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Abstract

I characterize behavior generated by the pure strategy Nash equilibrium solution concept.
My results are based on a revealed preference approach and are more general than those
in the literature (1; 2). Dropping the unrealistic “complete domain” assumption, I charac-
terize Nash equilibrium behavior. I show that determining whether observed choices were
generated by the Nash equilibrium solution or not is an NP-complete problem. In contrast,
the analogous problem for one decision maker can be determined in polynomial time.
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1 Testability of Nash behavior

What does Nash equilibrium behavior look like? If we observed a group of agents play

different games, could we tell, without knowing their preferences, whether they are playing

according to the Nash equilibrium concept? Such questions could be of interest to a

regulatory agency, wanting to know if some firms they observe in the market are behaving

in a competitive or in a collusive way. A manager might ask the same question about her

employees. A mechanism designer might want to test if a certain group of agents behave

according to the Nash equilibrium solution, to see if he can realistically assume that the

agents will behave that way when faced with his mechanism. But these questions are

also of interest in themselves from a theoretical point of view. Our objective is to obtain

behavioral characterizations of the Nash equilibrium solution.

The revealed preference literature asks questions of the form: “What conditions char-

acterize choice behavior that is generated by maximization of a preference relation with

certain properties?” Starting with (3) and (4), answers to such questions have been ob-

tained in quite general settings, when there is an individual decision maker (5; 6; 7). The

analogous revealed preference questions in the multi-person decision making problem were

addressed only recently.1 In many applications of game theory, such as analyzing oligopolis-

tic markets or interaction between employees of a firm, a set of agents interact with each

other repeatedly but under changing circumstances. That is, the same set of agents play

different games. Due to a change in outside circumstances, their feasible strategies might

vary from one occasion to the next, or the outcome function might change. When the

Nash equilibrium solution is used to analyze such situations, it would be useful to know if,

based on observations of past choices of the players, using that solution concept is realistic.

In other words, what conditions on choice behavior correspond to the Nash equilibrium

solution concept?

An intriguing application of revealed preference analysis in game theory involves com-

paring behavior generated by cooperative (e.g. core) and non-cooperative (e.g. Nash

equilibrium) solution concepts. What are the observable behavioral differences between

1See (8) for a survey. (1) and (2) are most closely related to our work, because they formulate their
results for normal form games, as we do. A complementary literature (9; 10) considers similar questions
for extensive form games.
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cooperative and non-cooperative behavior? When is it justifiable to assume that agents in

a certain setting play cooperatively or non-cooperatively? While these questions are not

addressed in this paper, we hope that the current results will lead to further research in

that direction.

The direct link between the preferences and the choices of an individual decision maker

is obscured in the multi-person case by the implicit aggregation of preferences. What

information is revealed about individual preferences by the collective (Nash equilibrium)

choices? The analysis to follow will hinge on finding the right answer to this question.

Our approach differs from the approach used in much of the received literature on the

behavioral characterization of Nash equilibrium in that it is based on a general notion of

revelation and revealed preferences. This will be discussed in detail at a more suitable

point below.

2 Nash equilibrium rationalizability

Suppose we observe a finite set I of players play different games. Their strategy spaces

are subsets of their universal strategy space Si. Let Λ be a finite set of game forms, i.e. a

set of Cartesian product subsets of2 S. We call an element S =
∏

i∈I Si of Λ a game

form3. For each such game form S, we observe the strategy profiles played. We assume

that if there are several strategy profiles which players would be willing to choose, then we

observe all of these as chosen. Previous authors have assumed that all conceivable game

forms are observed, i.e. that Λ contains all Cartesian product subsets of S. This “complete

domain” assumption is very extreme in the context of revealed preference theory, where

one would like to assume as little as possible about the set of observations given, so as to

incerase the applicability of the theory. In a companion paper, I show that Nash behavior

can be characterized, using revealed preference conditions, under a substantially weakened

version of the complete domain assumption. In this paper, I impose no restrictions on the

observations, i.e. Λ is an arbitrary set of game forms. In addition, I generalize the notion

of a choice correspondence.

2Let S :=
∏

i∈I Si.
3i.e. we assume, as commonly done in the literature, that the outcome space is S and the outcome

function is the identity.
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Formally, suppose we are given a (possibly empty-valued) choice correspondence C :

Λ ⇒ S and a (possibly empty-valued) non-choice correspondence Ĉ : Λ ⇒ S, satisfying,

for every S ∈ Λ,

C(S) ⊆ S, Ĉ(S) ⊆ S, C(S) ∩ Ĉ(S) = ∅.

