic distri-

bution approximates the finite-sample distribution well. I conjecture the Horowitz results could be extended to

the current two-sided matching estimators.15

5 Conclusions

This paper’s main purpose is to prove the identification of and introduce a new semiparametric maximum score

estimator for Koopmans and Beckmann (1957), Shapley and Shubik (1972), Becker (1973) and Sotomayor

(1992) assignment games. The main assumptions for this class of models are the presence of endogenous

prices, additive payoffs across multiple matches, and additive separability between transfers and other parts of

payoffs. Under these assumptions, linear programming arguments show that all stable assignments of prices

and matches are socially optimal. I translate a notion of local social optimality into a statement about matching

probabilities under the assumption that there are marketwide i.i.d. errors. This assumption translates the

matching market into a single-agent discrete choice problem by a social planner. The theorem states that

a pair of matches that together give a higher deterministic sum of payoffs than the payoffs for the pair of

matches where the agents exchange partners will be observed more frequently than the exchange of partners.

The probabilistic local social optimality condition forms the basis for identification and the consistency of a

semiparametric estimator.

The assignment maximum score estimator has many practical advantages over currently used nested solutions

methods. The maximum score estimator is semiparametric, meaning that a parametric distribution for the errors

does not need to specified. The assignment estimator is for a market with prices, like many matching markets

are in practice, but does not use data on prices. The assignment estimator does not require additional assump-

tions about matching mechanisms and strong assumptions about quotas for individual agents. Computationally,

evaluating the maximum score objective is much simpler than evaluating nested solution objective functions,

as no stable match needs to be computed. Further, the maximum score estimator is consistent when the number

of matches exceeds the number of atoms in the universe, as the maximum score estimator is consistent when a

subset of matching quartets are entered into the objective function. Finally, a researcher can weaken the i.i.d.

errors assumption by identifying and estimating unknown model parameters in the presence of agent-specific

fixed effects for specified nests of matching partners.

15Smoothing the maximum score step function does not solve the main issue in the computational cost of numerically maximizing the
objective function: the presence of local hills providing tempting regions for a greedy optimization routine to converge to.
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A Proofs

A.1 Theorem 1 (Quartet Match Probabilities)

Consider the state of being unmatched as a partner (who specially can make multiple matches) if it is included

in the underlying model. Also, I drop the market indexh on payoff terms in what follows.

A.1.1 One-to-One Matching

Consider the case of one-to-one matching. I first derive an explicit formulation for choice probabilities in terms

of the density and distribution function for the i.i.d. errors. The condition for an assignmentEh to be optimal

is seen in equation (3). Writing this out in more detail gives

P(E | Xh) =
Z ∞

−∞

{
∏
Z6=E

Z ∑ck∈E x′ckβ−∑ck∈Z x′ckβ+εE

−∞
f (εZ | X)dεZ

}
f (εE | X)dεE

=
Z ∞

−∞

{
∏
Z6=E

F

(
∑

ck∈E

x′ckβ− ∑
ck∈Z

x′ckβ+ εE | X

)}
f (εE | X)dεE.,

where the first equality integrates out over all marketwide error terms other thanεE, and the second equality

uses the fact that the integral of a density function with a non-infinite upper limit is the distribution function

evaluated at the upper limit.

Writing out the definition of a quartet matching probability, equation (3), gives

P(ai,b j | Xh) = ∑
E∈E(ai,b j)

Probεh (Eh solves social planner’s discrete choice problem)

= ∑
E∈E(ai,b j)

