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1. Introduction

Consider a collection of firms and consultants. Each firm wishes to
hire a set of consultants, and each consultant wishes to work for a set
of firms. Firms have preferences over the possible sets of consultants,
and consultants have preferences over the possible sets of firms. This
is an example of a “many-to-many” matching market. A matching is
an assignment of sets of consultants to firms, and of sets of firms to
consultants, so that firm f is assigned to consultant w if and only if w
is also assigned to f . The problem is to predict which matchings can
occur as a result of bargaining between firms and consultants.

Many-to-many matching markets are worse understood than many-
to-one markets—markets where firms hire many workers, but each
worker works for only one firm. The many-to-one market model seems
to describe most labor markets, so why should one study many-to-many
markets? There are two reasons.

First, some important real-world markets are many-to-many. One
example is firms/consultants. But the best-known example is probably
the market for medical interns in the U.K. (Roth and Sotomayor, 1990).
The medical-interns example is important because it works through a
centralized matching mechanism. And many-to-one theory has helped
understand and shape centralized matching mechanisms for medical
interns in the U.S. (Roth and Peranson, 1999). Another example is
the assignment of teachers to highschools in some countries (35% of
teachers in Argentina work in more than one school). The assignment
of teachers to highschools is a clear candidate for a centralized solution
guided by theory. Finally, one can view many-to-many matching as
an abstract model of contracting between down-stream firms and up-
stream providers.

Second, even a few many-to-many contracts can make a crucial dif-
ference, and most labor markets have at least a few many-to-many
contracts. We present an example (Section 2.2) of a many-to-one mar-
ket, where the number of agents can be arbitrarily large, and still one
many-to-many contract changes the contracting outcome for all agents.
In the U.S., 76% of total employment is in industries with 5% or more
multiple jobholders (Source: U.S. Bureau of Labor Statistics). If even a
few multiple jobholders (many-to-many contracts) make an important
difference, we need a many-to-many model to understand the bulk of
the labor markets in the U.S.

Finally, characterizing the core in many-to-many matchings is listed
in Open Problem 6 in Roth and Sotomayor (1990, page 246)—the clas-
sic on matching markets. We give an answer to this problem.
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We shall first give an overview of our solutions and results. Then we
place our results in the related literature.

1.1. Overview of solutions. We argue that the core is not the right
solution for many-to-many markets. One problem is that the core may
not be individually rational, in the sense that there are core matchings
where a firm—for example—would be better off firing some worker.
Another problem is that the core may not be pairwise stable, in the
sense that there may be a firm f and a worker w that are not currently
matched, but where w would like to work for f , and f would like to
hire w. The second problem is well-known in the literature.

The situation contrasts with one-to-one, and many-to-one, matching
markets; the standard solution in these markets is the set of pairwise-
stable, and individually-rational, matchings. In one-to-one, and many-
to-one, markets, this standard solution coincides with the core.

We consider alternatives to the core. One alternative is the setwise-
stable set of Roth (1984) and Sotomayor (1999): the set of individually-
rational matchings that cannot be blocked by a coalition who forms new
links only among themselves—but may preserve their links to agents
that are not in the coalition. A second alternative is the individually-
rational core (defined implicitly by Sotomayor (1999)): the set of indivi-
dually-rational matchings that cannot be blocked using an individually-
rational matching. A third alternative is the pairwise-stable set, de-
scribed above. A fourth alternative is a set we denote by E : matchings
where each agent a is choosing her best set of partners, out of the set
of potential partners who, given their current match, are willing to link
to a. The definition of E is circular.

1.2. Overview of results. Matching theory proceeds normally by
adding hypotheses on agents’ preferences. We shall work with two
hypotheses. The first is substitutability—first introduced by Kelso and
Crawford (1982), and used extensively in the matching literature. The
second is a strengthening of substitutability that we call strong substi-
tutability.

We explain the two hypotheses. Let f be a firm. Substitutability of
f ’s preferences requires: “if hiring w is optimal when certain workers
are available, hiring w must still be optimal when a subset of workers
are available.” Strong substitutability requires: “if hiring w is optimal
when certain workers are available, hiring w must still be optimal when
a worse set of workers are available.” Using a sports analogy, substi-
tutability means that if w has a contract with the L.A. Lakers, and
is chosen to play for the West’s All Star Team, then w should play in
the Lakers’ first team. Strong substitutability means that, if w is good



MANY-TO-MANY MATCHINGS 3

enough to play for the Lakers, w must be good enough to play for the
L.A. Clippers.

Strong substitutability is stronger than substitutability. But it is
weaker than separability, and not stronger than responsiveness—two
other assumptions used in matching theory (separability is also used
extensively in social choice).

We now enumerate and briefly discuss our main results; but we an-
ticipate that Table 1 (Section 10, page 25) contains a summary of the
results in the paper. For economy of exposition, we present results as
results on E . The implications for the other solutions should be clear
at all times.

If preferences are substitutable, E is nonempty, and we give an algo-
rithm for finding a matching in E ; E equals the set of individually ratio-
nal and pairwise-stable matchings; a basic non-cooperative bargaining
game—firms propose to workers, then workers propose to firms—has
E as its set of subgame-perfect equilibrium outcomes; a matching in E
which is blocked (in the sense of the core) must be blocked in a “non-
individually-rational way;” through a coalition of agents that all have
incentives to deviate from the block.

If firms’ preferences are substitutable, and workers’ preferences are
strongly substitutable, E equals the set of setwise-stable matchings,
and a matching in E must be in the individually-rational core. Thus
setwise-stable matchings exist, the individually-rational core is non-
empty, and our algorithm finds a matching in the individually-rational
core that is setwise stable.

If preferences are substitutable, E has certain properties one can in-
terpret as worker-firm conflict of interest, and worker-worker (or firm-
firm) coincidence of interest: E is a lattice. That E is a lattice im-
plies that there is a “firm-optimal” matching in E—a matching that
is simultaneously better for all firms, and worse for all workers, than
any other matching in E—and a “worker-optimal” matching in E—
one that is best for all workers, and worse for all firms. Besides the
lattice-structure, there are other conflict/coincidence of interest prop-
erties from one-to-one and many-to-one markets (Roth, 1985). We
extend these properties to many-to-many markets. If preferences are
strongly substitutable, the lattice operations on E are the canonical
lattice operations from one-to-one matching markets.

If firms’ preferences are substitutable, and workers’ preferences are
strongly substitutable, the theory of many-to-many matchings parallels
the theory of many-to-one matchings: the setwise-stable set equals the
pairwise-stable set, and the setwise-stable set is a non-empty lattice. In
the standard many-to-one model, firms’ preferences are substitutable,
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and workers’ preferences are trivially strongly substitutable. So our
model encompasses standard many-to-one theory.

In sum, we give conditions (substitutability, strong substitutability)
under which our alternatives to the core are non-empty and can be
approached through an algorithm. We emphasize that—even under
the strongest of our hypotheses—the core may be empty. The setwise-
stable set, E , and the pairwise-stable set are identical, and possess a
lattice structure. The setwise-stable set, E , and the pairwise-stable
set coincide with the outcomes of a simple non-cooperative bargain-
ing model. We reproduce and extend conflict/coincidence of interest
properties.

1.3. Related Literature. Setwise stability was first defined by Roth
(1984). Sotomayor (1999) emphasizes the difference between setwise
stability, pairwise stability, and the core. Sotomayor (1999) presents
examples where the setwise-stable set is empty; preferences in her ex-
amples are not strongly substitutable (see our Example 21). Sotomayor
(1999) refers to a definition of core that in fact coincides with our
individually-rational core. We are the first to prove positive results on
the setwise-stable set, and the individually-rational core—in particular
that they are non-empty.

The previous literature on many-to-many matchings has results for
the pairwise-stable set. Roth (1984) proved that, with substitutable
preferences, the pairwise-stable set is nonempty, and that there are
firm- and worker-optimal pairwise-stable matchings. Blair (1988) proved
that the pairwise-stable set has a lattice structure. A standard objec-
tion (Roth and Sotomayor, 1988) to pairwise-stability is that it does not
allow for more general coalitions. We show that, under our structure on
preferences, allowing for more general coalitions does not make a dif-
ference. As by-products of our results, we reproduce Roth’s and Blair’s
results on pairwise stability using fixed-point methods—similar meth-
ods have been used in matching contexts by Adachi (2000), Echenique
and Oviedo (2004), Milgrom (2003), Roth and Sotomayor (1988), and
Fleiner (2003). Blair’s lattice structure relies on a somewhat artificial
order; under our strongest structure, we obtain a lattice structure with
the canonical order.

Roth (1985) discusses global conflict/coincidence of interest prop-
erties, beyond the lattice property of pairwise-stable matchings. We
extend Roth’s results to many-to-many matchings.

Recently, Sotomayor (2004) proved that, with responsive preferences,
a mechanism that coincides with the one in Section 7, implements the
pairwise-stable matchings. She also proves that, under a restriction on
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preferences she calls “minmax,” the pairwise-stable matchings are in
the core. Sotomayor claims that one can modify her proof to show that
pairwise-stable matchings are setwise stable.

In independent work, Konishi and Ünver (2003) show that a concept
they call credible group stability is equivalent to pairwise stability.
Credible group stability is similar in spirit (but logically unrelated) to
our bargaining set (defined in Section 4.3). Konishi and Ünver work on
a general model of multi-partner matching—not necessarily two-sided.
Konishi and Ünver require preferences to be responsive and satisfy a
separability assumption; their model is neither more nor less general
than our model.

A precedent to our results on a bargaining set is Klijn and Massó
(2003). Klijn and Massó study Zhou’s bargaining set for the one-to-
one matching model. The bargaining set we propose is different from
Zhou’s bargaining set. We compare the two in Section 4.3.

Alcalde, Pérez-Castrillo, and Romero-Medina (1998) and Alcalde
and Romero-Medina (2000) prove that the core is implemented in cer-
tain many-to-one models by simple mechanisms, similar to the one we
present in Section 7.

Alkan (2001) and Alkan (2002) presents properties (including dis-
tributivity) of the lattice structure on pairwise-stable matchings, in
many-to-many markets with additional structure on preferences. Mart́ınez,
Massó, Neme, and Oviedo (2003) present an algorithm that finds all
the pairwise-stable matchings in a many-to-many matching market.

2. Motivating examples

An example with an empty core is Example 2 in Konishi and Ünver
(2003). We do not reproduce the example here. But one can verify that
it falls under the strongest of our hypotheses. Thus the setwise-stable
set, for example, is nonempty when the core may be empty.

We give two motivating examples. The first example shows that the
core may be a problematic solution. The second example shows that
many-to-many matchings can be important, even when they are rare.

2.1. The problem with the core.

Example 1. Suppose the set of workers is W = {w1, w2, w3}, and the
set of firms is F = {f1, f2, f3}. Workers’ preferences are

P (w1) : f3, f2f3, f1f3, f1, f2

P (w2) : f1, f1f3, f1f2, f2, f3

P (w3) : f2, f1f2, f2f3, f3, f1.
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The notation means that w1 prefers {f3} to {f3, f2}, {f3, f2} to {f3, f1},
{f3, f1} to {f1}, and so on. If A ⊆ F is not listed it means that ∅ is
preferred to A. Firms’ preferences are

P (f1) : w3, w2w3, w1w3, w1, w2

P (f2) : w1, w1w3, w1w2, w2, w3

P (f3) : w2, w1w2, w2w3, w3, w1.

Consider the matching µ̂ defined by µ̂(w1) = {f2, f3}, µ̂(w2) =
{f1, f3}, and µ̂(w3) = {f1, f2}.

Note that µ̂ is a core matching: To make f1—for example—better
off than in µ̂, f1 should hire only w3, which would make w2 hired only
by f3, so w2 would be worse off. Now, if f1 is in a blocking coalition
C, w3 must be in C. Then f2 must be in C, or w3 would only be hired
by f1 and thus worse off. But f2 in C implies that w1 must be in C.
Then f3 must be in C, so w2 must also be in C—a contradiction, as w2

is worse off.
But is µ̂ a reasonable prediction? Under µ̂, f1 is matched to w2 and

w3, but would in fact prefer to fire w2. The problem is that f1 is not
“allowed” to fire w2 because—as argued above—f1 would have to form
a block that includes w2, and w2 is worse off if she is fired.

Example 1 shows that core matchings need not be “individually ra-
tional.” Because there are actions, like firing a worker, that an agent
should be able to implement on its own, but that the definition of core
ends up tying into a larger coalition.

An additional problem, pointed out by Blair (1988) and Roth and
Sotomayor (1990, page 177) is that core matchings may not be pairwise
stable (see also Sotomayor (1999)).

2.2. Many-to-many vs. many-to-one. There is a large literature
on one-to-one and many-to-one matchings. Many-to-many matchings
are a more general model. We have argued that, in many cases, the
generality matters. Here we present an example supporting our argu-
ment; we observe that the presence of a few many-to-many contracts
can change the matching outcome for all agents.

In Example 2, if one worker is allowed to match with more than one
firm, the resulting stable/core matching changes for a large number of
agents. Thus, even in markets where one-to-one, or many-to-one, is
the rule, a few many-to-many contracts can make a big difference.