The strategy profiles in C(S) are observed as chosen, while the strategy profiles in Ĉ(S) are

observed as not chosen. A special case is the one implicit in most discussions: for all S ∈ Λ,

Ĉ(S) is defined to be the complement of C(S) in S, i.e., what is not observed as chosen,

is assumed to be not chosen. In this case, the “rationalizability question” asks if observed

choices can be rationalized as coincident with the set of pure strategy Nash equilibria.

When observations are imperfect, it is more relevant to ask whether observed choices can

be rationalized as a subset, or even a superset, of the set of pure strategy Nash equilibria.

In the terminology of (11), the first notion might be called Nash sub-semirationality, and

the second Nash supra-semirationality. Using a pair (C, Ĉ) makes these notions special

cases of our notion of rationalizability (in the sense of (1,2)): the first corresponds to

assuming Ĉ(S) = ∅, and the second to assuming C(S) = ∅.
For simplicity, we will pose the rationalizability question for the case of strict prefer-

ences. It is straightforward to modify the definitions and the Theorem below to characterize

rationalizability by a weak preference relation (see the Remark below).

Definition 1 (C, Ĉ) is (pure strategy Nash equilibrium) rationalizable if there exist total,

transitive and asymmetric binary relations (≺i)i∈I on S such that for all S ∈ Λ,

1. the chosen strategies C(S) are Nash equilibria of ((Si)i∈I , (≺i)i∈I), i.e.

s∗ ∈ C(S) =⇒ ∀i∈I ∀si∈Si\{s∗i } (si, s
∗
−i) ≺i s∗, (1)

and

2. the non-chosen strategies Ĉ(S) are not Nash equilibria of ((Si)i∈I , (≺i)i∈I), i.e.

s∗ ∈ Ĉ(S) =⇒ ∃i∈I ∃si∈Si\{s∗i } s∗ ≺i (si, s
∗
−i). (2)
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To characterize rationalizability, we define a notion of direct revelation ((5), following

(3)). Partly this is based on observing that certain strategy profiles are chosen (the C-

revelations), and partly it is based on observing that some other strategy profiles are not

chosen (the Ĉ-revelations).

Example 1 (Direct revelation) Suppose that player 1’s strategy space is {U,D}, and

player 2’s strategy space is {L, M, R}. In the game form S = {U,D} × {L, M, R} we

observe that the framed strategy profile is chosen (C(S) = {(U,R)}), while the underlined

strategy profile is not chosen (Ĉ(S) = {(D, M)}).

1�2 L M R

U (U,L) (U,M) (U,R)

D (D,L) (D,M) (D,R)

It is then directly revealed (via C) that (U,R) is preferred to anything else obtainable

from it by unilateral deviation, i.e.

(U,L) C
2

(U,R), (3)

(U,M) C
2

(U,R), (4)

(D, R) C
1

(U,R). (5)

It is also directly revealed (via Ĉ) that one of the players prefers some strategy profile

obtainable for her from (D, M) by unilateral deviation. We write this as

[(D, M) C
2
{(D, L), (D, R)}] or [(D, M) C

1
{(U,M)}]. (6)

Note that each disjunct corresponds to a player, and that the “revealed preference rela-

tions” C
2

and C
1

are one–many relations. Rationalizability (1,2) is clearly equivalent to

(3-6).

An equivalent formulation of the same rationalizability question is in terms of payoff

functions rather than (revealed) preferences. Let u1 and u2 be the (unknown) real-valued

payoff functions of players 1 and 2. To simplify notation, let u1(U,L) denote the payoff to
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player 1 of the strategy profile (U,L). Then the information revealed by C ((3),(4), and

(5) above) can be written as a system of inequalities:

u2(U,L) < u2(U,R), (7)

u2(U,M) < u2(U,R), (8)

u1(D, R) < u1(U,R). (9)

To write the information revealed by Ĉ ((6) above) as an inequality, we translate each

revealed preference statement into an inequality involving maxima:

[u2(D, M) < u2(D, L) ∨ u2(D, R)] or [u1(D, M) < u1(U,M)]. (10)

Rationalizability (1,2) is equivalent to the solvability of the set of inequalities from C

and Ĉ:

u2(U,L) < u2(U,R), (11)

u2(U,M) < u2(U,R), (12)

u1(D, R) < u1(U,R), (13)

[u2(D, M) < u2(D, L) ∨ u2(D, R)] or [u1(D, M) < u1(U,M)]. (14)

It will be more convenient to write this set of statements in disjunctive normal form:

u2(U,L) < u2(U,R)
u2(U,M) < u2(U,R)
u1(D, R) < u1(U,R)

u2(D, M) < u2(D, L) ∨ u2(D, R)

or

u2(U,L) < u2(U,R)
u2(U,M) < u2(U,R)
u1(D, R) < u1(U,R)
u1(D, M) < u1(U,M)

This reduces rationalizability to solving systems of inequalities involving suprema.