Z ∞

−∞

{
∏
Z6=E

F

(
∑

ck∈E

x′ckβ− ∑
ck∈Z

x′ckβ+ εE | X

)}
f (εE | X)dεE

=
Z ∞

−∞

{
∑

E∈E(ai,b j)
∏
Z6=E

F

(
∑

ck∈E

x′ckβ− ∑
ck∈Z

x′ckβ+ ε | X

)}
f (ε | X)dε

=
Z ∞

−∞

{
∑

E∈E(ai,b j)
∏
Z6=E

F

(
x′aiβ+x′b jβ+ ∑

ck∈E\{ai,b j}
x′ckβ− ∑

ck∈Z

x′ckβ+ ε | X

)}
f (ε | X)dε

where the third equality uses the fact thatε is i.i.d. across marketwide assignmentsE, and the fourth equality

uses the fact that all assignments inP(ai,b j | Xh) havea matching withi andb matching withj. By a symmetric

argument,

P(a j,bi | Xh) =
Z ∞

−∞

{
∑

E∈E(a j,bi)
∏
Z6=E

F

(
x′a jβ+x′biβ+ ∑

ck∈E\{a j,bi}
x′ckβ− ∑

ck∈Z

x′ckβ+ ε | X

)}
f (ε | X)dε.

In one-to-one matching, for every marketwide assignment wherea matches withj andb matches withi, there

is another assignment wherea matches withi andb matches withj, and all other matches not involving the
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quartet mentioned in the statement of the theorem are the same. Therefore, for each assignment inE (ai,b j),
there is an equivalent assignment inE (a j,bi) with the same terms∑ck∈E\{a j,bi} x′ckβ.

ForP(ai,b j | Xh), some of the alternativesZ are inE (a j,bi). For those alternatives, the sumx′a jβ+x′biβ enters

strictly negatively. There are usually many assignments not in eitherE (ai,b j) or E (a j,bi). These assignments

appear as alternatives in bothP(ai,b j | Xh) andP(a j,bi | Xh).

The above arguments show that the functional forms ofP(ai,b j | Xh) andP(a j,bi | Xh) are the same, except for

where the sumsx′aiβ+x′b jβ andx′a jβ+x′biβ enter. ForP(ai,b j | Xh), the distribution functionsF are monoton-

ically increasing in the sumx′aiβ +x′b jβ, and monotonically decreasing in the sumx′a jβ +x′biβ. Because of the

continuous support with no mass points part of Assumption 1,P(ai,b j | Xh) is strictly increasing inx′aiβ+x′b jβ
and strictly decreasing inx′a jβ + x′biβ. Likewise,P(a j,bi | Xh) is strictly increasing inx′a jβ + x′biβ and strictly

decreasing inx′aiβ+x′b jβ.

If two functions are the same, except for components in the first function resulting in a larger value, the first

function will have a larger value. Therefore, ifx′aiβ + x′b jβ > x′a jβ + x′biβ, thenP(ai,b j | Xh) > P(a j,bi | Xh).
Likewise, the “only if” portion of the theorem is proved because the only way an otherwise identical function

can have a larger value is if it has a larger argument, as it does whenx′aiβ+x′b jβ > x′a jβ+x′biβ.

A.1.2 Many-to-One Matching

For many-to-one matching, without loss of generality assume that downstream firms, such asi and j from the

theorem, can make only one physical match at a time. Each upstream firm can make one or more matches. If

a can make at least two matches, there are now assignments where bothi and j match witha, and therefore

neither i nor j matches withb. These assignments are not in eitherE (ai,b j) or E (a j,bi), and so appear

as alternatives in bothP(ai,b j | Xh) andP(a j,bi | Xh). Therefore, the functional forms ofP(ai,b j | Xh) and

P(a j,bi | Xh) are still the same except where the sumsx′aiβ + x′b jβ andx′a jβ + x′biβ from the statement of the

theorem enter, and the earlier arguments still apply.

A.2 Proof of Corollary 1 (Many-to-Many Matching)

Now both upstream firms and downstream firms can make multiple matches. Compared to one-to-one and

many-to-many matching, there are additional marketwide assignments wherea matches withi andb matches

with j at the same time asa matches withj as well, for example. This allocation is inE (ai,b j) but not

E (a j,bi). However, the definition of̄P(ai,b j | Xh) implies that these assignments are excluded from the rele-

vant set

Eh (ai,b j)∩Eh (ai,b j,a j)∩Eh (ai,b j,bi) .

