
Benefits from U.S. Monetary Policy

Experimentation in the Days of Samuelson and

Solow and Lucas∗

Timothy Cogley†

Riccardo Colacito‡

Thomas J. Sargent§

December 9, 2004

Abstract

A policy maker knows two models of inflation-unemployment dynamics.
One implies an exploitable trade-off, the other does not. The policy maker’s
prior probability over the two models is part of his state vector. Bayes’ law
converts the prior into a posterior at each date and gives the policy maker
an incentive to experiment. For a model calibrated to U.S. data through
the early 1960s, we isolate the component of government policy that is due
to experimentation by comparing the outcomes from two Bellman equations,
the first of which ‘experiments and learns’, the second of which ‘learns but
doesn’t experiment’. We interpret the second as an ‘anticipated utility’ model
and study how well its outcomes approximate those from the ‘experiment and
learn’ Bellman equation. The approximation is good.

1 Introduction

We quantify the importance of deliberate experimentation when two models that
fit the historical data equally well have sharply different operating characteristics
that are vital to a policy decision. As our laboratory, we analyze a case in which
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two competing models of inflation-unemployment dynamics differ with respect to
whether they imply an exploitable Phillips curve.

In the late 1960’s, a debate raged between advocates of the natural unemploy-
ment hypothesis and those who thought that there is an exploitable unemployment-
inflation trade-off. To capture this dispute, we imagine that a monetary policy
authority has the following two models of inflation-unemployment dynamics:

• Model 1 (Samuelson-Solow):

Ut = .0023 + .7971Ut−1 − .2761πt + .0054η1,t

πt = vt−1 + .0055η3t

• Model 2 (Lucas):

Ut = .0007 + .8468Ut−1 − .2489(πt − vt−1) + .0055η2,t

πt = vt−1 + .0055η3t

where Ut is the deviation of the unemployment rate from an exogenous measure of
a natural rate U∗

t ,1 πt the rate of inflation, vt−1 is the rate of inflation that at time
t − 1 the monetary authority and private agents had both expected to prevail at
time t, and, for i = 1, 2, 3, ηit is an i.i.d. Gaussian sequence with mean zero and
variance 1. The monetary authority has a Kydland-Prescott (1977) type of loss
function E

∑∞
t=0 βtrt, where rt = −.5(U2

t +λv2
t ).

2 The monetary authority sets vt as
a function of time t information.3 The monetary authority knows the parameters of
each model for sure and attaches probability α0 to model 1 and probability 1 − α0

to model 2.4

1We use this specification mainly as a device to get good fitting models while keeping the
dimension of the state of our model to the minimum required to represent ‘natural rate’ and
‘non-natural rate’ theories of unemployment. See appendix D for details.

2Alan Blinder (1998) has stressed that this objective function forces a conflict between the policy
maker (who prefers an unemployment lower than the natural rate) and the public (which would
choose to set unemployment to the natural rate) that is essential to induce the time consistency
problem for inflation described by Kydland and Prescott (1977).

3Under this timing protocol, there is no time-consistency problem in Kydland and Prescott’s
model. See Stokey (1989).

4We assume that model parameters are known because we want to reduce to a minimum the
dimension of the monetary authority’s posterior distribution. If we were to treat the parameters as
unknown, probability distributions for those parameters would be part of the monetary authority’s
prior, increasing the dimension of the state beyond what we can manage computationally. See
Wieland (2000a,b) and Beck and Wieland (2002) for analysis of the Bellman equation for a decision
maker who experiments to learn about parameter values. See El-Gamal and Rangarajan (1993)
for an analysis of convergence in a class of models in which agents are learning. Kenneth Kasa
(1999) adapts results that earlier researchers had obtained for a monopolist who could learn, but
chooses not to learn, his demand curve. Kasa thereby creates a model in which the Fed chooses
not to learn objects that could be learned through some different strategy.
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Although they fit the U.S. data from 1948:3-1963:I almost equally well, these
two models call for very different policies toward inflation under our loss function.
Model 1, whose main features many have attributed to Samuelson and Solow (1960),
has an exploitable tradeoff between vt and subsequent levels of unemployment. Hav-
ing operating characteristics advocated by Lucas (1972, 1973) and Sargent (1973),
model 2 has no exploitable Phillips curve: systematic variations in inflation vt af-
fect inflation but not unemployment. If α0 = 0, then our decision maker should
implement the trivial policy vt = 0 for all t. However, if α0 > 0, the policy maker
is willing to set vt 6= 0 partly in order to exploit a probable inflation-unemployment
tradeoff and partly in order to refine α. After calibrating the two models to U.S.
data before 1963, this paper imputes the same objective to the monetary authority
that Kydland and Prescott(1977) used, then solves the Bellman equation

We use the optimal decision rule to study the following questions:

1. Suppose that the Samuelson-Solow model actually governs the data and that
before date T the government had assigned probability α = 1 to the Samulelson-
Solow model and had used the corresponding optimal policy for a long time,
so that the economy is in a stochastic steady state. Having been persuaded by
an advocate of the natural rate hypothesis, at date T the government suddenly
lowers α to a number α ∈ (0, 1) even though, unbeknownst to the government,
the Samuelson-Solow model actually prevails. Under these assumptions, we
use our model to quantify the adverse effects on government policy that follow
from its attaching some weight to the Lucas model. Lucas’s model is subver-
sive in leading to higher unemployment than would have prevailed had it never
been invented. We ask how much higher is unemployment, and how long does
it take for the government to forget the Lucas model?