Now we turn to the general definition of direct revelation. Let Si � s′ denote the set of

strategy profiles which player i can obtain in S by unilaterally deviating from s′.

Definition 2

1. C-revelations: a chosen strategy profile is directly revealed preferred by each player

to every strategy profile obtainable from it by her unilateral deviation. Formally,
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s′′ is directly revealed preferred to s′ by player i if there
exists a game form S ∈ Λ such that s′′ ∈ C(S) and s′ ∈ S,
and strategy profiles s′, s′′ differ only in player i’s strat-
egy. We write this as

s′C
i

s′′. (NE-15)

2. Ĉ-revelations: if a strategy profile is not chosen, it is directly revealed that some

player prefers some strategy profile obtainable from it by her unilateral deviation.

Formally,

if S ∈ Λ and s′ ∈ Ĉ(S), then it is directly revealed that
some player i ∈ I prefers an element of Si � s′ to s′. We
write this as4 ∨

i∈I

[s′ C
i

Si � s′]. (nNE-16)

The C-revelations are much like revealed preference relations in consumer theory, and

the Ĉ-revelations are disjunctions, with each disjunct corresponding to a player. Ratio-

nalizability (1,2) is clearly equivalent to all C- and Ĉ-revelations holding. It will be more

convenient to treat these statements in a logically equivalent form as a disjunction of

conjunctions5 – which we call the canonical form.

Example 1 (Continued) Suppose we observe the game form in the previous Example,

with (U,R) chosen, and (D, M) not chosen, but now we also observe that (U,L) is not

chosen:

1�2 L M R

U (U,L) (U,M) (U,R)

D (D,L) (D,M) (D,R)

5I.e. in disjunctive normal form.
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We have the following revelations, with S2 � (D, M) denoting {(D, L), (D, R)}, and S1 �
(D, M) denoting {(U,M)}, etc.:

(U,L) C
2

(U,R) (17)

(U,M) C
2

(U,R) (18)

(D, R) C
1

(U,R) (19)

[(D, M)C
2

S2 � (D, M)] ∨ [(D, M)C
1

S1 � (D, M)] (20)

[(U,L)C
2

S2 � (U,L)] ∨ [(U,L)C
1

S1 � (U,L)]. (21)

The canonical form is

(U,L)C
2

(U,R)

(U,M)C
2

(U,R)

(D, R)C
1

(U,R)

(D, M)C
2

S2�(D, M)

(U,L)C
2

S2 � (U,L)

∨
(U,L)C

2
(U,R)

(U,M)C
2

(U,R)

(D, R)C
1

(U,R)

(D, M)C
2

S2�(D, M)

(U,L)C
1

S1 � (U,L)

∨
(U,L)C

2
(U,R)

(U,M)C
2

(U,R)

(D, R)C
1

(U,R)

(D, M)C
1

S1�(D, M)

(U,L)C
1

S1 � (U,L)

∨
(U,L)C

2
(U,R)

(U,M)C
2

(U,R)

(D, R)C
1

(U,R)

(D, M)C
1

S1�(D, M)

(U,L)C
2

S2 � (U,L)

The top three lines are the same for each box and correspond to the C-revelations.

The bottom two lines come from the Ĉ-revelations and assign a deviating player to each

strategy profile that is not chosen. Thus the bottom lines differ across boxes – the first box

assigns player 2 to both (D, M) and (U,L), the second box assigns player 2 to (D, M) but

player 1 (U,L), etc. Because the canonical form always has this general structure, each of

its disjuncts (i.e. the boxes in the example) will be called an assignment.

If all the assignments in the canonical form were self-contradictory in some sense, there

would exist no rationalization. What is the right notion of “self-contradictory” in this

setting? To answer this question, we will consider the very simple special case of just one

player, i.e. a single decision maker.

Example 2 (One player) Suppose there is only one player (say player 1), i.e. we observe

a single decision maker choosing from subsets of a finite set S. The set of these choice sets

(“budgets”) is denoted by Λ. Suppose further that we observe no alternative as chosen,

i.e. for all S ∈ Λ we have C(S) = ∅. Of course, we still observe via Ĉ that some alternatives
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are not chosen. (This setup can be interpreted as a revealed preference problem with a

notion of rationality that is weaker than preference maximization. In particular, we ask if

the decision maker is rational in the sense that her observed chosen set for S contains the

preference-maximal elements of S. This question arises naturally when observations are

imperfect, and the actual chosen set is known to be only a subset of the observed chosen

set. This notion was labeled supra-semirationality in (11).)