Likewise, these same assignments where more than two matches are made in the quartet are excluded from

P̄(a j,bi | Xh). Therefore, by the arguments in the proof of Theorem 1, the functional forms ofP̄(ai,b j | Xh)
andP̄(a j,bi | Xh) are the same except where the sumsx′aiβ+x′b jβ andx′a jβ+x′biβ appear in the total payoffs of

assignments where where only two matches within the quartet are observed and all four members of the quartet

match. Therefore, by earlier arguments, the corollary is true.
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A.3 Theorem 2 (Identification)

I will write the proof for the case of one-to-one and one-to-many matching. For many-to-many matching, the

proof is the same, except that I replace references to Theorem 1 with references to Corollary 1.

I will choose convenient location and scale normalizations for the proof, which I can do without further loss

of generality. For the location normalization, I assume I will not try to identify a constant term in payoffs.

Following Assumption 2, for the scale normalization I will assume that the parameterβ1, which multiplies the

components ofy and is already assumed to be nonzero, has a value of±1. If the sign ofβ1 is not known from

economic theory, it can be trivially identified, by seeing whether the match quartet probabilities are consistent

with β1 = +1 or β1 =−1.

We want to show that the identified setB ⊆ Θ is a singleton vector, using the data on the observed quartet

match probabilitiesP(ai,b j | Xh). Assume to the contrary. Then there is aβ̃ ∈ Θ such that̃β 6= β0. I will state

the proof forβ1 = 1. The argument forβ1 =−1 is symmetric.

Theorem 1 shows that, within the quartet ofa, b, i and j, the pair of matches with the higher deterministic

social surplus are more likely to be observed than the exchange of partners. Asβ0 generatesP(ai,b j | Xh), it

is in B and is consistent with the implications of Theorem 1 for the observable quartet match probabilities. I

introduce the set of markets where the two parameter vectors,β̃ andβ0 give different implications about the

rank ordering of the match probabilities for the quartet ofa, b, i and j, using the rank orderings generated by

Theorem 1,

Sabi j

(
β0β̃
)

=
{

Xh | x′aiβ
0 +x′b jβ

0 > x′a jβ
0 +x′biβ

0 ∪ x′a jβ̃+x′biβ̃ > x′aiβ̃+x′b jβ̃
}

∪
{

Xh | x′a jβ
0 +x′biβ

0 > x′aiβ
0 +x′b jβ

0 ∪ x′aiβ̃+x′b jβ̃ > x′a jβ̃+x′biβ̃
}

,

where the union sign,∪, means that both inequalities are true. Using the definition ofy in Assumption 2, one

can treat separately the first element of the vector of covariates, and some algebra shows the set can be rewritten

as

Sabi j

(
β0, β̃

)
=

{
Xh | x′−1,a jβ̃−1 +x′−1,biβ̃−1−x′−1,aiβ̃−1−x′−1,b jβ̃−1 > y > x′−1,a jβ

0
−1 +x′−1,biβ

0
−1−x′−1,aiβ

0
−1−x′−1,b jβ

0
−1

}
∪

{
Xh | x′−1,a jβ̃−1 +x′−1,biβ̃−1−x′−1,aiβ̃−1−x′−1,b jβ̃−1 < y < x′−1,a jβ

0
−1 +x′−1,biβ

0
−1−x′−1,aiβ

0
−1−x′−1,b jβ

0
−1

}
.

