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Abstract

This paper produces a comprehensive theory of the value of Bayesian information

and its static demand. Our key insight is to assume ‘natural units’ corresponding to

the sample size of conditionally i.i.d. signals — focusing on the smooth nearby model

of the precision of an observation of a Brownian motion with uncertain drift. In a two

state world, this produces the heat equation from physics, and leads to a tractable

theory. We derive explicit formulas that harmonize the known small and large sample

properties of information, and reveal some fundamental properties of demand:

• Value ‘non-concavity’: The marginal value of information is initially zero.

• The marginal value is convex/rising, concave/peaking, then convex/falling.

• ‘Lumpiness’: As prices rise, demand suddenly suddenly chokes off (drops to 0)

• The minimum information costs on average exceed 2.5% of the payoff stakes

• Information demand is hill-shaped in beliefs, highest when most uncertain

• Information demand is initially elastic at interior beliefs

• Demand elasticity is globally falling in price, and approaches 0 as prices vanish.

• The marginal value vanishes exponentially fast in price, yielding log demand.

Our results are exact for the Brownian case, and approximately true for weak

discrete informative signals. We prove this with a new Bayesian approximation result.

∗We acknowledge useful suggestions of Paavo Salminen and Xu Meng, and the comments from the
theory seminar at the University of Toronto and Georgetown University. Lones thanks the NSF for
financial support.
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1 Introduction

Information acquisition is an irreversible process. One cannot return to the pristine state

of ignorance once apprised any given fact. Heat dissipation also obeys the arrow of time:

The heat equation in physics describing its transition is not time symmetric. This paper

begins with an observation that this link is not merely philosophical. In static models

of Bayesian information acquisition, the value function of beliefs and the quantity of

information acquired obeys an inhomogeneous form of the heat equation. We show that a

nonlinear transformation of the value function and beliefs exactly obeys the heat equation.

This paper exploits this and a parallel insight and crafts the first global theory of the value

of information and its demand. For a binary state world, we derive explicit formulas that

provide the bigger picture on the famous nonconcavity of information, and the unique

demand curve that it induces: We characterize the “choke-off demand” level, and also

make many novel findings — eg., demand elasticity is monotonically falling to zero.

Information is an important good, and lies at the heart of most innovative research in

decision-making, game theory, and general equilibrium analysis. Yet information is also

a poorly understood good. This first of all owes to a lack of natural units. Blackwell’s

Theorem only considers one signal, for instance. We thus start by measuring information

in its ‘natural units’ corresponding to signal sample sizes, or equivalently, the precision of

a normally distributed signal. This is the foundation of our entire theory.

Our first insight is really a technical one that opens the door to our theory. We pro-

duce in Lemmas 1–4 a transformation jointly of time and beliefs yielding a detrended log

likelihood ratio process. This process is the unique one sharing two critical characteristics:

First, it has unit diffusion coefficient (variance). Second — and much more subtly — it

allows us to change measure to produce a Wiener process without adding a new stochastic

process. This immediately delivers to us in Lemma 5 a simple transition law for beliefs.

This density has the key property that it is proportional to its time derivatives (Lemma 6).

Underlying everything is the standard ∨-shaped payoff function of the belief in the

high state: A decision maker takes the low action left of a cross-over belief, and the high

action right of it. It so turns out that the ex post value of information is a multiple of the

payoff to a call option whose strike price is the cross-over belief. With this insight, it is not
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Figure 1: Marginal Value of Information.

surprising that our analysis traces the two routes used to price options: the heat equation

approach of Black and Scholes (1973) and the martingale measure tack of Harrison and

Kreps (1979). Yet the belief process is less tractable than the geometric Brownian motion

assumed for asset prices, and our transformation therefore more complex.

Using the original belief process, the payoff function of beliefs and information demand

obeys an inhomogeneous heat equation (Lemma 7). In our critical innovation, we per-

form both a change of variables, blending time and log-likelihood ratios, and a nonlinear

transformation of payoffs to produce the standard heat equation. We then exploit the

solution of the heat equation, and then in Lemma 8 via martingale methods. Either way,

Theorem 1 explicitly expresses the value of information in terms of the normal distribution.

We then turn to our substantive findings. Theorem 2 expresses the marginal value

of information in terms of the derivatives of the transition belief density. This reduces

analysis of the value derivative to a polynomial in the reciprocal demand. Using this,

Corollary 1 finds that the marginal value is initially zero — the nonconcavity — as found

in Radner-Stiglitz (1984) [RS], and rigorously formalized in Chade-Schlee (2002) [CS]. The

sufficient conditions in CS for this result do not encompass our model. By Theorem 3,

the marginal value convexly rises, is then concave and hill-shaped, and finally convex and

falling — as in Figure 1. We compute demand at the peak marginal value of information.

So with linear prices, information demand vanishes at high prices, before jumping to

a positive level (Theorem 4) strictly below the peak marginal value. The Law of Demand

then kicks in, and the demand schedule thereafter coincides with the marginal value sched-

ule. One never buys just a little information. Theorem 5 quantifies the nonconcavity,

determining the minimal purchase on average to be 2.5% of the expected payoff stakes.

In Theorem 6, we find that information demand is hill-shaped in beliefs, unlike the
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dynamic model with impatience of Moscarini and Smith (2001) [MS1]. Furthermore,

it jumps down to 0 near beliefs 0 and 1, when the choke-off demand binds. Here we

discover an interesting contrast with sequential learning models, because our thresholds

owe to global optimality considerations. Completing this picture, Theorem 7 finds that

information demand is hill-shaped in beliefs (quasi-concave, precisely) — opposite to MS1.

A novel topic we explore is the demand elasticity. Theorem 8 asserts that information

demand is initially elastic at interior beliefs; the elasticity is globally falling in price, and

is vanishing in the price. This analysis exploits all of our analytic structure.

We finally revisit in Theorem 9 the large demand analysis of Moscarini and Smith

(2002) [MS2] now quickly via our explicit formulas rather than large deviation theory.

MS2 also measure information by sample size, but assumed cheap discrete information, and

not our continuous or weak discrete signals. The marginal value of information eventually

vanishes exponentially fast, producing the logarithmic demand of MS2 at small prices.

We sharpen the demand approximation, and find that it is monotonically approached.

Our Gaussian information is generated by the time that one observes a Brownian

motion with state-dependent drift, but state-independent diffusion coefficient. Consider

a discrete model where the decision-maker chooses how many conditional iid signals to

draw. Theorem 10 shows that Bayes’ updating weakly approaches the continuous time

Brownian filter as the signal strength vanishes, and quantity is rescaled downwards. We

show that garbled signals have precisely this property. We next apply the Theorem of

the Maximum, finding in Theorem 11 that the demand formulas and value of information

approximate the discrete formulas for small bits of information (weak signals).

The experimentation literature aside, we know of one related information demand

paper. In Kihlstrom (1974), a consumer faces a linear price for precision of a Gaussian

signal given a (conjugate) Gaussian prior. For a specific hyperbolic utility function, he

can write utility as a function of signals and avoid computing the density of posteriors.

We next lay out and develop the model, and very rapidly progress through the results

on beliefs, the value and marginal value of information, demand, and weak discrete signals.

3



2 The Model

A. The Decision Problem. Assume a one-shot decision model, where a decision maker

(DM) chooses how much information to buy, and then acts. For simplicity, we assume

two actions A,B, whose payoffs πθ
A, πθ

B depend on the state θ = L,H. Action B is best

in state H and action A is best in state L: 0 ≤ πH
A < πH

B and πL
A ≥ πL

B ≥ 0.1 Since the

DM has prior beliefs q ∈ (0, 1), the convex ∨-shaped expected payoff function is

u(q) = max〈qπH
A + (1− q)πL

A, qπH
B + (1− q)πL

B〉 ≡ max〈πL
A + mq, πL

B + Mq〉 (1)

thereby defining M = πH
A − πL

A and m = πH
B − πL

B. We assume no dominated actions, so

that payoffs have a kink at a cross-over belief q̂ = (πL
A − πL

B)/(M −m) ∈ (0, 1).

Notice that the maximum payoff stakes here are (πH
B −πH

A )+(πL
A−πL

B) = M −m > 0.

The DM never incurs a payoff loss greater than M−m from making a wrong action choice;

this bound is tight when either difference (πH
B − πH

A ) ≥ 0 or (πL
A − πL

B) ≥ 0 vanishes.

B. The Standard Information Acquisition Model. Given is a probability space

(Ω,F , P ), were Ω is a set, F a σ-algebra of subsets of Ω, and P a probability measure

on F . This space captures all uncertainty, including the state of the world θ = L,H.

Before making a decision, the DM can obtain information of any level t ≥ 0 about

the state θ. While more information could plausibly connote better quality information,

we specifically mean that the DM with information level t2 knows strictly more about

the state of the world than does the DM with information level t1 ≤ t2. So assume a

filtration {Ft : t ∈ [0,∞)}, so that the σ-algebras are nested Ft1 ⊂ Ft2 ⊆ F when t1 < t2.

The DM observes Ft, updates her beliefs to q(t) = P (H|Ft) from the prior q(0) = q.

The ex ante expected payoff (prior to seeing Ft) is u(t, q) = E[u(q(t))|q(0) = q], and

the value of information is v(t, q) = u(t, q) − u(q) — namely, the expected increase in

utility from observing Ft. Faced with a constant marginal cost c > 0 of information, the

DM can choose the observation ‘time’ t (namely, the demand level) at cost ct. The net

payoff given the level t is v(t, q)− ct. This is maximized by choosing the information level

τ(c, q) > 0, which is our demand schedule. Finally, the DM chooses the best action.

1Further, it is without loss of generality to assume for simplicity that πH
A = 0, since the decision must

be made. An analogous choice of πH
B = 1 is not allowed later on, without also scaling the cost function.
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C. The Natural Continuous Units of Information. We actually have a specific

filtration in mind. Let the DM observe the time-t realization of a process X(·) with drift

±µ in states H,L, respectively, and constant diffusion coefficient σ > 0. Thus, the signal

is twice as informative when t doubles — just as is true for the sample size of conditionally

iid signals. We show in Section 7 that this approximates discrete bit sampling models.

