
The Wisdom of the Minority

Steven Callander∗ Johannes Hörner†

January 2005

Abstract

We consider a simple version of the social learning model, in which agents are either
informed or uninformed, and only observe a summary statistic of their predecessors’ choices;
namely, how many have chosen one or the other alternative. The fraction of informed agents
is the only parameter in the model. We study the (uninformed) agents’ optimal strategy,
and show that, if the fraction of informed agents is small enough, it is optimal to follow
the choice made by the minority, provided that this minority is not too large. This occurs
independently of the number of agents who have chosen so far. However, such events are
unlikely, as we show that the expected fraction of agents taking the correct action tends to
one. Always following the choice of the majority is optimal if and only if the fraction of
informed agents is at least 7/9.

1 The Model

The model is a simple variant of the canonical model of social learning introduced by BHW.
There are two equiprobable states of the world, Ω = {ω0,ω1}. There is a countable set of agents,
i = 1, 2, . . .. Each agent must take an action, either 0 or 1. The payoff of an agent is 1 if the
state is ω0 and he takes action 0, or if the state is ω1 and he takes action 1, and 0 otherwise.
Agents move sequentially. Each agent is either informed, with probability p, or uninformed.

These informational types are privately known and independently distributed. An uninformed
agent assigns probability 1/2 to either state. An informed agent learns the realized state. Al-
ternatively, agents can be thought of as homogeneous but receiving signals of different accuracy
(either uninformative with probability (1− p) or perfectly informative with probability p).
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Agent n observes how many agents, among the first n − 1 agents, have taken action 1, but
he does not observe the order of these decisions (Agent 1 observes nothing). Therefore, the
information set of Agent (m0 +m1 + 1) can be denoted by as an ordered pair (m0,m1), where
m0 and m1 are the number of agents having chosen action 0 and 1, respectively. It is clear that
an informed agent always takes the correct action (i.e., 0 if ω0, 1 otherwise). We therefore focus
on the decision of uninformed agents.
The decision problem of an agent is the following: given history (m0,m1), which of the two

states is more likely? If indifferent (that is, if states are equally likely, given (m0,m1)), an agent
is assumed to choose either action with probability 1

2
. Let α (m0,m1) denote the probability with

which an agent takes action 1 after history (m0,m1).

2 An Illustration: Minorities of One

The possibility of minority wisdom — that it is more likely the minority rather than the majority
has chosen correctly — arises independently of the size of the majority, provided only the minority
is small enough. In this section we illustrate the logic behind this finding for minorities of the
smallest possible size. Considering histories of the form (1,m), we show that an uninformed
agent is often better served following the lone dissenter rather than the overwhelming majority
(the case of (m, 1) is analogous).
Establishing that following the minority is optimal for an uninformed agent requires the

calculation of all possible decision sequences that can produce a particular history. To make
these calculations several observations on equilibrium behavior are required. First, by the tie-
breaking assumption, an uninformed agent observing a history (m,m) is indifferent and, again by
the tie-breaking assumption, he mixes equally over the two actions. Second, uninformed agents
always follow a unanimous choice. That is, if all previous agents have chosen identically, such
as for the history (0,m), then an uninformed agent chooses action 1. The uninformed agent can
be sure no previous agent was informed that action 0 is optimal, but it may be possible than
a previous agent was informed that action 1 is optimal. Therefore, no matter how weak this
evidence, an uninformed agent imitates the unanimous selection.
We are now in position to calculate the probability of either state given history (1,m). The

earliest possibility for a single agent to compose a minority is m = 2. Figures 1a and 1b depicts,
for each possible state of the world, the possible paths to the history (1, 2), where the history
is represented by the corresponding Cartesian point. In state ω1 (Figure 1b) there is only one
possible path to history (1, 2): agent 1 is uninformed and chooses action 0, agent 2 is informed
and chooses action 1, and agent 3 is either informed or uninformed and chooses action 1. The

2



probability of this path conditional on state ω0 is given by

Pr (1, 2|ω1) =

µ
1− p

2

¶
p

µ
p+

1− p

2

¶
=

µ
1− p

2

¶
p

µ
1 + p

2

¶
.