Example 2. Let W = {w,w1, . . . w2K} and F =
{
f1, . . . fK , f

}
. The

preferences of workers wk, for k = 1, . . . 2K, are the same:

P (wk) : f1, f2, . . . fK , f .
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The preferences of w are

P (w) : f1f, f , f1.

The preferences of firms fk for k = 2, . . . K are

P (fk) : w2k−2w2k−1, w2k−1w2k, ww2k.

Firms f1 and f have preferences

P (f1) : ww1, w1w2

P (f) : w,w1, w2, . . . , wK .

Consider matchings µ and µ′ defined by

f1 f2 . . . fk . . . fK f
µ = w1w2 w3w4 . . . w2k−1w2k . . . w2K−1w2K w
µ′ = ww1 w2w3 . . . w2k−2w2k−1 . . . w2K−2w2K−1 w

First, if w is not allowed to match with more than one firm, then
µ is the unique core (and stable) matching. If w is allowed to match
with more than one firm, then 〈{w} ,

{
f1, f

}
, µ′〉 blocks µ. Further, µ′

is the unique core matching.

The story behind the example should be familiar to academics. Sup-
pose that firms are universities. All workers wk agree about the ranking
of firms: f1 is the best, followed by f2, etc. Firm f is the worst. How-
ever, worker w, an established and coveted researcher in her field, has
a strong desire to work at f for geographic reasons (f is in the town
where w grew up, and that is where her family lives). If part-time
(many-to-many) appointments are not allowed, w will only work for f
and the resulting matching is, in all likelihood, µ. On the other hand, if
w is allowed to have part-time appointments at f and f1, µ

′ will result.

3. Preliminary definitions

3.1. Lattices and preference relations. A (strict) preference rela-
tion P on a set X is a complete, anti-symmetric, and transitive binary
relation on X. We denote by R the weak preference relation associated
to P ; so xRy if and only if x = y or xPy. If A is a set, we refer to a
list of preference relations (P (a))a∈A as a preference profile.

Let X be a set, and B a partial order on X—a transitive, reflexive,
and antisymmetric binary relation. Let A ⊆ X. Denote by infB A the
greatest lower bound, and by supB A the lowest upper bound, on A in
the order B. Say that the pair 〈X,B〉 is a lattice if, whenever x, y ∈ X,
both x∧B y = infB{x, y} and x∨B y = supB{x, y} exist in X. A subset
A ⊆ X is a sublattice of 〈X,B〉 if, whenever x, y ∈ A, both x∧B y ∈ A
and x ∨B y ∈ A.
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A lattice 〈X,B〉 is distributive if, for all x, y, z ∈ X, x ∨B (y ∧B

z) = (x ∨B y) ∧B (x ∨B z). Let 〈X,B〉 and 〈Y,R〉 be lattices. A map
ψ : X → Y is a lattice homomorphism if, for all x, y ∈ X, ψ(x∧B y) =
ψ(x)∧Rψ(y) and ψ(x∨B y) = ψ(x)∨Rψ(y). ψ is a lattice isomorphism
if it is a bijection and a lattice homomorphism.

Remark 1. The product of lattices, when endowed with the product
order, is a lattice (Topkis, 1998, page 13). The lattice operations are
the product of the component lattice operations.

3.2. The Model. The model has three primitive components:

• a finite set W of workers,
• a finite set F , disjoint from W , of firms,
• a preference profile P = (P (a))a∈W∪F , where P (a) is a prefer-

ence relation over 2F if a ∈ W , and over 2W if a ∈ F .

If a ∈ W ∪ F is an agent, we shall refer to any subset A ⊆ W ∪ F
as a set of partners of a. If a ∈ F , a’s partners will be subsets of W ,
and if a ∈ W , a’s partners will be subsets of F .

Denote the preference profile (P (w))w∈W by P (W ), and (P (f))f∈F

by P (F ).
The assignment problem consists of matching workers with firms,

allowing that some firms or workers remain unmatched.
Formally, a matching µ is a mapping from the set F ∪W into the

set of all subsets of F ∪W such that for all w ∈ W and f ∈ F :

(1) µ (w) ∈ 2F

(2) µ (f) ∈ 2W

(3) f ∈ µ (w) if and only if w ∈ µ (f).

We denote by M the set of all matchings.
Given a preference relation P (a), the sets of partners preferred by

a to the empty set are called acceptable. We allow that a firm prefers
not hiring any worker rather than hiring unacceptable sets of workers,
and that a worker prefers to remain unemployed over working for an
unacceptable set of firms.

Given a set of partners S, let Ch (S, P (a)) denote agent a’s most-
preferred subset of S, according to a’s preference relation P (a). So
Ch (S, P (a)) is the unique subset S ′ of S such that S ′P (a)S ′′ for all
S ′′ ⊆ S, S ′′ 6= S ′.

We often omit brackets ({. . .}) when denoting sets.

3.3. Individual rationality, stability, and Core. Let P (a) be a
preference relation. A matching µ is individually rational if µ(a)R(a)A,
for all A ⊆ µ(a), for all a ∈ W ∪ F . Hence a matching is individually
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rational if and only if

µ(a) = Ch(µ(a), P (a)),

for all a ∈ W ∪ F .
Individual rationality builds on the idea that links are voluntary: if

agent a prefers a proper subset A ( µ(a) of partners over µ(a), then
she will upset µ by severing her links to the agents in µ(a)\A.

Let w ∈ W , f ∈ F , and let µ be a matching. The pair (w, f) is
a pairwise block of µ if w /∈ µ (f), w ∈ Ch (µ (f) ∪ {w} , P (f)), and
f ∈ Ch (µ (w) ∪ {f} , P (w)).

Definition 3. A matching µ is pairwise stable if it is individually
rational, and there is no pairwise block of µ. Denote the set of pair-
wise stable matchings by S(P ).

Definition 4. A block of a matching µ is a triple 〈W ′, F ′, µ′〉, where
F ′ ⊆ F , W ′ ⊆ W , and µ′ ∈M are such that

(1) F ′ ∪W ′ 6= ∅,
(2) µ′(s) ⊆ W ′ ∪ F ′, for all s ∈ W ′ ∪ F ′,
(3) µ′(s)R(s)µ(s), for all s ∈ F ′ ∪W ′,
(4) and µ′(s)P (s)µ(s) for at least one s ∈ W ′ ∪ F ′.

In words, a block of a matching µ is a “recontracting” between a
subset of workers and firms, so that the agents who recontract are all
weakly better off, and at least one of them is strictly better off. Say
that 〈W ′, F ′, µ′〉 blocks µ if 〈W ′, F ′, µ′〉 is a block of µ.

Definition 5. A matching µ is a core matching if there are no blocks
of µ. Denote the set of core matchings by C(P ).

3.4. Substitutability.

Definition 6. An agent a’s preference relation P (a) satisfies substi-
tutability if, for any sets S and S ′ with S ⊆ S ′,

b ∈ Ch (S ′ ∪ b, P (a)) implies b ∈ Ch (S ∪ b, P (a)) .

A preference profile P = (P (a))a∈A is substitutable if, for each agent
a ∈ A, P (a) satisfies substitutability.

4. Non-core setwise stability

4.1. The setwise-stable set.

Definition 7. A setwise block to a matching µ is a triple 〈W ′, F ′, µ′〉,
where F ′ ⊆ F , W ′ ⊆ W , and µ′ ∈M are such that

(1) F ′ ∪W ′ 6= ∅,
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(2) µ′(s)\µ(s) ⊆ F ′ ∪W ′, for all s ∈ F ′ ∪W ′,
(3) µ′(s)P (s)µ(s), for all s ∈ F ′ ∪W ′,
(4) µ′(s) = Ch(µ′(s), P (s)), for all s ∈ F ′ ∪W ′.

Definition 8. A matching µ is in the setwise-stable set if µ is individ-
ually rational, and there are no setwise blocks to µ. Denote the set of
setwise-stable matchings by SW (P ).

This definition of SW (P ) is from Sotomayor (1999, Definition 2,
pages 59–60). The crucial difference between setwise stability and the
core is in item (2) of Definitions 4 and 7. By item (2) of Definition 7, a
setwise block needs only involve the agents who form new matches in
the block. The justification is that one only needs an agents consent to
form a new match, not to maintain an existing match. Definition 4, in
contrast, requires all agents involved in the blocking match to be part
of the block; this feature is why the attempted “firing” fails Example 1.

Item (4) of Definition 7 contains an element of forward-looking be-
havior: we only consider blocks that are individually rational, so the
agents who engage in blocking do not have an incentive to defect from
the block. Item (4) suggests a relation with some notion of a bargaining
set, a forward looking solution. We shall prove that a relation exists.

Recall Example 1. We argued that the core matching µ̂ (in fact the
unique core matching) is not a good prediction. Consider, instead, the
matching defined by µ(wi) = {fi}, for i = 1, 2, 3. It is easy, if somewhat
cumbersome, to check that µ is setwise stable.

It also has some interest to see why µ in Example 1 is not a core
matching; 〈W,F, µ̂〉 blocks µ, as µ̂(w1) = {f2, f3}P (w1)µ(w1), µ̂(w2) =
{f1, f3}P (w2)µ(w2), µ̂(w3) = {f1, f2}P (w3)µ(w3). Similarly for firms.
But this is a block from which all agents wish to unilaterally deviate.
We characterize the blocks of setwise-stable matchings in Section 8.

4.2. The individually-rational core.

Definition 9. A block 〈W ′, F ′, µ′〉 is an individually-rational block if
µ′(s) = Ch(µ′(s), P (s)), for all s ∈ W ′ ∪ F ′.

Definition 10. A matching µ is in the individually-rational core if
it is individually rational, and it has no individually-rational blocks.
Denote the set of individually-rational core matchings by IRC(P ).

Sotomayor (1999) restricts attention to individually-rational match-
ings. So she implicitly refers to the individually-rational core.

4.3. A bargaining set. Let µ be a matching.
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Definition 11. An objection to µ is a triple 〈W ′, F ′, µ′〉, where F ′ ⊆ F ,
W ′ ⊆ W , and µ′ ∈M are such that (1), (2), and (3) from Definition 7
are satisfied.

Let 〈W ′, F ′, µ′〉 be an objection to µ. A counter-objection to µ is an
objection 〈W ′′, F ′′, µ′′〉 to µ′ such that F ′′ ⊆ F ′ and W ′′ ⊆ W ′.

Definition 12. A matching µ is in the bargaining set if µ is individually
rational, and there are no objections without counterobjections to µ.
Denote the bargaining set by B(P ).

The bargaining set reflects forward-looking agents; an objection would
not be implemented if the agents who must carry out the objection have
incentives to deviate.

For the one-to-one model, Klijn and Massó (2003) prove that Zhou’s
bargaining set (Zhou, 1994) coincides with a weak pairwise-stability so-
lution. The bargaining set we propose is different from Zhou’s because
counterobjections are only allowed from “within” the objecting coali-
tion. With more general counterobjections, one gets a larger solution,
and our results would then imply that the larger solution is nonempty.
But Zhou’s bargaining set rules out counterobjections that only come
from within—so our results do not imply that Zhou’s bargaining set
is nonempty. Still, it seems to us that B(P ) captures the strategic
reasoning underlying Zhou’s bargaining set.

4.4. The Blair Core. We introduce a solution that follows Blair’s
(1988) order. The purpose of the solution is methodological.

The definition of a block (Definition 4) makes formally sense for any
profile of binary relations (B(s))s∈W∪F . Accordingly, one can define
the core matchings C(B) for any profile B = (B(s))s∈W∪F of binary
relations.

In particular, given a preference profile P = (P (s)), we can construct
a binary relation RB = (RB(s)) by saying that ARB(s)D if and only if
A = D or A = Ch(A ∪ D,P (s)). The strict relation PB is ARB(s)D
if and only if A 6= D and A = Ch(A ∪D,P (s)). We call the resulting
core, C(PB), the Blair-Core, as Blair (1988) introduced the relation
PB.

Note that a matching µ is in the Blair-Core if it is immune to de-
viations µ′ such that µ′(a) = Ch(µ′(a) ∪ µ(a), P (a)). But µ′(a) =
Ch(µ′(a)∪µ(a), P (a)) is only sufficient, and not necessary, for µ′(a)P (a)µ(a).
So the Blair-Core contains more matchings than the core.

4.5. More pairwise stability. We introduce an auxiliary solution.
The solution illustrates the role of strengthening the structure on each
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side of the market; it plays a methodological role (similar to its role in
Echenique and Oviedo (2004)).

A pair (D, f) ∈ 2W × F , with D 6= ∅, blocks* µ if D ∩ µ(f) = ∅,
D ⊆ Ch(µ(f) ∪D,P (f)), and f ∈ Ch(µ(w) ∪ f, P (w)), for all w ∈ D.

Definition 13. A matching µ is stable* if it is individually rational
and there is no pair (D, f) ∈ 2W × F that blocks* µ. Denote the set
of stable* matchings by S∗(P ).

5. A fixed-point approach.

We construct a map T on the set of “pre-matchings,” a superset of
M. We shall use the fixed points of T to prove results on the different
notions of stability.