By Theorem 9.1 in Liptser and Shirayev (2001), when observing the realizations of

the Brownian Motion X(t) in continuous time, the belief q̃(t) = P (H|Ft) obeys the Bayes

filter dq̃(t) = ζq̃(t)(1− q̃(t))dW (t), where ζ ≡ 2µ/σ is the signal/noise ratio, and W (·) is

a standard Wiener process w.r.t. the measure P (i.e. unconditional on θ = H,L). Notice

that if we define q(t) = q̃(t/ζ2), then2 (dq(t))2 = (dq̃(t))2/ζ2 = q(t)2(1−q(t))2dt, and thus

dq(t) = q(t)(1− q(t))dW (t). (2)

We henceforth set ζ = 1 and compute the time (demand) t̂ with any ζ̂ > 0 from t̂ = t/ζ̂2.

3 Beliefs and Log Likelihood Ratios

We begin by describing the limit behavior of beliefs q(·).

Lemma 1 (Long Run Beliefs) The belief process in (2) satisfies

(a) P [inf{t ≥ 0 | q(t) = 0 or 1} = ∞] = 1

(b) P
[

lim
t→∞ q(t) = 0

]
= 1− P

[
lim
t→∞ q(t) = 1

]
= 1− q.

So the probability that q(t) /∈ (0, 1) in finite time is zero and q(∞) = 0 or 1.

The proof of (a) is in the appendix: q(·) avoids the boundary as the diffusion coefficient

in (2) vanishes quickly near q(·) = 0, 1. Part (b) owes to the martingale property.

Our objective is to derive from posterior beliefs a tractable process that contains the

same information. In particular, we aim for a simple standard Wiener process. First, in

Lemma 2, we find a monotone transformation of posterior beliefs which has a unit diffusion

coefficient (variance); it turns out that this is unique. Second, in Lemma 4, we change
2To justify the first inequality, E[W 2(t/ζ2)] = t/ζ2 and thus dW 2(t/ζ2) = dt/ζ2.
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probability measure so that this transformation retains the martingale property. There is

a degree of freedom here, which we resolve in Lemma 3 on grounds of tractability.

Lemma 2 (Likelihood Ratios) Let z(t) = λ(t, q(t)), where λ ∈ C2. If the diffusion

coefficient of z(·) is one then λ(t, q(t)) = A(t) + log
(

q(t)
1−q(t)

)
, where |A(t)| < ∞ for all t.

Proof: Using Ito’s lemma we get

dz(t) =
(
λt + 1

2λqqq(t)2(1− q(t))2
)
dt + λqq(t)(1− q(t))dW. (3)

Solving λqq(t)(1− q(t)) = 1 yields λ(t, q(t)) = A(t) + log
(

q(t)
1−q(t)

)
. ¤

This lemma is intuitive, since Bayes rule is multiplicative in likelihood ratios, and

therefore additive in log-likelihood ratios. Substituting from (3), we then find

dz(t) =
(

A′(t)− 1− 2q(t)
2

)
dt + dW (t) ≡ ν(t)dt + dW (t), (4)

where we have implicitly defined ν(t). Next, define the probability measure Q on (Ω,Ft)

by the Radon-Nikodym derivative:

dQ

dP
= R(t) = exp

(
−1

2

∫ t

0
ν2(s)ds−

∫ t

0
ν(s)dW (s)

)
. (5)

Lemma 3 (Radon-Nikodym Derivative) R(t) = q(t)/q iff A(t) = −t/2.

This result is important as it does not introduce a new stochastic process. With a different

R-N derivative, we would have two imperfectly correlated stochastic processes q(·) and

R(·), and derivation of our results would become exceedingly difficult. A unique change

of measure maintains the uni-dimensionality of the stochastic process.

To prove Lemma 3, observe that writing Y (t) = −1
2

∫ t
0 (1−q(s))2ds+

∫ t
0 (1−q(s))dW (s)

and guessing q(t) = qeY (t) correctly yields, using Ito’s Lemma, dq(t) = q(t)dY (t) +
1
2q(t)(dY (t))2 = q(t)(1− q(t))dW (t) — namely, our belief filter (2). In other words,

q(t) = q exp
(
−1

2

∫ t
0 (1− q(s))2ds +

∫ t
0 (1− q(s))dW (s)

)
.

So motivated, if we set ν(s) = q(s)− 1 in (5), then we get Lemma 3.
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Equation (4) implies that A(t) = −t/2, which we henceforth assume. Thus,

z(t) = λ(t, q(t)) = log
(

q(t)
1− q(t)

)
− 1

2
t ⇔ q(t) = `(t, z(t)) =

1

e−
1
2
t−z(t) + 1

.

Observe that z(·) is a partially de-trended log-likelihood ratio (logLR). While the

logLR of state L to state H is well-known to be a martingale conditional on state H, this

is not useful because we do not know state H. We instead first subtract the deterministic

portion of the drift from the logLR, and then change measure from P to the conditional

measure Q given q(t). This yields a martingale such that the R-N derivative of Q is q(t)/q.

Lemma 4 (Detrended LogLR) The process z(·) obeys dz(t) = dŴ (t) for all t ≥ 0,

where

Ŵ (t) =
∫ t

0
(q(s)− 1)ds + W (t)

is a Wiener process under the probability measure Q. Hence, z(·) is a Q-martingale and

the pdf for transitions z 7→ y in time t > 0 is given as follows:

1√
t
φ

(
y − z√

t

)
=

1√
2πt

e
−(y−z)2

2t (6)

for all (t, z, y) ∈ (0,∞)× R2, where φ(y) = 1√
2π

e−
y2

2 is the standard normal pdf.

Equation (6) follows from the facts that (4) can be written as dz(t) = dŴ (t) and Ŵ (·) is

a Q-Wiener process by Girsanov’s theorem (see e.g. Øksendal (1998, pp. 155–6)).

We now derive the belief transition pdf ξ(t, q, r) = ∂
∂rP (q(t) ≤ r|q(0) = q), using the

above normal transition pdf for transformed log-likelihood ratios z(t) (see Figure 2).

Lemma 5 (Beliefs) The transition probability density function of beliefs q(t) is given by

ξ(t, q, r) =
qφ

(
−1

2

√
t + 1√

t
L(r, q)

)

r2(1− r)
√

t
=

√
q(1− q)

r3(1− r)32πt
e−

1
8
t− 1

2t
L2(r,q) (7)

for all (t, q, r) ∈ (0,∞)× (0, 1)× (0, 1), where L(r, q) = log
(

r(1−q)
(1−r)q

)
.
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r

Figure 2: Transition Probability Function. We plot the symmetric pdf ξ(t, q, r) for transitions
from q = 0.5 to any belief r after an elapse time t = 1.

Proof: Fix an arbitrary measurable real function η(·). Then
∫ 1
0 ξ(t, q, r)η(r)dr equals3

Eq[η(q(t))] = qEq

[
q(t)
q

η(q(t))
q(t)

]
=qEQ

q

[
η(q(t))
q(t)

]
= qEQ

λ(0,q)

[
η(`(t, z(t))
`(t, z(t))

]

=
q√
t

∫ ∞

−∞
φ

(
z(t)− λ(0, q)√

t

)(
e−

1
2 t−z(t) + 1

)
η

(
1

e−
1
2 t−z(t) + 1

)
dz(t)

=
q√
t

∫ 1

0
φ

(
λ(t, r)− λ(0, q)√

t

)
η(r)
r

∂λ(t, r)
∂r

dr

=
q√
t

∫ 1

0

1
r2(1− r)

φ

(
λ(t, r)− λ(0, q)√

t

)
η(r)dr. ¤

The paper hereafter repeatedly exploits this belief transition pdf to derive the formula

for the value and marginal value of information, as well as the properties of the demand

function. In particular, this yields a critical time derivative:

Lemma 6 (t-Derivative) The belief transition pdf q(t) satisfies, for 0 < q, r < 1 and

t>0 :

ξt(t, q, r) = ξ(t, q, r)
[
−1

8
+

L2(r, q)
2t2

− 1
2t

]
.

4 The Value of Information

4.1 Option Pricing Analogy

Before deriving our value function, it helps to motivate this with a related exercise done

in finance. To this end, simplify matters by positing that action A is a safe action yielding
3We write Eq[·] = E[·|q(0) = q] and Ez[·] = E[·|z(0) = z].

8



zero payoff, so that πH
A = πL

A = 0. Equation (1) can then be written as follows

u(q) = M max〈0, q − q̂〉.

Here we get immediately the following interpretation for u(q)/M : It equals the payoff of

a European call option with strike price q̂ and underlying asset price q.

Black and Scholes (1973) derive the option pricing formula when the underlying as-

set follows a geometric Brownian motion. They use an arbitrage argument to deduce a

parabolic PDE that reduces to the heat equation after a change of variable. In this trans-

formation, time is understood as time to maturity. But geometric Brownian motion is still

far more tractable than our nonlinear belief diffusion (2), and thus only a time rescaling

of the range variable is needed. By contrast, we use a more complicated transformation.

Harrison and Kreps (1979) and Harrison and Pliska (1981) later derived the option

pricing formula using martingale methods. In our paper, the z-process is a martingale

under the measure Q just as the discounted asset price is a martingale under the ‘pricing

measure’ in Harrison and Kreps (1979). Our first approach follows this line of thought,

but again, its execution requires a simultaneous range and domain transformation.

4.2 Value Function Derivation

Applying the backward equation to u(t, q) = Eq[u(q(t))] for the driftless belief diffusion

process q(·) in (2) yields our key insight into payoffs:4

Lemma 7 (Inhomogeneous Heat Equation) Expected payoffs u(t, q) satisfy

ut(t, q) =
1
2
q2(1− q)2uqq(t, q) (8)

for all (t, q) ∈ (0,∞)× (0, 1) with the initial condition: u(0, q) = u(q).