Observe that if agent 1 chooses action 1 then, conditional on state ω1, history (1, 2) is not
possible. In fact, unanimous choice is guaranteed as it can be broken only by an informed agent
observing an opposing signal which is not possible in state ω1. This fact proves critical to the
illustration presented here for minorities of size 1, and similar ideas will prove critical to the
general results of the following section.

** Insert Figure 1a and 1b about here.

For state ω0, the history (1, 2) can be reached by two possible paths (as depicted in Figure
1a), both require the first agent to be uninformed and to choose action 1. The paths diverge
for agents 2 and 3 and are as follows: (i) agent 2 is informed and chooses 0, and agent 3 is
uninformed and chooses action 1; (ii) agent 2 is uninformed and follows unanimous choice, and
agent 3 is informed and chooses 0. The probability of these paths conditional on state ω0 is given
by

Pr (1, 2|ω0) =

µ
1− p

2

¶�
p

µ
1− p

2

¶
+ (1− p) p

¸
=
3

4
(1− p)2 p.

An uninformed agent follows the minority if state ω0 is more likely than state ω1 given history
(1, 2); that is, Pr (ω0|1, 2) > Pr (ω1|1, 2). By Bayes’ rule

Pr (ω0|1, 2) =
Pr (ω0) Pr (1, 2|ω0)

Pr (ω0) Pr (1, 2|ω0) + Pr (ω1) Pr (1, 2|ω1)
.

As the states are equally likely, the condition for minority choice reduces to Pr (1, 2|ω0) >
Pr (1, 2|ω1), which by algebra requires

3

4
(1− p)2 p >

µ
1− p

2

¶
p

µ
1 + p

2

¶
or p <

1

2
.
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Thus, if less than half of all agents are informed, an uninformed agent observing history (1, 2)
optimally follows the minority and chooses action 0. This result is driven by two factors: the
number of possible paths for each state, and the number of agents that are informed versus
uninformed. For history (1, 2) to be reached in state ω0, one agent must be informed and two
uninformed, and two possible paths reach this history. In contrast, for state ω1 there exists only
one possible path, but it is possible for either one or two agents to be informed. The more likely
it is that an agent is informed, therefore, the more likely it is that state ω1 produced the history.
The value p = 1

2
provides the cut-point on either side of which a different state is more likely to

have produced the observed history.
Suppose then that p < 1

2
and at history (1, 2) an uninformed agent follows the minority.

The calculations are similar for histories (1,m), where m ≥ 3, although the bound on minority
wisdom, as well as the logic of the result, are slightly different. As depicted in Figures 2a and 2b,
only one path to (1, 3) exists for each possible state. In state ω0 (Figure 2a) the final agent must
have been informed and deviated from unanimous choice, as if the previous history had been
(1, 2) then the agent, irrespective of private information, would have chosen with the minority
and induced the history (2, 2). The reverse path must hold for state ω1 with the first agent being
the dissenter who chose action 0. This path passes through history (1, 2) and so the 4th agent
must have been informed that state ω1 is correct. The probabilities for these paths are as follows.

Pr (1, 3|ω0) =

µ
1− p

2

¶
(1− p)2 p (1a)

=
1

2
(1− p)3 p.

Pr (1, 3|ω1) =

µ
1− p

2

¶
p

µ
1 + p

2

¶
p (1b)

=
1

4
(1− p) (1 + p) p2.

Minority choice requires Pr (ω0|1, 3) > Pr (ω1|1, 3), which by algebra, implies p < 5−√17
2

≈ 0.438.

