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Abstract

Why do people stall while bargaining? We propose that the reason isn’t fully explained by claiming
people are engaged in a complicated signalling equilibrium with unguessable valuations. Rather we
propose that staling is explained by the fact that agents are worried about a rival coming to bargain
for the pie and creating a bidding war - this encourages speedy agreement. But when the beliefs as
to how likely a rival is to come along differ, then agents may choose to stall, run the risk of a rival
coming, but beliefs update and the possibility is seen as less likely the more time elapses. Thus, for
example, house buyers trade off the risk of a bidding war against getting sellers to realise their house

isn’t so desirable buyers are falling over themselves for it.
Keywords Bargaining; Delay; Stalling; Learning

JEL C78; C73; D83

1 Introduction

In individual negotiations agents often consider stalling and not agreeing to a deal currently on the table.
Why? Three main types of explanation have been put forward in the bargaining literature: uncertainty
over the size of the pie leading to bargaining by signalling; extremal equilibria leading to punishment for
early agreement and finally agents committing themselves to a stand that they find costly to reverse.
We propose that these do not however provide convincing explanations of the bargaining process in
situations ranging from those as simple as house buying to others as involved as one off business to
business agreements. We will show that stalling within bargaining can be explained by the parties having
differing views, which they update during negotiations, on how likely a rival to one of the agents is to
come along. Therefore stalling can serve two purposes: it allows time for a rival to come and a bidding
war to ensue, while on the other hand no rival coming forces the other agent to readjust their beliefs and

thus compromise more.
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We are therefore suggesting that a large part of the desire to reach speedy conclusions in bargaining
situations such as house buying is because the buyer (for example) does not want a rival buyer to come
along and start a bidding war. It is not the discount rate which drives the urge for agreement - the actual
date of moving into the house will often be both uncertain and lie considerably further into the future.
This is, as far as I am aware, a new explanation, with predictive power, for the stalling process.

We first consider why a new theory is needed.

Signalling and Secrets Though it is reasonable that agents may have private views on the value of a
good, this alone leads to implausible predictions as far as bargaining and stalling are concerned. In
the signalling theory of bargaining (Cramton (1984), Fudenberg and Tirole (1983), Watson (1998))
the agents make offer and counter offers to signal their types. The agent who is more patient or
with a lower valuation is happy to postpone agreement, not withstanding the discount rate, as to
agree early on would be too costly. The problem with these explanations are (i) many outcomes
can be sustained depending on the postulated beliefs off some equilibrium signalling path - thus
predictions are weak where possible at all; (ii) the equilibria assume that agents carefully formulate
views on how agent A’s beliefs will be changed given B’s offer and given B’s response to A’s offer
in response to B’s offer, and so on. This hyper-rationality is questionable; (iii) the issue of how
a signalling equilibrium is arrived at in one shot interactions is ignored. For at least these three
reasons, uncertainty alone does not seem to capture all there is to understand about bargaining

impasses.!

Extremal Equilibria A second methodology for explaining bargaining delay has been depicted by Fer-
nandez and Glazer (1991) in the context of union-firm negotiations. Here there is more than one
possible agreement and thus a Nash equilibrium can be constructed with any given delay: if either
party tries to agree earlier than the exogenously agreed upon time T, then the other party will play
the strategy which gives them their maximal payoff. The issue here is how the equilibrium was
constructed: in particular, how did the parties agree on how long the impasse would be. Repeated
union-firm bargaining may provide an explanation, but this appears to apply less in house buying

and one off business to business interactions.

Posturing Finally Crawford (1982) proposed that bargainers can find it in their interests to commit
to positions in advance which are difficult to withdraw from. These ex ante positions prevent
immediate ex post agreement. This appears a convincing rationale for explaining the bargaining
process between representatives of a group - such as union firm interactions or the bargaining
between Heads of State. However, in business to business interactions where bargains are secret and

the principal (or decision maker) is the one conducting the bargaining, then this is less applicable.

LA much fuller account of bargaining with uncertainty is provided in Ausubel et al. (2002).



Thus the existing models of stalling within bargaining have little predictive power and, in parts,

questionable requirements or implications. We offer a new model of bargaining, stalling and learning.

2 The Model

There are two parties bargaining over the division of a pie of size 7. These players are labelled the buyer
(B) and the seller (S). There exists a possibility that a rival for the buyer exists. It is assumed that
there is no chance that a rival seller may exist. This is therefore a seller’s market.

If competition for the buyer’s spot does exist, then a competitor for the buyer arrives with a Poisson
process at a rate of X\. Thus the probability of a rival buyer arriving in time dt is Adt and is independent
of the time since bargaining commenced. If a rival buyer does arrive then the seller extracts all of the
rents - the buyers compete against each other to make more and more generous offers.