Here is the subvector comprising the parameters that do not multiply the first element of the vector of covari-

ates. For any set ofx−1,a j, x−1,bi, x−1,ai andx−1,b j such thatx′−1,a jβ̃−1 + x′−1,biβ̃−1− x′−1,aiβ̃−1− x′−1,b jβ̃−1 6=
x′−1,a jβ

0
−1 + x′−1,biβ

0
−1 − x′−1,aiβ

0
−1 − x′−1,b jβ

0
−1, we can find a set of combinations ofx1,a j, x1,bi, x1,ai and

x1,b j such that the resulting pointsXh are in Sabi j

(
β0, β̃

)
. This is due to Assumption 2, which states that

y≡ x1,ai +x1,b j −x1,a j −x1,bi is freely varying conditional on the other covariates, and has full-support on the

real line.

Further, this argument showsSabi j

(
β0, β̃

)
has positive probability if there is at least one collection ofx−1,a j,

x−1,bi, x−1,ai and x−1,b j such thatx′−1,a jβ̃−1 + x′−1,biβ̃−1− x′−1,aiβ̃−1− x′−1,b jβ̃−1 6= x′−1,a jβ
0
−1 + x′−1,biβ

0
−1−

x′−1,aiβ
0
−1− x′−1,b jβ

0
−1. While not needed for identification, the positive probability result is necessary for
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consistency of the maximum score estimator. If there is no such collection, then the covariates belong in a

proper linear subspace, which violates another condition in Assumption 2.

A.4 Theorem 3 (Consistency)

The proof of the theorem is based upon the standard consistency theorem in the econometrics literature, Theo-

rem 2.1 in Newey and McFadden (1994). The theorem has four conditions:

1. The probability limit of the subset maximum score objective function,Qsub
∞ (β), has a unique global

maximum at the true parameter vector,β0 (constructive identification).

2. The parameter spaceB is compact.

3. The probability limit of the objective function,Qsub
∞ (β), is continuous inβ.

4. The objective function converges uniformly in probability to its limit.

Condition 2 is satisfied by Assumption 4.

I will write the proof for the case of one-to-one and one-to-many matching. For many-to-many matching, the

proof is the same, except that I replace references to Theorem 1 with references to Corollary 1.

A.4.1 Constructive Identification

The economically interesting condition to verify is Condition 1, which is a constructive identification condition.

As the number of markets,H, goes to infinity, we observed infinitely many markets with the same number of

firms and identical characteristics, all captured byXh. By a law of large numbers and the law of iterated

expectations,

plimH→∞

(
1
H

H

∑
h=1

1[ai,b j match]

)
= EXh,εh {1[ai,b j match]}= EXhEεh {1[ai,b j match] | Xh}= EXh {P(ai,b j | Xh,β0)} ,

whereεh is the vector of all stochastic terms in the market, and the true parameter vectorβ0 has been added to

the notation for matching probabilities in order to emphasize that the probability limit is calculated using the

sampling rule of the true data generating process. Therefore, the limit ofQsub
H (β) as the number of markets,H,

goes to infinity is

Qsub
∞ (β)= EXh

 ∑
a∈Usub

h

|Uh|

∑
b=a+1,b∈Usub

k

∑
i∈Dsub

h

∑
j∈Dsub

h , j 6=i

Eεh

{
1[ai,b j match] ·1

[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
| Xh
}

= EXh

 ∑
a∈Usub

h

|Uh|

∑
b=a+1,b∈Usub

h

∑
i∈Dsub

h

∑
j∈Dsub

h , j 6=i

P(ai,b j | Xh,β0)1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

] , (9)
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where the first equality uses the a law of large numbers and the law of iterated expectations, and the second

equality uses the fact that 1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
does not depend onεh and can be factored out of

the expectation with respect toεh, conditional onXh.

I prove thatQsub
∞ (β) has a global maximum at the true parameter vectorβ0 by first proving the integrand

evaluated at particular set of the characteristics of all agents in a market,Xh, is globally maximized atβ0. If the

integrand is indeed maximized for allXh, except for a set with probability 0, then whenQsub
∞ (β) is computed

by integrating outXh, it will be maximized atβ0.