** Insert Figure 2a and 2b about here.

With an equal number of paths to reach (1, 3) for each state, the relative likelihood of the
states hinges solely on the numbers of informed and uninformed agents. In state ω0 there only
need be one informed agent to reach history (1, 3), although this agent must be in a particular
location. In contrast, for history ω1 there is at least two informed agents, and an additional agent
(the third) has the luxury of being informed or uninformed. For a sufficiently small fraction of
informed agents, it is more likely that a single agent is informed and, therefore, more likely that
the lone minority dissenter is informed rather than uninformed.
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The bound on minority wisdom for the history (1, 3) is tighter than for the history (1, 2), and
following a minority may not be optimal at (1, 3) despite being optimal at (1, 2). Surprisingly
perhaps, this contraction of the bound does not continue for larger populations when the minority
is of size one. This can be readily verified for histories (1,m) from the arguments above for history
(1, 3). For m > 3 there is again only one possible path for each history, and again the dissenter
must be the final agent in state ω0 and the first agent in state ω1. Note, however, that as minority
choice applies at (1, 2), (1, 3), and so on, there must be at least (m− 1) informed agents in state
ω1 but only one informed agent in state ω0. The probabilities of reaching (1,m), conditional on
each state, are therefore generalizations of Equations 1a and 1b and are as follows.

Pr (1,m|ω0) =
1

2
(1− p)m p

Pr (1,m|ω1) =
1

4
(1− p) (1 + p) pm−1

As p < 1
2
, Pr (ω0|1, 3) > Pr (ω1|1, 3) implies Pr (ω0|1,m) > Pr (ω1|1,m) and minority choice

persists. Therefore, if an uninformed agent is prepared to follow a lone dissenter in a population
of size four, then it is optimal for an uninformed agent to support a lone dissenter in populations
of arbitrary size. In fact, in terms of the ratio of probabilities, Pr (1,m|ω0) /Pr (1,m|ω1), the
wisdom in a minority of one increases in m, the size of the opposing majority.

3 Properties of the Optimal Strategy

3.1 Minority Choice

The previous section illustrates that, for any p <
¡
5−

√
17
¢
/2, minority choice is optimal inde-

pendently of the majority size, provided only the minority consists of one agent. The reasoning
can be generalized to minority sizes of any order, but the larger the minority size, the smaller
the critical bound on p, the fraction of informed agents in the population. If we let pj denote
this bound for minorities of j or smaller, so that p1 =

¡
5−

√
17
¢
/2, this means that pj is strictly

decreasing in j. In fact,
lim
j→∞

pj = 0.

It follows that it is not the case, for some p > 0, that minority choice is optimal, independently
of the minority (and majority) size. Minority choice ‘eventually breaks down’ for some configura-
tions. In fact, it does not only break down in the neighborhood of the diagonal {(m,m) : m ∈ N},
but also arbitrarily far from this diagonal: for any k, no matter how large, there exists m suffi-
ciently large such that it is optimal to follow the majority choice at least k steps away from the
diagonal, despite the existence of a minority: α (m− k0,m) = 1 for some k0 ≥ k, k0 < m.
This discussion is summarized in the following Proposition:
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Proposition 1 (i) ∀j > 0, ∃pj > 0, ∀p ∈ (0, pj), ∀0 < m0 < j, ∀m1 > m0 such that
α (m0,m1) = 0.
(ii) ∀k > 0, ∃m and m > k0 > k such that α (m− k0,m) = 1.