Alternatively, we may be in a state of the world in which a rival buyer for this pie does not exist.
The buyer and the seller disagree on how likely one state of the world is to the other. Thus, over time,
the buyer’s and the seller’s beliefs as to the likelihood of a rival buyer coming (with Poisson process )
change. We denote the buyer’s belief that a rival could be coming as pp and pg is the corresponding
seller’s belief of this case. Thus the buyer believes that a rival will arrive with probability pgAdt over the
next dt of time, while the seller believes this scenario to occur with probability pgAdt.

The parties have a common discount rate of r. Thus an agreement reached at time ¢ divides a total

pie of size e "7 in ex ante currency units.

2.1 Rate of Change of beliefs over time

We first consider how beliefs would be updated as time passes in the event that no rival buyer has arrived.
Note that outside options come along with Poisson process A > 0 or they don’t come along at all. Suppose
that at time ¢ an agent viewed the possibility that a rival buyer exists as p;. Thus, for this agent, the
probability that a rival buyer comes along in the next time dt is p;Adt, and the probability that they
don’t is thus 1 — p:Adt. Therefore, through Bayesian updating, we have:

Pr (Competition for B exists |No one comes in dt) =

Pr (Competition for B exists and yet no one comes)

Pr (No one comes in dt)
(1 — Adt) py
1—pe+ (1= Adt)pe
= dpr=—-Ap: (1 —py)dt

pt+dpr =

Thus as time goes on, and no rival buyer has come forward, the players both become a little more
pessimistic as to how likely a rival buyer is ever going to be found. That is, p; + dp: < p; with equality
if the agent is certain of the state of the world (p; =0 or 1). Hence, as time goes on, B becomes more
confident it can extract a larger slice of the pie and S less confident that it will be able to extract a larger

slice of the pie.
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Figure 1: The change of beliefs as time (measured as a factor of \) progresses

It is useful in developing intuitions to solve the differential equation given in (1). It can be checked
that the general solution is given by

1

P = 1+ (7 —1) e

Beliefs therefore take a downwards trajectory at which they fall, slowly at first if p; is near 1, then rapidly
and then tend asymptotically to 1. This is shown in Figure 1. The rate of change of beliefs thus depends
on the initial level of beliefs. Specifically, for some intermediate ranges of beliefs, if one agent, say S,
places a greater possibility of a rival buyer coming than the other (B), then S’s beliefs decline much more
rapidly than B’s and so the two beliefs converge. It is this feature which will provide the motivation for
the buyer to stall for some ranges of beliefs and not others. The same is true for the seller. Making this

insight rigorous is the subject of this paper.

3 Method of Proof

This section describes the steps, which will be made rigorous, to determine the optimal stalling region in
belief space. The parties can either agree immediately using a continuous form of Rubinstein bargaining
or stall. If agreeing immediately, their payoffs would be given by zgs (ps,ps) and x5 (ps, pp) found in
the standard way: the buyer must offer the seller at least what she can get by making a counter offer
time dt later. Note that xg + xp = 7.

Either the buyer or the seller can threaten to stall. Optimal such behaviour would guarantee payoffs

S and B to the buyer and seller as a function of their beliefs. With any positive discount rate, stalling



is not optimal at the origin as no learning takes place.

Stalling is not optimal if pg < pp as seller is happy that buyer believes the chance of a rival is greater
than she does - stalling would only erode this belief. In addition the buyer is happy that the seller is less
sure of a rival than she is - stalling would only cause the seller to have a chance for the rival to come.
We will thus see that stalling is only possible if ps > pg.

If ps = 1 and r > 0 then stalling is not optimal for either the buyer or the seller as g > S and
xp > B : stalling doesn’t alter the seller’s beliefs and so the effect of the discount rate dominates.

Stalling is optimal for some intermediate beliefs. Thus there must be at least two boundary points,
along any belief line, between stalling and not.

The buyer and seller will seek to maximise their value along any path of beliefs from (pg (0),pgs (0))
down towards the origin as time progresses. Subject to the restriction that there are at least two contact
points - otherwise we would be implying stalling at the origin which is a contradiction.

The shape of g and S and similarly g and B imply that there is smooth pasting at the smaller (lower
beliefs) contact point. This is because as ps becomes small, the stalling value blows up and therefore
can be increased until it is tangent here. This will suggest that either S or B is able to threaten to stall
(B>axporS>uxg) for longer.

The agent with the smaller stall zone will have to compromise. Hence B would have to smooth paste
on to m — S if the buyer must compromise, otherwise S will have to smooth paste on to 7 — B if .S must
compromise first.

This smooth pasting requirement is because the compromiser is seeking to maximise their value subject
to being forced to agree to an enlarged split of the pie for the rival.

Thus we have S and B. The actual stalling region is given implicitly by the curve S + B = .
If S+ B > m then agreement is impossible as the outside option of stalling is too large. Otherwise
agreement would be reached by standard bargaining with outside options arguments (See Muthoo (1999,
§5.2).

What follows is the formalisation of this methodology.