5.1. Pre-matchings. Say that a pair ν = (νF , νW ), with νF : F → 2W

and νW : W → 2F , is a pre-matching. Let VW (VF ) denote the set of

all νW (νF ) functions. Thus, VF =
(
2W

)F
, VW =

(
2F

)W
. Denote the

set of pre–matchings ν = (νF , νW ) by V = VF × VW . We shall often
refer to νW (w) by ν(w) and to νF (f) by ν(f).

A pre-matching ν is a matching if ν is such that νW (w) = f if and
only if w ∈ νF (f) .

5.2. The map T . Let ν be a pre-matching, and let

U (f, ν) = {w ∈ W : f ∈ Ch (ν (w) ∪ {f}, P (w))} ,
and

V (w, ν) = {f ∈ F : w ∈ Ch (ν (f) ∪ {w}, P (f))} .
The set V (w, ν) is the set of firms f that are willing to hire w, possibly
after firing some of the workers it was assigned by ν. The set U(f, ν) is
the set of workers w that are willing to add f to its set of firms ν(w),
possibly after firing some firms in ν(w).

Now, define T : V → V by

(Tν) (s) =

{
Ch (U (s, ν) , P (s)) if s ∈ F
Ch (V (s, ν) , P (s)) if s ∈ W.

The map T has a simple interpretation: (Tν)(f) is firm f ’s optimal
team of workers, among those willing to work for f , and (Tν)(w) is the
set of firms preferred by w, among the firms that are willing to hire w.

We shall denote by E the set of fixed points of T , so

E = {ν ∈ V : ν = Tν} .
Recall Example 1 and matching µ from Section 4.1. Note that µ is a

setwise-stable matching and a fixed-point of T : V (w1, µ) = {f1, f2}, so
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{f1} = Ch(V (w1, µ), P (w1)), V (w2, µ) = {f2, f3}, so {f2} = Ch(V (w2, µ), P (w2)),
and V (w3, µ) = {f1, f3}, so {f3} = Ch(V (w3, µ), P (w2)). Similarly for
firms.

Further, µ̂, the core matching in Example 1, is not a fixed-point of
T ; as U(f1, µ̂) = {w2} and {w2, w3} 6= Ch(U(f1, µ̂), P (f1)).

Definition 14. The T -algorithm is the procedure of iterating T , start-
ing at some prematching ν.

Note that the T -algorithm stops at ν ′ ∈ V if and only if ν ′ ∈ E .
Let ν0 and ν1 be the prematchings defined by ν0(f) = ν1(w) = ∅,

ν0(w) = F , and ν1(f) = W for all w and f . We shall consider the
T -algorithm starting at prematchings ν0 and ν1. See Echenique and
Oviedo (2004) for a discussion of the T -algorithm in the many-to-one
model.

6. Non-emptiness of, and relations between, solutions.

We organize the results according to the structure needed on prefer-
ences. In some results, we impose structure on one side of the market
only. We always impose weakly more structure on workers’ prefer-
ences. The model is symmetric, so it should be clear that appropriate
versions of the results are true, interchanging the structure on workers’
and firms’ preferences.

Table 1 in Section 10 (page 25) contains a summary of results in the
paper.

6.1. Results under substitutability.

Theorem 15. E ⊆ S∗(P ) ⊆ S(P ). Further:

(1) If P (W ) is substitutable, then

S∗(P ) = E ⊆ C(PB).

(2) If P is substitutable, then S(P ) = E, E is nonempty, and the
T -algorithm finds a matching in E.

Proof. See Section 11. �

6.2. Results under strong substitutability.

Definition 16. An agent a’s preference ordering P (a) satisfies strong
substitutability if, for any sets S and S ′, with S ′P (a)S,

b ∈ Ch(S ′ ∪ b, P (a)) implies b ∈ Ch(S ∪ b, P (a)).

Say that a preference profile P is strongly substitutable if P (a) satisfies
strong substitutability for every agent a.
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Proposition 17. If P (a) satisfies strong substitutability, then it satis-
fies substitutability.

Proof. Let S and S ′ be sets of agents, with S ⊆ S ′. Suppose that
b ∈ C ′ = Ch(S ′ ∪ b, P (a)). We shall prove that b ∈ Ch(S ∪ b, P (a)).

Note that C ′ = Ch(C ′, P (a)). Now, S ∪ b ⊆ S ′ ∪ b implies that
C ′R(a)S ∪ b. If C ′ = S ∪ b then S ∪ b = Ch(S ∪ b, P (a)) and we are
done. Let C ′P (a)S ∪ b. Then b ∈ Ch(S ∪ b, P (a)), as P (a) satisfies
strong substitutability. �

Theorem 18. SW (P ) ⊆ E and B(P ) ⊆ E. Further, if P (F ) is substi-
tutable, and P (W ) is strongly substitutable, then E = SW (P ) = B(P ),
and E ⊆ IRC(P ).

Proof. See Section 12. �

Thus, when one side of the market has strongly substitutable pref-
erences, we can characterize the setwise-stable set. In light of Proposi-
tion 17, Theorem 18 implies that S(P ) = SW (P ).

Theorem 19. If P (F ) is substitutable, and P (W ) is strongly substi-
tutable, then S(P ), IRC(P ), SW (P ), and B(P ) are non-empty. The
T -algorithm finds a matching in S(P ), IRC(P ), SW (P ), and B(P ).

Proof. See Section 12. �

Remark 2. We can weaken the definition of strongly substitutable to:
For all S and S ′, with S = Ch(S, P (a)), S ′ = Ch(S ′, P (a)), and
S ′P (a)S,

b ∈ Ch(S ′ ∪ b, P (a)) implies b ∈ Ch(S ∪ b, P (a)).

All our results go through under this weaker definition. We chose the
stronger formulation in our exposition to make the comparison with
earlier work easier—it makes comparison with substitutability easier.
But when we check that an example violates strong substitutability,
we check for the weaker version.

6.3. Discussion of strong substitutability. How strong is the as-
sumption of strong substitutability? We lack a characterization of
strong substitutability—just as a characterization of traditional (Kelso-
Crawford) substitutability is unavailable. But we give a feeling for the
assumption by discussing preferences that are built from preferences
over individual workers.

First, strong substitutability is weaker than the assumption of sep-
arability used in matching models (Dutta and Massó, 1997; Sönmez,
1996). Separability says that, for any set of partners S, S ∪ bPS\b
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if and only if bP∅ (separability has been used quite extensively in so-
cial choice theory; e.g. Barberá, Sonnenschein, and Zhou (1991)). The
proof that separability implies strong substitutability is straightfor-
ward; we omit it.

Second, it is not stronger than responsiveness, another common as-
sumption is the matching literature (see Roth and Sotomayor (1990)
for a definition of responsiveness). One can easily write examples of
non-responsive preferences that satisfy strong substitutability.

Third, to give a feeling for how restrictive strong substitutability is,
consider the following example with four workers and a quota of 2. 1

Example 20. Let W = {w1, w2, w3, w4}. Suppose that a firm has
preferences over individual workers w1Pw2, w2Pw3 and w3Pw4.

Suppose the firm has a quota of 2. So only sets with two or less
elements are acceptable. How can we rank the sets

{w1, w2} , {w1, w3} , {w1, w4} , {w2, w3} , {w2, w4} , {w3, w4}
building from preferences over individuals? Obviously we need {w1, w2}P {w1, w3} ,
{w2, w3}P {w3, w4}, and so on. There are two possibilities:

P1 : w1w2, w1w3, w1w4, w2w3, w2w4, w3w4, w1, w2, w3, w4

P2 : w1w2, w1w3, w2w3, w1w4, w2w4, w3w4, w1, w2, w3, w4

The ranking of {w1, w4} and {w2, w3} is undetermined; P1 ranks
{w1, w4} first, P2 ranks {w2, w3} first. Both P1 and P2 are substi-
tutable, but only P2 is strongly substitutable: Note that w4 ∈ Ch({w1w4} , P1),
and {w1, w4}P1 {w2, w3}, but w4 /∈ Ch({w2, w3}∪w4, P1). So P1 is not
strongly substitutable. It is simple, if tedious, to check that P2 is
strongly substitutable.

Example 20 points to a general procedure for obtaining strongly
substitutable preferences from preferences over individuals when there
is a quota. Let S ∪ bPS\b if and only if {b}P∅, unless S has the
maximum number of elements allowed by the quota. If S and S ′ have
the maximum number of elements, let SPS ′ if the worst agent in S is
preferred to the worst agent in S ′.

Finally, a trivial but important point is that, in applications, the set
of acceptable partners is often quite small. And both substitutability
and strong substitutability are less restrictive if fewer sets of partners
are acceptable (Remark 2). For example, the set of acceptable hospitals
in the National Resident Matching Program was on average 7.45, out of

1 The right separability assumption for models with quotas is q-separability,
developed by Mart́ınez, Massó, Neme, and Oviedo (2000). But q-separability does
not imply strong substitutability.
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3719 programs, in 2003 (source: http://www.nrmp.org/). In a recent
proposal to match high schools and students in New York City by a
Gale-Shapley algorithm, students would be required to rank 12—out of
over 200—acceptable high schools. Students and parents complain that
12 is too long a list (New York Times story by David M. Herszenhorn,
“Revised Admission for High Schools,” on October 3rd, 2003).

A similar point is that several well-known examples in the literature
have agents with strongly substitutable preferences. Two such exam-
ples are 6.6 in Roth and Sotomayor (1990) and 5.2 in Blair (1988).

6.4. Examples. Strongly substitutable preferences imply—among other
things—that there are setwise-stable matchings. Sotomayor (1999)
presents an example where the set of setwise-stable matchings is empty.
We reproduce her example in 21, and show that preferences in her ex-
ample are not strongly substitutable.

Preferences in Example 21 are substitutable. So the example shows
that strong substitutability is strictly stronger than substitutability.

Example 4 in Konishi and Ünver (2003) has agents with substitutable
preferences, and a pairwise-stable matching that is not in SW (P ). So
the example implies that our Theorem 18 is tight (We thank Hideo
Konish and Utku Ünver for pointing this out).

Example 22 shows that C(PB) * S∗(P ).

Example 21. (Example 2 of Sotomayor (1999)) Each firm (worker)
may form at most qf (qw) partnerships. For each pair (f, w) there are
two numbers afw and bfw. The preferences of firms f and workers
w over allowable sets of partners are determined by these numbers.
Therefore, say, f prefers w to w′ if and only if afw > afw′ , and w
prefers f to f ′ if and only if bfw > bf ′w. Say that f prefers the set
S ⊆ W to the set S ′ ⊆ W if and only if

∑
w∈S afw >

∑
w∈S′ afw.

Let F = {f1, f2, f3, f4, f5, f6} and W = {w1, w2, w3, w4, w5, w6, w7}.
Let qf1 = 3, qf2 = qf5 = 2, qf3 = qf4 = qf6 = 1, qw1 = qw2 = qw4 = 2,
and qw3 = qw5 = qw6 = qw7 = 1. The pairs of numbers (afw, bfw) are
given in Table 1 below.

w1 w2 w3 w4 w5 w6 w7

f1 (13,1) (14,10) (4,10) (1,10) (0,0) (0,0) (3,10)
f2 (1,10) (0,0) (0,0) (10,1) (4,10) (2,10) (0,0)
f3 (10,4) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
f4 (10,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
f5 (0,0) (9,9) (0,0) (10,4) (0,0) (0,0) (0,0)
f6 (0,0) (0,0) (0,0) (10,2) (0,0) (0,0) (0,0)
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There are pairwise-stable matchings that are not setwise stable: Con-
sider µ, defined by

f1 f2 f3 f4 f5 f6

µ = w2w3w7 w5w6 w1 w1 w2w4 w4.

It is easy to see that µ is pairwise-stable. But µ is not setwise stable:
coalition {f1, f2, w1, w2} causes an instability in µ.

The problem is that the resulting preference profile is not strongly
substitutable: Consider the preference of firm f1, we have that

{w1, w2}P (f1){w2, w3, w7},

(because 14 + 13 > 14 + 4 + 3), w4 ∈ Ch({w1, w2} ∪ {w4}, P (f1)) but
w4 /∈ Ch({w2, w3, w7} ∪ {w4}, P (f1)) = {w2, w3, w7} (because 14 + 4 +
3 > max{14 + 4 + 1, 14 + 3 + 1, 4 + 3 + 1} ).

Example 22. Let F = {f1, f2, f3} andW = {w1, w2}, with preferences

P (f1) : w1w2

P (f2) : w1w2, w1, w2

P (f3) : w1w2, w1, w2

P (w1) : f1f2, f2f3, f1, f2, f3

P (w2) : f1f2, f2f3, f1, f2, f3.

Consider matchings µ and µ′ defined by

f1 f2 f3

µ = ∅ w1w2 w1w2

Then µ ∈ C(PB) but µ /∈ S∗(P ), as (f1, {w1, w2}) blocks* µ.

7. An implementation of SW (P )

We present a simple (non-cooperative) bargaining model. The set
of subgame-perfect Nash equilibrium (SPNE) outcomes of the model
coincides with the setwise-stable set; so the model fully implements
SW (P ) in a complete-information environment.

Bargaining proceeds as follows: First, every firm f proposes a set of
partners ηf ⊆ W . Firms make these proposals simultaneously. Second,
after observing all the firms’ proposals, each worker w proposes a set
of partners ξw ⊆ F . Workers make these proposals simultaneously.
Finally, a matching µ results by w ∈ µ(f) if and only if w ∈ ηf and
f ∈ ξw. In words, w and f are matched if and only if f proposes w as
its partner, and w proposes f as its partner.