Proof : Part (i), which is a tedious generalization of the argument presented in the illustra-
tion, is relegated to an Appendix.
Part (ii): Suppose otherwise. That is, suppose that, for some k > 0, minority choice is

optimal: ∀m > k0 ≥ k, α (m− k0,m) = 0. In this case, if the state of nature is ω0, observe that:

Pr {(m− k0,m) | ω0} =
1

2
(1− p)m p,

for the only path that connects (0, 0) to (m− k0,m), conditional on state ω0 consists of a string
of m uninformed agents who all chose action 1 (the first of which chose that action at ran-
dom), immediately followed by one informed agent (the agents that then followed chose action 0
independently of their information).
Suppose now that the state of nature is ω1. For 0 · j · m − k0, consider the path along

which the first j agents are uninformed, all of which choosing action 0, immediately followed by
one informed agent, and then, after another arbitrary max {j − k0, 0} agents (so that the ‘band
of length k0 around the diagonal’ is reached), by as many uninformed agents as necessary to
obtain that, overall, m− k0 agents have chosen action 0 (this cannot require more than another
m+k0−j agents). When this occurs, the number of agents having chosen action 1must necessarily
be between m− 2k0 and m. Therefore, the probability of reaching (m− k0,m) following such a
path is at least

1

2
(1− p)m+k

0
p2k

0+1.

Since there are m− k0 possible choices for the integer j, this means that:

Pr {(m− k0,m) | ω1} ≥
1

2
(m− k0) (1− p)m+k

0
p2k

0+1.

For fixed k0, this number may be chosen to be arbitrarily large relative to 1
2
(1− p)m p, by picking

m large enough. This implies that, for such an m,

Pr {(m− k0,m) | ω1} > Pr {(m− k0,m) | ω0} ,

so that the optimal action after such a history is action 1, yielding the desired contradiction.¥
It is easy to compute the first terms recursively: p1 ' 0.44, p2 ' 0.29, p3 ' 0.17, p4 ' 0.08, ...,

but a general formula appears elusive. In the proof of the proposition, it is shown that pj > 4−j.
As a corollary of Proposition 1, we can characterize the optimal strategy for all agents up to

any N , as long as p is small enough. Indeed, consider the following symmetric minority choice
strategy α∗, defined by, for all agents n · N :

α∗ (m0,m1) =

½
0 if m1 = 0,

1 if m0 > m1 > 1.
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Corollary 1: Given N ∈ N, there exists p̄, ∀p < p̄, α∗ is the unique optimal strategy for all
agents n · N .

3.2 Efficiency

If minority choice were always optimal, and informed agents were unlikely (p < 1
2
), information

would not be efficiently aggregated over time, as, provided only the first agent made an incorrect
choice, the tally would tend to oscillate around the diagonal, with larger departures from ties
being caused by strings of informed agents, eventually cancelled out by the larger numbers of
uninformed agents that, choosing with the minority, would cause a reversion to a tie. But we
already know that minority choice must break down, sooner or later. The question of efficiency
becomes therefore nontrivial. What is the limit of the expected fraction of agents who choose
correctly, as the number of agents grow large? Given the optimal strategy (obviously unique
given our tie-breaking rule), define Xn as the random variable that corresponds to the choice of
the nth agent: Xn = 0 if he chooses 0, Xn = 1 otherwise. Define

Sn :=
nX
i=1

Xn and Mn = Sn/n.

The optimal strategy is asymptotically efficient if limn→∞E [Mn | ω0] = 0. [Obviously, this also
implies that limn→∞ E [Mn | ω1] = 1], where E [·] denotes expectations. A strategy is efficient
if it minimizes E [Mn | ω0], for all n (or equivalently, E [Sn | ω0]). It is true, but not necessarily
obvious, that efficient strategies exist. Such a strategy is described in the proof of the following
result, based on an application of the welfare improvement principle (see Banerjee and Fudenberg
(2004), Smith and Sørensen (1999))

Proposition 2 The optimal strategy is asymptotically efficient, but not efficient.