2. Suppose that the Lucas model actually governs the data and that before date
T the government had assigned probability 1−α = 1 to the Lucas model and
used the corresponding optimal policy for a long time, so that the economy is
in a stochastic steady state at date T − 1. At date T , having been persuaded
by advocates of the Samuelson-Solow model, the government suddenly lowers
1−α to a number in (0, 1) even though, unbeknownst to the government, the
Lucas model actually prevails. We use our model to quantify the effects on
government policy that follow from its putting some weight on the Samuelson-
Solow model. Samuelson and Solow’s model is pernicious in leading to higher
inflation and no lower inflation than if it had never been thought of. We study
how much more inflation is produced by this scenario and how long it takes
for the government to retire the Samuelson-Solow model.
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3. We want to quantify the role of ‘active’ as opposed to ‘passive’ experimenta-
tion. We do this by comparing the decision rule and value function for the
problem includes α as a state variable and Bayes’ law as a transition equa-
tion with another Bellman equation that suppresses α as a state variable and
ignores Bayes’ law as a transition equation. By comparing the associated de-
cision rules, we identify a component of time t decisions that is attributable
to intentional experimentation.

1.1 Organization

Section 2 formulates Bellman equations, one for a decision maker who consciously
experiments, another for an ‘anticipated utility’ decision maker who does not con-
sciously experiment. These Bellman equations describe alternative states of mind
for the policy maker. Section 3 describes alternative ways of modelling how the
true data generating model relates to the policy maker’s state of mind. Section 4
discusses our numerical approximations to the value functions and decision rules.
Section 5 describes quantitative experiments designed to answer the three questions
asked above, as well as a variety of statistics on ‘waiting times’ to learn the truth.
Section 6 adds some concluding remarks. Four appendixes contain technical details
about how we solved the Bellman equations and calibrated the two models.

2 Two Formulations of the Policy Problem Under

Model Uncertainty

We map our example into a general setup, then provide Bellman equations for the
government under our two alternative assumptions about the government’s response
to the opportunity to experiment.

2.1 The Models

The policy maker has two models

st+1 = Aist + Bivt + Ciǫi,t+1, (1)

i = 1, 2, where st is a state vector, vt is a control vector, and ǫi,t+1 is an i.i.d.
Gaussian process with mean zero and contemporaneous covariance matrix I. Let
F (·) denote the c.d.f. of this normalized multivariate Gaussian distribution. At
time t, the policy maker has observed a history of outcomes st = st, st−1, . . . , s0 and
assigns probability αt to model 1 and probability (1 − αt) to model 2. By applying

4



Bayes’ Law, the policy maker updates αt:

αt+1 = B(αt, st+1). (2)

In equations (33) and (37) in appendix A, we provide a formula for B(αt, st+1). The
policy maker wants a policy for setting vt that maximizes

E0

∞
∑

t=0

βtr(st, vt), β ∈ (0, 1), (3)

where E0 is a mathematical expectation with respect to the distribution over future
outcomes induced by the models (1) and the policy maker’s opinions about them.

2.2 Intentional Experimentation

The policy maker’s belief αt is a component of the time t state vector (st, αt). In
choosing vt, it is in the policy maker’s interest to recognize the revisions of his beliefs
that he foresees will occur through equation (3). Let V (st, αt) be the optimal value
in state (st, αt). The Bellman equation is

V (st, αt) = max
vt

{r(st, vt) (4)

+ βαt

∫

V (A1st + B1vt + C1ǫ1,t+1, B(αt, A1st + B1vt + C1ǫ1,t+1))dF (ǫ1,t+1)

+ β(1 − αt)

∫

V (A2st + B2vt + C2ǫ2,t+1, B(αt, A2st + B2vt + C2ǫ2,t+1))dF (ǫ2,t+1)}

The optimal decision rule can be represented recursively as

vt = v(st, αt) (5)

αt+1 = B(st, αt). (6)

Repeated substitution of (6) into (5) yields the policy maker’s strategy in the form
of a sequence of functions

vt = σt(s
t, α0), (7)

where st = (st, st−1, . . . , s0). The presence of B(αt, Aist + Bivt + Ciǫt+1), i = 1, 2,
on the right side of (4) imparts a motive to experiment. To choose vt is to design
experiments.
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2.3 Bellman Equation in Detail

Appendix A derives the function B(st, αt) and thereby obtains a particular version
of (4) that we approximate numerically. Let Ωi = CiC