Since we have no observations of any alternative being chosen, the only direct revela-

tions we have are those which state that an alternative not chosen is revealed worse than

some other available alternative. Formally, our “data set” looks like

s1
0 ∈ Ĉ({s1

0, s
1
1, . . . , s

1
k1
}) (22)

s2
0 ∈ Ĉ({s2

0, s
2
1, . . . , s

2
k2
}) (23)

... (24)

sm
0 ∈ Ĉ({sm

0 , sm
1 , . . . , sm

km
}), (25)

where sq
r ∈ S for q = 1, . . . ,m and r = 0, . . . , kq.

Thus the set of direct revelations is

s1
0 C

1
{s1

1, . . . , s
1
k1
} (26)

s2
0 C

1
{s2

1, . . . , s
2
k2
} (27)

...

sm
0 C

1
{sm

1 , . . . , sm
km
}. (28)

The interpretation is that the decision maker strictly prefers some element of {s1
1, . . . , s

1
k1
}

to s1
0, and strictly prefers some element of {s2

1, . . . , s
2
k2
} to s2

0, etc. It is clear that rational-

izability (1,2) in this setting is equivalent to (26 – 28).

If every alternative appearing in one of the sets on the right hand side above also

appeared on the left hand side on some other line, it is clear that there would exist no

rationalization. If there were one, the alternatives that appear in (26),(27),(28) would

contain a preference cycle: s1
0 would be worse than some alternative on the right in (26),

which in turn would appear on the left on another line and so would be worse than another
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alternative, which in turn would appear on the left on another line, and so would be worse

than . . . . With a finite number of alternatives, this would result in a preference cycle. For

this reason, if a set of revelations has the property that all alternatives appearing on the

right also appear on the left, we say that it is an implicit cycle. Thus it is a necessary

condition for rationalizability that the set of revelations contain no implicit cycle. In

separate work on supra-semirationalizability we show that this condition is also sufficient

for rationalizability. This characterizes rationalizability for the setting of this example.

Remark 1 In the equivalent formulation using a payoff function u, the relations (26),(27),

and (28) make a system of inequalities:

u(s1
0) < u(s1

1) ∨ · · · ∨ u(s1
k1

) (29)

u(s2
0) < u(s2

1) ∨ · · · ∨ u(s2
k2

) (30)
...

u(sm
0 ) < u(sm

1 ) ∨ · · · ∨ u(sm
km

), (31)

where “∨” denotes “supremum.” Thus rationalizability (1,2) is equivalent to the solvability

of (29 – 31). If all alternatives that appear on the right in (29 – 31) also appear on the

left, i.e.
m⋃

j=1

{sj
1, . . . , s

j
kj
} ⊆ {s1

0, s
2
0, . . . , s

m
0 }, (32)

it follows that

m∨
j=1

u(sj
1) ∨ · · · ∨ u(sj

kj
) < u(s1

0) ∨ u(s2
0) ∨ · · · ∨ u(sm

0 ). (33)

On the other hand, from (29),(30), and (31) it follows that

u(s1
0) ∨ u(s2

0) ∨ · · · ∨ u(sm
0 ) <

m∨
j=1

u(sj
1) ∨ · · · ∨ u(sj

kj
), (34)

which is a contradiction, proving that implicit cycles imply non-rationalizability.

The insights of the one player example help us understand the general Nash rational-

izability problem. The notion of “self-contradictory” appropriate for this setting is:
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Definition 3 Let i ∈ I and S1, . . . , Sm ∈ Λ, and sj ∈ Sj for j = 1, . . . ,m. A set of

statements of the form

s1 C
i

S1
i � s1 (35)

s2 C
i

S2
i � s2 (36)

...

sm C
i

Sm
i � sm (37)

is an implicit cycle if all strategy profiles contained in the sets on the right hand side above

also appear on the left hand side, i.e.

m⋃
j=1

sj � Sj
i ⊆ {s1, s2, . . . , sm}. (38)

Main Theorem A pair (C, Ĉ) is not (pure strategy Nash equilibrium) rationalizable if, and

only if, all assignments in the canonical form contain an implicit cycle.

Remark 2 The characterization of (pure-strategy Nash equilibrium) rationalizability

allowing weak preferences (total, transitive, reflexive binary relations) can be obtained by

a slight modification of the strict preference case. The definition of C-revelation must re-

flect that weak preference is allowed, so it is denoted by new symbols E
i

. The definition of

an implicit cycle remains the same, except we must add that the set of relations forming

an implicit cycle must be minimal with respect to the defining property of an implicit cycle

and must contain at least one C
i

.

Proof

Necessity: If (≺i)i∈I Nash-rationalizes (C, Ĉ), then (NE-15) and (nNE-16) must hold

for (≺i)i∈I , i.e. all direct revelations are simultaneously satisfied by (≺i)i∈I . The same

set of statements will still be satisfied when written in the logically equivalent disjunctive

normal form, so one of the assignments will be satisfied, and thus will have no implicit

cycles.
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Sufficiency: Suppose that there exists an assignment in the canonical form that has

no implicit cycles. By the characterization of supra-semirationality, there exist preference

relations (≺i)i∈I that satisfy all revealed preference statements in that assignment. These

preferences then satisfy all direct revelations written in canonical form, and so satisfy all

direct revelations as in (1,2), rationalizing (C, Ĉ). Q.E.D.