Notice that (8) implies that the marginal value of information is positive (ut(t, q) ≥ 0)

iff the value of information is convex in beliefs (uqq(t, q) ≥ 0). This further motivates

the link to the heat equation, as the temperature gradient within a finite bar obeys a
4In fact, all time derivatives utn in Theorem 2 satisfy the inhomogeneous heat equation – an curious

truth that we do not exploit.
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qualitatively similar law where convexity is critical, as Figure 3 depicts. By the same

token, the option value is convex in price, just as expected payoffs are convex in beliefs.

u

q

Figure 3: Analogy with Fourier’s Law. This illustrates Fourier’s Law of Heat Conduction
— in particular, how the heat flow is locally positive exactly when the heat distribution is locally convex
on the bar. Specifically, if u(t, q) is the temperature at position q on a bar, with ends held constant at
temperatures u(0) and u(1) respectively, then the temperature is increasing ut > 0 iff uqq > 0. This is
exactly analogous to the behavior of expected payoffs as we acquire more information.

As the inhomogeneous heat equation is not directly soluble, we proceed as follows. Let

us define z=log
(

q
1−q

)
and transform expected payoffs as h(t, z)=u

(
t, 1

1+e−z

)
(1+e−z).

Lemma 8 (Stochastic Representation) Transformed expected payoffs are represented

as

h(t, z) = EQ
z

[(
e−

1
2 t−z(t) + 1

)
u

(
1

e−
1
2 t−z(t) + 1

)]
. (9)

Proof 1: The Martingale Method. We first follow the approach of Harrison and

Kreps (1973), and exploit our martingale z(·). Write the posterior expected payoff as

u(t, q) = qEP
q

[
q(t)
q

u(q(t))
q(t)

]
= qEQ

q

[
u(q(t))

q(t)

]
= qEQ

λ(0,q)

[(
e−

1
2 t−z(t) + 1

)
u

(
1

e−
1
2 t−z(t) + 1

)]

using Lemma 4. Now u(t, q) = qh (t, λ(0, q)) gives (9).

Proof 2: The Heat Equation. We now adapt the approach of Black and Scholes

(1973). Change the variables in (8) from beliefs q to Z = log[q/(1 − q)] + t/2 = λ(−t, q)

— where t is understood as the elapse time. Next, define H(t, Z) = h(t, Z − t/2) =

u
(
t, 1

et/2−Z+1

) (
et/2−Z + 1

)
. Then the heat equation obtains:5 Ht(t, Z) = 1

2HZZ(t, Z).

5Simply take the derivatives below and apply ut = 1
2
q2(1− q)2uqq:

Ht(t, Z) =
et/2−Z

2
u
�
t, 1

et/2−Z+1

�
− et/2−Z

2(et/2−Z +1)
uq

�
t, 1

et/2−Z+1

�
+
�
et/2−Z +1

�
ut

�
t, 1

et/2−Z+1

�

HZZ(t, Z) = et/2−Zu
�
t, 1

et/2−Z+1

�
− et/2−Z

et/2−Z +1
uq

�
t, 1

et/2−Z+1

�
+

�
et/2−Z

�2

(et/2−Z +1)
3 uqq

�
t, 1

et/2−Z+1

�
.

We thank Robert Israel of UBC for first pointing out a related transformation.
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The solution of the heat equation (e.g. Karatzas and Shreve (1991, page 254)) yields:

H(t, Z) =
∫ ∞

−∞

1√
t
φ

(
y√
t

)(
e−Z−y + 1

)
u

(
1

e−Z−y + 1

)
dy.

Finally, using H(t, Z + t/2) = h(t, Z) gives the representation (9). ¤

We now exploit the above stochastic representation to derive the value of information.

It follows from Lemma 1 that the long-run limit of the expected payoff is given by

lim
t↑∞

u(t, q) = qu(1) + (1− q)u(0) ≡ ū(q), (10)

i.e., we can write u(∞, q) = ū(q). Let us define the full information gap as follows

FIG(t, q) = u(∞, q)− u(t, q) = ū(q)− u(t, q). (11)

Thus, FIG is the difference between the expected payoffs with full information and time t

information. We now explore the behavior of the value function v(t, q) for finite t > 0.

Theorem 1 (Value Formula) The expected payoff is u(t, q) = qπH
B +(1−q)πL

A−FIG(q, t),

where the full information gap satisfies

FIG(t, q) = q
(
πH

B − πH
A

)
Φ

(
−1

2

√
t + 1√

t
L(q̂, q)

)
−(1−q)

(
πL

A − πL
B

)
Φ

(
−1

2

√
t− 1√

t
L(q̂, q)

)

where Φ(·) is the standard normal cdf. The value of information v(t, q) = u(t, q)− u(q) is

v(t, q) =





q
(
πH

B − πH
A

)
Φ

(
1
2

√
t− 1√

t
L(q̂, q)

)

−(1− q)
(
πL

A − πL
B

)
Φ

(
−1

2

√
t− 1√

t
L(q̂, q)

)
∀ q ≤ q̂

−q
(
πH

B − πH
A

)
Φ

(
−1

2

√
t + 1√

t
L(q̂, q)

)

+(1− q)
(
πL

A − πL
B

)
Φ

(
1
2

√
t + 1√

t
L(q̂, q)

)
∀ q ≥ q̂.

(12)

The appendix proof uses the fact that in Lemma 8, e−t/2−z(t) is log-normally distributed.

Figure 4 illustrates the posterior expected payoff with different information levels.

From Figure 4, we see that the value of information v(t, q) is high when q is close to

the cross-over belief q̂, and is low when q is close to 0 or 1.

11



q̂ q

v

Figure 4: Posterior expected payoff with different information levels. The parameter
values are: q̂ = 0.48, πA

H = 1, πA
L = 2, πB

H = 2.1, and πB
L = 1. The bottom solid line graphs ū(q), while

the top dotted line is u(q). Between we find u(1, q), u(5, q), u(15, q), respectively the graphs —, – ·,--

The results in our setting are analogous to the properties of call options. The value

of information in our setting is like the time value of the option. Informational value is

increasing in t just as the time value of the option is increasing in the time to maturity.

5 The Marginal Value of Information

Loosely, information only has positive marginal value if we hit the cross-over belief q̂ at

time t; its value is then increasing in the payoff slope difference M −m and belief variance

q̂2(1−q̂)2. Since v(t, q) = u(t, q)−u(q), the time derivatives of the value of information and

expected payoffs coincide, vtn(t, q) = utn(t, q), for all n = 1, 2, . . .. All these derivatives

admit a similar expression, as we now see:

Theorem 2 (Time Derivatives) The t-derivatives of v(t, q), for n = 1, 2, . . ., are

vtn(t, q) =
1
2
q̂2(1− q̂)2(M −m)

(
∂

∂t

)n−1

ξ(t, q, q̂) (13)

for all (t, q) ∈ (0,∞) × (0, 1), where m ≡ πH
A − πL

A < πH
B − πL

B ≡ M . In particular, the

marginal value of information is given by a scaled standard normal density:

vt(t, q) =
(M −m)q(1− q̂)

2
√

t
φ

(
−1

2

√
t +

1√
t
L(q̂, q)

)
. (14)

Theorem 2 is proven in the appendix by just differentiating Theorem 1. We now give an

incomplete but suggestive development of the marginal value of information in terms of the

12



derivative of the belief transition density. Since the backward equation ut = 1
2q2(1−q)2uqq

holds at any time ε > 0, and since u(t, q) = Eq[u(0, q(t))] ≈ Eq[u(ε, q(t))],

ut(t, q) ≈ Eq[ut(ε, q(t))] =
∫ 1
0

1
2r2(1−r)2uqq(ε, r)ξ(t, q, r)dr ≈ M−m

4ε

∫ q̂+ε
q̂−ε r2(1−r)2ξ(t, q, r)dr

where we approximate uqq near the kink with uqq(ε, q) ≈ M−m
2ε for all q ∈ (q̂ − ε, q̂ + ε),

and otherwise uqq(ε, q) = 0. Taking the limit ε → 0, we get uqq(0, q̂) = ∞ and otherwise

uqq(0, q) = 0. Thus, ut(t, q) ≈ 1
2(M −m)q̂2(1− q̂)2ξ(t, q, q̂).

Comparing the marginal value schedule to the likewise left-skew log-normal density,

the tail of vt is asymptotically much thinner. Further notice that while the value of

information behaves continuously as beliefs q converge upon the cross-over belief q̂, the

marginal value explodes for small t. This discontinuity is reflected in the next result.

Corollary 1 (Derivatives) The marginal value of information obeys6

(a) For all t ∈ (0,∞), vt(t, q) ∈ (0,∞) for all q ∈ (0, 1), while vt(∞, q) = 0 for all q

(b) [Radner-Stiglitz (1984)] vt(0+, q) = 0 for all q 6= q̂, while vt(0+, q̂) = ∞
(c) [and beyond. . . ] Finally, vtn(0+, q) = 0 for all q and n = 2, 3, . . ..

The proof is in the appendix. Part (b) is the ‘nonconcavity in the value of information’

conclusion of RS and CS, since a marginal value that starts at zero cannot globally fall.

(See Figure 5.) We go somewhat beyond this conclusion in part (c), finding that all higher

order derivatives also initially vanish for our informational framework.

Note that the Inada condition of RS or of CS (their assumption A1) simply does not

apply.7 As natural as our Gaussian model is — it is the limit of the discrete sampling

models, as we see in §8 — it escapes known sufficient conditions. And yet vt(0+, q) = 0.