4 The Active Negotiation Phase

In this section we search for what the agreed split of the pie would be if the parties both preferred to
reach an immediate agreement. The payoffs here would be given by the pie division functions zgs (ps, ps)
and zp (ps,pp) . These functions are such that neither player would prefer to wait a moment and make
a counteroffer. Thus the payoffs are essentially Rubinstein alternating offer bargaining functions in
2

continuous time.

The buyer will have to offer the seller as much as she thinks she can gain by waiting and making a

2For a full discussion of Rubsintein bargaining and its discrete time extensions, see Muthoo (1999).



counteroffer an instant later:
7™ —ap (ps,pp) = psArdt + (1 — rdt) (1 — psAdt) xs (ps + dps, pp + dpp)

Beliefs evolve according to Bayesian updating so that dp = —Ap(l —p)dt and so, expanding
zs (ps + dps,ps + dpg) . Using a Taylor series we have

0 0
7 —ap = psAndt + (1 — (r+ ps)) dt) [xs - %Aps (1-ps)dt— %Sm (1-p5) dt} +0(dt?) (2)
S B

The seller will also have to offer the buyer as much as she thinks she can get by waiting. Hence

0 0
%Aps (1—ps)dt — =2 2pp (1 - pp) dt] (3)
Ps B

m—2g = (1—rdt) (1 —ppAdt) [xB— 3

These equations need to be solved. From (3) we have

0 0
xs=m—xp+ (r+pe))axpdt+ ﬂ)\ps (1 —pg)dt+ ﬂ)\pg (1 —pp)dt
Ops Ops
And hence g—g? = —g—’;lsl +o(dt), g—;ﬁ = —g—ig + o0(dt). Thus in (2) we have
8:(:3 aZL‘B
m—xzp = w—xp+ (r+pp))epdt+ —Ips(1—ps)dt+———Mpp (1 —pp)dt
dps Ops

9zp

8:1)3 }
s (1 —ps) + —=Mpp (1 —
s ps (1 —ps) Oon ps (1 —pB)

+dt {ps)wr —(r4+psA) (r—zp) +

Dividing through by dt gives

ox ox
O0=zp[2r+ X(ps +ps)] —rm+ 2=—L \psg (1—ps)+ 2="E \pp (1-pB)
Ips Opp
Hence we have the differential equation
Oxp Oxp r 1 T
B e (1 — B s (1— — 4= = 4
apsps( ps) + 8poB( pB) + 2B {A+2(P3+ps)} ) (4)
The solution of the homogeneous equation is
r r T
¢ (5m) V0 = p5) (1= ps) 2.(p)* 0 () )

where Q (p) = 1—22, the odds ratio and we have stressed that the constant of integration is independent
of beliefs, but will depend on the discount rate, Poisson process and the size of the pie.

If r = 0, then (5) gives the full solution as (4) is a homogeneous differential equation. We note that if

ps = pp = 0, then both players are certain that no rival buyer exists. In this case standard alternating

x

offer Rubinstein bargaining requires that the parties agree on an equal split of the pie. Hence C|,_, = §

and so we have the agreement functions

25 (ps.pn) = 5/ (L=pp) (L= ps) w5 =75/ —p5) (L= ps) (6)

N

However, if r > 0, then the requirement that the payoff to x5 must lie between 0 and % forces C' = 0.

This is because (5) is unbounded as either belief becomes very small. The solution to (4) in this case



of positive discounting lies in the particular integral. This partial differential equation can be solved in
terms of power series. However, this is not particularly helpful here and so we delay this discussion. The
partial differential equation (4) will prove invaluable in understanding the economics of bargaining whilst
learning. To this end note that (3) implies that s + zp = 7 and so the equivalent differential equation

for zg, inserting this into (4) is

0
ﬁpB (1—-pB)+zs [

——ps (1 —ps) + on

Z+1(pB+ps)} :E[

r
T3 5 |5 +po+ps] (7)

A

5 1Is Stalling Ever Optimal?

We have not as yet shown that it is ever optimal for either the buyer or the seller to stall. We consider
the simpler case of no discounting (r = 0). This section will show that stalling is optimal for the buyer
and the seller whenever the seller is more optimistic than the buyer as to the possibility of a rival buyer

existing. That is stalling is preferred if pg > pp.

5.1 Can B ever benefit from delay?

The above expression for xp (equation (6)) comes from equating the best that B can make now as
against waiting a small amount of time. Suppose we start with beliefs pg (0) and pp (0). We have
already established that beliefs evolve according to p (t) = W Thus seen at time ¢t = 0, the
probability of the buyer getting to time ¢ is e ?2(®D* Thus seen as a static problem, the buyer would
3

choose t > 0 to maximise
1
%
1 __ A 1 ___ A
(4 (G- 1)) (1+ (Fm - 1) )
Let b = pp (0) and s = pg (0) then differentiating this with respect to ¢t and setting ¢t = 0 we have

2 Vb A1) 5+ A (5 - 1) 4] s [b
1 —sign 5_ ;

sb

T )T s O (L = B) o X170(0)

Thus we have delay from the buyer if s > b. That is, it is always worth the buyer stalling a little if the
seller is more optimistic than the buyer as to the likelihood of others coming. Note that this implies that
agreement can’t be reached here - either the rival buyer comes and the seller gets all of the rents, or the
rival buyer doesn’t come and agreement can only be struck as a 50-50 split after an ‘infinite’ delay (or

such time as the seller acknowledges there is no chance of an outside option).