Therefore, fixXh. Each matched quarteta, b, i and j formed from elements inUsub
h andDsub

h appears twice in

Qsub
∞ (β): once asP(ai,b j | Xh,β0) times 1

[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
and once asP(a j,bi | Xh,β0) times

1
[
x′aiβ+x′b jβ > x′a jβ+x′biβ

]
. First, under the covariate Assumption 2,x′aiβ0 + x′b jβ0 = x′a jβ0 + x′biβ0 with

probability 0, as each match has a freely varying characteristic conditional on the other matches. As the

inequalities inQsub
∞ (β) are strict, such points do not contribute to the objective function, but as they occur with

probability 0, choosing an alternative parameter vectorβ̃ to make one or the other match have a greater surplus

will not increase the value ofQsub
∞ (β).

I can restrict attention to the cases where one of the sums of match surpluses is strictly greater than the match

surplus with the exchange of partners. Notice that the inequalitiesx′aiβ+x′b jβ > x′a jβ+x′biβ andx′a jβ+x′biβ >

x′aiβ + x′b jβ are mutually exclusive, so one of the two indicator functions has value 1 and the other has value

0. An assignment where the value of 1 multiplies the higher of the two probabilities for all quartets and is a

global maximum of the integrand evaluated atXh. By Theorem 1, the parameter vectorβ0 implements this

assignment. AsXh arbitrary, the integrand for a given quarteta, b, i and j is globally maximized at all points,

other than a set of measure 0, byβ0. As the quarteta, b, i and j is arbitrary,Qsub
∞ (β) is globally maximized at

β0.

Note that there is an strong inequality in the indicator function in the objective function, so thatβ = 0 is a

global minimum and not a global maximum.

The next step of the proof is to show that the global maximum ofQsub
∞ (β), β0, is unique. This argument is the

same as the proof of Theorem 2, identification. For some possible other global maximum,β̃ ∈ Θ, the proof

of Theorem 2 derives the setSabi j

(
β0, β̃

)
whereβ̃ gives implications about the choice probabilities that are

inconsistent with Theorem 1. By Assumption 2, this set has positive measure for at least one set of covariates

for each market. Sõβ implement a sub-optimal series of quartet match probabilities to enterQsub
∞ (β), and thus

cannot be a global maximum ofQsub
∞ (β).

A.4.2 Continuity of the Limiting Objective Function and Uniform Convergence

The assignment games maximum score objective function is not continuous inβ. Condition 3 is that the

probability limit of the objective function,Qsub
∞ (β), is continuous inβ. Lemma 2.4 from Newey and McFadden

(1994) can be used to prove continuity ofQsub
∞ (β) as well as uniform in probability convergence ofQsub

H (β) to

Qsub
∞ (β), which is Condition 4. Remember that the asymptotics are in the number of markets. The conditions of

Lemma 2.4 are that the data (across markets) are i.i.d., which can hold if we view the number of upstream and

downstream firms as random; that the parameter spaceB is compact (Assumption 4), that the terms for each
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market are continuous with probability 1 inβ; and that the terms for each market are bounded by a function

whose mean is not infinite. While the terms for each market,

∑
a∈Usub

h

|Uh|

∑
b=a+1,b∈Usub

h

∑
i∈Dsub

h

∑
j∈Dsub

h , j 6=i

1[ai,b j match inh]1
[
x′aihβ+x′b jhβ > x′a jhβ+x′bihβ

]
, (10)

are not continuous inβ because of the indicator functions, they are continuous with probability 1 by the support

condition on the covariates, Assumption 5. As the continuous covariatex1,aih is freely varying conditional on

the other covariates,x′aihβ + x′b jhβ = x′a jhβ + x′bihβ with probability 0. The other condition we need to verify

to apply Lemma 2.4 is that the market-specific terms in equation (10) are bounded by a function with a non-

infinite mean. Equation (10) can be at most the number of observed quartets. Assumption 3 states that the

mean number of such quartets is not infinite.
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