Proof : Consider agent’s n probability of making the incorrect decision (before he observes
his signal) if he follows the strategy of either following his informative signal, if the case occurs,
or mimicking one of his predecessors at random. [The optimal strategy is the one that minimizes
this probability.] While this is not a particularly bright strategy, it nevertheless guarantees that
this probability does not exceed:

qn = (1− p)

Pn−1
j=1 qj

n− 1
,

where qj denotes the corresponding probability for agent j, with the understanding that q1 =
(1− p) /2. [Of course, qj is an upper bound on the probability agent j < n takes an incorrect
decision, since agent j follows the optimal strategy.] Solving, we get, for all n:

qn =
1− p

2

n−1Y
j=1

µ
1−

p

j

¶
.
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Taking logarithms, the convergence of this sequence is equivalent to the divergence of the series
ln (1− p/n), which follows from the divergence of the series −p/n.
Thus, the probability of an incorrect decision tends to 0 along any path. One efficient strategy

is: “choose action 0 until at least one agent has chosen action 1 so far” (obviously, there is
another one, where the role of 0 and 1 are exchanged). Of course, informed agents follow their
information. The argument is rather simple. Consider any agent n, uninformed. If one or more
of his predecessors are informed, he is sure to choose the correct action (since either the correct
action is 1, and therefore someone has chosen 1 before, so agent n chooses 1; or the correct
action is 0, in which case nobody has chosen 1, and agent n chooses 0 as well). If none of his
predecessors is informed, then indeed, both actions are equally good, and 0 is optimal. For n
agents, the expected number of agents taking the incorrect action under the efficient strategy is:

1− p

2p
(1− (1− p)n) ,

which tends to (1− p) / (2p).
So the total expected number of agents taking an incorrect action is finite under the efficient

strategy. The equilibrium strategy is not efficient, because, in some circumstances, while the
deciding agent knows that at least one of his predecessors was informed, he is not able to infer
what this information was. For instance, if the fourth agent observes two choices for 1 and one
choice for 0 -which implies that at least one agent was informed-, it could be that the sequence
was (1, 0, 1), with the second agent being informed of state 0, or it could be that the sequence
was (0, 1, 1), in which case the second agent was informed of state 1. This implies that, among
the first three agents, the expected number of agents choosing incorrectly for, say, p = 1/5, is
126/125 > 1, while under the efficient strategy, only 122/125 < 1 choose incorrectly. (for p = 1/5,
the equilibrium strategy is minority driven, but suboptimality also obtains under majority choice:
for p = 8/9, the numbers are 95/1458 an 91/1458 < 95/1458 respectively.)¥
While the optimal strategy is not efficient -in fact, for small p, the expected number of

agents taking an incorrect action is larger than under an efficient strategy by a factor that is
(arbitrarily?) large-, it appears to be the case, from all numerical calculations that we made, that
the expected number of incorrect decisions remains bounded, for any p > 0. [Clearly, there exists
sample paths for which the number of incorrect decisions is arbitrarily large.] This conjecture
is easily proven for the case p > 1

2
, but we have not been able to establish it otherwise.1 As

mentioned in the proof of the previous result, this limit is finite for any efficient procedure.
However, the proportional sampling scheme used there to prove that E [Mn | ω0] tends to zero
under the equilibrium strategy does not yield that E [Sn | ω0] converges. To the contrary, under
this sampling scheme, this number diverges, as is readily verified.

1If p > 1/2, observe that, by following the majority decision, the nth agent can secure a probability of
error not exceeding (1− p) qdn/2e, where qj is the jth agent’s probability of error under that method, and dxe
is the smallest integer no smaller than x. This implies that the sum of probabilities of errors does not exceedP∞
j=1

1−p
2 2

j (1− p)j = (1− p)2 / (2p− 1), which is indeed less than (1− p) /2p.
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Conjecture 1 limn→∞ E [Sn | ω0] <∞.

3.3 Majority Choice

We view the central finding of this paper to be that minority choice is optimal under rather
natural circumstances. Nevertheless, it requires, in its simplest expression, the fraction of in-
formed agents not to exceed

¡
5−

√
17
¢
/2. What about the optimal strategy when p exceeds¡

5−
√
17
¢
/2?