3 Complexity

In this section we compare the computational complexity of two problems: Nash rational-

izability (NR), i.e. determining whether the behavior of finitely many players is consistent

with Nash equilibrium, and supra-semirationalizability (SSR), i.e. determining whether

the observed choices of a single decision maker are supra-semirationalizable.

3.1 Nash rationalizability

Our characterization of Nash rationalizability involved rewriting a statement in conjunctive

normal form (CNF) as one in disjunctive normal form (DNF). Algorithmically, this is a

very complex operation: it most likely cannot be done in polynomial time.6 Is it possible

that there is some other way to characterize Nash rationalizability that is algorithmically

not so complex? The following result answers this question in the negative.

Theorem 2 The (pure strategy Nash equilibrum) rationalizability problem is NP-complete.

In fact, we prove a stronger statement: The (pure strategy Nash equilibrum) rationaliz-

ability problem is NP-complete even if we assume that for every game form S ∈ Λ we have

Ĉ(S) = S\C(S), and that players have at most 2 strategies. The proof (in Appendix A) is

based on a standard technique in the theory of computational complexity: “polynomially

reducing” a problem that is known to be NP-complete to the given problem.7

6Showing that it can be done in polynomial time would amount to a proof that P = NP (see (12)
p. 72, exercise 2.9). Whether P = NP is one of the major unsolved problems of mathematics, and it is
widely conjectured that P 6= NP (see (13)).

7Specifically, we use 3SAT, a version of the satisfiability problem that was shown to be NP-complete
in (14).
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3.2 Supra-semirationalizability

In contrast to the above result, the supra-semirationalizability (SSR) problem (involving

one decision maker) is polynomial. Let S denote the set of alternatives, and suppose

we observe for each Si, i = 1, . . . k that C(Si) is chosen. Recall from the single player

example in section 2 that this means that the actual chosen set is a subset of C(Si). Define

an instance of SSR as a set of pairs of sets

{(C(S1), S1\C(S1)), (C(S2), S2\C(S2)), . . . , (C(Sk), Sk\C(Sk))}. (39)

Such a list is a yes-instance if there exists a preference relation on S such that for each Si,

the set C(Si) contains the preference-maximal elements. Otherwise it is a no-instance.

Theorem 3 The supra-semirationalizability problem can be decided in polynomial time.

Proof

The following algorithm determines in polynomial time whether an instance of SSR is a

yes-instance or a no-instance. By “polynomial time” we mean, intuitively, that the number

of steps in the algorithm is polynomial in the length of the input string ((39) above, with

the finite sets C(Si) and Si\C(Si) written out element by element).

Algorithm:

1. Let I := {1, . . . , k}. Let Q = ∅.

2. Let q = 1 and r = 1.

3. Scan the sets Si\C(Si), i ∈ I, to check if the qth element of C(Sr) (denote it by x∗)

appears in any of them.

3.1. If it does:

3.1.1. If C(Sr) has q elements and r is the highest index in I, STOP.

3.1.2. If C(Sr) has q elements, let q = 1 and increase r by 1. Go to step 3.

3.1.3. Increase q by 1 and go to step 3.

3.2. If x∗ does not appear in any Si\C(Si), add it to Q and set x ≺ x∗ for all

x ∈ S\Q.
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3.3. Scan the sets C(Si), i ∈ I to check if x∗ appears in any of them, and let

I ′ := {i ∈ I : x∗ /∈ C(Si)} (note that by the definition of x∗ in step 3, I ′ $ I).

If I ′ = ∅, set I = ∅ and STOP. (Note that the observations with labels in I\I ′

are now supra-semirationalized by ≺.)

3.4. Relabel the pairs (C(Si), Si\C(Si)), i ∈ I ′, with the labels 1, . . . , |I ′|. Let I :=

{1, . . . , |I ′|}. Go to step 2.

At every iteration the algorithm either returns to step 2 or 3 or it stops. The algorithm

stops after at most
∑k

i=1 |C(Si)| iterations. If I 6= ∅ when the algorithm stops, the input

choice correspondence is a no-instance. In this case {(C(Si), Si\C(Si))| i ∈ I} is an im-

plicit cycle, and by section 2 the input choice correspondence is not rationalizable. If I = ∅
when the algorithm stops, the input choice correspondence is a yes-instance. In this case

≺ is a partial order on S that supra-semirationalizes the input choice correspondence.8 It

is clear that each step is polynomial in the length of the input, and so is the number of

iterations. Q.E.D.