A strategy for a firm f is a proposal ηf ⊆ W . A strategy for a
worker w is a collection, ξw, with one proposal ξw(η) ⊆ F , for each
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profile η = (ηf )f∈F of firms’ proposals. A strategy profile (η∗, ξ∗) is a
subgame-perfect Nash equilibrium (SPNE) if for all w and f ,

ξ∗w(η) ∩
{
f̃ : w ∈ ηf̃

}
R(w)A,

for all A ⊆
{
f̃ : w ∈ ηf̃

}
; and if

η∗f ∩
{
w : f ∈ ξ∗f (η)

}
R(f)A ∩

{
w : f ∈ ξ∗f (A, η∗−f )

}
,

for all A ⊆ W . In words, (η∗, ξ∗) is a SPNE if ξ∗w(η) is an optimal
proposal, given firms’ proposal η, and η∗f is optimal given the other
firms’ proposals η∗−f , and workers’ proposals.

Theorem 23. Let P (W ) be substitutable. A matching µ is the outcome
of a subgame-perfect Nash equilibrium if and only if µ ∈ E.

Proof. See Section 13. �

Theorems 18 and 23 imply

Corollary 24. Let P (F ) be substitutable and P (W ) be strongly sub-
stitutable. A matching µ is the outcome of a subgame-perfect Nash
equilibrium if and only if µ ∈ SW (P ).

The implication of Theorem 23 and Corollary 24 is that the setwise-
stable matchings are exactly those consistent with a basic non-cooperative
bargaining model. Thus core matchings, for example, are not guaran-
teed to be SPNE outcomes.

8. Blocks of setwise-stable matchings.

In Example 1, µ̂ blocks µ through a coordinated, and non-individually-
rational, effort of all agents. The preferences in Example 1 exhibit
agents a who want agents b, where b dislikes a but is willing to accept
a if she gets c, who dislikes b, and so on until a cycle is closed. We
shall call such a cycle an acceptance-rejection cycle.

We now show that a matching in E can, in fact, only be blocked
through an effort of this kind.

Definition 25. Let µ be a matching. An agent a wants to add an
agent b to her partners if

b ∈ Ch(µ(a) ∪ b, P (a)).

An alternating sequence of workers and firms

(w0, f0, w1, f1, . . . wK , fK),

with (w0, f0) = (wK , fK), is an acceptance-rejection cycle for µ if, for
k with 0 ≤ k ≤ K − 1, wk wants to add fk to her partners but fk does
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not want to add wk, while fk wants to add wk+1 to her partners, and
wk+1 does not want to add fk.

Theorem 26. Let P be substitutable. If µ ∈ E, and 〈W ′, F ′, µ′〉 is a
block of µ, then there is an acceptance-rejection cycle for µ in µ′(W ′ ∪
F ′)\µ(W ′ ∪ F ′).

Proof. See Section 13. �

Theorems 18 and 26 imply

Corollary 27. Let P (F ) be substitutable, and P (W ) strongly substi-
tutable. If µ ∈ SW (P ), and 〈W ′, F ′, µ′〉 is a block of µ, then there is
an acceptance-rejection cycle for µ in µ′(W ′ ∪ F ′)\µ(W ′ ∪ F ′).

9. Lattice Structure

9.1. Partial Orders. We shall introduce two partial orders on V . The
first (Definition 28) is the partial order introduced by Blair (1988). The
second (Definition 29) is the canonical partial order on matchings from
one-to-one theory.

Definition 28. Define the following partial orders on VF , VW and V :

(1) <B
F on VF by ν ′F <B

F νF if and only if ν ′F 6= νF and, for all f in
F , νF (f) = ν ′F (f) or

νF (f) = Ch (νF (f) ∪ ν ′F (f) , P (f)) .

(2) <B
W on VW by ν ′W <B

W νW if and only if ν ′W 6= νW and, for all
w in W , νW (w) = ν ′W (w) or

νW (f) = Ch (νW (w) ∪ ν ′W (w) , P (w)) .

(3) The weak partial orders associated to <B
F and <B

W are denoted
≤B

F and ≤B
W , and defined as: ν ′F ≤B

F νF if νF = ν ′F or ν ′F <B
F νF ,

and ν ′W ≤B
W νW if νW = ν ′W or ν ′W <B

W νW .
(4) ≤B

F on V by ν ′ ≤B
F ν iff νW ≤B

W ν ′W and ν ′F ≤B
F νF . The strict

version of ≤B
F on V is ν ′ <B ν if ν ′ ≤B ν and ν ′ 6= ν.

(5) ≤B
W on V by ν ′ ≤B

W ν iff ν ≤B
F ν ′.

Definition 29. Define the following partial orders on VF , VW and V :

(1) ≤F on VF by ν ′F ≤F νF if νF (f)R(f)ν ′F (f), for all f ∈ F . The
strict version of≤F on VF is ν ′F <F νF if ν ′F ≤F νF and ν ′F 6= νF .

(2) ≤W on VW by ν ′W ≤W νW if νW (w)R(w)ν ′W (w), for all w ∈ W .
The strict version of ≤W on VW is ν ′W <W νW if ν ′W ≤W νW

and ν ′W 6= νW .
(3) ≤F on V by ν ′ ≤F ν iff νW ≤W ν ′W and ν ′F ≤F νF . The strict

version of ≤F on V is ν ′ <F ν if ν ′ ≤F ν and ν ′ 6= ν.
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(4) ≤W on V by ν ′ ≤W ν iff ν ≤F ν ′.

Definitions 28 and 29 abuse notation in using each symbol (≤B
F , ≤F ,

≤B
W , and ≤W ) for two different orders. The abuse of notation does

not—we believe—confuse.
To simplify the notation in the sequel, let (≤B,≤) ∈

{
(≤B

F ,≤F ), (≤B
W ,≤W )

}
.

All statements that follow are true both with (≤B,≤) = (≤B
F ,≤F ) and

(≤B,≤) = (≤B
W ,≤W ).

Remark 3. ≤B is a coarser order than ≤, as ν ′ ≤B ν implies that
ν ′ ≤ ν.

Remark 4. 〈V ,≤F 〉 is a lattice (see Remark 1), and the lattice opera-
tions are

ν ∨F ν
′ (f) =

{
ν(f) if ν(f)R(f)ν ′(f)
ν ′(f) if ν ′(f)P (f)ν(f)

and

ν ∨F ν
′ (w) =

{
ν ′(w) if ν(w)R(w)ν ′(w)
ν(w) if ν ′(w)P (w)ν(w).

ν ∧F ν
′ is defined symmetrically; giving f the worst of ν(f) and ν ′(f),

and giving w the best of ν(w) and ν ′(w).
〈V ,≤W 〉 is a lattice, and the lattice operations are analogous to ∨F

and ∧F .

Blair’s order incorporates strong substitutability:

Proposition 30. If P (a) is substitutable, then PB(a) is strongly sub-
stitutable.

Proof. Let b ∈ Ch (S ′ ∪ b, P (a)) and S ′PB(a)S. Note that

b ∈ Ch (S ′ ∪ b, P (a)) = Ch (Ch(S ∪ S ′, P (a)) ∪ b, P (a))
= Ch (S ∪ S ′ ∪ b, P (f))

Where the first equality is by definition of PB and the second equal-
ity is a property choice rules. Finally, b ∈ Ch (S ∪ S ′ ∪ b, P (a)) and
substitutability implies that b ∈ Ch (S ′ ∪ b, P (a)). �

Proposition 30 explains Blair’s results in the light of our results.

9.2. Lattice Structure. With substitutable preferences, T is a mono-
tone increasing map under order ≤B. Tarski’s fixed point theorem then
delivers a lattice structure on E . With strongly substitutable prefer-
ences, T is a monotone increasing map under order ≤. Tarski’s fixed
point theorem gives a lattice structure on E under order ≤. We discuss
the implications below.
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Theorem 31. Let P be substitutable. Then

(1) 〈E ,≤B〉 is a non-empty lattice;
(2) the T -algorithm starting at ν0 stops at inf≤B

F
E, and the T -

algorithm starting at ν1 stops at sup≤B
F
E.

Further, if P is strongly substitutable, 〈E ,≤〉 is a non-empty lattice,
inf≤B

F
E = inf≤F

E, and sup≤B
F
E = sup≤F

E.

Proof. See Section 14. �

Theorem 32. Let P (F ) be substitutable and P (W ) be strongly substi-
tutable. Then

(1) if ν, ν ′ ∈ E are such that ν ′(w)R(w)ν(w) for all w ∈ W , then
ν(f)R(f)ν ′(f) for all f ∈ F .

(2) Further, let P (F ) be strongly substitutable. If ν, ν ′ ∈ E are such
that ν ′(f)R(f)ν(f) for all f ∈ F , then ν(w)R(w)ν ′(w) for all
w ∈ W .

Proof. See Section 14. �

By definition of ≤B
F , ≤F , ≤B

W , and ≤W , we get inf≤F
E = sup≤W

E ,
inf≤W

E = sup≤F
E , inf≤B

F
E = sup≤B

W
E , and inf≤B

W
E = sup≤B

F
E .

Theorem 31 implies Theorem 19. It also implies

Corollary 33. If P (F ) is substitutable, and P (W ) is strongly sub-
stitutable, then 〈SW (P ),≤B〉 = 〈B(P ),≤B〉 = 〈S(P ),≤B〉 are non-
empty lattices. Further, if P (F ) is strongly substitutable, 〈SW (P ),≤
〉 = 〈B(P ),≤〉 = 〈S(P ),≤〉 are non-empty lattices.

Theorems 31 and 32 have an interpretation in terms of worker-firm
“conflict” and worker-worker (or firm-firm) “coincidence” of interests
(Roth, 1985).

First, Theorem 31 implies that there are two distinguished match-
ings in E . One is simultaneously better for all firms, and worse for all
workers, than any other matching in E . The other is simultaneously
worse for all firms, and better for all workers, than any other match-
ing in E . The lattice structure thus implies a coincidence-of-interest
property.

Second, Theorem 32 reflects a global worker-firm conflict of interest
over E ; for any two matchings in E , if one is better for all firms it must
also be worse for all workers, and vice versa. Roth (1985) proved that
Statement 1 in Theorem 32 holds in the one-to-one model and in the
many-to-one model. Roth also proved that Statement 2 in Theorem 32
holds in the one-to-one model. Here we extend Roth’s results, as work-
ers’ preferences are trivially strongly substitutable in the many-to-one



22 ECHENIQUE AND OVIEDO

model, and all agents’ preferences are trivially strongly substitutable
in the one-to-one model. 2

In light of Theorem 15, Theorem 33 implies that 〈S(P ),≤B
F 〉 is a

lattice when preferences are substitutable—a result first proved by Blair
(1988). Blair shows with an example that 〈S(P ),≤F 〉 may not be a
lattice. Preferences in Blair’s example are not strongly substitutable;
we discuss Blair’s example in Section 9.4.

In the one-to-one model, the lattice-structure of 〈S(P ),≤F 〉 is known
since at least Knuth (1976) (Knuth attributes the result to J. Conway).
Theorem 31 extends the result to the many-to-many model, as prefer-
ences are trivially strongly substitutable in the one-to-one model.

9.3. Further conflict/coincidence properties. There are two ad-
ditional features of many-to-one and one-to-one matchings that merit
attention.

9.3.1. Stronger coincidence-of-interest property. Roth (1985) presents
a stronger version of the coincidence-of-interest property implicit in the
result that 〈E ,≤B

F 〉 is a lattice. He proves that, if µ and µ′ are pairwise-
stable matchings in the many-to-one model, the matching that gives
each firm f its best subset out of µ(f)∪µ′(f) is stable, and worse than
both µ and µ′ for all workers.

Roth’s stronger coincidence of interest property does not extend to
the many-to-many model with strongly substitutable preferences. Ex-
ample 5.2 in Blair (1988) is a counterexample—we discuss this example
in Section 9.4.

But note

Proposition 34. Let P (F ) be substitutable. Let µ, µ′ ∈ S(P ). Define
the matching µ̂ by µ̂(f) = Ch(µ(f) ∪ µ′(f), P (f)), for all f ∈ F . If
µ̂(w) ∈ {µ(w), µ′(w)}, for all w ∈ W , then µ̂ ∈ S(P ). Further, if
P (W ) is substitutable, then µ(w)R(w)µ̂(w) and µ′(w)R(w)µ̂(w), for
all w ∈ W .

Proof. The proof that µ̂ ∈ S(P ) is a minor variation of Roth’s (1985)
proof of the coincidence-of-interest property in the many-to-one model.

First, µ̂ is individually rational: µ and µ′ are individually ratio-
nal so µ̂(w) = Ch(µ̂(w), P (w)) for all w; by definition of µ̂, µ̂(f) =
Ch(µ̂(f), P (f)) for all f .