3Note that this under-estimates the buyer’s future payoff as the buyer becomes more confident of reaching time ¢t without

a rival as each instant of time passes. Therefore the value of stalling would be greater than is predicted here.



5.2 Can S ever benefit from delay?

If S actively negotiates at beliefs (ps, pp) she receives a payoff of 7 — Z+/(1 — ps) (1 — pp). Evaluated at

time 0, the ex ante expected payoff of waiting until time ¢ is given by

o~ Atps(0) {W _ g\/(l —ps (1) (1 —px5 (t))}—i—(l _ e*/\tps(o)) = ﬂ_efktps(())g\/(l —ps () (1 —p5 (1))

Thus the rate of change of this expression with respect to ¢ evaluated at ¢ = 0 must have sign of
- [\/E - \/%] which is equal to /3 — \/g . Thus delay is preferred by the seller again when s > b.

By continuity of the value of stalling, there will be some beliefs and some non zero discount rates
at which the agents will prefer to stall rather than agree on a deal immediately. We thus turn to the

question of the optimal stalling period.

6 The Buyer’s Greatest Stalling Value

Section 5 established that stalling can be optimal for some combinations of beliefs and discount rates.
This section will explore exactly when stalling is preferred by the buyer to immediate agreement. During
any periods when it is optimal for the buyer to stall, the buyer will be worth B (pg (t),pp (t)) at time
t and would optimally wait and get F: {B (pp (t + dt),ps (t + dt))} where the expectation denotes the

uncertainty around whether a rival buyer might come. Using Taylor we have

0B OB
B (pp (t+dt),ps (t +dt)) = B (ps (t),ps (1)) — Aps (1 — pB) 5 —dt — Aps (1 — ps) 2 —dt + o (dt?)
opB Ops
If stalling is optimal we thus have the Bellman equation:
B = (1—ppAdt)(1—rdt) |B— Aps(1—ps) 8—Bdt —Xpp (1 —pp) a—Bdt
Ips Opp
OB 0B
0 = B(r+pp)+Aps(1—ps) 53—+ (1—pp) 53— (8)
Ips B

The integrated function of this expression will have two constants of integration. Consider the general

solution Cpg (1 — pg)bp% (1- pB)d. Substituting this in and dividing by B gives

,
0=+ +pp+all—ps)=bps+ec(l-pp)-dps

Equating the coefficients to zero implies that we have

ps 1—pB
1-ps pB

B(ps,pp) = E(1—pg)Q(pp)* [ ] for some constants a,

We know that stalling is optimal for pg > pp when r = 0. Thus for some small r > 0 as pp tends
to zero we must still have stalling optimal for some pg by continuity of the payoff functions. Thus we
require a < —% to avoid B vanishing. In addition the value of the buyer must be bounded between [0, %]

and not equal to zero when pg = 0. Thus we require a = —%. Therefore we have:

B (ps,ps) = E(1—pp)Q(ps)* for some constant E (9)



s

Note that the value of stalling must lie in the range (O, 5) for intermediate beliefs and so we must have

E > 0. If r = 0 then we’ve seen that when pg > pp the buyer will only agree to a 50-50 split along pp = 0

and so we have E|,_, = 7.

Lemma 1 Stalling is not optimal for the buyer if pg = 1

Proof. Note that B (1,pg) = 0 and yet the immediate payoff xp (1,pp) must be larger than 0 if the
buyer believes there is a possibility that no rival is coming.* =

Stalling is clearly not optimal at the origin as there is no learning to take place. Thus, if stalling is to
be optimal for the buyer then there will be at least two boundary points marking out some intermediate
stalling region. Next note that as ps tends to 0, B (ps, pp) tends to infinity. The buyer seeks to maximise
her value subject to having two stalling boundaries. Thus we require the lower of these boundary points
to be smoothly pasted between xp and B, otherwise F could be increased further.” Specifically, the

agent must decide whether to wait dt before concluding her stalling or indeed whether she should have

concluded her stall dt time before. That is, we must have ‘Z—f = d—gf— (unless we are at a corner solution).