We now globally describe the marginal value of information. To this end, let us define

an inflection point in the value of information, where the marginal value peaks:

TFL(q) = 2
[√

1 + L2(q̂, q)− 1
]
. (15)

6As usual, vt(0+, q) = lims↓0 vt(s, q), and vtn(0+, q) = lims↓0 vtn(s, q).
7In our case, the signal X has mean µθt and variance t. The RS Inada condition fails, and assumption

A1 in CS fails, because the signal density derivative in t explodes at t = 0 — as CS acknowledge for
Kihlstrom (1974). But the critical difference is not the signal distribution, as CS suggest: Had we assumed
the convex continuous action model of Kihlstrom, there would be no easily deduceable nonconcavity:
Indeed, ut(0+, q) = limt→0 ut(t, q) = limt→0

1
2
q2(1− q)2uqq(t, q) = 1

2
q2(1− q)2uqq(q) > 0 by assumption.

13



We remark that this inflection point demand is surprisingly independent of the payoff

levels except insofar as it affects the cross-over belief q̂. This holds in spite of the fact that

the marginal value of information (14) is indeed increasing in the payoff stakes M −m.

Theorem 3 (Value and Marginal Value of Information) Fix q ∈ (0, 1) with q 6= q̂.

(a) The value of information is initially convex until t = TFL(q), after which it is concave.

(b) The marginal value is rising until TFL(q), and later falling. It is convex in [0, T1(q)],

concave in (T1(q), T2(q)), and convex for [T2(q),∞), where TFL(q) ∈ (T1(q), T2(q)).

t

v

t

v
t

T
FL

Figure 5: Value and Marginal Value of Information. At left (right) is the graph of the
value (marginal value) of information for the parameter values q̂ = 0.5, πA

H = 1, πA
L = 2, πB

H = 2, and
πB

L = 1. The solid lines are the values with q = 0.2 or q = 0.8, while the dotted lines with the cross-over
belief q = 0.5. Observe that the nonconcavity arises when we do not start at the cross-over belief.

Proof: First note that from (15) we get that TFL(q) ∈ [0,∞) and that TFL(q) = 0 if and

only if q = q̂. From (8) and Theorem 2 we get

vtt(t, q) = vt(t, q)
[
−1

8
+

L2(q̂, q)
2t2

− 1
2t

]
, (16)

where vt(t, q) > 0, according to Corollary 1. Now vtt(t, q) = 0 gives Υ(t, q) ≡ t2 + 4t −
4L2(q̂, q) = 0, which yields (15). Part (a) owes to Υ(s, q) ≶ 0 for all s ≷ TFL(q).

For (b), note that vttt(0+, q) = 0 according to Corollary 1. Second, from Theorem 2:

vttt(t, q) = vt(t, q)

[(
−1

8
+

L2(q̂, q)
2t2

− 1
2t

)2

− L2(q̂, q)
t3

+
1

2t2

]
(17)

and hence vttt(t, q) = 0 if t4 + 8t3 + (48 − 8L2)t2 − 96L2t + 16L2 = 0. Clearly, vttt > 0

near t = 0. So if there is only one positive root T1(q) then vttt(t, q) < 0 for all t > T1(q).

14



CHT

v(t,q)

FLT t

Figure 6: Consequences of the Information Non-concavity. The choke-off demand
TCH(q) exceeds the peak marginal value demand TFL(q) due to the non-concavity of information. Thus,
the demand curve for information is not simply the falling portion of the marginal value of information.

Since vttt(t, q) > 0 for large t, if there exists a strictly positive root then there must be two

strictly positive roots T1(q) and T2(q). If there are no positive roots then vttt(t, q) > 0 for

all t > 0. Along with (c) in Corollary 1, this gives vtt(t, q) > 0 for all t > 0 — contradicting

part (a) of this Lemma. So there are two positive roots. We have T1(q) < TFL < T2(q)

since vtt(TFL, q) = 0 and vtt(t, q) > 0 for all t < TFL. This gives (b). ¤

In light of Lemma 6, the convexity before TFL(q) owes to the increasing transition pdf

(ξt(t, q, q̂) ≥ 0) and the concavity after TFL(q) owes to the decreasing pdf (ξt(t, q, q̂) ≤ 0).

6 The Demand for Information

A. The Demand Curve. We now consider linear pricing of information c(t) = ct,

where c is a strictly positive constant. Let demand τ(c, q) maximize consumer surplus

Π(t, q) = u(t, q)− ct = u(q) + v(t, q)− ct. (18)

We hereafter fix q 6= q̂, ignoring the cross-over belief q̂, since it is a single point (i.e.

nongeneric); we can thus avoid hedging our theorems. Because of the non-concavity

near quantity 0, and since the marginal value finitely peaks, there exists a choke-off cost

cCH(q) > 0, above which demand is zero, and an implied minimum choke-off demand,

TCH(q) > 0. At the cost cCH(q) > 0, demand is TCH(q) and consumer surplus is zero.

Thus, marginal value is falling, and so TCH(q) ≥ TFL(q), as in Figure 6. Summarizing:

Cost ‘choke-off’: cCH(q) = vt(TCH(q), q) =
v(TCH(q), q)

TCH(q)
. (19)
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c

T
CH

c
CH

log(c)+1/2log(-log(c))

T
CH

Figure 7: Optimal and Approximate Large Demand. The true demand curve is depicted
in the left figure. In the right figure, true demand is the solid line and the approximation is the dotted
line. Parameter values: q = 0.2 or 0.8, q̂ = 0.5, πA

H = 1, πA
L = 2, πB

H = 2, and πB
L = 1.

Let us define TFOC(c, q) < TFL(q) by the FOC vt(TFOC(c, q), q) = c. This is well-

defined iff c ≤ vt(TFL(q), q), since vtt(TFL(q), q) < 0 on (TFL(q),∞) (Theorem 3-(b)).

Demand is captured by the FOC precisely when the cost falls below the choke-off cost.

Theorem 4 (Demand) τ(c, q) = 0 if c > cCH(q) and τ(c, q) = TFOC(c, q) if c ≤ cCH(q).

Proof: Observe that by (18), Π(t, q) =
∫ t
0 [vt(s, q) − c]ds. The integrand is first negative,

since vt(0+, q) = 0, and eventually negative, since vt(∞, q) = 0. If c > cCH(q), then

the integral (consumer surplus) is always negative, and so the optimal demand is t = 0.

Otherwise, if c ≤ cCH(q) < vt(TFL(q), q), then TFOC(c, q) exists, and by Theorem 3, the

integrand is positive for an interior interval ending at TFOC(c, q), where vt(TFOC(c, q), q)−
c = 0. Thus, the integral is maximized at t = TFL(q), as needed. ¤

Corollary 2 (Law of Demand) Demand is falling in the price c, for c < cCH(q).

Indeed, simply apply vtt(t, q) < 0 for all t > TFL(q) (true by Theorem 3). Notice that

the law of demand applies to information too, but only after the price drops below the

choke-off level cCH(q), so that positive demand is warranted. Figure 7 illustrates these

results: the jump in information demand as costs drop, as well as the Law of Demand.

B. Quantifying the Lumpiness. We now wish to explore the size of the nonconcavity

in the demand for information. The most direct approach here is to quantify the minimum

expenditure Tvt(T, q) on information that the DM must incur. Of course, this amount
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should increase in the maximum payoff stakes, simply because the marginal value of in-

formation does, by Lemma 2. Additionally, if beliefs are near 0 or 1, then information

demand vanishes. Seeking an appropriate normalization, let the expected payoff stakes

denote the maximum expected payoff loss from choosing a wrong action. We evaluate

these using the worst case scenario, which occurs at the cross-over belief q = q̂:

q̂[max loss if θ=H]+(1−q̂)[max loss if θ=L] = q̂[πH
B−πH

A ]+(1−q̂)[πL
A−πL

B] = q̂(1−q̂)(M−m)

This clearly vanishes when q̂ = 0, 1, and increases in the maximum payoff stakes M −m.

Theorem 5 (Least Positive Information Costs) The average lower bound on infor-

mation expenditures normalized by the payoff stakes exceeds 0.025, or

∫ 1

0

TCH(r)vt(TCH(r), r)
q̂(1− q̂)(M −m)

dr > 0.025. (20)

Proof: Suppressing the arguments of L = L(q̂, q) and TCH(q), we have

v(TCH , q)
q̂(1− q̂)(M −m)

=

∫ TCH

0 vt(s, q)ds

q̂(1− q̂)(M −m)
=

1
2

√
q(1− q)

2πq̂(1− q̂)

∫ TCH

0

1√
s
exp

(
−s

8
− L2

2s

)
ds.

Using this equation, a lower bound on (20) is 0.025, as we show in the appendix. ¤

One reason why we take an average here is that the threshold choke-off cost cCH(q)

vanishes as beliefs q approach q̂ or the extremes 0, 1. Thus, the minimum information

purchase likewise vanishes nearing those three beliefs, and only an average makes sense.

C. Demand as a Function of Beliefs. A classic question asked of Bayesian sequential

learning models is the range of beliefs with a positive experimentation level.

Theorem 6 (Interval Demand) Demand τ(c, q) > 0 iff beliefs q belong to an interior

interval
(
q(c), q̄(c)

)
, where the thresholds 0 < q(c) < q̂ < q̄(c) < 1 obey

v
(
τ

(
c, q(c)

)
, q(c)

)
= τ

(
c, q(c)

)
c and v (τ(c, q̄(c))) = τ (c, q̄(c)) c. (21)

Furthermore, the choke-off demands are TCH(q̄(c)) = τ(c, q̄(c)) and TCH(q(c)) = τ(c, q(c)).
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Proof: First of all, demand is clearly positive at belief q̂, since vt(0+, q̂) = ∞, by (b)

in Corollary 1. Further, demand vanishes at q = 0, 1, since vt(t, 0) = ut(t, 0) = 0 and

vt(t, 1) = ut(t, 1) = 0 for all t. Thus, any interval structure obeys 0 < q(c) < q̂ < q̄(c) < 1.

Next, when positive, demand must satisfy the FOC vt(τ(q), q) = c. Thus, it suffices

to prove that vt(t, q) is strictly quasi-concave in q, but this fails. Instead, we show local

quasi-concavity at the optimal demand τ(c, q), since vt(t, q) is continuous. Specifically, we

show that vtq(τ(c, q), q) = 0 implies vtqq(τ(c, q), q) < 0.