Second, there are not pairwise blocks of µ̂. If (w, f) is a pair-
wise block of µ̂. Then w /∈ µ̂(f), f ∈ Ch(µ̂(w) ∪ f, P (w)), and

2 By Proposition 30, we also extend Blair’s (1988) version of Roth’s result (Blair’s
Lemmas 4.3 and 4.4).
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w ∈ Ch(µ̂(f) ∪ w,P (f)). Without loss of generality, let µ̂(w) = µ(w).
So f /∈ µ(w) and f ∈ Ch(µ(w)∪f, P (w)). But w ∈ Ch(µ̂(f)∪w,P (f))
implies

w ∈ Ch (Ch (µ(f) ∪ µ′(f), P (f)) ∪ w,P (f)) = Ch (µ(f) ∪ µ′(f) ∪ w,P (f)) .

By substitutability of P (f), w ∈ Ch(µ(f) ∪ w,P (f)). Then f /∈ µ(w)
and f ∈ Ch(µ(w)∪f, P (w)) implies that (w, f) is also a pairwise block
of µ.

So µ, µ′ ∈ S(P ) implies that there are no pairwise blocks of µ̂.
When P (W ) is substitutable, S(P ) = E and it is routine to verify

that
µ̂(w) ⊆ V (w, µ̂) ⊆ V (w, µ) ∩ V (w, µ′).

Then µ, µ′ ∈ E implies that µ(w)R(w)µ̂(w) and µ′(w)R(w)µ̂(w). �

Property µ̂(w) ∈ {µ(w), µ′(w)} obviously holds in the many-to-one
model. Thus Proposition 34 embeds Roth’s result for the many-to-one
model. Seemingly, the many-to-one-ness of the many-to-one model is
behind Roth’s result—we cannot capture the stronger coincidence-of-
interest property in a many-to-many model with additional structure
on preferences.

9.3.2. Distributive property of lattice operations. The set of stable match-
ings in the one-to-one model is a distributive lattice (Knuth, 1976). The
distributive property of the one-to-one model does not extend to our
many-to-many model: In Blair’s (1988) Example 5.2, the set of stable
many-to-many matchings is not a distributive lattice, and all agents’
preferences in Blair’s example satisfy strong substitutability (see Sec-
tion 9.4).

We identify why the distributive property fails in the many-to-many
model. The problem is that the lattice operations (see Remark 4) in
〈V ,≤〉may not preserve the property that matchings in E are matchings—
not only prematchings. That is, if µ ∨ µ′ ∈ M and µ ∧ µ′ ∈ M for all
µ and µ′ in E , then 〈E ,≤F 〉 is a distributive lattice. This result does
extend the one-to-one result.

Let us order V by set-inclusion; let ν ′ v ν if ν ′(f) ⊆ ν(f) and
ν(w) ⊆ ν ′(w), for all f and w. Then 〈V ,v〉 is a lattice (see Remark 1).
The lattice operations are t and u, defined by (νtν ′)(f) = ν(f)∪ν ′(f),
and (νuν ′)(f) = ν(f)∩ν ′(f), for all f , and (νtν ′)(w) = ν(w)∩ν ′(w),
and (ν u ν ′)(w) = ν(w) ∪ ν ′(w), for all w.

Let ψ : V → V be

(ψν)(a) =

{
U(f, ν) if a = f ∈ F
V (w, ν) if a = w ∈ W.
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Theorem 35. Let P be strongly substitutable. The map ψ is a lattice
homomorphism of 〈V ,≤〉 into 〈V ,v〉. Further, if µ ∨ µ′ ∈ M and
µ ∧ µ′ ∈M for all µ, µ′ ∈ E, then

(1) 〈E ,≤〉 is a distributive sublattice of 〈V ,≤〉,
(2) ψ|E is a lattice isomorphism of 〈E ,≤〉 onto 〈ψE ,v〉.

Proof. See Section 14. �

The partial order ≤ on V depends on the profile P of preferences.
In Theorem 35, we translate ≤ into an order that does not depend on
P : set-inclusion. We interpret the result as showing how the lattice
structure on V and, under additional assumptions, E , is inherited from
the lattice structure of set inclusion.

The interest of Theorem 35 is, first, that it shows why distributivity
fails in the many-to-many model. Second, it shows how the distributive
property in the one-to-one model is inherited from the distributive
property of set inclusion on V ; it is easy to verify that the one-to-one
model satisfies that µ ∨ µ′ ∈ M and µ ∧ µ′ ∈ M for all µ, µ′ ∈ E . In
fact the verification is carried out in Knuth (1976, page 56), as a first
step in the proof that 〈S(P ),≤F 〉 is a distributive lattice.

Note that 〈E ,≤F 〉 being a sub-lattice of 〈V ,≤F 〉 means that the
lattice operations ∨F and ∧F on 〈V ,≤F 〉 (see Remark 4) are also the
lattice operations of 〈E ,≤F 〉. Mart́ınez, Massó, Neme, and Oviedo
(2001) assuming substitutable (and q-separable) preferences, show that
the stable matchings are not a lattice under ∨F and ∧F .

9.4. Examples 5.1 and 5.2 in Blair (1988). We do not reproduce
the examples here. We shall discuss the examples in light of our results.

Blair presents Example 5.1 as an example where 〈S(P ),≤〉 is not
a lattice. In Example 5.1 there are 13 firms and 12 workers; F =
{1, 2, . . . 13}, W = {a, b, . . . q}. Firm 10’s preference relation is not
strongly substitutable:

P (10) : mp, bnp,m, . . . ,

where . . . means that there are other acceptable sets of workers not
listed. Note that {b, n, p}P (10) {m} and b ∈ Ch({b, n, p}∪{b} , P (10)),
but that b ∈ Ch({m} ∪ {b} , P (10)) = {m}.

Thus Blair’s Example 5.1 illustrates that, with non-strongly substi-
tutable preferences, 〈E ,≤〉 may not be a lattice.

Blair presents Example 5.2 as an example where 〈S(P ),≤B〉 is not a
distributive lattice. Preferences in Example 5.2 are strongly substitutable—
this is easy, if tedious, to verify. Blair’s example thus illustrates that
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〈E ,≤〉 and 〈E ,≤B〉 may not be distributive lattices (the lattice oper-
ations in 〈E ,≤〉 and 〈E ,≤B〉 might not coincide, but in this example
they do).

We show that Example 5.2 does not satisfy the property that µ∨µ′ ∈
M and µ ∧ µ′ ∈ M for all µ, µ′ ∈ E . So the example is not in the
hypotheses of Theorem 35.

In Example 5.2 there are 7 firms and 10 workers; F = {1, 2, . . . 7},
W = {a, b, . . . j}. Consider matchings

1 2 3 4 5 6 7
µ1 bcd ae af j h i g,
µ2 bcd ae i ag h f j.

Then µ1 ∨ µ2 is:

1 2 3 4 5 6 7
µ1 ∨ µ2 bcd ae i j h f g

a b c d e f g h i j
µ1 ∨ µ2 24 1 1 1 2 6 7 5 3 4.

But µ1 ∨ µ2 is not a matching, as 4 ∈ µ1 ∨ µ2(a) while a /∈ µ1 ∨ µ2(4).
Finally, we show that Blair’s Example 5.2 also violates Roth’s stronger

conflict-of-interest property. From µ1 and µ2, constructing matching µ̂
by µ̂(f) = Ch(µ1(f) ∪ µ2(f), P (f)), for all f , gives

1 2 3 4 5 6 7
µ̂ bcd ae i j h f g.

Now, µ̂ is blocked by the pair (1, a), so µ̂ is not pairwise stable.
Note that µ̂(a) = {2} /∈ {µ1(a), µ2(a)}. Thus Example 5.2 is not in the
hypotheses of Proposition 34.

10. Summary

Table 1 summarizes our results. Each row shows results under some
hypothesis on firms’ preferences. Each column shows results under
some hypothesis on workers’ preferences. As one moves down and right
on the table, the hypotheses are stronger. Hence all results that hold
in one entry, hold for all entries down and right.
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11. Proof of Theorem 15

The following proposition is immediate, but useful in some of our
proofs.

Proposition 36. A pair (B, f) ∈ 2W × F blocks* µ if and only if, for
all w ∈ B, there is Dw ⊆ µ (w) such that

[Dw ∪ f ]P (w)µ(w),

and there is A ⊆ µ (f) such that

[A ∪B]P (f)µ (f) .

In words, (B, f) blocks* µ if firm f is willing to hire the workers in
B—possibly after firing some of its current workers in µ(f)—and all
workers w in B prefer f , possibly after rejecting some of the firms in
µ (w).

We present the proof of Theorem 15 in a series of lemmas. The first
statement in Theorem 15 follows from Lemmas 37 and 39. Item (1)
of the theorem follows from Lemmas 40 and 41. Item (2) follows from
Lemma 42, and from Theorem 31.

Lemma 37. S∗(P ) ⊆ S(P ).

Proof. Let µ /∈ S(P ). We shall prove that µ /∈ S∗(P ). If µ is not
individually rational there is nothing to prove; assume then that µ is
individually rational. µ /∈ S(P ) implies that there is (w, f) ∈ W × F
such that w /∈ µ (f) (or f /∈ µ (w)),

(1) f ∈ Ch(µ(w) ∪ {f}, P (w))

and

(2) w ∈ Ch (µ (f) ∪ {w}, P (f)) .

Statements (1), (2), and w /∈ µ (f) imply that

(3) Ch (µ (w) ∪ {f}, P (w))P (w)µ (w)

and

(4) Ch (µ (f) ∪ {w}, P (f))P (f)µ (f) .

Let B = {w}, Dw = Ch (µ (w) ∪ {f}, P (w)) ∩ µ (w) , and

A = Ch (µ (f) ∪ {w}, P (f)) ∩ µ (f) .

We shall prove that (B, f) blocks* µ. Since B = {w}, statement (3)
implies that

Dw = Ch (µ (w) ∪ {f}, P (w)) ∩ µ (w)
= Ch (µ (w) ∪ {f}, P (w)) \{f}.
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So statement (3) implies that

[Dw ∪ {f}] = Ch (µ (w) ∪ {f}, P (w))P (w)µ (w) ,

which gives us the first part of the definition of block*. Also,

A = Ch (µ (f) ∪ {w}, P (f)) ∩ µ (f)
= Ch (µ (f) ∪ {w}, P (f)) \{w}
= Ch (µ (f) ∪ {w}, P (f)) \B.

So statement (4) implies that

[A ∪B] = Ch (µ (f) ∪ {w}, P (f))P (f)µ (f) ,

and we have the second part of the definition of block*. Thus, µ /∈
S∗ (P ). �

Remark 5. In general, S∗ (P ) 6= S (P ).

We use Lemma 38 in many of our results, starting with Lemma 39.

Lemma 38. If ν ∈ E then ν is a matching and ν is individually ratio-
nal.

Proof. Let ν = (νF , νW ) ∈ E .
Fix w ∈ νF (f), we shall prove that f ∈ νW (w). ν ∈ E implies that

(5) w ∈ νF (f) = (Tν) (f) = Ch (U (f, ν) , P (f)) .

Thus w ∈ U(f, ν).
The definition of U(f, ν) implies

(6) f ∈ Ch (νW (w) ∪ {f}, P (w))R (w) νW (w) .

Now,

Ch (νF (f) , P (f))
(1)
= Ch (Ch (U (f, ν) , P (f)) , P (f))
(2)
= Ch (U (f, ν) , P (f))
(3)
= νF (f) .

Equalities (1) and (3) follow from statement (5). Equality (2) is a sim-
ple property of choice sets: Ch (Ch (S, P (f)) , P (f)) = Ch (S, P (f)).
Hence we have that

(7) νF (f) = Ch(νF (f) , P (f)).

Now w ∈ νF (f) implies that Ch(νF (f) , P (f)) = Ch(νF (f)∪{w}, P (f)).
So statement (7) implies that

(8) f ∈ V (w, ν).

But
νW (w) = (Tν)(w) = Ch (V (w, ν) , P (w)) ,
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so

(9) νW (w) ⊆ V (w, ν) .

But statements (8) and (9) give

V (w, ν) ⊇ νW (w) ∪ {f} ⊇ Ch (νW (w) ∪ {f}, P (w)) .

The definition of choice set implies

(10) νW (w)R (w)Ch (νW (w) ∪ {f}, P (w)) .

Statements (6), (10) and anti-symmetry of preference relations imply
that, f ∈ νW (w).

Let f ∈ νW (w), the proof that w ∈ νF (f) and that

(11) νF (f) = Ch(νF (f), P (f))

is entirely symmetric to the proof for workers above.
Thus, w ∈ vF (f) if and only if f = vW (w). So, ν is a matching.
Statements (7) and (11) imply that ν is individually rational. �

Lemma 39. E ⊆ S∗(P ).

Proof. Let µ ∈ E . By Lemma 38 we know that µ is an individually ra-
tional matching. Fix f ∈ F, B ⊆ W such that B 6= ∅. We assume that,
for all w ∈ B there exist Dw ⊆ µ (w) such that {f} ∪DwP (w)µ (w) .
µ is individually rational, so µ(w) = Ch(µ(w), P (w)). Then {f} ∪
DwP (w)µ (w) implies that

(12) f ∈ Ch (µ (w) ∪ {f} , P (w)) ;

for all w ∈ B. By the definition of U (f, µ), we have that

(13) B ⊆ U (f, µ) .