′
i, Rt = αt

1−αt
, and define

g(ǫ1,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ǫ1,t+1)

′ Ω−1
1 (C1ǫ1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1]

′

× Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1] (8)

and

h(ǫ2,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ǫ2,t+1)

′ Ω−1
2 (C2ǫ2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1]

′

× Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1]. (9)

Using (33) in Appendix A, we obtain a law of motion for αt+1 under the two models.
Then Bellman equation (4) becomes

V (st, αt) = max
vt

{

r(st, vt) + βαt

∫

V

(

A1st + B1vt + C1ǫ1,t+1,
eg(ǫ1,t+1)

1 + eg(ǫ1,t+1)

)

dF (ǫ1,t+1)

+β(1 − αt)

∫

V

(

A2st + B2vt + C2ǫ2,t+1,
eh(ǫ2,t+1)

1 + eh(ǫ2,t+1)

)

dF (ǫ2,t+1)

}

. (10)

Appendix B describes how we approximate the solution of (10).

2.4 Attitudes Toward Experimentation

Although they surely know (4), several prominent macroeconomists have advised
against exploiting the opportunity (or succumbing to the temptation) to experiment
identified by the right side of Bellman equation (4). Blinder (1998, p. 11) asserts
that

“while there are some fairly sophisticated techniques for dealing with
parameter uncertainty in optimal control models with learning, those
methods have not attracted the attention of either macroeconomists or
policymakers. There is a good reason for this inattention, I think: You
don’t conduct policy experiments on a real economy solely to sharpen
your econometric estimates.”
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Lucas (1981, p. 288) agrees, remarking that

“Social experiments on the grand scale may be instructive and admirable,
but they are best admired at a distance. The idea, if the marginal social
product of economics is positive, must be to gain some confidence that
the component parts of the program are in some sense reliable prior to
running it at the expense of our neighbors.”

These economists argue that conscious experimentation is a bad idea. Perhaps
Blinder and Lucas suspect that the decision maker has too few models on the table
(e.g., that neither of models in Bellman equation (4) is correct) and that therefore
the decision problem is misspecified.

Another reason for not deliberately experimenting is that it is very difficult to
approximate the solution of the Bellman equation that corresponds to (4) when there
are more dimensions of uncertainty, e.g., unknown coefficients and more models).
To sidestep that problem, researchers like Cogley and Sargent (2004) have appealed
to Kreps’s (1998) ‘anticipated utility’ model to justify an adaptive approach that
we now describe.

A third possible reason for being skeptical about experiments is related to the
previous two. We can interpret the fact that Bellman equation (4) is difficult to
solve as saying that it is difficult to design optimal experiments. The value function
that obeys (4) is maximized over all possible experiments. Suboptimal experiments
attain lower values. Many such suboptimal experiments would actually attain lower
values than those delivered by the ‘don’t experiment’ rule that solves the alternative
Bellman equation (4).

2.5 Unintentional Experimentation

Another Bellman equation that appears in the literature on adaptive control lets us
quantify how much the policy maker sacrifices by abstaining from the opportunity
to experiment. We formulate an optimum problem that ignores the opportunity to
experiment by replacing the law of motion (2) for αt dictated by Bayes’ law with
the “don’t experiment on purpose” specification

αt = α ∀t ≥ 0. (11)

When he makes a decision at time t, the policy maker pretends that he cannot or will
not learn about the model from future data. One interpretation of this assumption
is that the policy maker believes that nature will draw next period’s st+1 from an
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α-weighted mixture of models 1 and 2. Another interpretation is that the policy
maker plans not to revise his views. Under either interpretation, a policy maker with
this fixed-α view has a value function W (st; α) that solves the Bellman equation

W (st; α) = max
vt

{r(st, vt) (12)

+ βα

∫

W (A1st + B1vt + C1ǫt+1; α)dF (ǫ1,t+1)

+ β(1 − α)

∫

W (A2st + B2vt + C2ǫt+1; α)dF (ǫ2,t+1)}.

The decision rule that attains W (st; α) is

vt = w(st; α). (13)

Because this is a feasible policy for the decision maker of subsection 2.2 who is
willing to experiment, it follows that

V (st, α) ≥ W (st; α) (14)

for all values of st, α. The gap

V (st, α) − W (st; α) (15)

measures the value of experimentation and the difference

v(st, α) − w(st; α) (16)

measures the component of the time t policy choice that can be attributed purely
to the policy maker’s motive to experiment.

Appendix C describes our algorithm for solving (12).