However, the development of beliefs over time established in (1) above thus implies that we require

(91']3 (91']3 0B 0B
s (1 —pg) + =95 (1 —pg) = —nps (1 — pg) + —pg (1 —
s 7S (1-ps) app " (1-pB) aps’S (1-ps) op5’” (1-pB)

We thus seek the largest F such that B (pg, pp) satisfies (4). This will then provide a curve pg (ps) along

which xp = B at some points. That is

0B 0B r 1
%ps (1—-ps)+ %pB (1-pp)+B [X t3 (pB +ps)] =

Basic algebra confirms that this expression collapses to

E($.7) (1= ps) (ps —ps) @ (ps) ¥ == (10)

> =

where we have been clear that the constant of integration, F, depends on the parameter 7, {. Given F,
the above gives the relationship, for small beliefs® between pg and ps which is the maximal range at

which the buyer can threaten to stall.

6.1 The greatest value for F

Though the immediate agreement function xp (ps,ps) cannot be found generally. It can be found
analytically along the line pg = 0. We thus solve explicitly the case in which the buyer is certain there is

no rival, but the seller believes there might be a rival buyer.

4One can show the same result by explicitly solving for x5 (ps,ps) along the line pg = 0 and then solving along the
line pg = 1.

5This is standard in the one dimensional context in the context of learning about Poisson processes - see Keller et al
(2004, Proposition 3.1).

6Specificaly the smooth pasting rule applies for belief paths coming out of the stalling region.



In this case the value of stalling is given by (9) as
T m
B(ps,O):EQ(ps)A E>07 E|r:0:§ (11)

From (4) we have that the solution zp (pg, 0) satisfies

(‘9:53

Ds T
KB (1 — [ } _Ir 12
b ps(L=ps) +ap |y +3| =33 (12)
Differentiating with respect to pg gives the differential equation
9%zp Oxrp r 3 1
81%295( )+3s[+)\ 2ps]+2$3 (13)

This is Gauss’s hypergeometric differential equation and the solution has one base given by the hyperge-
ometric function. Formally one solution to the differential equation = (1 — z)y” +[c — (a+ b+ 1) x]y' —
aby = 0 is given by F (a, b, ¢; x) where a, b, and ¢ are constants (see Bailey (1935) or Kreyszig (1999, §4.4).
The hypergeometric function can be written out using the Pochhammer symbols (the rising factorial)

where

), : =dd+1)(d+2) - (d+n—1)

= (1), =n!

Thus we have

F(a,b,c;x):iMx_n

— (d), n!
The second basis function solving the general hypergeometric function is given by a second hypergeometric
series multiplied by x'~¢. This basis will not have economic content here as the 2'~¢ will be unbounded
at the origin.
The solution to (13) is thus given a multiple of the hypergeometric function F'(a,b,c;ps) where
c=1+%andab= -3, a+b+1 =3 sothat a = —3, b = 1. The solution to (12) must satisfy
zp(0,0) = § and so the general solution to (12) is

n= 0 >\
_ ), (=3) (3) (%)
- 2{1 2<1+§>p“<1+§><22+ AR (3

The exact stalling region can then be found by equating (14) with (11) and doing the same with the

first derivative with respect to ps. Hence, denoting the boundary between stalling and agreeing as o, we

require
T 1 T z r z 1 md 1 r
—F|— 1,1+ —; = FEQ(o)* —FE-Q(0) —————==-—F 1,14 —;
2 ( 2" +A’“> () and 3O T T 240 ( 2 +A"’)

Thus the boundaries of the stalling region on pp = 0, denoted {o.,c*}, are given by the solution of
r 1 T d 1 r
——F—=,1,14 —; =c(l—0)—F|—=,1,1+ —;
A (2,, *x“) o(l-0)— (2,, *x")

10



Expressing this in terms of the power series definitions gives:

r S (7%)'” n . (7%)711 n - (_%)n71 n __
anzoma +Zn-(1+—§)na —Z(n—l)-—a =0 (15)

n=1 n=2 (1 + %)nfl
However we have noted that {o.,0*} € (0,1). Therefore the larger powers in the above expression become

dominated by the smaller powers at o, (which tends to 0 for small §). We can therefore approximate

(15) by the quadratic in ¢ and so have that o, is approximated by the smaller root of:

(+5)7 TAER)eE”
T e 00 =
— ((1;2)) 0.2 +0 (0.3) N
r 1 1

The above quadratic is not a good approximation for o* as this tends to 1 for small § and so more terms

would be needed. Thus solving we have

oo (1+5) - D 0 5) "

We note immediately that this has no solution if £ > i and thus this places an upper bound on when

stalling is optimal.
Now using the fact that ZF (—3,1,1+ §;0,) = EQ (c4)* we can solve for E using the approximation

for the hypergeometric function at o.. Thus

s Oy X 1 T
S A 1 S T 1 I
2 [1-o. 2(1+4%) (1+%)@2+%)

We have thus found the greatest extent to which the buyer can threaten to stall: down to beliefs o.
The question is, can the seller threaten to stall for longer coming out of a stalling region. If so then the

buyer will need B to smooth paste on to m — S, rather than z .