It turns out that this does not necessarily imply that majority choice is ‘always’ optimal.
Define the majority choice strategy as the strategy that necessarily mimics the choice of the
majority: α (m0,m1) = 0 if and only if m0 > m1. The following rather striking conclusion
emerges.

Proposition 3 The majority choice strategy is optimal if and only if p ≥ 7/9.

Proof : Under the majority choice strategy, it is possible to describe quite explicitly the
conditional probabilities of the various events. Namely,

Pr {(m0,m1) | ω0} =
m0+1X
r=1

2−r
m1 −m0 + r − 1

m1 +m0 − r + 1

µ
m1 +m0 − r + 1

m0 − r + 1

¶
pm0 (1− p)m1 , m1 > m0,

Pr {(m,m) | ω0} = Pr {(m− 1,m) | ω0} ,

Pr {(m0,m1) | ω0} =
1 + p

2
Pr {(m1,m1) | ω0} , m1 < m0,

The first formula follows from the formula for the number N (m0,m1) of paths going from (0, 0)
to (m0,m1) touching exactly r times the horizontal axis without ever crossing it (see Mohanty
(1979), formula (4.9)):

N (m0,m1) =
m1 −m0 + r − 1

m1 +m0 − r + 1

µ
m1 +m0 − r + 1

m0 − r + 1

¶
.

The other two formulas are obvious. Trite computations show that, for n ∈ 2N:

Pr {(m,m) | ω0}

pm (1− p)m
=
C (2; 2m)

22m
:=

2m−1X
r=0

(−1)r 2−rC2m−1−r + (−1)
2m 2−2m,

where Cn =
¡
2n
n

¢
/ (n+ 1) is the Catalan number (C (2;n) is known as a generalized Catalan

number).
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Let p (m0,m1) = Pr {(m0,m1) | ω0}. For p ≥ 3/4, the probability p (m0,m1) is non-increasing
in m1, for m1 > m0. To see this, observe that p (m0,m1 + 1), p (m0,m1) are given by the
aforementioned summations, and consider the ratio of the corresponding summands:

N (m0,m1 + 1)

N (m0,m1)
(1− p) ·

1

4

N (m0,m1 + 1)

N (m0,m1)

=
1

4

m1 + 1− (m0 + 1− r)

m1 − (m0 + 1− r)

m1 + (m0 + 1− r)

m1 + 1

·
1

4

r + 1

r

2m0 + 2− r

m0 + 2
·
1

4
4 = 1,

where the second inequality follows by observing that the expression is decreasing in m1, and
the last one from the fact that the expression is decreasing in r · m0 + 1.
It follows that majority choice is optimal provided that:

Pr {(m+ 1,m) | ω0} > Pr {(m,m+ 1) | ω0} .

We will show that this inequality holds for all m if and only if p ≥ 7/9. The previous inequality
is equivalent to:

C (2;n+ 1)− C (2;n)

2C (2;n)
·

p

1− p
,

for n := 2m. As can be readily verified, C (2;n+ 1) /C (2;n) is increasing in n and bounded,
and converges therefore to some limit l. It is clear, from the definition of C (2;n), that:

C (2;n+ 1) + C (2;n) = 2n+1Cn, and thus also

C (2;n+ 2)− C (2;n) = 2n+2Cn+1 − 2
n+1Cn.

From the identity,

C (2;n+ 2)− C (2;n+ 1)

C (2;n+ 1)
=
C (2;n+ 2)− C (2;n)

C (2;n+ 1)
−
C (2;n+ 1)− C (2;n)

C (2;n)

C (2;n)

C (2;n+ 1)
,

it follows that:

l = lim
n

C (2;n+ 2)− C (2;n)

C (2;n+ 1) + C (2;n)
= lim

n

2n+2Cn+1 − 2n+1Cn
2n+1Cn

= 2 lim
n

Cn+1
Cn

− 1 = 2 lim
n

µ
4−

6

n+ 2

¶
− 1 = 7.