2.5.1 Adaptive Interpretation

In the spirit of the adaptive control literature, suppose that the policy maker does
indeed revise αt by applying Bayes’ Law even though he uses a policy (13) derived by
solving the abstain-from-learning Bellman equation (12). Then his actual decisions
can be represented recursively as

vt = w(st; αt) (17)

αt+1 = B(st; αt). (18)
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These decisions would emerge from a ‘don’t experiment but do learn’ prescription.5

Equations (17), (18) can be solved by repeated substitution to yield the policy
maker’s strategy in the form of a sequence of functions

vt = σ̃t(s
t, α0). (19)

In addition to representing a stylized ‘don’t experiment but do learn’ view, rules
like (17)-(18) have been recommended as an alternative or approximation to (5)-
(6) to be used in situations in which the curse of dimensionality somehow prevents
the policy maker or the analyst from solving Bellman equation (4) or the pertinent
counterpart to it. The appeal of this approximation is greatest when the dimension
of the prior distribution is large.6 We have assumed that Ai, Bi, Ci in (1) are known
matrices. Had we assumed instead that the policy maker has a nontrivial prior
probability distribution over those parameters, those distributions would enter the
value function on the left side of (4). The Bellman equation for this value function
would be easy to write down but difficult to solve because of the dimension of the
state vector.

3 The Truth

So far our description has been about the views of the monetary authority that are
summarized by equations (1) and α0 ∈ (0, 1). We have said everything about what
the monetary authority believes and how it chooses vt, but nothing about how the
economy actually works. Thus, our description so far is about ideas that are ‘just
in the head’ of the monetary authority.

Under the monetary authority’s prior distribution over sequences for unemploy-
ment and inflation that is implied by our specification, αt is a martingale. See
section A.1 for a proof. Because αt ∈ [0, 1], the martingale convergence theorem
implies that αt converges almost surely under that measure. To say what happens
to αt under the measure that actually generates the economy, we have to say what
that true measure is. If we assume that one of our two models, either model 1
(Samuelson and Solow’s) or model 2 (Lucas’s), or some fixed-α mixture of them,
governs the data, then αt given by (29) converges almost to the true α.7

5It seems fair to say that Blinder (1998, chapter 1) advocates this point of view.
6See footnote 4.
7Our model has a feature that El-Gamal and Rangarajan (1993) identify as important in pro-

moting convergence, namely, the presence of an exogenous component of randomness that generates
‘natural experiments’ that can help discriminate between models even if the policy maker decides
not to experiment in setting his policy.
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Our concern in the next section is to study the rates at which αt converges to the
true α under alternative assumptions about which model is the true data generating
process and alternative initial conditions for α,U . We design alternative scenarios
to shed light on the questions stated in section 1 and to determine which of our two
models is more difficult to learn about.

4 Value Functions and Decision Rules

We have reported calibrated versions of our two models in section 1. For government
preference parameters β = .995, λ = .1, figures 1, 2, and 3 display value functions
and decision rules associated with our two Bellman equations (4) and (12). As
figure 1 and 3, panel a, confirm, V (U, α) > W (U, α) except at the boundaries α = 1
and α = 0, where V (U, α) = W (U, α). This relationship of the ‘experiment and
learn’ value function V to the ‘don’t experiment but learn’ value function W is as
expected: when α ∈ (0, 1), there is value to intentional experimentation. The policy
functions in figure 2 and their difference in 3, panel b, show the different actions
called for by the decision rules v and w associated with Bellman equations (4) and
(12), respectively.

Overall, the differences between the value functions and the decision rules are
both small. Therefore, in this example at least, the type of anticipated utility model
used by Cogley and Sargent (2004), which is associated with Bellman equation
(12), seems to provide a good approximation to the outcomes from the intentional
experimentation model.8 We study the quality of approximation more fully in the
following subsections that analyze the questions posed in section 1.

To bring out their differences, figure 4 shows the decision rules w(U, α) and
v(U, α) as functions of U for different values of α. As noted, the differences between
v and u are always small, but the biggest differences occur for α’s away from the
boundaries of 0 and 1. The figures reveal that when α is well into the interior of
(0, 1), w’s call for additional experimentation serves to make it nonlinear and to
enhance the countercyclicality of inflation policy. That is, the v-policy inflation
policy is higher than the w-inflation policy when U is high, and lower when U is
low. This pattern reveals a kind of ‘opportunism’: the best time to experiment with
Keynesian stimulus is when U is high.9

Another interesting feature of figure 4 is that for both the v and w decision rules,
policy begins quickly to look more Keynesian even for α = .2 (i.e., a small weight

8See David Kreps (1998) for a broader defense of this modelling strategy in games and dynamic
economic models.

9In contrast, Alan Blinder’s opportunistic call for more deflation in recessions seems to have
been motivated not by an appeal to optimal experimentation but a way for the Fed to find political
cover for reducing inflation.
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Figure 1: Two value functions: W (U, α) ≤ V (U, α)

on the Samuelson-Solow model), while it continues to look quite Keynesian when
there is a comparable small weight of 1− α = .2 on the Lucas model. Thus, a little
bit of doubt about the Lucas model makes the policy maker begin to behave like a
Keynesian, while a Keynesian has to have bigger doubts about the Samuelson-Solow
model to begin behaving as Lucas’s model advises.10 These features of our policy
rules will influence outcomes of the experiments that we report in the next section.

5 Experiments in Forgetting Pernicious Ideas

We generate alternative scenarios by specifying an initial condition for U , govern-
ment beliefs α, and which of our two models actually generates the data. We use
the policy functions in figure 2 to generate histories of outcomes.