4 Conclusion

We characterized behavior generated by the pure strategy Nash equilibrium concept for

normal form games, first for “closed domains,” and then without placing any restrictions

on observations. In particular, we did not impose the unrealistic “complete domain” as-

sumption, which was central to results in the received literature. We obtained our charac-

terizations using a revealed preference approach. This suggests that further extensions to

solution concepts other than Nash eqilibrium might be possible with revealed preference

techniques.

We showed that, from a computational perspective, Nash rationalizability in its full

generality is a very complex problem. This can be a significant issue for applications.

Note, however, that our result means only that the running time of a “Nash rationalizability

algorithm” is (most likely9) not polynomially bounded as the number of players increases.

8This can be seen by noticing that indicies are ommitted from I in step 3.3 only if the corresponding
observation is rationalized by the partial order defined so far.

9See footnote 6 on p. 11.
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Our polynomial-time algorithm for the one player case in section 3.2 suggests that one

might hope to find efficient algorithms for determining Nash rationalizability with a fixed

number of players.

Another interesting question for future research is the role of beliefs in multi-agent

decision making. Since the literature so far has addressed only the Nash equilibrium

solution concept, the role of beliefs has been hidden by the implicit assumption that agents’

beliefs correspond exactly to the actions taken. If one were to study behavior generated by

other solution concepts that are not “Nash-like,” such as Pearce-Bernheim rationalizability,

the prominent role of beliefs would become apparent.

Yet another interesting aspect of this problem is the relationship between the analyst

or observer and the decision making process. In rationalizability for individual choice

problems, it seems clear that the observer and the decision making process are entirely

separate. That is, the analyst is outside the decision making problem, observing the

behavior of the decision maker. In collective decision making situations, it is conceivable

that the analyst is himself one of the decision makers. For example, a player in a game, not

knowing the preferences of the other players, might attempt to draw conclusions concerning

the plausibility of certain possible outcomes, based on some previous experiences of games

played by the same agents. Analyzing situations of this kind might lead to interesting

applications.

Appendix

Here we prove Theorem 2 of section 3.1, which states that the Nash rationalizability prob-

lem (NR) is NP-complete. Our proof involves two additional problems: Nash rationaliz-

ability with each player having at most two strategies in each observed game form (NR2),

and the classic problem of determining the satisfiability of a Boolean formula in conjunctive

normal form with three disjuncts in each conjunct (3SAT).

Proof [Theorem 2 ]

We will prove the theorem using polynomial-time reduction, a standard technique in the

theory of computational complexity. We will show that the 3SAT problem, known to be

NP-complete (see (14) and (13)), polynomially transforms into the Nash rationalizability

14



problem for two-strategy games (henceforth denoted by NR2), which is a special case of

the Nash rationalizability problem (henceforth denoted by NR). That is, we will construct

an algorithm that runs in polynomial time, and, given any instance of 3SAT, produces

an instance of NR2 with the property that the NR2 instance is rationalizable if and only

if the 3SAT instance is satisfiable. This will imply that if there exists a polynomial-time

algorithm for deciding NR2, then any instance of 3SAT can be decided in polynomial time

by first polynomially transforming it into an instance of NR2 and then deciding that in

polynomial time. Since 3SAT is NP-complete, this argument will establish that NR2 is

NP-complete.

NR2: The Nash rationalizability problem for two-strategy games can be described as

follows. Let

P = {1, 2, 3, . . . } ∪ {1′, 2′, 3′, . . . } ∪ {1′′, 2′′, 3′′, . . . } (40)

be the set of potential players. In all subforms below, the number of players with non-

trivial strategy sets will be at most 3. The strategy set of player i ∈ P is Si : {ai, bi, ci},
and for any finite subset I ⊂ P, we write SI :=

∏
i∈I Si. An instance of NR2 consists of a

finite set I of players, and a choice function on a set of subforms of SI . A subform will be

described by the strategy sets of the players involved. A typical instance of NR2 is

[(sp1
1
, sp1

2
, sp1

3
), o1], [(sp2

1
, sp2

2
, sp2

3
), o2], . . . , [(spk

1
, spk

2
, spk

3
), ok] (41)

with spi
j
⊆ Spi

j
and oi ∈ spi

1
× spi

2
× spi

3
for all i ∈ {1, . . . , k}. The player set

I =
k⋃

i=1

{pi
1, p

i
2, p

i
3} (42)

is implicit in the description of an instance of NR2 (41). The players in I who are not

involved in a subform are assumed to play their a strategy. The intended interpretation is

that in the subform spi
1
× spi

2
× spi

3
the strategy profile oi is the strategic outcome observed.

We assume that for every subform spi
1
×spi

2
×spi

3
the only choice is oi.