Differentiating the FOC yields τq(c, q) = −vtq/vtt, if we suppress arguments. Hence,

τqq(c, q) = − 1
vtt

(vtqq + vttqτq) +
vtq

v2
tt

(vttq + vtttτq) = − 1
vtt

vtqq. (22)

because our premise vtq(τ(c, q), q) = 0 is clearly equivalent to τq(c, q) = 0, by the FOC.

By Theorem 3-(b), we have vtt(τ(c, q), q) < 0, and so vtqq(τ(c, q), q) and τqq(c, q) share the

same sign. Since utt(τ(c, q), q) = 1
2q2(1− q)2utqq(τ(c, q), q) by Lemma 7, we complete the

proof with

−vtqq(τ(c, q), q)
vtt(τ(c, q), q)

= −utqq(τ(c, q), q)
utt(τ(c, q), q)

= − 2
q2(1− q)2

< 0. (23)

Finally, demand vanishes when the DM is indifferent between buying and not buying at

all — namely, at the choke-off level. So (21) follows, and TCH(q) is as described. ¤

These results strikingly differ from their analogues in a dynamic setting. That in-

formation demand is positive precisely on an interior interval is completely in harmony

with the standard sequential experimentation result (see MS1). However, it holds for an

entirely unrelated reason! In sequential experimentation, the DM stops when his Bellman

equation indicates that marginal costs and benefits of further experimentation balance.

In our static demand setting, the DM buys no information when total costs and bene-

fits of any information purchase balance. Namely, given the nonconcavity in the value of

information, this demand choke-off decision turns on considerations of global optimality.

The following theorem gives the relationship between positive demand and beliefs.

Theorem 7 (Hill-Shaped Demand) τ(c, ·) is quasi-concave in beliefs q ∈ (
q(c), q̄(c)

)
.

Proof: By Theorem 6, τ(c, q) > 0 and so τq(c, q) = 0 implies τqq(c, q) < 0 by (22)–(23). ¤
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Again, a comparison with the dynamic case is instructive, and here it is a contrast

in the result, and not just the rationale for the result. MS1 assume a convex cost of

information in a sequential experimentation model and deduce instead that information

demand is U-shaped and convex, and not hill-shaped and concave. The static demand

solution is the intuitive one, with demand greatest when the DM is most uncertain.

D. The Elasticity of Demand. The elasticity of the demand equals |τc(c, q)c/τ(c, q)|.
When the elasticity equals 1, the demand level is TE(q), and revenue vt(t, q)t is maximized.

Using this fact, we characterize TE(q) below, using the belief derivative (16):

TE(q) = − vt (TE(q), q)
vtt (TE(q), q)

= 2
[
1 +

√
1 + L2(q̂, q)

]
= TFL(q) + 4. (24)

Like the peak marginal value TFL(q), the unit elastic demand does not depend on the

underlying payoff stakes, apart from the dependence on the cross-over belief q̂. Further,

the marginal value is clearly falling at TE(q), since it exceeds TFL(q). A key question in

our setting is whether it lies above the choke-off demand. The answer is yes, provided the

belief is sufficiently interior.

Theorem 8 (Elasticity)

(a) Demand is initially elastic for q ∈ (q́, q̀), where 0 < q́ < q̂ < q̀ < 1.

(b) Demand elasticity is decreasing in the cost c, for all c ≤ cCH(q).

Observe that (q́, q̀) ⊂ (q(c), q̄(c)) because demand is positive for q ∈ (q́, q̀). Define cE(q) =

vt (TE(q), q), namely, the cost level where demand elasticity equals 1. Then cE(q) < cCH(q)

iff q ∈ (q́, q̀). Rephrasing part (a), information demand is elastic for c ∈ (cE(q), cCH(q)]

and inelastic if c < cE(q).

To make some sense of part (b), one can reason that the marginal value of information

drops off so fast in the tail of the normal pdf that the demand elasticity falls monotonically.

E. Large Demand. We now give a simple asymptotically applicable demand formula.

It is consistent with the formula that MS2 derived for conditionally iid samples from any

signal distribution, using large deviation theory. Our work here, which follows from our

Gaussian framework, is more refined, as we specify an additional error term,8 and show
8In the discrete signal world of MS2, their formula was eventually accurate within one signal.
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that it is positive — in other words, the limit demand curve is approached from above.

Theorem 9 (Low Prices) If c is small then the optimal demand is approximated by:

τ(c, q)/8 = F (q)− log(c)− 1
2 log(− log(c)) +

log(− log(c))
4 log(c)

(1 + o(1)), (25)

where o(1) vanishes in c, and where F (q) = 1
2 log[q(1− q)q̂(1− q̂)/64π] + log(M −m).

Observe that the approximate difference 2[log(− log(c))]/ log(c) between demand and

F (q)− log c− 1
2 log(− log c) is negative, and asymptotically vanishing in c (see Figure 7).

Therefore, the three c-dependent terms of the demand function (25) provide (in order,

adding them from left to right) increasingly accurate approximations. As the cost of

information vanishes, demand is essentially logarithmic.

Proof of Theorem 9: First, if the cost c is small then TFOC(c, q) exists and u(TFOC(c, q), q) ≥
u(0, q). So in this case τ(c, q) = TFOC(c, q). Second, from the FOC vt(τ(c, q), q) = c:

c =
(M −m)q(1− q̂)

2
√

2πτ(c, q)
exp

{
−1

2

[
1
4
τ(c, q)− L(q̂, q) +

L2(q̂, q)
τ(c, q)

]}
.

Taking logs, using the definitions of L(q̂, q) and F (q) yields the log inverse demand curve:

log(c) = F (q)− 1
2

log(τ(c, q)/8)− L2(q̂, q)
16τ(c, q)/8

− 1
8
τ(c, q) = F (q)− ψ(τ(c, q)/8), (26)

where ψ(x) = x + 1
2 log x + B/x, for B = L2(q̂, q)/16. Notice that ψ−1 exists when

ψ′(x) = 1 − 1/(2x) − B/x2 > 0, which is true for large x.9 Rearranging (26) produces

the demand curve τ(c, q) = 8ψ−1(F (q) − log c). The appendix shows that ψ−1(x) =

x− 1
2 log x + 2[(log x)/x](1 + o(1)) and that ψ−1(x) > x− 1

2 log x. Thus, (25) follows from

τ(c, q)/8 = F (q)− log c− 1
2 log(− log c)− 1

2 log
(

1− F (q)
log c

)
+

1
4

log(F (q)− log c)
F (q)− log c

(1+o(1)).

¤

Recall that we have normalized ζ = 1. Had we not done so, the demand function

in (25) would hold if divided by ζ2. MS2 analyze the large demand for information as

9Specifically, this holds for x > 1+
p

1 + L2(q̂, q)/16, which is less than TE(q). In other words, certainly
starting when demand is inelastic, our inverse demand curve τ(c, q) = 8ψ−1(F (q)− log c) is valid.

20



the price c vanishes, for any arbitrary signal, not just for weak or gaussian signals as we

do here. They define a general information index for a signal, ρ ∈ (0, 1), where 0 means

perfectly informative, and 1 uninformative. They show that the demand function for small

c has the same logarithmic form as in (25), with same slope when we define ζ2 = −8 log(ρ):

τ(c, q)
8 log(ρ)

= F (q)− [log(c) +
1
2

log(− log(c))] +
log(− log(c))

4 log(c)
(1 + o(1)).

In other words, the demand for any signal with information index ρ at small price is

approximately the same as the demand time with ζ2 = −8 log(ρ). Notice that ζ rises

from 0 to infinity as informativeness rises (ρ falls from 1 to 0).

7 The Natural ‘Small Bits’ of Information

7.1 Beliefs

Any theory of variable quantity information requires that it be measured in sufficiently

small units. While the paper assumed the diffusion process X(·), we now observe that this

well-approximates a wide class of discrete choice models with ‘small bits’ of information.

Assume the DM chooses the number n of i.i.d. draws from a signal, not necessarily

Gaussian. We show that as the informational content and the cost of each draw jointly

vanish, the associated value of information and the optimal sample size suitably converge

to their continuous time Brownian Motion counterparts.10 Therefore, our demand for

Gaussian information approximates the optimal number of cheap conventional signals.

Let {g(·|θ, ∆)} be a simple signal — a family of p.d.f.s, each indexed by the state

θ ∈ {L, H}, with support Z independent of θ. Further, assume that the signal becomes

uninformative as ∆ vanishes: lim∆↓0 g(Z|θ, ∆) = ḡ(Z) > 0. Here, ∆ is the real time elapse

length of a time interval in discrete time. In the (continuous) time span [0, t], the DM

observes n = bt/∆c draws from g(·|θ, ∆) at times ∆, 2∆, . . . , n∆ .= t, where bac is the

largest integer smaller than a. As ∆ vanishes, the DM observes an exploding number of

increasingly uninformative conditionally i.i.d. signal realizations at very high frequency.
10Abreu, Milgrom, Pearce (1991) confront a related informational problem.
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Beliefs evolve according to Bayes rule:

q∆(n∆|Z) =
q∆((n− 1)∆|Z)g(Z|H, ∆)

q∆((n− 1)∆|Z)g(Z|H,∆) + [1− q∆((n− 1)∆|Z)]g(Z|L,∆)
. (27)

We want this Markov process to converge weakly to the diffusion (2) as ∆ vanishes and

n explodes.11 When this obtains, q∆(bt/∆c∆) and q(t) have nearly the same finite-

dimensional distributions (suppressing Z arguments), as the next result asserts.

Theorem 10 (Small Bits) For every t > 0, the Markov process in (27) converges weakly

to the diffusion in (2) as ∆ ↓ 0, or q∆(bt/∆c∆) ⇒ q(t) if

lim
∆↓0

1
∆

∫
[g(z|H, ∆)− g(z|L,∆)]2

ḡ(z)
dz = 1. (28)

Example. We propose one natural way to construct the required g (·|θ, ∆) from any

signal {f (·|θ)}. Just garble f by supposing that in state θ the signal is drawn from f (·|θ)
with chance 1/2+

√
∆, and from the other “incorrect” distribution with chance 1/2−√∆.