10This feature of the decision rules conforms to the story about the conquest of American inflation
told by Cogley and Sargent (2004).
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Figure 2: Policy functions with and without experimentation.
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5.1 Misplaced Experimentation When Samuelson And Solow

Are Correct

Assume that the data generating process is the Samuelson and Solow model. Figure
5 shows outcomes after the arrival of Lucas and his model prompt the policy maker
erroneously to assign some probability to it. For the first 19 periods, the policy maker
had α = 1 and therefore had optimally exploited the tradeoff between unemployment
and inflation given by the Samuelson-Solow model. In period 19, Lucas’s model
arrives and is assigned a positive probability. Starting from period 19, we model
the behavior of three central banks. As a benchmark, the first one (dotted line
in the pictures) continues to assign probability one to the Samuelson-Solow model
and therefore abstains from experimenting or learning. The second and the third
ones attach a prior probability of 75% to his model being true. The second central
bank takes into account that this prior will be revised in subsequent periods (black
continuous lines), while the third (red lines) does not. The experimenting policy
maker keeps inflation high for a while, but the benefit is a sharper decrease in
unemployment compared to the anticipated utility central bank. The second bank
evidently learns faster than the third.

5.2 Misplaced Experimentation When The Lucas Model Is

True

Now assume that Lucas’s is the true data generating mechanism. Figure 6 shows
outcomes when after 19 periods of correct policy under Lucas’s model, under the
influence of Samuelson and Solow, the monetary policy decision maker assigns a pos-
itive probability to their model. As with the previous subsection, we display paths
for three types of decision makers. As a benchmark, the first continues to assign
probability one to Lucas’s model throughout and neither learns nor experiments.
The second experiments and learns, while the third learns but does not intention-
ally experiment. Unemployment behaves in the same way under the three banks’
policies because Lucas’s model is the true data generating process. However, the
experimenting policy maker typically chooses a lower inflation rate than does the
non-experimenting bank. Furthermore, the process of forgetting the ‘wrong model’,
as reflected in the convergence of αt back to 0, appears to be slower than occurred
our analysis in the previous subsection where the Samuelson-Solow model prevailed.

The following table presents summary statistics from several related experiments.
The variable that we call waiting time in the following table represents the number
of time periods that are needed for α to return to within a 0.01 neighborhood of
what it should be under the data generating process. For each experiment, we report
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continuous line is the experimenting central bank and the other line is the non-
experimenting bank.
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the true model, the initial prior, the initial unemployment rate, the median waiting
time with and without experimentation and the 10%-90% confidence sets in square
brackets. When a ‘+’ appears next to a number it means that the waiting time
exceeded the length of the simulated path. A number of things can be learned from
this table. If we start with a 50-50 probability on the two models, the Samuelson and
Solow model is easier to unveil. Absent unemployment, the experimenting central
bank will learn the truth much faster than the anticipated utility bank compared
to the cases in which we start from high unemployment. If we start by attaching
a probability of almost one to the wrong model, it is easier to learn when Lucas’s
model is true than when Samuelson and Solow’s is true.

Waiting Time
True Model α0 U0 Experimentation No Experimentation

SS 0.01 0
247 267

[149,486] [156,500+]

SS 0.01 0.025
272 278

[154,498] [171,500+]

Lucas 0.99 0
97 107

[37,242] [40,244]

Lucas 0.99 0.025
85 87

[21,213] [26,216]

SS 0.5 0
39 45

[20,80] [23,92]

SS 0.5 0.025
21 25

[6,54] [8,69]

Lucas 0.5 0
87 93

[32,160+] [35,160+]

Lucas 0.5 0.025
65 68

[14,160+] [18,160+]

SS 0.28 0
52 65

[27,160+] [35,160+]

SS 0.28 0.025
35 46

[15,142] [19,148]

Lucas 0.28 0
80 90

[26,160+] [28,160+]

Lucas 0.28 0.025
71 73

[20,160+] [22,160+]
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6 Concluding Remarks

The value functions and decision rules in figures 1 and 2 reveal that in our exam-
ple, an anticipated utility model does a good job of approximating outcomes of a
Bayesian model in which the monetary policy maker exploits the opportunity to ex-
periment. While the passive learner in the anticipated utility does not design policies
in order to experiment, there outcomes of his policies induce enough variation in the
data that he is able to discriminate between the two models almost as fast as the
Bayesian agent. This outcome is related to features in the environment identified by
El-Gamal and Rangarajan (1993), who show how the presence of sufficient ‘natural
experiments’ promotes learning.

Another interesting outcome is captured in the concavity of the decision rules in
figure 2. This shape conveys that the decisions of a Samuelson-Solow style Keynesian
are more robust to small doubts, i.e., perturbations of α away from 1, than are the
decisions of Lucas-style classical economist to small perturbations of α away from 0.
That lack of robustness of the classical recommendations to small doubts plays an
essential feature in Cogley and Sargent’s accounting for U.S. inflation policy during
the 1970s.