Hence,
C (2;n+ 1)− C (2;n)

2C (2;n)
·

p

1− p
∀n⇔ p ≥ p̄ := 7/9.
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It is clear that the optimal action given some event (m0,m1) only depends on the optimal actions
at all events (m0

0,m
0
1) for m

0
1 < m1, and m0

0 · m0. It follows that there are thresholds pi such
that the majority rule is optimal as long as the minority does not exceed i, provided p ≥ pi. The
threshold pi is increasing in i and tends to p̄ as n→∞.¥
What happens if p falls short of 7/9? The optimal strategy is then rather complicated,

prescribing majority choice in some circumstances, minority choice in others, and no general
principle or comparative statics seems to emerge. The following example illustrates the intricacies
of the optimal strategy.
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Optimal strategy for uninformed agents (p = 1/4)
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Appendix:
Proof of Proposition 1, part (i): The following remarks will prove useful in the argument.
Remark 1: The problem is obviously symmetric: if one action is optimal when m1 out of n

agents have taken action 1 so far, then the other action is optimal when n−m1 out of n agents
have taken that action so far. Formally:

α (m0,m1) = 1− α (m1,m0) .

Remark 2: In case of unanimity -that is, if none or all n agents so far have chosen action
1- it is optimal (for an uninformed agent) to take the same action as they have: indeed, there is
a positive probability that some of these agents were informed, so that this is the right decision.
In case of tie -that is, if exactly half of the n agents have chosen action 1- an uninformed agent
is indifferent between both action, and so, according to the tie-breaking rule, takes each action
with probability 1

2
.

Remark 3: Let Pr {ωi | (m0,m1)} denote the probability that the state is ωi ∈ Ω, given
that mi agents have taken action i = 0, 1, and let Pr {(m0,m1) | ωi} denote the probability that
mi agents take action i, given state ωi ∈ Ω (conditional, of course, on m0 +m1 agents exactly
having chosen). It follows from Bayes rule that:

Pr {ωi | (m0,m1)} =
Pr {(m0,m1) | ωi}Pr {ωi}

Pr {(m0,m1) | ω0}Pr {ω0}+Pr {(m0,m1) | ω1}Pr {ω1}

=
Pr {(m0,m1) | ωi}

Pr {(m0,m1) | ω0}+Pr {(m0,m1) | ω1}
.

Therefore,

Pr {ω0 | (m0,m1)} > Pr {ω1 | (m0,m1)}⇔ Pr {(m0,m1) | ω0} > Pr {(m0,m1) | ω1} .

The advantage of working with the probabilities Pr {(m0,m1) | ωi} is that they obey simple
recursions, namely:

Pr {(m0,m1) | ω0} = Pr {(m0,m1 − 1) | ω0} · (1− p)α (m0,m1 − 1)

+Pr {(m0 − 1,m1) | ω0} · (p+ (1− p) (1− α (m0 − 1,m1))) ,

Pr {(m0,m1) | ω1} = Pr {(m0,m1 − 1) | ω1} · (p+ (1− p)α (m0,m1 − 1))

+Pr {(m0 − 1,m1) | ω1} · (1− p) (1− α (m0 − 1,m1)) ,

with boundary condition Pr {(0, 0) | ωi} = 1 ∀ωi ∈ Ω.
The general argument is by induction, assuming that it holds for m1 · M − 1, and proving

it holds then for m1 =M as well, for p · 4−M . For m1 = 1, it is straightforward to check, using
the recursion from Remark 3, that :

Pr {(m0, 1) | ω0} =
1

4
pm0−1 (1− p) (1 + p) , ∀m0 ≥ 2,

Pr {(2, 1) | ω1} = 3p (1− p)2 /4, Pr {(m0, 1) | ω1} =
1

2
p (1− p)m0 , ∀m0 ≥ 3,
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so that the conclusion obtains provided p ·
¡
5−