7 The Seller’s greatest stalling value

Thus far we have yet to establish whether the seller would seek to stall in a different region of belief
space.
We proceed exactly as above to determine the equation satisfied by the seller’s stalling region. Thus,

when stalling the seller has a value S (pg, pp) which satisfies the Bellman equation:

S = pgAdin 4+ (1 —pgAdt) (1 —rdt) |S — Aps (1 — ps) ﬁdt —Aps (1 —pB) ﬁdt
dps Ops
oS oS
psAt = S(r+Aps) +Aps (1 —ps) 53— + e (1 —pp) 53—
Ops Opp

11



Note that a particular integral of this equation is given by —2—pg. The homogeneous version of this

(1+5)
equation matches that for B given in (8) above. Therefore we again consider the general solution
Gp% (1 - ps)b PG (1 — pB)d . Substituting this in to the homogeneous equation and dividing by S gives

,
0= X+ps+a(1*ps)*bps+6(1*p3)*de

Equating the coefficients to zero implies that we have
$(ps.ps) = [ gyPs + 00 =PI ps) ¥ 2(ps) " for some constants .G
X
Q a

We first consider the case when r = 0. Then S (ps,ps) = s + G (1 — ps) {%{;—iﬂ M ps=pp=0
then stalling and instantaneous agreement have the same payoff of 5. Thus G|,_, = §. We have also
noted that the seller would be willing to stall when r = 0 if pg > pp. Thus, by continuity, for some small
r > 0 as pp tends to zero we must still have stalling optimal for some pg. In addition the value of the

seller must be bounded between [—

; r
2,7r] . Thus we require a < —%.

Note that the first term is the discounted value of getting the whole pie at current beliefs pg.” Thus
this captures the value of waiting indefinitely. The second term gives the option value of being able to

agree earlier. This value should not vanish as pg — 0 as there is still scope for agreement at some ranges

of belief. Thus we require a = —§.8 And so the stalling value is given by
™ T
S (ps,pB) = 77——=ps + G (1 —ps) Q2 (ps)* (19)
(1+%)

Lemma 2 Stalling is not optimal for the seller if ps =1

Proof. We note immediately that S (1,pg) = i} Noting that xg + xp = 7, we need to find the

4z

value of g (1,pp). The lemma thus amounts t(oJrsilowing that m — zp (1,pp) > ﬁ The buyer’s
payoff will increase when a rival is less likely to exist. Hence we need only show the inequality at beliefs
(1,0) . We have found the solution to xp (ps,0) in (14) above. In particular we note that zp (1,0) =
ZF (—3,1,14 %;1) . Hence we only need to show that

1 1 r 1
1- 2F (2,1,1+)\,1> > (1+§)
But this is true and can be shown graphically.” m

As with the buyer, stalling is not optimal at the origin as there is no learning to take place. Therefore,

if stalling is to be optimal for the seller then there will be at least two boundary points marking out some

intermediate stalling region. Next note that as pg tends to 0, S (ps,pp) tends to infinity. The seller

7
i At —rt
E (payoff) = e Ve Tdt = ——
(payoff) - T+ T

™

8 A second way to show this is to note that S and 25 cannot be tangent along pg = 0 unless a = f§.
9Clearly as § becomes very large the inequality holds with the left hand side tending to % and the right hand side

tending to 0.
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seeks to maximise her value subject to having two stalling boundaries. Thus we require the lower of
these boundary points to be smoothly pasted between xg and .S, otherwise GG could be increased further.
Therefore, along this lower boundary of the stalling region, value matching and smooth pasting between

S and zg is required implying that:

oS oS r 1 TIr
%ps(lfps)+a]TBpB(1*pB)+5 k t3 (rB +ps)} =3 b +pB + s

Substituting in we have

(ps —pB) {W— 1:£ps—G(1—ps)Q(Ps)
A

>3

V-3 (20)

Thus given G, we have a relationship between pp and pg which gives the maximal stalling boundary for

the seller.

7.1 The Seller’s greatest value of GG

The value of G and the stalling region boundary can be found by applying value matching and smooth

pasting!® along the line pp = 0. Along here we have the value of immediate agreement given by

T 1 T
zs (ps,0) =7 —xp(ps,0) =7 — §F (—57171 + X;ps)

Value matching and smooth pasting thus imply that at a boundary between stalling and not

s 1 r T z
—ZF (=211 + = = G(1-0)Q(0)*
T3 ( 51 +)\,a) (1+§)0+ (1-0)Q2(0)
md 1 r T z r1
SRR = O Qi = —GQo) (14 ==
2 do ( 3" +A"’) 1+5) (@) ( +)\a>
Thus removing G gives us the condition that
r 1 r d 1 r r
—|F|{—-=,1,14+ —; l—0)—F|—=,1,14+ —; =2— 21
(r+5) F (g1 5i) + o =) o (<51 i) =2 (21)
1
Using the fact that F (—%, 1,1+ §;a) =3, ((ITQL))LJTL allows us to express (21) as a power series
Xn

relation:

n=2

(_%)nf (7l)n n . (_%)TL* n __ r
1 §) ! +n- 2_ g *Z(?’L*l)l—g)la —2} (22)