For every ∆ > 0, this yields the required state-independent support Z. As ∆ vanishes,

the signal becomes pure noise, with state-independent limit ḡ(Z) = [f(Z|H) + f(Z|L)]/2.

One can verify for this example, using (28) and lim∆↓0 g(Z|θ,∆) = ḡ(Z) > 0, that

1 = 8
∫

Z

[f(z|H)− f(z|L)]2

f(z|H) + f(z|L)
dz. (29)

For example, if f(z|H) = 2z and f(z|L) = 2(1− z) for z ∈ [0, 1], then (29) implies

1 = 4
∫ 1
0 (4z − 2)2dz = 16

∫ 1
0 (2z − 1)2dz = 16/3.

Thus, the relevant approximation is an arithmetic Wiener process with state-dependent

drift µ = ±(2/
√

3)σ for any diffusion coefficient σ.
11Convergence is in the sense of Skorokhod’s topology on the space D([0, t],R) of right-continuous

functions with left limits.
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7.2 Value and Demand Approximation

The ex ante value of a sample of n = bt/∆c conditionally i.i.d. draws from {g (·|θ, ∆)} is

v∆(t, q) ≡ Eq[u(q∆(bt/∆c∆))]− u(q),

where the expectation is taken w.r.t. the distribution of the discrete time belief process

q∆(bt/∆c∆). Since the latter converges weakly to q(t), and u(·) is a continuous function:

lim
∆↓0

∣∣v∆(t, q)− v(t, q)
∣∣ = lim

∆↓0
∣∣Eq[u(q∆(bt/∆c∆))]− Eq[u(q(t))]

∣∣ = 0 (30)

for every prior q ∈ [0, 1]. The discrete time value function converges to the continuous

one. If we let v0(t, q) ≡ v(t, q), then v∆(t, q) is continuous in ∆ at ∆ = 0 for every t ≥ 0.

Now consider the following decision problem. Fix ∆ > 0. The DM can purchase n

conditionally i.i.d. draws of Z, non-sequentially, at unit price c∆ and total outlays nc∆,

yielding payoff Π∆(n∆|c, q) = v∆(n∆, q)− cn∆. The optimization problem is

sup
n∈N

Π∆(n∆|c, q). (31)

Note that Π∆(0|c, q) = v(0, q) and v∆(n∆, q) ≤ maxθ,a πθ
a for any ∆ > 0, so that

limn→∞Π∆(n∆|c, q) = −∞. It follows that a finite non-negative maximum of Π∆(n∆|c, q)
over integers n = 0, 1, 2, . . . exists, and is attained by a correspondence N∆(c, q).

The analogous continuous time problem when observing X(t) with state-dependent

drift is supt≥0 Π(t|c, q), where Π(t|c, q) = v(t, q)− ct. This problem yields the real-valued

demand function τ(c, q) that we have characterized. Along with (30), we find that

lim
∆↓0

Π∆(t|c, q) = lim
∆↓0

v∆(t, q)− ct = v0(t, q)− ct = v(t, q)− ct = Π(t|c, q).

The maximized value in the discrete model is thus near that of the continuous time model.

Theorem 11 (Demand Convergence) There is a selection n∆(c, q) ∈ N∆(c, q) such

that for a.e. parameter πθ
A, πθ

B, q, c > 0:

lim
∆↓0

∣∣n∆(c, q)∆− τ(c, q)
∣∣ = 0.
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The proof is in the appendix.

Next, the demand elasticity is also approximated by the discrete approximations:

lim
ε→0

lim
∆↓0

n∆(c + ε, q)− n∆(c, q)
n∆(c + ε, q)ε

= lim
ε→0

τ(c + ε, q)− τ(c, q)
ετ(c + ε, q)

=
τc (c, q)
τ(c, q)

c.

8 Conclusion

We have measured information in units that correspond to sample sizes of conditionally

iid signals, and assumed weak enough signals. In this setting, we have completely and

tractably characterized the demand for information for the two state world. We have, in

particular, provided the full picture of the famous informational nonconcavity for the first

time. Additionally, we have characterized the elasticity of information, the large demand

formula, and the dependence of demand on beliefs. Finally, we have shown that our model

well approximates all small bit models of information. Our theory extends, with additional

complexity, to a model with any finite set of actions, since that merely adds to the number

of cross-over beliefs. The restriction to two states, instead, is real.

Kihlstrom (1974) succeeded with off-the-shelf techniques precisely because of the self-

conjugate property of the normal, as well as the particular payoff function. Analysis of

the learning per se is bipassed entirely. But a learning model is generally useful insofar

as one knows how posterior beliefs evolve stochastically. Either a finite action space or

state space invalidates this approach, and one must treat the learning problem seriously.

And indeed, many choices in life are inherently discrete, like whether to change jobs, have

a child, or build a prototype. In our two-state model, beliefs are not linear in signal

realizations, so that this solving for this density requires new solution methods. We show

that this problem is just like the option pricing exercise — only harder.
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A Omitted Proofs

A.1 Limit Beliefs: Proof of Lemma 1 (a)

For all q ∈ (0, 1), we have q2(1−q)2 > 0 and
∫ q+ε
q−ε

2dy
y2(1−y)2

< ∞ for some ε > 0. So Feller’s

test for explosions (Karatazas and Shreve (1991), Theorem 5.29) implies part (a) because

∫ c

0

2dq

q2(1− q)2
≥ 2

∫ c

0

1
q
dq = ∞ ∀ c ∈ (0, 1).

A.2 Value Function Derivation: Proof of Theorem 1

By Lemma 8, the expected payoff can be represented as an integral as follows

u(t, q) =
∫ ∞

−∞

(
(1− q) e−

1
2 t−√ty + q

)
u


 1(

1
q − 1

)
e−

1
2 t−√ty + 1


φ(y)dy.

Let us exploit symmetry φ(y) = φ(−y). Since u(q) = max〈πL
A + mq, πL

B + Mq〉,

u(t, q) = q

∫ ∞

ŷ(t,q)

((
1
q − 1

)
e−

1
2 t+

√
ty + 1

) 
πL

A + m
�

1
q−1

�
e
−1

2 t+
√

ty
+1


φ(y)dy

+q

∫ ŷ(t,q)

−∞

((
1
q − 1

)
e−

1
2 t+

√
ty + 1

)
πL

B + M
�

1
q−1

�
e
−1

2 t+
√

ty
+1


φ(y)dy

= q
(
πL

A + m
) ∫ ∞

ŷ(t,q)
φ(y)dy + (1− q)πL

A

∫ ∞

ŷ(t,q)
e−

1
2 t+

√
tyφ(y)dy (32)

+q
(
πL

B + M
) ∫ ŷ(t,q)

−∞
φ(y)dy + (1− q)πL

B

∫ ŷ(t,q)

−∞
e−

1
2 t+

√
tyφ(y)dy,

where
√

tŷ(t, q) = t/2 + log
((

M−m
πL

A−πL
B

− 1
)

q
1−q

)
satisfies

πL
A +

m(
1
q − 1

)
e−

1
2
t+
√

tŷ(t,q) + 1
= πL

B +
M(

1
q − 1

)
e−

1
2
t+
√

tŷ(t,q) + 1
.

The second and the last integrands in (32) can be simplified using

e−
1
2
t+
√

tyφ(y) =
1√
2π

e−
1
2
t+
√

ty− y2

2 =
1√
2π

e−
(y−√t)2

2 ,
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which is the pdf of a normal variable with mean
√

t and unit variance. This and (32) give

u(t, q) = q
(
πL

A + m
) ∫ ∞

ŷ(t,q)
φ(y)dy + (1− q)πL

A

∫ ∞

ŷ(t,q)−√t
φ(y)dy

+q
(
πL

B + M
)
Φ(ŷ(t, q)) + (1− q)πL

BΦ
(
ŷ(t, q)−

√
t
)

.

Symmetry φ(y) = φ(−y) and all parametric definitions yield

u(t, q) = qπH
A Φ

(
−1

2

√
t +

1√
t
L(q̂, q)

)
+ (1− q)πL

AΦ
(

1
2

√
t +

1√
t
L(q̂, q)

)

+ qπH
B Φ

(
1
2

√
t− 1√

t
L(q̂, q)

)
+ (1− q)πL

BΦ
(
−1

2

√
t− 1√

t
L(q̂, q)

)
.

Using Φ (y) = 1− Φ(−y), we get FIG(t, q); v(t, q) = u(t, q)− u(q) then yields (12). ¤

A.3 Marginal Value: Proof of Theorem 2

Differentiating Theorem 1 with respect to t, and denoting L = L(q̂, q), yields

vt(t, q) = qπH
A φ

(
−
√

t

2
+

L√
t

)(
− 1

4
√

t
− L

2t3/2

)
+ (1− q)πL

Aφ

(√
t

2
+

L√
t

)(
1

4
√

t
− L

2t3/2

)

+qπH
B φ

(√
t

2
− L√

t

)(
1

4
√

t
+

L

2t3/2

)
+ (1− q)πL

Bφ

(
−
√

t

2
− L√

t

)(
− 1

4
√

t
+

L

2t3/2

)

= φ

(
−
√

t

2
+

L√
t

)[
(πH

B − πH
A )q

(
1

4
√

t
+

L

2t3/2

)
+ (πL

A − πL
B)

q(1− q̂)
q̂

(
1

4
√

t
− L

2t3/2

)]

=
(M −m)q(1− q̂)

2
√

t
φ

(
−
√

t

2
+

L√
t

)
,

where the second equality owes to φ (−x) = φ (x) and φ
(√

t
2 + L√

t

)
= φ

(
−
√

t
2 + L√

t

)
e−L,

and the last to M −m = (πH
B − πH

A ) + (πL
A − πL

B) and q̂ = (πL
A − πL

B)/(M −m).