√
17
¢
/2. [Observe that we only need verify the

claim for m0 ≥ 2.] Conditional on state ω0, if 1 out of n agents have taken action 1, no more
than 2 agents among the n agents could have been uninformed.
Suppose now that the proposition holds for all m · M − 1, as well as the following claim,

valid for m = 1: conditional on state ω0, if m · M − 1 out of n agents have taken action 1
(where m and n satisfy the assumptions of Proposition 1), then no more than 2m agents, out
of these n agents, could have been uninformed. We establish these two claims for m = M by
induction on the number of agents, n. Suppose that n = 2M +1 (the smallest number of agents
that must be considered given the assumptions of Proposition 1). For the second claim, we must
show that no more than 2M were uninformed, that is, at least one agent was informed. This,
however, is obvious, since unanimity would obtain if all agents were uninformed (see Remark 2).
For the first claim, observe that:

Pr {(M + 1,M) | ω1} =
1− p

2
Pr {(M,M) | ω1}+Pr {(M + 1,M − 1) | ω1} .

To see this, observe that either M out of the first 2M agents had taken action 1, in which case,
conditional on state 1, only an uninformed agent could take action 0 (furthermore, only with
probability 1

2
), orM−1 out of the first 2M agents had done so, in which case, even an uninformed

would have taken action 1 (by the induction hypothesis on M). Similarly:

Pr {(M + 1,M) | ω0} =

µ
1− p

2
+ p

¶
Pr {(M,M) | ω0}+ (1− p) Pr {(M + 1,M − 1) | ω0} .

Therefore:

Pr {(M + 1,M) | ω1} > Pr {(M + 1,M) | ω0}

⇐⇒

Pr {(M + 1,M − 1) | ω1} > pPr {(M,M) | ω0}+ (1− p) Pr {(M + 1,M − 1) | ω0} ,

since Pr {(M,M) | ωi} is independent of i. Observe that, if M out of 2M agents have taken
action 1, at least one of them must have been informed. And if M − 1 out of 2M agents have
taken action 1, then, as no more than 2 (M − 1) could have been uninformed, at least two of
them must have been informed. Therefore:

pPr {(M,M) | ω0}+ (1− p) Pr {(M + 1,M − 1) | ω0}

· p
X
i≥1

µ
2M − 1

i

¶
pi (1− p)2M−i + (1− p)

X
i≥2

µ
2M − 1

i

¶
pi (1− p)2M−i

< 2p2 (1− p)2M−1 ,

as long as p < 1/2. [The fact that the first agent to act must have been uninformed has been
used in the binomial coefficient.] In addition:

Pr {(M + 1,M − 1) | ω1} = p (1− p)
M−1 .
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Therefore, the desired inequality holds for p · 4−M .
Suppose now that both claims hold for some n ≥ 2M + 1, and suppose that M out of n+ 1

agents have taken action 1. As for the second claim, either M − 1 out of the first n agents had
taken action 1, in which case no more than 2 (M − 1) + 1 < 2M out of the n + 1 agents can
be uninformed, or M out of the first n agents had taken action 1. In that case, however, the
(n+ 1)th agent must have informed, as, by the induction hypothesis, an uninformed agent would
have taken action 1. Therefore, in this case as well, no more than 2M out of the first n+1 agents
can be uninformed. Next, observe that:

Pr {(n+ 1−M,M) | ω1} =
1

2
p (1− p)M

is independent of n. As for Pr {(n+ 1−M,M) | ω0}, since no more than 2M agents were
uninformed, it is bounded above by:X

i�2M

µ
n

i

¶
(1− p)i pn+1−i.

This upper bound is decreasing in n, for p · 4−M [Observe that
¡
n+1
i

¢
pn+2−i/

¡
n
i

¢
pn+1−i =

(n+ 2) p/ (n− i+ 2)]. The result follows (this inequality is satisfied for n = 2M+2 if p · 4−M).¥

15