We seek the smaller of these two solutions, g, which tends towards zero and so we can approximate (22)

10 actual fact, along pg = 0 we require
oS ox

= ps(1—ps) = =—2ps (1 —ps) Vps € (0,1)
Ops Ips

. . P . 2SS Ox P .
which implies that Bps = —saps as required.
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by a quadratic in o to give

>1=
+
>
B
<)
+

(1+%) §(1+§)(2+§)
w1 e +{<§f¥>+(2<3§+§)<§ié>}02 0y~

r 1 1 2
_A+29_4(1+§)Q ~ 0

But comparing this to (16) we have o = o, with the actual value given in (17). Using the value matching

condition, we then have

1 O X Oy T 1 T
= 1-— —=F—=1,14+ —;0. 2
o= (5] ] e (e ) )

We have thus found the seller’s greatest value of G. Thus along pg = 0, the buyer and the seller can stall

down to the same small beliefs, (o,,0).

8 The champion staller

The method of proof (Section 3) now required us to ascertain whether the buyer or seller could threaten
to stall for longer. The agent who could stall less would have to smooth paste on to the rival’s stalling
value. However, we first note that S + B increases as pp decreases, and the stalling region will be give
by the curve S + B > 7 as agreement is not possible here. Thus if stalling is optimal anywhere, it is
optimal on pp = 0. Next note that at (o.,0), if we keep E unchanged then B meets zp smoothly. But
rp = T—xg, and at the same point S meets xg smoothly by construction. Thus B meets m — S smoothly.
The same applies if G is left unchanged. Thus we have no slack to alter E or G and the stalling functions
have been found.

Nevertheless, for completeness we establish that the seller can stall for longer than the buyer: it is the
buyer who, at small beliefs pg, must compromise when coming out of the stalling region. In particular,
starting from beliefs at which both buyer and seller would seek to stall, the boundary between stalling
and not for the buyer is given by (10) with the constant E given in (18). The boundary for the seller is
given by (20) with the boundary G given by (23).

Proposition 3 For small beliefs pg, the seller can threaten to stall for longer (at less pessimistic beliefs)

than the buyer

Proof. We need to show that given a pg close to 0., pp (ps) is larger for the seller boundary than
it is for the buyer boundary. We have already noted that along the line pp = 0, the maximal stalling
boundaries both start at the same point: ps = o.. Thus we seek to establish whether the buyer’s or the
seller’s stalling boundary moves off from o, at the greatest rate. This is done by taking approximations

for o, in terms of . The proof is completed in the appendix. ®
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We have therefore shown that the seller will be able to stall for longer. Therefore the buyer cannot
terminate a stalling phase on to xpg, rather the buyer will have to compromise and terminate on to
m — S (ps,pp) for small beliefs pp. We therefore have the full stalling valuations given by (19) with the
constant G given by (23) and (9) with the constant E given by (18). We have also shown that the
condition (10) is not applicable. Rather the stalling valuations are defined upstream (in terms of beliefs)

of the boundary given by (20).

9 The Stalling Region

We are therefore in a position to define the stalling region. To recap, note that the immediate agreement
function was established using a continuous form of Rubinstein’s alternating bargaining model allowing
for the outside option that a rival buyer might come with some probability (disagreed on) in the next dt
of time. However, agents also have the option of stalling for longer and can achieve values of S (ps,pn)
and B (pg,pp) if they do so. If only one player wishes to stall, the other player must decide whether to
compromise and offer the rival their stalling value or whether to wait themselves. The full stalling region

is thus given by the curve implicitly defined by the equation stalling value equals total pie available

S (ps,pB) + B (ps,pB) = zs (ps,pB) + B (ps,pB) =7

where the last equality follows from Section 4. We have already established B (ps,ps) and S (ps,ps) -

Thus the full stalling region can be written as:

3

ps +Q(ps)¥ [G(1—ps) + E(1-pp)] (24)

i =

(1+%)

1 _z
> =1 r (1o ) 2l F G0 -p)

+

This can then be plotted for general values of § : the result is given in Figure 2. We note immediately a

number of features which are now straight forwardly proved:
Lemma 4 The stalling region is bounded by ps = pp when r =0
Proof. Set r =0 in (24) and recalling that E| _, = G|,._, = 5 gives us
0
T=Tps +m— 5(]95 +pB) = ps =Ds
|
Lemma 5 If (ps,pp) lies in the stalling region, then so do (pg,b) for all beliefs b € [0, pp]

Proof. If (ps, pp) lies in the stalling region then agreement cannot be reached. Thus [S + B] > .