Let A ⊆ µ (f). µ ∈ E implies that µ(f) = (Tµ)(f) ⊆ U(f, µ); so
statement (13) gives

(14) A ∪B ⊆ U(f, µ).

Now, µ ∈ E and statement (14) implies

(15) µ (f)R (f)Ch (A ∪B,P (f))R (f) [A ∪B] ;

as µ (f) = Ch (U (f, µ) , P (f)).
Statements (12) and (15) show that there is no (B, f) that blocks* µ.

The proof that there is no (w,A) ∈ W×2F that blocks* µ is symmetric.
Thus µ ∈ S∗ (P ). �

Lemma 40. If P (W ) is substitutable, then S∗(P ) ⊆ E.
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Proof. Let µ ∈ S∗ (P ) and assume that µ /∈ E , so µ 6= Tµ. We shall
first prove that (Tµ)(f) 6= µ(f), for some f , yields a contradiction, and
then that (Tµ)(w) 6= µ(w), for some w, yields a contradiction. Note
that, by the asymmetric situation of firms and workers in the definition
of S∗(P ), the proof of the two statements is not analogous.

First assume that there exist f ∈ F such that

µ (f) 6= (Tµ) (f) = Ch (U (f, µ) , P (f)) = C ⊆ U (f, µ) .

Let A = C ∩ µ (f) , and B = C\µ (f) . Because µ is an individually
rational matching we have that µ(w) = Ch(µ(w), P (w)) = Ch(µ(w) ∪
f, P (w)), for all w ∈ µ(f). Hence, µ(f) ⊆ U(f, µ), so (Tµ)(f)P (f)µ(f)
implies that B 6= ∅.

Now,

(16) A ∪B = CP (f)µ (f) .

Also, for all w ∈ B, w ∈ U (f, µ); so f ∈ Ch (µ (w) ∪ f, P (w)) by the
definition of U(f, µ). For any w ∈ B let Dw = Ch (µ (w) ∪ f, P (w)) ∩
µ (w). Since f /∈ µ (w) we have that

(17) {f} ∪DwP (w)µ (w) .

Statements (16) and (17) imply that (B, f) block* µ, which contradicts
that µ ∈ S∗(P ).

Hence, for all f ∈ F ,

(18) µ (f) = (Tµ) (f) .

Now assume that there exists w ∈ W such that

µ (w) 6= (Tµ) (w) = Ch (V (w, µ) , P (w)) = G ⊆ V (w, µ) .

If f ∈ G, then

(19) w ∈ Ch (µ (f) ∪ {w}, P (f)) ,

by the definition on V (w, µ). Because µ is an individually rational
matching we have—by the same argument as above—that µ (w) ⊆
V (w, µ) . We can assume that G * µ(w); for, if G ⊆ µ(w), then
µ (w) ⊆ V (w, µ) and the Choice Property,3 imply that

G = Ch (V (w, µ) , P (w)) = Ch (µ (w) , P (w)) = µ (w) ,

where the last equality follows because µ is an individually rational
matching—but this would contradict that G 6= µ (w) , hence we can
assume G * µ(w).

3Ch (A,P (s)) ⊆ B ⊆ A, then Ch (A,P (s)) = Ch (B,P (s)).
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Let f ∈ G\µ (w). µ is a matching, so w /∈ µ(f). Now, statement
(19) implies that

w ∈ Ch
(
µ

(
f
)
∪ {w}, P

(
f
))

= C.

Let A = C ∩ µ
(
f
)

= C\{w}, and B = {w}. Then

(20) C = [A ∪B]P
(
f
)
µ

(
f
)
.

Now, f ∈ G\µ (w) ; so substitutability of P (w) implies that there exists
Dw = Ch (V (w, µ) , P (w)) ∩ µ (w) such that

(21)
[
f ∪Dw

]
P (w)µ (w) .

Statements (20) and (21) imply that
(
f, {w}

)
blocks* µ, which con-

tradicts µ ∈ S∗(P ). Hence, for all w ∈ W ,

(22) µ (w) = (Tµ) (w) .

Statements (18) and (22) imply that µ = Tµ. Hence µ ∈ E . �

Lemma 41. If P (W ) is substitutable then S∗ (P ) ⊆ C(PB).

Proof. Let µ ∈ S∗ (P ), and suppose that µ /∈ C(PB). Let F ′ ⊆ F ,
W ′ ⊆ W with F ′ ∪W ′ 6= ∅, and let µ̂ ∈ M such that, for all w ∈ W ′,
and for all f ∈ F ′

(23) µ̂(w) ⊆ F ′, and µ̂(f) ⊆ W ′,

(24) µ̂(w)RB(w)µ(w),

(25) µ̂(f)RB(f)µ(f),

and
µ̂(s)PB(s)µ(s) for at least one s ∈ W ′ ∪ F ′.

We shall need the following
Claim. There exists f ∈ F ′, such that µ̂(f)PB(f)µ(f) if and only

if there exists w ∈ W ′ such that µ̂(w)PB(w)µ(w).
Proof of the claim. Let µ̂(f)PB(f)µ(f). Because µ is individ-

ually rational, we have that µ̂(f) * µ(f), so let w ∈ µ̂(f)\µ(f). By
condition (23), we have that w ∈ µ̂(f) ⊆ W ′; but then w /∈ µ(f) and
condition (24 ) implies that

µ̂(w)PB(w)µ(w).

Similarly we show that if µ̂(w)PB(w)µ(w) then there exist f such
that µ̂(f)PB(f)µ(f). This proves the claim.
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By the claim, we can assume that there exists f ∈ F ′ such that
µ̂(f) 6= µ(f). Let B = µ̂(f)\µ(f) and A = µ̂(f) ∩ µ(f) then

(26) A ∪B = µ̂(f)PB(f)µ(f),

and B ∩ µ (f) = ∅. Let w ∈ B. Then, f ∈ µ̂(w) and f /∈ µ(w), which
implies that µ̂(w) 6= µ (w) . Condition (24) implies that

f ∈ µ̂(w) = Ch(µ(w) ∪ µ̂(w), P (w)).

By substitutability of P (w), f ∈ Ch(µ(w) ∪ f), P (w).
Now, w ∈ B was arbitrary, so together with statement (26), this

implies that (B, f) blocks* µ. Thus µ /∈ S∗(P ). �

Lemma 42. If P is substitutable then S(P ) ⊆ E.

Proof. Let µ /∈ E . We shall prove that µ /∈ S(P ). If µ is not individually
rational there is nothing to prove. Suppose then that µ is individually
rational. Lemma 40 and µ /∈ E imply µ /∈ S∗(P ). So, there is (B, f),
with B 6= ∅ that blocks* µ. This means that, for all w ∈ B,

f ∈ Ch(µ(w) ∪ f, P (w))

and

B ⊆ Ch(µ(f) ∪B,P (f)).

But P (f) is substitutable, so there is w′ ∈ B with

w′ ∈ Ch(µ(f) ∪ w′, P (f)).

Thus µ /∈ S(P ). �

12. Proof of Theorems 18 and 19

The proof of Theorem 18 follows from Lemmas 43, 44, 45, 46, and 47.
Theorem 19 then follows from Theorem 31.

Lemma 43. SW (P ) ⊆ E.

Proof. Let µ be a matching such that µ /∈ E . We shall prove that
µ /∈ SW (P ). If µ is not individually rational there is nothing to prove.
Suppose then that µ is an individually rational matching.

Suppose, without loss of generality, that there is a f ∈ F such that
µ(f) 6= Ch(U(f, µ), P (f)). That µ is individually rational implies that
µ(f) ⊆ U(f, µ) since, for all w ∈ µ(f), f ∈ µ(w) so

Ch(µ(w) ∪ f, P (w)) = Ch(µ(w), P (w)) = µ(w) 3 f.
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Let F ′ =
{
f
}
, and let W ′ = Ch(U(f, µ), P (f))\µ(f). We shall

construct a µ′ ∈ M such that 〈W ′, F ′, µ′〉 is a setwise block of µ. Let
µ′(f) = Ch(U(f, µ), P (f)). For all w ∈ W , let

µ′(w) =


Ch(µ(w) ∪ f, P (w)) if w ∈ W ′

µ(w) if w ∈
[
µ′(f) ∩ µ(f)

]
∪

[
µ′(f) ∪ µ(f)

]c

µ(w)\f if w ∈ µ(f)\µ′(f)

µ′(f), for f /∈ F ′, is determined from the µ′(w)’s. Then µ′ is a
matching and W ′ = µ′(F )\µ(F ). Note that µ(f) ⊆ U(f, µ) implies
that f ∈ Ch(µ(w) ∪ f, P (w)), so f ∈ µ′(w) for all w ∈ W ′. So
F ′ = µ′(W )\µ(W ).

First we verify that µ′ is individually rational: µ′(f) = Ch(µ′(f), P (f)),
as µ′(f) = Ch(U(f, µ), P (f)); and µ′(w) = Ch(µ′(w), P (f)), as µ′(w) =
Ch(µ(w) ∪ f, P (f)) for all w ∈ W ′.

Finally, µ(f) ⊆ U(f, µ) implies that µ′(f)P (f)µ(f), and µ′(w) =
Ch(µ(w) ∪ f, P (f)) implies that µ′(w)P (w)µ(w), for all w ∈ W ′.
Thus the constructed 〈W ′, F ′, µ′〉 is a setwise block of µ, and thus
µ /∈ SW (P ). �

Lemma 44. B(P ) ⊆ E.

Proof. Let µ be a matching such that µ /∈ E . We shall prove that
µ /∈ B(P ). If µ is not individually rational there is nothing to prove.
Suppose then that µ is individually rational.

Suppose, without loss of generality, that there is a f ∈ F such that
µ(f) 6= Ch(U(f, µ), P (f)). Let F ′ =

{
f
}
, and let

W ′ = Ch(U(f, µ), P (f))\µ(f).

Construct µ′ as in the proof of Lemma 43. We shall prove that 〈W ′, F ′, µ′〉
is a counterobjection-free objection. Recall that

(27) µ′(f) = Ch(U(f, µ), P (f)).

Note that µ(f) ⊆ U(f, µ) (see the proof of Lemma 43). So State-
ment 27 implies that µ′(f)P (f)µ(f). Similarly, W ′ ⊆ U(f, µ) implies
that µ′(w) = Ch(µ(w)∪f)P (w)µ(w) for all w ∈ W ′. Hence 〈W ′, F ′, µ′〉
is an objection.

We now prove that there are no counterobjections to 〈W ′, F ′, µ′〉.
Let 〈W ′′, F ′′, µ′′〉 be such that µ′′ is a matching, F ′′ ⊆ F ′, W ′′ ⊆ W ′,
and µ′′(W ′′ ∪ F ′′)\µ′(W ′′ ∪ F ′′) ⊆ W ′′ ∪ F ′′.

First, let F ′′ 6= ∅. Then F ′′ =
{
f
}
. Statement 27 implies that

µ′(f)R(f)A, for all A ⊆ µ′(f). But

µ′′(f)\µ′(f) ⊆ W ′ ⊆ µ′(f).
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So µ′(f)R(f)µ′′(f). Thus 〈W ′′, F ′′, µ′′〉 is not a counterobjection.
Second, let F ′′ = ∅. For all w ∈ W ′′, w ∈ U(f, µ). So

(28) f ∈ Ch(µ(w) ∪ f, P (w)) = µ′(w)

(see the proof of Lemma 43). Also, µ′′(w) ⊆ µ′(w), as µ′′(W ′′)\µ′(W ′′) ⊆
F ′′ 6= ∅. Then f /∈ µ′′(w) and Statement 28 implies that µ′(w)P (w)µ′′(w).
Thus 〈W ′′, F ′′, µ′′〉 is not a counterobjection. �

Lemma 45. If P (F ) is substitutable, and P (W ) is strongly substi-
tutable, then E ⊆ SW (P ).

Proof. The proof is similar to the proof of Lemma 47. Let µ ∈ E . By
Lemma 38, µ is an individually rational matching. Suppose, by way
of contradiction, that µ /∈ SW (P ). Let 〈W ′, F ′, µ′〉 be a setwise block
of µ.

Fix f ∈ F ′, so µ′(f)P (f)µ(f). The matching µ is individually ratio-
nal, so µ′(f)P (f)µ(f) implies that

Ch(µ(f) ∪ µ′(f), P (f)) * µ(f).

Fix w ∈ Ch(µ(f) ∪ µ′(f), P (f)) such that w ∈ µ′(f)\µ(f). By substi-
tutability of P (f), w ∈ Ch(µ(f) ∪ w,P (f)). So

(29) f ∈ V (w, µ).

On the other hand, w ∈ µ′(f)\µ(f) implies that w ∈ W ′, so

(30) µ′(w)P (w)µ(w).

〈W ′, F ′, µ′〉 is a setwise block, so µ′(w) = Ch(µ′(w), P (w)). Further,
µ′ is a matching so f ∈ µ′(w). Then f ∈ Ch(µ′(w) ∪ f, P (w)). Strong
substitutability of P (w), and Statement 30, imply that

(31) f ∈ Ch
(
µ (w) ∪ f, P (w)

)
.

But Statement 29 and µ ∈ E imply that µ(w)∪ f ⊆ V (w, µ). But then
Statement 31 contradicts that µ(w) = Ch(V (w, µ), P (w)). �

Lemma 46. If P (F ) is substitutable, and P (W ) is strongly substi-
tutable, then E ⊆ B(P ).