Our calculations also reveal how long it takes to disabuse a doubtful monetary
authority of the wrong model.

To evaluate the lessons of our results, it is important to assess the about reality
that we impute to our policy maker to the doubts that one thinks should be in the
minds of the policy maker. We have given the policy maker only two models, each
of which he knows for sure. Of course, the models have very different operating
characteristics. While their differences are important, they are not subtle, so this
makes easier the task of generating or waiting for data to discriminate between
them. In effect, we have assumed that the monetary authority’s doubts are limited
to ignorance of the ‘correct’ value of one hyperparameter, α. If in practice one thinks
that the monetary authority’s doubts are broader and vaguer, we have substantially
understated the difficulty of the decision and learning problem that it faces.

7 Appendixes

A Transition Equation For αt

Let αi0 ≡ p(Mi) be the prior probability on model i, and let pi(s
t
i|θi) represent

its likelihood function. Here we abstract from parameter uncertainty by adopting
the shortcut that the parameters θi are known. By Bayes’s theorem, the posterior
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probability on model i is

αit ≡ p(Mi|s
t
i, θi) =

pi(s
t
i|θi)p(Mi)

∫

pi(st
i|θi)p(Mi)dMi

. (20)

The numerator is an unnormalized model weight, which we label wit, and the de-
nominator is a normalizing constant that ensures that model probabilities sum to
1. With a finite collection of models, the denominator is just the sum of the unnor-
malized model weights,

∑

i wit.

We start with a simple recursion for the unnormalized weights wit. After taking
logs and first-differencing, we find

log wit − log wit−1 = log pi(s
t
i|θi) − log pi(s

t−1
i |θi). (21)

Note that the prior model weight drops out of the recursion; αi0 initializes the
sequence but the likelihood is all that matters for updates. Also notice that α-
updates depend only on the value of the likelihood at the given θi. Usually the model
probability updates would depend on a marginalized likelihood, but this drops out
because we assume that θi is known. We need only to evaluate the likelihood, not
marginalize across unknown parameters.

To simplify further, use the prediction error decomposition of the likelihood to
write

log pi(s
t
i|θi) =

∑t

s=1
log pi(sis|s

s−1
i , θi). (22)

Subtracting the log-likelihood through t − 1 from that through t, we get

log wit = log wit−1 + log pi(sit|s
t−1
i , θi). (23)

The date t update depends on the value of the conditional log-likelihood. An obser-
vation that is likely given the model raises the unnormalized model weight, and a
puzzling observation (for that model) lowers it. Notice that log wit is a martingale
if the model residuals are serially uncorrelated.

Now let’s specialize to a two-model model. Let αt be the normalized probability
weight for model 1,

αt =
w1t

w1t + w2t

. (24)

The probability weight on model 2 is 1 − αt.

The normalizing constant is a nuisance, so we eliminate it by taking the ratio,

Rt ≡
αt

1 − αt

=
w1t

w2t

. (25)
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The transition equation for logRt follows from the transition equations for log wit,

log Rt = log Rt−1 + log
p1(s1t|s

t−1
1 , θ1)

p2(s2t|s
t−1
2 , θ2)

. (26)

Thus, the updating rule for the log odds ratio depends only on the log-likelihood
ratio for the two competing models. If we write this in terms of αt, we find

αt

1 − αt

=
αt−1

1 − αt−1

p1(s1t|s
t−1
1 , θ1)

p2(s2t|s
t−1
2 , θ2)

, (27)

or

αt =

αt−1

1−αt−1

p1(s1t|s
t−1

1
,θ1)

p2(s2t|s
t−1

2
,θ2)

1 + αt−1

1−αt−1

p1(s1t|s
t−1

1
,θ1)

p2(s2t|s
t−1

2
,θ2)

, (28)

=
αt−1p1(s1t|s

t−1
1 , θ1)

αt−1p1(s1t|s
t−1
1 , θ1) + (1 − αt−1)p2(s2t|s

t−1
2 , θ2)

.

If the two models involve the same data, we can equate s1t = s2t. In that case,

αt =
αt−1p1(st|s

t−1, θ1)

αt−1p1(st|st−1, θ1) + (1 − αt−1)p2(st|st−1, θ2)
. (29)

The right side of this equation spells out the function B(αt−1, st).

A.1 Martingale Property Of αt

The updating formula makes αt a martingale from the point of view of the Bayesian
agent (this is an example of Doob’s martingale result for Bayesian updating). To
see why, take the expectation of αt with respect to the posterior at αt−1,

Et−1B(αt−1, st) =

∫

B(αt−1, st)ft−1(st|s
t−1)dst. (30)

Because model parameters are assumed to be known, there is a single source of
uncertainty about next period’s αt, viz. what next period’s st will be. Therefore
the expectation is taken with respect to the agent’s posterior predictive density for
st, which we denote ft−1(st|s

t−1). This density is a probability weighted average of
the predictive densities for the two models,

ft−1(st|s
t−1) = αt−1p1(st|s

t−1, θ1) + (1 − αt−1)p2(st|s
t−1, θ2). (31)
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Thus, the conditional expectation for αt is

Et−1αt =

∫

B(αt−1, st)
[

αt−1p1(st|s
t−1, θ1) + (1 − αt−1)p2(st|s

t−1, θ2)
]

dst,

=

∫

αt−1p1(st|s
t−1, θ1)dst, (32)

= αt−1

∫

p1(st|s
t−1, θ1)dst = αt−1.