Finally (14) yields (13) by taking further time derivatives and by using Lemma 5. ¤

A.4 Slopes at Zero: Proof of Corollary 1

Claim 1 For any n > 1 we have:

∂nv(t, q)
∂tn

= vt(t, q)
[
A2(n−1)(q)

t2(n−1)
+ · · ·+ A1(q)

t
+ A0(q)

]
,
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where A2(n−1)(q), · · · , A0(q) are bounded functions of q.

Proof: From (8), since vtt(t, q) = vt(t, q)
[

A2(q)
t2

+ A1(q)
t + A0(q)

]
, each extra differentiation

produces, via the product rule, a polynomial in 1/t whose highest power rises by two. ¤

The first equality of Corollary 1 follows from (14) because φ
(
−1

2

√
t + 1√

t
L(q̂, q)

)
> 0

for all (t, q) ∈ (0,∞)× (0, 1). The second, third, and fourth equalities owe to (7), (8), and

(14), by taking the limit t → ∞ or t ↓ 0. [Indeed, limt↓0 ξ(t, q, q̂) = lims↓0 e−
1
s√
s

e−s = 0 if

q 6= q̂.] From Lemma 1, Lemma 6, and Theorem 2, we get

∂nv(t, q)
∂tn

=

√
q(1− q)

q̂3(1− q̂)32π

1

e
1
8
t+ 1

2t
L2(q̂,q)

1√
t

[
A2(n−1)(q)

t2(n−1)
+ · · ·+ A1(q)

t
+ A0(q)

]
= 0.

This gives the fifth equality of Corollary 1. ¤

A.5 Information Lumpiness: Proof of Theorem 5

Because TCH(q) ≥ TFL(q), the last integral is greater than

∫ TFL

0

e−
1
8
TFL−L2/2s

2
√

s
ds=





e−
1
8
TFL

[√
TFLe

− L2

2TFL −√2πL
(
1− Φ

(
L√
TFL

))]
∀ q̂ ≥ q

e−
1
8
TFL

[√
TFLe

− L2

2TFL +
√

2πLΦ
(

L√
TFL

)]
∀ q ≥ q̂.

(33)

Equation (33) gives that v(TCH(q), q)/[q̂(1− q̂)(M −m)] exceeds

j(q, q̂)=





√
q(1−q)

2πq̂(1−q̂)e
− 1

8
TFL

[√
TFLe

− L2

2TFL −√2πL
(
1− Φ

(
L√
TFL

))]
∀ q̂ ≥ q

√
q(1−q)

2πq̂(1−q̂)e
− 1

8
TFL

[√
TFLe

− L2

2TFL +
√

2πLΦ
(

L√
TFL

)]
∀ q ≥ q̂.

It can be shown that J(q̂) =
∫ 1
0 j(q, q̂)dq is convex on (0, 1), and is minimized at q̂ = 0.5.

We shall now bound this minimized value. Indeed, j(·, 0.5) is a double-hump shape: It is

concave on (0, 0.5) and (0.5, 1), and limq↓0 j(q, 0.5) = limq→0.5 j(q, 0.5) = limq↑1 j(q, 0.5) =

0 because L(0.5, q) = 0 and TFL = 0 if q̂ = q = 0.5, while the limits at q = 0 and

q = 1 require l’Hopital’s rule. Further, j(·, 0.5) satisfies j(r, 0.5) = j(1 − r, 0.5) where

0 < r < 0.5. Therefore, we can inscribe between the horizontal j = 0 axis and the
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j(q, 0.5) curve two equally tall triangles, whose area is a lower bound on J(0.5), namely,

J(0.5) > (0.5)maxq∈(0,0.5) j(q, 0.5). Finally, maxq∈(0,0.5) j(q, 0.5) = j(0.25, 0.5) > 0.05. ¤

A.6 Elasticity of Demand: Proof of Theorem 8

Proof of Part (a). Now we show that there exist two points where TE(q) = TCH(q) —

one when q < q̂ and one when q > q̂. Let us define the gross surplus function γ as follows

γ(q) ≡ v(TE(q), q)− vt(TE(q), q)TE(q). (34)

It suffices to show that γ(q) > 0 iff q ∈ (q́, q̀), where q̂ ∈ (q́, q̀). We will prove that γ(q) > 0

for q ∈ (q́, q̂); the case (q̂, q̀) follows from symmetry. Differentiating (7) yields:

Claim 2 (q-Derivatives) The belief transition pdf q(t) obeys, for 0<q, r<1 and t>0 :

ξq(t, q, r) = ξ(t, q, r)
[

1−2q
2q(1−q) + L(r,q)

tq(1−q)

]
(35)

ξqq(t, q, r) = ξ(t, q, r) 1
q2(1−q)2

[
−1

4 + L2(r,q)
t2

− 1
t

]
.

Claim 3 We have γ(0+) = 0, γq(0+) = −∞, and γ(q̂) > 0.

Proof: First we calculate γ(0+). Since limq↓0 L(q̂, q) = limq↓0 log
(

q̂(1−q)
q(1−q̂)

)
= ∞, we get

limq↓0 TE(q) = limq↓0 L2(q̂, q) = ∞ and using (7) and (14), we get

lim
q↓0

vt (TE(q), q) TE(q) = lim
q↓0

√
qTE(q)

e
TE(q)

8
+ 1

2TE(q)
L2(q̂,q)

= 0.

From (12), the first term of v(TE(q), q) satisfies

lim
q↓0

q(πH
B − πH

A )Φ

(√
TE(q)
2

− L(q̂, q)√
TE(q)

)
= 0,

because Φ (r) ≤ 1 for all r. For the second term of v(TE(q), q), we have

lim
q↓0

(1− q)(πL
A − πL

A)Φ

(
−

√
TE(q)
2

− L(q̂, q)√
TE(q)

)
= 0

since limq↓0 L(q̂, q)/
√

TE(q) = limq↓0
√

TE(q) = ∞. Thus, limq↓0 γ(q) = 0.
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Next we solve limr↓0 γq(r), where

γq(q) = vq(TE(q), q)− vtt(TE(q), q)TE(q) ∂
∂qTE(q)− vtq(TE(q), q)TE(q). (36)

Let us analyze the different terms separately. By Theorem 3, we have vtt(TE(q), q) < 0.

Differentiating (24) gives
∂
∂qTE(q) = − 2

q(1−q)
L(q̂,q)√

1+L2(q̂,q)
,

and so limr↓0 ∂
∂qTE(r) = −∞. Because limq↓0 TE(q) = ∞, the second term in (36) satisfies

limq↓0 vtt(TE(q), q)TE(q) ∂
∂qTE(q) = ∞. For the third term of (36):

lim
r↓0

vtq(TE(r), r) = lim
q↓0

ξ(TE(q), q, q̂)
[

1−2q
2q(1−q) + L(q̂,q)

TE(q)q(1−q)

]
= ∞,

because limq↓0 q
TE(q) = 0. Since vq(TE , q) is bounded, we get γq(0+) = −∞.

Finally, we calculate the value of γ(q̂) by using (34). We again divide the expression

into different parts. Because L(q̂, q̂) = 0, we have TE(q̂) = 4, and so from (14), we get

vt(TE(q̂), q̂)TE(q̂) = q̂(1− q̂)(M −m)
√

1
2πe−1/2. (37)

Since TE(q̂) = 4, equation (12) gives

v(TE(q̂), q̂) = q̂(1− q̂)(M −m) (Φ(1)− Φ(−1)) = q̂(1− q̂)(M −m)
√

1
2π

∫ 1

−1
e−

x2

2 dx. (38)

By subtracting (37) from (38), we get γ(q̂) > 0, since
∫ 1
−1 e−

x2

2 dx > e−1/2. ¤

Claim 4 γ(·) : (0, q̂) → R is convex.

Proof: Twice differentiating (34) gives

−γqq(q) = vttt(TE(q), q)TE(q)( ∂
∂qTE(q))2 + 2vttq(TE(q), q)TE(q) ∂

∂qTE(q) + vtt(TE(q), q)( ∂
∂qTE(q))2

+vtt(TE(q), q)TE(q) ∂2

∂q2 TE(q) + vtqq(TE(q), q)TE(q)− vqq(TE , q).

29



Substitute from (16), (17), as well as the formulas below from Claim 2 and Theorem 2:

vttq(t, q) = vt(t, q)
[(
−1

8 + L2

2t2
− 1

2t

) (
1−2q

2q(1−q) + L
tq(1−q)

)
− L

t2q(1−q)

]

vtq(t, q) = vt(t, q)
[

1−2q
2q(1−q) + L

tq(1−q)

]

vtqq(t, q)/vtt(t, q) = vqq(t, q)/vt(t, q) = 2
q2(1−q)2

=⇒ γqq(q) = vt(TE(q), q)

(
3 + L2

)
+

(
L4 + 4L2(2 + S) + 8(1 + S)

)

(1− q)2q2 (1 + L2)
3
2 S3

> 0,

where S = 1 +
√

1 + L2. ¤

From Claim 3 we get γ(q̂) > 0 and γ(ε) < 0 for ε > 0. Since γ(·) is continuous, there

exists q́ ∈ (0, q̂) such that γ(q́) = 0. The uniqueness follows from Claim 4. Hence, γ(q) > 0

for q ∈ (q́, q̂). The proof for the existence and uniqueness of q̀ ∈ (q̂, 1) is symmetric. ¤

Proof of Part (b). Note that when c ≤ cCH(q) then τ(c, q) > 0. Let us denote elasticity

E(c) = −cτc(c, q)/τ(c, q). Clearly, E′(c) > 0 iff

cτ2
c (c, q)− [τc(c, q) + τcc(c, q)c] τ(c, q) > 0. (39)

Differentiating vt(τ(c, q), q) = c yields τc(c, q) = 1/vtt and τcc(c, q) = −vttt(τ, q)/v3
tt(τ, q).