Proof. The proof is similar to the proof of Lemma 47. Let µ ∈ E . By
Lemma 38, µ is an individually rational matching. Let 〈W ′, F ′, µ′〉 be
an objection to µ.

First, if µ′(s) 6= Ch(µ′(s), P (s)) for some s ∈ F ′∪W ′, then 〈W ′, F ′, µ′〉
has a counterobjection: let f ∈ F ′ be such that µ′(f) 6= Ch(µ′(f), P (f)).
Let W ′′ = ∅, F ′′ =

{
f
}
, and let µ′′ be defined by µ′′(f) = µ′(f) for

all f 6= f , and µ′′(f) = Ch(µ′(f), P (f)). The definition of µ′′(w), for
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all w ∈ W , is implicit. Then, µ′(f) 6= Ch(µ′(f), P (f)) implies that
µ′′(f)P (f)µ′(f), and 〈W ′′, F ′′, µ′′〉 is a counterobjection to 〈W ′, F ′, µ′〉.
So µ ∈ B(P ).

Second, let µ′(s) = Ch(µ′(s), P (s)) for all s ∈ F ′ ∪ W ′. We shall
prove that 〈W ′, F ′, µ′〉 is not an objection in the first place. Suppose,
by the way of contradiction, that 〈W ′, F ′, µ′〉 is an objection to µ,
so we can suppose—without loss of generality—that there is f ∈ F ′

such that µ′(f)P (f)µ(f). The matching µ is individually rational, so
µ′(f)P (f)µ(f) implies that

µ
(
f
)

* Ch
(
µ

(
f
)
∪ µ′

(
f
)
, P

(
f
))
.

Let w ∈ Ch(µ(f) ∪ µ′(f), P (f)) be such that w ∈ µ′(f)\µ(f). Now,
substitutability of P (f) implies that

w ∈ Ch
(
µ

(
f
)
∪ w,P

(
f
))
.

Thus, f ∈ V (w, µ).
On the other hand, w ∈ µ′(f)\µ(f) implies that w ∈ W ′. So

µ′(w)P (w)µ(w), as 〈W ′, F ′, µ′〉 is an objection. Then

f ∈ µ′ (w) = Ch (µ′ (w) , P (w)) = Ch
(
µ′ (w) ∪ f, P (w)

)
and strong substitutability of P (w) gives f ∈ Ch(µ(w)∪f, P (w)). But
we proved that f ∈ V (w, µ). So

µ (w) 6= Ch
(
µ (w) ∪ f, P (w)

)
⊆ V (w, µ) .

A contradiction since µ ∈ E implies that µ(w) = Ch(V (w, µ), P (w)).
Thus 〈W ′, F ′, µ′〉 is not an objection, and µ ∈ B(P ). �

Lemma 47. If P (F ) is substitutable, and P (W ) is strongly substi-
tutable, then E ⊆ IRC(P ).

Proof. Let µ ∈ E . By Lemma 38, µ is an individually rational match-
ing. Suppose, by way of contradiction, that 〈W ′, F ′, µ′〉 is an individ-
ually rational block of µ.

Without loss of generality, let µ′(f)P (f)µ(f), for some f ∈ F ′. Since
µ is individually rational,

Ch(µ(f) ∪ µ′(f), P (f)) * µ(f).

Let w ∈ µ′(f)\µ(f) be such that

w ∈ Ch(µ(f) ∪ µ′(f), P (f)) = Ch(µ(f) ∪ µ′(f) ∪ w,P (f)).

By substitutability of P (f), w ∈ Ch(µ(f) ∪ w,P (f)). Thus

(32) f ∈ V (w, µ).
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Now, f ∈ µ′(w)\µ(w) implies

(33) µ′(w)P (w)µ(w),

as w ∈ W ′, and µ′(w) 6= µ(w). But µ′ is individually rational, so

f ∈ Ch(µ′(w), P (w)) = Ch(µ′(w) ∪ f, P (w)).

Then statement 33, and strong substitutability of P (w), implies that
f ∈ Ch(µ(w) ∪ f, P (w)). So

(34) Ch(µ(w) ∪ f, P (w))P (w)µ(w).

But µ ∈ E implies that µ(w) = Ch(V (w, µ), P (f)). By Statement
32, µ(w) ∪ f ⊆ V (w, µ), which contradicts statement 34. Hence there
are no individually rational blocks of µ, and µ ∈ IRC(P ). �

13. Proof of Theorems 23 and 26

13.1. Proof of Theorem 23. The proof of Theorem 23 follows from
Lemmas 48 and 49.

Lemma 48. Let P (W ) be substitutable. If µ ∈M is the outcome of a
SPNE, then µ ∈ E.

Proof. Let (η∗, ξ∗) be a SPNE, and µ ∈ M be the outcome of (η∗, ξ∗).
For all w ∈ W ,

ξ∗w(η) ∩ {f : w ∈ ηf} = Ch ({f : w ∈ ηf} , P (w)) .

For all f ∈ F , and all η−f , let

Y (η−f ) =
{
w : f ∈ Ch

({
f̃ : w ∈ ηf̃

}
∪ f, P (w)

)}
.

So, by definition of SPNE, η∗f ∩ Y (η∗−f ) = Ch(Y (η∗−f ), P (f)).

Let (η, ξ) be the pair of strategies obtained from (η∗, ξ∗) by having
each w not propose to firms that did not propose to w, and having each
f not propose to workers that will reject f . Thus, ξw(η) = ξ∗w(η) ∩
{f : w ∈ ηf} and by ηf ∩ Y (η∗−f ) = η∗f ∩ Y (η∗−f ).

We shall show that (η, ξ) is a SPNE as well, and that its outcome
is also µ. First, it is immediate that its outcome is µ: ηf = µ(f),

for all f , and for all w ∈ µ(f), f ∈ ξw(η) Second, given a strategy
profile η for firms, each w is indifferent between proposing ξ∗w(η) and
ξw(η), as they will both result in the same set of partners. For a
firm f , Y (η∗−f ) = Y (η−f ), which implies that ηf = Ch

(
Y (η−f ), P (f)

)
,
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and thus (η, ξ) is a SPNE. To see that Y (η∗−f ) = Y (η−f ), note that

w ∈ Y (η∗−f ) if and only if f ∈ Ch
({
f̃ : w ∈ η∗

f̃

}
∪ f, P (w)

)
. But

Ch
({
f̃ : w ∈ η∗

f̃

}
∪ f, P (w)

)
= Ch

(
Ch

({
f̃ : w ∈ η∗

f̃

}
, P (w)

)
∪ f, P (w)

)
= Ch (µ(w) ∪ f, P (w))

= Ch
({
f̃ : w ∈ ηf̃

}
∪ f, P (w)

)
,

where the first equality is a consequence of substitutability of P (W )
(Blair, 1988, Proposition 2.3). Hence w ∈ Y (η∗−f ) if and only if

f ∈ Ch
({
f̃ : w ∈ ηf̃

}
∪ f, P (w)

)
,

so Y (η∗−f ) = Y (η−f ).
Now we shall prove that µ ∈ E . Let f ∈ F . Note that Y (η−f ) =

{w : f ∈ Ch (µ(w) ∪ f, P (w))} , so Y (η−f ) = U(f, µ). Now, by the
definition of ηf , µ(f) = ηf = Ch(U(f, µ), P (w)).

Let w ∈ W . We shall first prove that

(35) µ(w) ⊆ V (w, µ).

Let f ∈ µ(w), so w ∈ µ(f) = ηf . But ηf = Ch(Y (η−f ), P (f)), so
ηf = Ch(ηf , P (f)). Then w ∈ Ch(µ(f) ∪ w,P (f)) = Ch(ηf , P (f)),
so f ∈ V (w, µ); this proves Statement 35. Second, we prove that
Ch(V (w, µ), P (w)) ⊆ µ(w), which together with Statement 35 implies
that µ(w) = Ch(V (w, µ), P (w)). Let f ∈ Ch(V (w, µ), P (w)). By
Statement 35, µ(w) ∪ f ⊆ V (w, µ). Substitutability of P (w) implies
that

(36) f ∈ Ch(µ(w) ∪ f, P (w)).

So w ∈ U(f, µ). Suppose, by way of contradiction, that f /∈ µ(w).
Now, f /∈ µ(w) implies w /∈ µ(f), so Statement 36 implies µ(f) ∪
fP (w)µ(f). But w ∈ U(f, µ), so µ(f)∪fP (w)µ(f) contradicts µ(f) =
ηf = Ch(U(f, µ), P (w)). The assumption f /∈ µ(w) is then absurd.
This finishes the proof that µ(w) = Ch(V (w, µ), P (w)). We also proved
µ(f) = Ch(U(f, µ), P (w)), so µ ∈ E . �

Lemma 49. If µ ∈ E, then µ is the outcome of some SPNE.

Proof. Define (η, ξ) by ηf = µ(f) and ξw(η) = Ch({f : w ∈ ηf} , P (w)).

Let (µ) ∈M be the outcome of (η, ξ). We show that (η, ξ) is a SPNE,

and that (µ) = µ.
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Note that, for any f and w,
{
f̃ : w ∈ ηf̃

}
∪ f = µ(w) ∪ f . Then,{

w : f ∈ Ch
({
f̃ : w ∈ ηf̃

}
∪ f, P (w)

)}
= {w : f ∈ Ch(µ(w) ∪ f, P (w))}
= U(f, µ)

.

But µ ∈ E , so ηf = µ(f) = Ch(U(f, µ), P (f)). Hence ηf is optimal

given η−f . By definition of ξw, ξw(η) is optimal for w given any profile

η. Hence (η, ξ) is a SPNE.
Now, f ∈ µ(w) if and only if w ∈ µ(f) = ηf . So,

{
f : w ∈ ηf

}
=

µ(w). Then ξw(η) = Ch(µ(w), P (w)) = µ(w), as µ(w) ∈ E implies
that µ is individually rational (Lemma 38).

Hence w ∈ µ(f) if and only if w ∈ ηf = µ(f), and f ∈ µ(w) if and

only if f ∈ ξw(η) = µ(w). So µ = µ. �

13.2. Proof of Theorem 26. Let 〈W ′, F ′, µ′〉 be a block of µ. Let
w ∈ W ′ be such that µ′(w)P (w)µ(w). We shall prove that there are
f, f ′ ∈ F ′, and w′ ∈ W ′ such that:

• w 6= w′, f 6= f ′;
• f ∈ µ′(w)\µ(w), w′ ∈ µ′(f)\µ(f), and f ′ ∈ µ′(w′)\µ(w′);
• f wants to add w′ and w′ wants to add f ′, but w′ does not want

to add f , and f ′ does not want to add w′.

Now, µ′(w)P (w)µ(w) implies that

Ch(µ(w) ∪ µ′(w), P (w))R(w)µ′(w)P (w)µ(w).

But µ ∈ E implies that µ is individually rational (Lemma 38); so
µ(w)R(w)A, for all A ⊆ µ(w). Hence

Ch(µ(w) ∪ µ′(w), P (w))\µ(w) 6= ∅.
Let f ∈ Ch(µ(w) ∪ µ′(w), P (w))\µ(w). By substitutability of P (w),
f ∈ Ch(µ(w) ∪ f, P (w)); hence w wants to add f .

On the other hand, f ∈ Ch(µ(w)∪f, P (w)) implies that w ∈ U(f, µ).
But f ∈ µ′(w)\µ(w) means that w ∈ µ′(f)\µ(f). In particular, w /∈
µ(f); so, by Lemmas 39 and 37, w /∈ Ch(µ(f) ∪ w,P (f)) = µ(f),
as µ ∈ E implies µ(f) = Ch(U(f, µ), P (f)) and µ(f) ∪ w ⊆ U(f, µ).
Hence f does not want to add w.

But µ′(f) 6= µ(f), and f ∈ F ′, implies µ′(f)P (f)µ(f). By an argu-
ment that is symmetric to the one above, there is w′ ∈ µ′(f)\µ(f), and
f ′ ∈ µ′(w)\µ(w) such that f wants to add w′ and w′ wants to add f ′,
but w′ does not want to add f , and f ′ does not want to add w′.

Recursively, given wk ∈ W ′ with µ′(wk)P (wk)µ(wk) let fk+1, wk+1,
fk+1 be f , w′ and f ′ obtained as above. Consider the sequence of
alternating workers and firms constructed: W ′ is a finite set, so there
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must exist k and l such that wk = wl. Say l < k; set ŵ0 = wl, and
(ŵk′ , f̂k′) = (wk′+l, fk′+l) for k′ = 0, 1, . . . k − l. The resulting sequence
is an acceptance-rejection cycle for µ.

14. Proof of Theorems 31, 32, and 35

14.1. Proof of Theorem 31. We first establish some lemmas:

Lemma 50. Let P be substitutable. Let µ and µ′ be pre-matchings.
If µ ≤B µ′ then, for all w ∈ W and f ∈ F , U(f, µ) ⊆ U(f, µ′), and
V (w, µ) ⊇ V (w, µ′).

Proof. We shall prove that V (w, µ) ⊇ V (w, µ′). The proof that U(f, µ) ⊆
U(f, µ′) is analogous.