A.2 A Different State Space

To get a tractable Bellman equation, it is convenient to rewrite the problem so that
the state transition equation is linear. Define:

log Rt = log
αt

1 − αt

then

log Rt+1 = log Rt + log
f1(st+1|st)

f2(st+1|st)

αt can be obtained back through the following expression

αt =
1

1 + (exp log Rt)−1
(33)

In the Bellman equation, we take expectations of functions that involve the log
likelihood ratio. These expectations involve the distribution of ε2,t+1 under model
1 and viceversa. We can represent those distributions by exploiting the assumption
that st is the same across models. This assumption means that the model innovations
are related. After subtracting the transition equation for model 2 from that for model
1, we find:

C2ǫ2,t+1 = (A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1 (34)

C1ǫ1,t+1 = −(A1 − A2)st − (B1 − B2)vt + C2ǫ2,t+1 (35)

Define Ω1 = C1C
′
1, Ω2 = C2C

′
2. We use (34) and (35) to write the recursion for

log Rt+1 under models 1 and 2. When model 1 is true, we have

log Rt+1 = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ǫ1,t+1)

′ Ω−1
1 (C1ǫ1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1]

′

×Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1] (36)
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When model 2 is true, we have

log Rt+1 = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ǫ2,t+1)

′ Ω−1
2 (C2ǫ2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1]

′

×Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1] (37)

It is convenient to use αt rather than log Rt as a state variable. So we want to
transform (36) and (37) to get laws of motion for αt under the two models. For the
purpose of doing this, define

g(ǫ1,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| −

1

2
(C1ǫ1,t+1)

′ Ω−1
1 (C1ǫ1,t+1)

+
1

2
[(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1]

′

×Ω−1
2 [(A1 − A2)st + (B1 − B2)vt + C1ǫ1,t+1] (38)

and

h(ǫ2,t+1; st, αt) = log Rt −
1

2
log |Ω1| +

1

2
log |Ω2| +

1

2
(C2ǫ2,t+1)

′ Ω−1
2 (C2ǫ2,t+1)

−
1

2
[(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1]

′

×Ω−1
1 [(A2 − A1)st + (B2 − B1)vt + C2ǫ2,t+1] (39)

Using (33), we get a law of motion for αt+1 under the two models. Then our Bellman
equation can be expressed

V (st, αt) = max
vt

{

r(st, vt) + βαt

∫

V

(

A1st + B1vt + C1ǫ1,t+1,
eg(ǫ1,t+1)

1 + eg(ǫ1,t+1)

)

dF (ǫ1,t+1)

+β(1 − αt)

∫

V

(

A2st + B2vt + C2ǫ2,t+1,
eh(ǫ2,t+1)

1 + eh(ǫ2,t+1)

)

dF (ǫ2,t+1)

}

. (40)

B Approximating the Bellman Equation

Discretize the support of α and s into Iα and Is points respectively, to get I = Iα ·Is

nodes (α, s)i, ∀i = 1, ..., I. In what follows, we will refer to αi and si as the first
and the second entry of (α, s)i respectively. Specify J known linearly independent
basis functions φj ((α, s)i), j ∈ {1, ..., J}. In our solution, we employ a third order
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complete polynomial, implying that J = 10. The goal is to find basis coefficients cj,
j = 1, ..., J that best approximate the value function

Vi = V ((α, s)i) ≈
J
∑

j=1

cjφj ((α, s)i) =
J
∑

j=1

cjφj,i (41)

∀i = 1, ..., I or, in the equivalent matrix notation:

V ≈ Φc

where V is the I × 1 vector of approximated value functions at each node, Φ is
the I × J collocation matrix and c = [c1, ..., cJ ]′ is the vector of approximation
coefficients. We also discretize the support of the two shocks in K1 and K2 points
and denote wk the approximated probability mass associated to each of the resulting
K = K1 × K2 nodes. Using (41) in the Bellman equation we get for each node
i ∈ {1, ..., I}:

Vi = max
vi

{

ri(vi) + βαi

K
∑

k=1

J
∑

j=1

wkcjφj

(

s′1,i,k(vi),
exp[gk,i(vi)]

1 + exp[gk,i(vi)]

)

+ β(1 − αi)
K
∑

k=1

J
∑

j=1

wkcjφj

(

s′2,i,k(vi),
exp[hk,i(vi)]

1 + exp[hk,i(vi)]

)