Hence, if we substitute from (16) and (17) for vtt/vt and vttt/vtt, we get

cτ2
c − τ(τc + τccc) =

vt

v2
tt

− τ

(
1
vtt

− vtttvt

v3
tt

)

= − τ

vtt

(
1− v2

t

v2
tt

((
vtt

vt

)2

− L2

τ3
+

1
2τ2

)
− vt

τvtt

)

= − 1
vtt(vtt/vt)2τ2

(
L2 − 1

2
τ − vtt

vt
τ2

)

= − 1
vtt(vtt/vt)2τ2

(
L2

2
+

τ2

8

)

which is positive because vtt(τ, q) < 0 when τ(c, q) > TCH(q). Hence, E(c) is rising in the

cost c, and thus falling in the quantity τ . ¤
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A.7 Large Demand: Inverting the Inverse Demand Curve in Theorem 9

Claim 5 Assume that ε(x) > 0 is an increasing C1 function of x, with ε(x)/x → 0, and

ε′(x) = ς/x + O(1/x2). Then the map ψ(x) = x + ε(x) has inverse β(x) = x− δ(x) where

δ(x) = ε(x)(1− ς/x + O(1/x2)). Furthermore, δ(x) > ε(x) for all x.

Simply notice that ε(x) = 1
2 log x + B/x obeys the required conditions with ς = 1/2.

Proof of Claim: Let β(x) = x − δ(x), for δ(x) > 0 — whose sign is clear, because β

and ψ are reflections of each other about the diagonal. Also, since ψ(x) → ∞, so must

β(x) →∞, by reflection. By the inverse property, ψ(x−δ(x)) ≡ x−δ(x)+ε(x−δ(x)) ≡ x.

Since x 7→ ε(x) is increasing, δ(x) = ε(x− δ(x)) < ε(x).

Taking a first order Taylor series of ε about x yields δ(x) = ε(x)− δ(x)ε′(x̂) < ε(x) for

some intermediate value x̂ ∈ [x− δ(x), x]. Hence, x̂/x ≥ 1− δ(x)/x ≥ 1− ε(x)/x → 1.

δ(x) =
ε(x)

1 + ε′(x̂)
= ε(x)

(
1− ε′(x̂)

1 + ε′(x̂)

)
= ε(x)(1−ς/x̂+O(1/x̂2)) = ε(x)(1−ς/x̂+O(1/x2))

A.8 Convergent Belief Processes: Proof of Theorem 10

By Durrett (1996, Theorem 8.7.1), three conditions must be met for weak convergence:

The discrete belief process has sample paths that are continuous in the limit with proba-

bility one, and the first two moments of the changes in the discrete time process converge

to those of the continuous time process. We now verify these in succession:

1. Limit Continuity. Formally, for each ε > 0, we have the unconditional limit:

lim
∆↓0

sup
q∈[0,1]

P
(∣∣q∆(n∆)− q∆((n− 1)∆)

∣∣ ≥ ε
∣∣ q∆((n− 1)∆) = q

)
= 0.

This follows from the continuity of Bayes rule (27) in the likelihoods g(Z|θ): As the signal

becomes non-informative, beliefs move less and less, so that the above probability equals

P

(
q(1− q) |g(Z|H, ∆)− g(Z|L,∆)|
qg(Z|H,∆) + (1− q) g(Z|L,∆)

≥ ε

)

which vanishes with ∆ for every Z ∈ Z as |g(Z|H, ∆)− g(Z|L,∆)| → 0.
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2. Convergent First Moments.

lim
∆↓0

sup
q∈[0,1]

∣∣∣∣
1
∆
E

[
q∆(n∆)− q∆((n− 1)∆)|q∆((n− 1)∆) = q

]− E [dq(t)|q(t) = q]
dt

∣∣∣∣ = 0

which holds because the terms vanish due to the martingale property of beliefs.

3. Convergent Second Moments.

lim
∆↓0

sup
q∈[0,1]

∣∣∣∣
1
∆
V

[
q∆(n∆)− q∆((n− 1)∆)|q∆((n− 1)∆) = q

]− V [dq(t)|q(t) = q]
dt

∣∣∣∣ = 0.

By the martingale property, we replace the variance with the expected squared increment:

V
[
q∆(n∆)− q∆((n− 1)∆)|q∆((n− 1)∆) = q

]
= E

[
(q∆(n∆)− q)2|q∆((n− 1)∆) = q

]

=
∫

q2(1− q)2[g(Z|H, ∆)− g(Z|L,∆)]2

qg(Z|H, ∆) + (1− q)g(Z|L,∆)
dZ.

Using (28), the limit as ∆ ↓ 0 equals q2(1− q)2 = V [dq(t)|q(t) = q] /dt for all q ∈ [0, 1].

A.9 Approximate Value Functions: Proof of Theorem 11

For every y ≥ 0, let

Ω∆(y∆|c) ≡ Π∆ (by + 1c∆|c) [1− (y − byc)] 1
∆ + Π∆ (byc∆|c) (y − byc) 1

∆ .

Since (y − byc) 1
∆ ∈ [0, 1], this a weighted average of the maximand Π∆(y∆|c) of program

(31) at the two adjacent integers to y. Also, Ω∆(y∆|c) is continuous in y ≥ 0 (continuity at

integer values of y can be verified directly), in c ≥ 0, and in ∆ > 0. The latter holds because

cbyc∆ is clearly continuous in ∆, and v∆ (byc∆) =
∫

u(g(x))fXbyc (x|∆) dx is continuous in

∆ for given sample size byc from previous results. Thus, Π∆ (byc∆|c) = v∆ (byc∆)−cbyc∆
is continuous in ∆, and Ω∆(y∆|c) inherits this property.

Next, Ω∆ (byc∆|c) = Π∆ (byc∆|c), i.e. Ω∆(y∆|c) is defined over a real-valued y

but coincides with the discrete maximand at integer values of y (at multiples of ∆).

Also, Ω∆(y∆|c) is a weighted average of Π∆ (byc∆|c) and Π∆ (by + 1c∆|c), and so of

Ω∆ (byc∆|c) and Ω∆ (by + 1c∆|c). Then Ω∆(y∆|c) ≤ max
〈
Ω∆ (byc∆|c) ,Ω∆ (by + 1c∆|c)〉

with strict inequality if and only if: y is not an integer and Π∆ (by + 1c∆|c) 6= Π∆ (byc∆|c).
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Since we can always improve weakly over any y by choosing either byc or by+1c, it follows

that the correspondence M∆(c) ≡ arg maxy≥0 Ω∆(y∆|c) always contains a non-negative

integer. It follows that

max
y≥0

Ω∆(y∆|c) = max
n=0,1,2,...

Π∆(n∆|c). (40)

Finally, 0 ≤ y − byc ≤ 1, and so (y − byc) 1
∆ is a positive function of ∆ that vanishes with

∆ but remains continuous in y for every ∆ > 0. So for every given t > 0,

lim
∆↓0

Ω∆(t|c) = lim
∆↓0

v∆(t)− ct = v0(t)− ct = Π(t|c).

We are now ready to use the auxiliary problem of maximizing Ω∆(y∆|c) over y ≥ 0.

Again, Ω∆ (0|c) = 0 and limy→∞ v∆(byc∆) ≤ maxθ,a πθ
a < ∞. We can thus restrict the

choice of y to a compact interval [0, ȳ(∆)], where ȳ(∆) is the continuous function defined

by the largest solution m to v∆ (m∆) = cm∆. Therefore, we can rewrite

M∆(c) = arg max
y∈[0,ȳ(∆)]

Ω∆(y∆|c).

We conclude that y maximizes a function Ω∆(y∆|c) continuous in y, c,∆ over a

compact-valued and continuous correspondence [0, ȳ(∆)]. Notice that by definition of

Ω∆, a non-integer y belongs to M∆(c) iff both byc and by + 1c do. This is a non-generic

event (w.r.t. Lebesgue measure over the space of c > 0); generically, either there exists

one (integer) maximizer in M∆(c), or the maximizers are non-consecutive integers, so that

M∆(c) contains only integers a.e. in parameter space. Since Ω∆ maximized at an integer

coincides with the value of the discrete-sample maximand Π∆(n∆|c):

max
y∈[0,ȳ(∆)]

Ω∆(y∆|c) = max
y∈[0,ȳ(∆)]

Ω∆ (byc∆|c) = max
n=0,1,2,...

Π∆(n∆|c)

we conclude that M∆(c) = N∆(c) a.e. in parameter space. The first maximization above

can be rewritten as

max
t∈[0,ȳ(∆)∆]

Ω∆(t|c)

the maximization over a compact-valued and continuous correspondence [0, ȳ(∆)∆] of a
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function Ω∆(t|c) which is continuous in t, c,∆. This maximization yields a correspondence

T∆(c) = M∆(c)/∆ (with a slight abuse of notation).

By Berge’s Theorem of the Maximum, the correspondence of maximizers T∆(c) is

u.h.c. in ∆ and c. Hence, as ∆ ↓ 0, some selection τ∆(c, q) ∈ T∆(c) converges to the

unique maximizer τ(c, q) of the continuous time problem Π(t|c) = lim∆↓0 Ω∆(t|c): namely,

lim∆↓0
∣∣τ∆(c, q)− τ(c, q)

∣∣ = 0 a.e. in parameter space. Let y∆(c) ≡ τ∆(c, q)/∆ ∈ M∆(c).

This selection must be integer-valued and a maximizer of Π∆(n∆|c) a.e. in parameter

space. Thus, y∆(c) = n∆(c) for some n∆(c) ∈ N∆(c, q). Hence, for some choice n∆(c) =

τ∆(c, q)/∆ ∈ N∆(c, q) among the optimal discrete sample sizes, a.e. in parameter space,

0 = lim
∆↓0

∣∣τ∆(c)− τ(c, q)
∣∣ = lim

∆↓0
∣∣y∆(c)∆− τ(c, q)

∣∣ = lim
∆↓0

∣∣n∆(c)∆− τ(c, q)
∣∣ . ¤
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