First, if V (w, µ′) = {∅}, then there is nothing to prove, as {∅} =
V (w, µ′) ⊆ V (w, µ). Suppose that V (w, µ′) 6= {∅} , and let f ∈
V (w, µ′). Then, w ∈ Ch(µ′(f) ∪ w,P (f)).

But µ ≤B µ′, so the definition of ≤B implies that, for all f ∈
F , either µ′(f) = µ(f) so w ∈ Ch(µ(f) ∪ w,P (f)), or µ′(f) =
Ch (µ′ (f) ∪ µ (f) , P (f)) . Then w ∈ Ch(µ′(f)∪w,P (f)) implies that

w ∈ Ch (µ′(f) ∪ w,P (f))
= Ch (Ch (µ′ (f) ∪ µ (f) , P (f)) ∪ w,P (f))
= Ch (µ′(f) ∪ µ(f) ∪ {w}, P (f)) .

The second equality above is from Proposition 2.3 in Blair (1988)
(Blair proves that, if P is substitutable, then Ch (A ∪B,P (f)) =
Ch (Ch (A,P (f)) ∪B,P (f)) for all A and B). Substitutability of P
implies that w ∈ Ch (µ(f) ∪ w,P (f)) . Then f ∈ V (w, µ) , and thus
V (w, µ) ⊇ V (w, µ′). �

Lemma 51. Let P be strongly substitutable. Let µ and µ′ be pre–
matchings. If µ ≤ µ′ then, for all w ∈ W and f ∈ F , U(f, µ) ⊆
U(f, µ′), and V (w, µ) ⊇ V (w, µ′).

Proof. We shall prove that V (w, µ) ⊇ V (w, µ′). The proof that U(f, µ) ⊆
U(f, µ′) is analogous.

First, if V (w, µ′) = {∅}, then there is nothing to prove. Suppose
that V (w, µ′) 6= {∅} , and let f ∈ V (w, µ′). Then, w ∈ Ch(µ′(f) ∪
w,P (f)). Strong substitutability implies then w ∈ Ch(µ(f)∪w,P (f)),
as µ′(f)R(f)µ(f) because µ ≤ µ′. �

Let V ′ = {ν ∈ V : ν(s)R(s)∅, for all s ∈ F ∪ W}. We need to
work on the set V ′ instead of V because ν0 and ν1 are the smallest and
largest, respectively, elements of V ′. Note that T (V) ⊆ V ′, so there is
no loss in working with V ′.
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Lemma 52. If P is substitutable, then T |V ′ is monotone increasing
when V ′ is endowed with ≤B. If P is strongly substitutable, then T |V ′

is monotone increasing when V ′ is endowed with ≤.

Proof. We show that T |V ′ is monotone increasing when V ′ is endowed
with order ≤B. That is, whenever µ ≤B µ′ we have (Tµ) ≤B (Tµ′).
The proof for ≤ follows along the same lines, using Lemma 51 instead
of 50.

Let µ ≤B µ′ , and fix f ∈ F and w ∈ W . Lemma 50 says that
U(f, µ) ⊆ U(f, µ′). We first show that
(37)
Ch (U (f, µ′) , P (f)) = Ch ([Ch (U (f, µ′) , P (f)) ∪ Ch (U (f, µ) , P (f))] , P (f)) .

To see this, let S ⊆ Ch (U (f, µ′) , P (f)) ∪ Ch (U (f, µ) , P (f)). Then
S ⊆ U(f, µ)∪U(f, µ′) = U(f, µ′), so Ch (U (f, µ′) , P (f))R(f)S. But,
Ch (U (f, µ′) , P (f)) ⊆ Ch (U (f, µ′) , P (f)) ∪ Ch (U (f, µ) , P (f)), so
we have established statement 37.

Now, (Tµ′)(f) = Ch (U (f, µ′) , P (f)) and (Tµ)(f) = Ch (U (f, µ) , P (f)),
so statement 37 implies that

(38) (Tµ′)(f) = Ch([(Tµ′)(f) ∪ (Tµ)(f)] , P (f))).

The proof for (Tµ′)(w) is analogous. �

Now T |V ′ : V ′ → V ′ is monotone increasing, and V ′ is a lattice
(Remark 1). T (V) ⊆ V ′ so E ⊆ V ′, and E equals the set of fixed points
of T |V ′ . So Tarski’s fixed point theorem implies that 〈E ,≤B〉 and 〈E ,≤〉
are non-empty lattices. Item (2) in Theorem 31 follows from standard
results (Topkis, 1998, Chapter 4).

This finishes the proof of Theorem 31.

14.2. Proof of Theorem 32. We first prove item 1.
Let ν, ν ′ ∈ E be such that ν ′(w)R(w)ν(w) for all w ∈ W . Suppose, by

way of contradiction, that there is some f ∈ F such that ν ′(f)P (f)ν(f).
Let C = Ch(ν(f) ∪ ν ′(f), P (f)), so CR(f)ν ′(f)P (f)ν(f). But ν ∈ E
implies that ν(f) = Ch(ν(f), P (f)) (Lemma 38), so C * ν(f). Hence

there is w ∈ C\ν(f); note that w ∈ ν ′(f). Now

w ∈ C = Ch
(
ν(f) ∪ ν ′(f) ∪ w,P (f)

)
and substitutability of P (f) implies that w ∈ Ch(ν(f) ∪ w,P (f)). So
f ∈ V (w, ν).

Now, w ∈ ν ′(f)\ν(f) implies f ∈ ν ′(w)\ν(w). Then ν ′(w)R(w)ν(w)
implies ν ′(w)P (w)ν(w), as P (w) is strict. But ν ′(w) = Ch(ν ′(w), P (w)) =
Ch(ν ′(w) ∪ f, P (w)) by Lemma 38. So strong substitutability implies
that f ∈ Ch(ν(w) ∪ f, P (w)). Since f /∈ ν(w), we obtain ν(w) ∪
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fP (w)ν(w). A contradiction with ν ∈ E , since we showed f ∈ V (w, ν)
and ν ∈ E implies ν(w) = Ch(V (w, ν), P (w)).

To prove item 2 in the theorem, note that when P (F ) is strongly
substitutable the model is symmetric, and the argument above holds
with firms in place of workers, and workers in place of firms. �

14.3. Proof of Theorem 35. We first prove that 〈E ,≤〉 is a sublattice
of 〈V ,≤〉. That 〈E ,≤〉 is distributive follows then immediately. We
need to verify that the lattice operations ∨ and ∧ in V are the lattice
operations in 〈E ,≤〉.

Let ν1, ν2 ∈ E . Let ν = ν1 ∨ ν2 in V . We shall prove that ν is the
join of ν1, ν2 in 〈E ,≤〉. The proof for ν1 ∧ ν2 is analogous.

By hypothesis ν is a matching; so

w ∈ ν (f) ⇔ f ∈ ν (w) .

We prove that ν ∈ E . Suppose, by way of contradiction, that there is f
such that (Tν)(f) 6= ν(f). Without loss of generality, say that ν(f) =
ν1(f)R(f)ν2(f). Since ν1 ∈ E , ν1 is individually rational (Lemma 38),
so f ∈ Ch(ν1(w), P (w)) = Ch(ν1(w)∪ f, P (w)), for all w ∈ ν1(f). For
all w, on the other hand, ν1(w)R(w)ν(w). So strong substitutability
gives f ∈ Ch(ν(w)∪f, P (w)) for all w ∈ ν1(f). Thus ν1(f) ⊆ U(f, ν).
Since, (Tν)(f) = Ch(U(f, ν), P (f)), and ν1 is individually rational,
(Tν)(f)\ν(f) 6= ∅.

Let w ∈ (Tν)(f)\ν(f). By substitutability, w ∈ Ch(ν1(f)∪w,P (f)).
Strong substitutability and ν1(f)R(f)ν2(f) imply then w ∈ Ch(ν2(f)∪
w,P (f)). So

(39) f ∈ V (w, νi),

for i = 1, 2.
On the other hand w ∈ (Tν)(f) implies w ∈ U(f, ν) so

(40) f ∈ Ch(ν(w) ∪ f, P (w)).

Let i be such that ν(w) = νi(w). Then Statement (39), and νi ∈ E ,
implies νi(w) ∪ f ∈ V (w, νi).

But we assumed w /∈ ν(f), so f /∈ νi(w), as ν is a matching. Then
νi(w) ∪ f 6= νi(w): a contradiction with νi ∈ E , given Statement (40)
and that ν(w) ∪ f ∈ V (w, νi).

For the rest of the theorem, we need a lemma.

Lemma 53. Let P be strongly substitutable. For all f and w, for
any ν and ν ′ in V: U(f, ν ∨ ν ′) = U(f, ν) ∪ U(f, ν ′), U(f, ν ∧ ν ′) =
U(f, ν)∩U(f, ν ′), V (w, ν∨ν ′) = V (w, ν)∩V (w, ν ′), and V (w, ν∧ν ′) =
V (w, ν) ∪ V (w, ν ′).
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Proof. We shall only prove that U(f, ν ∨ ν ′) = U(f, ν) ∪ U(f, ν ′), and
that V (w, ν ∨ ν ′) = V (w, ν) ∩ V (w, ν ′). The proof of the other state-
ments is symmetric.

We shall first prove that U(f, ν ∨ ν ′) ⊆ U(f, ν) ∪ U(f, ν ′). Let w ∈
U(f, ν∨ν ′), so f ∈ Ch ((ν ∨ ν ′)(w) ∪ f, P (w)). Now, (ν∨ν ′)(f) equals
either ν(f) or ν ′(f). If (ν∨ν ′)(w) = ν(w), then f ∈ Ch (ν(w) ∪ f, P (w));
so w ∈ U(f, ν). Similarly, if (ν ∨ ν ′)(w) = ν ′(w), then w ∈ U(f, ν ′).
This proves that U(f, ν ∨ ν ′) ⊆ U(f, ν) ∪ U(f, ν ′).

Second, we prove that U(f, ν) ∪ U(f, ν ′) ⊆ U(f, ν ∨ ν ′). Let w ∈
U(f, ν), so f ∈ Ch (ν(w) ∪ f, P (w)). Now ν(w)R(w)(ν ∨ ν ′)(w), so
strong substitutability implies f ∈ Ch ((ν ∨ ν ′)(w) ∪ f, P (w)). Hence
w ∈ U(f, ν ∨ ν ′). This proves that U(f, ν) ∪ U(f, ν ′) ⊆ U(f, ν ∨ ν ′).
So, U(f, ν ∨ ν ′) = U(f, ν) ∪ U(f, ν ′).

We shall now prove that V (w, ν ∨ ν ′) = V (w, ν)∩ V (w, ν ′). First we
prove V (w, ν ∨ ν ′) ⊆ V (w, ν) ∩ V (w, ν ′). Let f ∈ V (w, ν ∨ ν ′), so

(41) w ∈ Ch ((ν ∨ ν ′)(f) ∪ w,P (f)) .

Without loss of generality, say (ν ∨ ν ′)(f) = ν(f)R(f)ν ′(f). Then (ν ∨
ν ′)(f) = ν(f) implies that f ∈ V (w, ν). Statement 41, and strong sub-
stitutability imply w ∈ Ch (ν ′(f) ∪ w,P (f)) , as (ν ∨ ν ′)(f)R(f)ν ′(f).
Thus f ∈ V (w, ν), and we obtain V (w, ν ∨ ν ′) ⊆ V (w, ν) ∩ V (w, ν ′).

Finally, we prove that V (w, ν) ∩ V (w, ν ′) ⊆ V (w, ν ∨ ν ′). Let f ∈
V (w, ν)∩V (w, ν ′), so w ∈ Ch (ν(f) ∪ w,P (f)) and w ∈ Ch (ν ′(f) ∪ w,P (f)).
Now, (ν ∨ ν ′)(w) equals either ν(w) or ν ′(w), so either way w ∈
Ch ((ν ∨ ν ′)(f) ∪ w,P (f)). Hence f ∈ V (w, ν ∨ ν ′). �

Lemma 53 implies immediately that ψ is a lattice homomorphism:
Let ν ′, ν ∈ V . For any f and w,

(ψ(ν ∨ ν ′))(f) = U(f, ν ∨ ν ′) = U(f, ν) ∪ U(f, ν ′) = (ψν)(f) ∪ (ψν ′)(f)
(ψ(ν ∨ ν ′))(w) = V (w, ν ∨ ν ′) = V (w, ν) ∩ V (w, ν ′) = (ψν)(f) ∩ (ψν ′)(f).

So ψ(ν ∨ ν ′) = ψν tψν ′. That ψ(ν ∧ ν ′) = ψν uψν ′ is also trivial from
Lemma 53.

We now show that ψ|E is an isomorphism onto its range. Let ν, ν ′ ∈
E . Let ψν = ψν ′. Then, for all f , U(f, ν) = U(f, ν ′) so (Tν)(f) =
(Tν ′)(f). Similarly (Tν)(w) = (Tν ′)(w) for all w. So Tν = Tν ′ Then
ν, ν ′ ∈ E imply ν = ν ′, as v = Tν and v′ = Tν ′. Hence ψ is one-to-one,
as ψν = ψν ′ implies ν = ν ′.
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