10 An instance of NR2

is a yes-instance if the corresponding choice function is (pure strategy Nash equilibrium)

rationalizable, and it is a no-instance if it is not. A polynomial-time algorithm for NR2 is

a polynomial-time algorithm that returns, for any given instance of NR2, a yes if and only

10In the notation of section 2, we assume that for every subform S we have Ĉ(S) = S\C(S).
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if it is a yes-instance. Below we will show that if there exists a polynomial-time algorithm

for NR2, then there exists a polynomial-time algorithm for 3SAT, which proves that NR2

is NP-complete.11

3SAT: Suppose that X = {x1, x2, . . . , xm} is a set of Boolean variables and X̄ = {x̄1, . . . , x̄m}
is the set of their negations. For any truth assignment T : X → {t, f}, we define for x̄ ∈ X̄

the extension of T by T (x̄) = t if, and only if T (x) = f. The set X∗ := X ∪ X̄ is the set

of literals. A subset C of X∗ is a clause. Suppose a set {C1, . . . , Ck} of clauses is given.

A truth assignment T : X → {t, f} satisfies {C1, . . . , Ck} if for every clause Ci there exists

x ∈ Ci with T (x) = t. A set of clauses is satisfiable if there exists a truth assignment that

satisfies it. We can now state 3SAT: Given an arbitrary finite set of clauses with exactly

three elements in every clause, does there exist a satisfying truth assignment? 3SAT is

known to be NP-complete (see (13)).

3SAT → NR2: We now define the polynomial-time transformation mentioned at the

beginning of the proof. That is, we define a polynomial-time algorithm that takes any in-

stance of 3SAT as its input, and produces an instance of NR2 that is rationalizable if and

only if the input 3SAT instance is satisfiable. Suppose we are given an arbitrary instance

of 3SAT:

V =
{
{v1

1, v
2
1, v

3
1}, {v1

2, v
2
2, v

3
2}, · · · , {v1

l , v
2
l , v

3
l }

}
, (43)

where vi
j ∈ X∗. Suppose w.l.o.g. that the set of variables that appear in V is {x1, . . . , xk}.

We will construct an instance of NR2 with player set

{1, 1′, 1′′, 2, 2′, 2′′ . . . , k, k′, k′′}. (44)

First we construct a set of games for every variable that is negated in V . That is, suppose

{v1
j , v

2
j , x̄h} ∈ V . Then Γh consists of the following subform–outcome pairs (see figure 1):

1. [({ah}, {ah′ , bh′}, {ah′′ , bh′′}, ), ahah′bh′′ ] (see fig. 2)

2. [({ah, bh}, {ah′ , bh′}, {bh′′}, ), ahah′bh′′ ] (see fig. 3)

3. [({bh}, {ah′ , bh′}, {ah′′ , bh′′}, ), bhbh′ah′′ ] (see fig. 4)

11It is clear that NR2 is in the class NP: given an instance of NR2 and preference relations for every
player, it can be checked in polynomial time whether the preferences Nash rationalize the given choice
function.
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4. [({ah, bh}, {ah′ , bh′}, {ah′′}, ), bhbh′ah′′ ] (see fig. 5)

5. [({ah, bh}, {ah′}, {ah′′ , bh′′}, ), ahah′bh′′ ] (see fig. 6)

6. [({ah, bh}, {bh′}, {ah′′ , bh′′}, ), bhbh′ah′′ ] (see fig. 2)

Now we transform the problem V into an instance of NR2 as follows.

1. In the following steps, ignore every clause that includes a variable x and its negation

x̄ (these clauses are satisfied by any truth assignment).

2. Replace every clause of the form {xe, xf , xg} with

[({ae, be}, {af , bf}, {ag, bg}), bebfbg]. (45)

3. Replace every clause of the form {xe, xf , x̄g} with

[({ae, be}, {af , bf}, {ag′ , bg′}), bebfbg′ ] (46)

and Γg.

4. Replace every clause of the form {xe, x̄f , x̄g} with

[({ae, be}, {af ′ , bf ′}, {ag′ , bg′}), bebf ′bg′ ] (47)

and Γg and Γf .

5. Replace every clause of the form {x̄e, x̄f , x̄g} with

[({ae′ , be′}, {af ′ , bf ′}, {ag′ , bg′}), be′bf ′bg′ ] (48)

and Γg, Γf and Γe.

The resulting instance of NR2 will be denoted by NRV .

In the worst case, all variables that appear in V are distinct and are negated, which

gives l ·19 subform–outcome pairs, i.e. the input size is increased by a multiplicative factor.