}

(42)

where

ri(vi) = r(si, vi)

s′1,i,k(vi) = A1si + B1vi + C1εk

x′
2,i,k(vi) = A2si + B2vi + C2εk

and gk,i(vi) and hk,i(vi) defined as in (38) and (39) respectively:

gk,i(vi) = g(εk; si, αi, vi)

hk,i(vi) = h(εk; si, αi, vi)

We can now use the following algorithm to solve the Bellman equation recursively:

1. guess an initial vector of basis coefficients c1

2. for each node (s, α)i compute the right hand side of equation (42) using c1 and
call v(c1) the outcome

3. solve for c2 = (Φ′Φ)−1 Φ′v(c1)

4. replace c1 with c2 and iterate until convergence.
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C The ‘Don’T Experiment’ Model

This appendix describes how to solve Bellman equation (12) by mapping the problem
into what Cogley and Sargent (2004) called a ‘Bayesian linear regulator’. Stack the
two state space models from (1) as

[

s1,t+1

s2,t+1

]

=

[

A1 0
0 A2

] [

s1,t

s2,t

]

+

[

B1

B2

]

vt +

[

C1 0
0 C2

] [

ǫ1,t+1

ǫ2,t+1

]

(43)

or
st+1 = Ast + Bvt + Cǫt+1 (44)

Let α ∈ (0, 1) be a fixed probability that the decision maker attaches to model 1.
Express the time t loss as r(st, vt) = −.5(s′tRst + v′

tQvt). The decision maker seeks
to maximize

L = −.5E
∞
∑

t=0

βt
{

αs′1tRs1t + (1 − α)s′2tRs2t + v′
tQvt

}

(45)

or

L = −.5E
∞
∑

t=0

βt

{

s′t

[

αR 0
0 (1 − α)R

]

st + v′
tQvt

}

(46)

Cogley and Sargent (2004) note that The problem of choosing a decision rule to
maximize (46) with respect to (44) is an optimal linear regulator problem. The
optimal decision rule is

vt = −Fst = −F1s1t − F2s2t. (47)

D Description of the Empirical Specification

Here we briefly describe how the two policy models are estimated. Inflation is mea-
sured by the log difference of the chain-weighted GDP deflator, and unemployment
is the civilian unemployment rate. Both series are seasonally adjusted and are sam-
pled over the period 1948:1 to 1963:1. We stop the estimation there to represent
the kind of model uncertainty that Federal Reserve officials would have faced in the
years leading up to the Great Inflation.

Both Phillips curve specifications involve the gap between the unemployment
rate and a time-varying natural rate of unemployment. In order to keep the size of
the state space to a minimum, we approximate the natural rate of unemployment
U∗

t by exponentially smoothing the actual unemployment rate URt,

U∗
t = U∗

t−1 + µ(URt − U∗
t−1), (48)
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with a constant gain parameter µ = 0.075. That makes the unemployment gap a
geometrically distributed lag of past changes in unemployment,

Ut ≡ URt − U∗
t =

(1 − µ)(1 − L)

1 − (1 − µ)L
URt. (49)

This procedure approximates a one-sided high-pass filter that transforms unemploy-
ment into the unemployment gap. The decomposition is shown in the following
figure.
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Figure 1: Decomposing Unemployment: The Natural Rate and the Gap

The blue line records actual unemployment, the red line depicts our proxy for
the natural rate, and the green line is the unemployment gap, which is the variable
that appears in the Phillips curves. This decomposition assigns most of the short-
term variation in unemployment to the unemployment gap, and attributes long-
term movements in the level to shifts in the natural rate. For the years over which
we estimate the models, the natural rate increases only slightly, and most of the
variation in URt is in the gap measure Ut.

For model 1, this is all we need for estimation. We simply project the current
unemployment gap onto a constant, current inflation, and one lag of gap, and es-
timate parameters by OLS. For the period 1948:3-1963:1, the least-squares point
estimates and standard errors are as follows.

Table 1: Estimates of Model 1, 1948:3-1963:1

Intercept Ut−1 πt

β̂ 0.0023 0.7971 -0.2761
σβ̂ 0.0010 0.0699 0.1189
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In model 2, unemployment depends not on inflation but on unexpected inflation,
πt−vt−1, so to estimate that model we also need a measure of expected inflation vt−1.

We construct that in the simplest way possible, by projecting current inflation on a
constant along with one lag of inflation and unemployment. The fitted value from
that regression is our measure of vt−1, and the residual is our measure of unexpected
inflation, πt − vt−1. Then we substitute that variable into the Phillips curve and
estimate its parameters by least squares. The estimates and standard errors for
model 2 are shown in the next table.

Table 2: Estimates of Model 2, 1948:3-1963:1

Intercept Ut−1 πt − vt−1

β̂ 0.0007 0.8468 -0.2489
σβ̂ 0.0008 0.0674 0.1298

We use the point estimates in these tables to calibrate the two policy models.
Our central bank takes the point estimates as if they were known with certainty and
formulates policy by averaging across the models. Thus, it takes account of model
uncertainty, but suppresses parameter uncertainty.
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