The transformation involves only replacing each clause by at most 19 subform–outcome

pairs, as described above, and so it runs in polynomial time (in fact in linear time).
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h

h’

h’’a a a

b b b

Figure 1: The subforms in Γh involve players h, h′, h′′

b b b

h

h’

h’’a a a

Figure 2: The first subform in Γh

h

h’

h’’a a a

b b b

Figure 3: The second subform in Γh
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h

h’

h’’a a a

b b b

Figure 4: The third subform in Γh

h

h’

h’’a a a

b b b

Figure 5: The fourth subform in Γh

h

h’

h’’a a a

b b b

Figure 6: The fifth subform in Γh
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Now we must show that the polynomial transformation V 7→ NRV constructed above

has the property mentioned at the beginning of the proof: V is satisfiable if and only

if NRV is Nash rationalizable. First, suppose NRV is Nash rationalizable. Denote the

rationalizing preference relations by (≺i)i∈{1,1′,1′′,...,k,k′,k′′}. Define, for each variable xi with

i ∈ {1, 2, . . . , k} (recall that these are exactly the variables that appear in V ) a truth

assignment:

T≺(xi) = t ⇐⇒ a1a1′a1′′ · · · ak′′ ≺i a−ibi. (49)

Consider a clause of the form {xe, xf , xg}. Since NRV contains the pair

[({ae, be}, {af , bf}, {ag, bg}), bebfbg], (50)

and since aeafag is not a Nash equilibrium in this subform, it must be that

[aeafag ≺e beafag] ∨ [aeafag ≺f aebfag] ∨ [aeafag ≺g aeafbg]. (51)

Under T≺ this means that {xe, xf , xg} is satisfied.

Now consider a clause of the form {xe, xf , x̄g}. It is easy to see that if (≺i)i∈{1,1′,1′′,...,k,k′,k′′}

rationalize NRV , then it follows from the construction of Γg that either agag′ag′′ ≺g bgag′ag′′

or agag′ag′′ ≺g′ agbg′ag′′ , but not both.12 If ¬[agag′ag′′ ≺g bgag′ag′′ ], then by definition

T≺(xg) = f, so {xe, xf , x̄g} is satisfied. If, on the other hand, ¬[agag′ag′′ ≺g′ agbg′ag′′ ], then

since [({ae, be}, {af , bf}, {ag′ , bg′}), bebfbg′ ] is in NRV , the fact that aeafag′ is not a Nash

equilibrium implies that either aeafag′ ≺e beafag′ or aeafag′ ≺f aebfag′ , which implies that

either T≺(xe) = t or T≺(xf ) = t, and so {xe, xf , x̄g} is satisfied.

The situation for clauses of the type {xe, x̄f , x̄g} and {x̄e, x̄f , x̄g} is analogous, and these

clauses will also be satisfied by T≺. Thus the truth assignment T≺ satisfies V .

To prove the converse, suppose that V is satisfied by a truth assignment T . For all

i ∈ {1, 2, . . . , k}, let

a1a1′a1′′ · · · ak′′ ≺i a−ibi ⇐⇒ T (xi) = t. (52)

By construction (see footnote 12, p.20), the subform–outcome pairs in Γi force

a1a1′a1′′ · · · ak′′ ≺i′ a−i′bi′ ⇐⇒ T (xi) = f. (53)

12In fact, Γg is constructed so that it is rationalizable if and only if the thick “edge cycle” in figure 8
is oriented in one direction or the other. Each of the two points not in the cycle, bgbg′ag′′ and agag′bg′′ ,
must be preferred to everything differing from it in only one player’s strategy.
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h

h’

h’’a a a

b b b

Figure 7: The sixth subform in Γh

g

g’

g’’a a a

b b b

?

Figure 8: The “edge cycle” must be oriented for rationalizability
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Since V is satisfied by T , by construction of NRV we know that a1a1′a1′′ · · · ak′′ is not a Nash

equilibrium in the three-player games and the two-player games in NRV that include it.

Now for any subform in NRV , define preferences to be consistent with the given outcomes,

i.e. make the outcome strictly preferred to any outcome that is reachable via a one-player

deviation. It is easy to see that in the subforms of Γh, for h ∈ {1, 2, . . . , k}, this completely

defines preferences without violating transitivity — the orientation of the “cycle” (as in

fig. 8) is determined by the truth value of xh. And in the three-player game forms in

NRV this defines all the relevant preferences, and the rest can be defined in an arbitrary

(but consistent) way, for instance orienting every (previously undefined) edge in the graph

representation in figure 1 towards the chosen outcome bbb.

We have shown that our polynomial transformation produces a Nash rationalizable in-

stance of NR2 if and only if the input 3SAT instance is satisfiable. Thus if an algorithm

could decide any instance of NR2 in polynomial time, then any instance V of 3SAT could

be be decided in polynomial time by first using our algorithm to produce NRV in polyno-

mial time, and then deciding NRV in polynomial time. Since 3SAT is NP-complete, this

proves that NR2 is NP-complete. Q.E.D.
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