(ps,pB)
But S is constant with respect to pp and B increases as pp decreases so that [S + B] (ps.b) > Vb € [0, pB)

which gives the result. m
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Figure 2: Overall stalling region

We have already noted that there is no solution to S meeting x5 along pp = 0 twice if £ > i. Thus

there can be no stalling region for § > i, otherwise the seller would stall when beliefs were (0,0) which

is a contradiction.
So we have the main result of this paper: stalling is optimal and to be expected when agents disagree

as to the likelihood of a rival buyer coming. We can thus answer the question of when buyers and sellers

will find it in their interests to stall:
e There is no stalling if ps > pp
If the discount rate is positive

e There is no stalling if pg = 1 : the buyer is certain a rival is coming and so sufficient concessions

will not arrive to warrant stalling.'!

e Stalling is optimal if the buyer and seller disagree strongly so that the buyer is confident no rival is

coming while the seller takes the opposite view.

e Stalling is for a finite period of time: eventually either a rival buyer does come, or the seller’s
confidence in a rival buyer falls sufficiently to allow the buyer to compromise.

10 When the Buyer is Certain There is No Competition

We analyse in detail the example of the buyer being certain there is no rival (pg = 0). For expositional

purposes we initially set £ = 0.1. The buyer’s stalling value and agreement function are plotted in Figure

HSee Lemmas 1 and 2.
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0.2 0.4 0.6 0.8 1

Figure 3: Buyer’s stalling value B (pg,0) - the upper curve, and zp (ps,0)

3. The stalling value function is tangent to zg at o, the lower of the two contact points. For values of
ps < 04, the stalling function is not defined and so the graph drawn has no economic content - stalling
cannot be optimal when ps = pp = 0. We can see that stalling begins very close to ps = 1.

A similar graph is available for the seller and is given as Figure 4. The higher of the two graphs is
the stalling value - a function which has no economic meaning at pg < o..

Next we consider the stalling values S and B along a belief path starting at (0.999,0.5) with { set to
0.05. We have selected such a small value for § as the approximations used in finding the constants £ and
G work best in this range. The origin in Figure 5 depicts the value of the stalling functions at this belief
point. The upper curve is B, the lower one 7 — S.12 As time progresses forward the value of B increases
as does the value of m — S (where 7 has been normalised to 1). Note that we have the smooth pasting
condition of B on to m — S as previously discussed. In addition note that stalling is already optimal at

beliefs (ps = 0.999, pp = 0.5) even though pg is so close to 1.

11 Conclusion

We have shown that stalling is a key feature of an intuitive bargaining process in which the buyer and

the seller disagree as to the chances of a rival buyer coming. The stalling value functions S and B bound

12Explicitly e have plotted

Blps (1) o5 (0] = B - — e }

1
1+ <ps(o) - 1) eM 14 (pB(O) - Ppg(0)=0.999

p5(0)=0.5
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Figure 4: Seller’s stalling value S (pg,0) - the upper curve, and zg (ps,0)
Value
Time

Figure 5: The stalling functions B (the upper curve) and © — S as a function of time, measured as

multilples of A, starting at beliefs (0.999,0.5)
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the true stalling region which is ultimately shown in Figure 2 above.

The stalling areas shrink as the discount rate increases. If beliefs lie in the stalling areas, then
agreement will not be reached until the beliefs have declined (through Bayesian updating as the result
of no rival arriving) out of the stalling region or until a rival buyer has come. Thus agreement is always
reached in finite time. The model provides a new explanation for stalling with concrete predictions
possible as to whether stalling will occur, and for how long, given the initial disagreement between the

parties.

A Other Proofs

Proof of Proposition 3. The buyer’s stalling boundary is given by E (1 — pp) (ps — pp) (ps)§ = 1T

If we write pg = 0. + s then noting that

= Q(0,)% (1_ 150*)§ <1+0i*)_§ — Q(0.)

this boundary collapses to

>3
>3

Q(ps) [1 SR + 0 (52)

Ao.(1—0y)

o F ’
O e S B

04 1—o0.

and thus the buyer’s stalling boundary has gradient 7 +U <1 - 1—_%) .

>3
——
I
>
j=s]
?

The seller’s stalling boundary is given by (ps — pp) {7r — ﬁps —G(1—ps)Q2(ps)
placing ps by o4 + s gives us that

Oy s G - 7 1\] T
X — l—-——n——— — —Q(o)> |[1l—0,—s |14+ —— ~ =
(o +s pB){ 1+5 1+% () [ ’ S(+)\a*>_} A
G - G - r 1 1 ] T
X — 1-— - —Q X (1— o0, —Qo)*> 1+ ~— ) — - ~ -
ovs-on) {1- 72 - GaeF a-onva (St (1455) - 5]}~ 5
G E 1 1
O'*JrSpB{ < ,1,1+)\ *)+S|:?Q(O'*)>‘ <1+§0_—>1+£} ~ %
* X
1P (-3,1,14+2,0.) + €Q(0.)% (0. + —"—*T}
[2 ) (e) ( A) 43 +O(82,Sp3,p23) = constant
*pBiF( 27171+>u‘7*)
The gradient of the stalling boundary for the seller is thus given by
EQ(0.)% (o + %) — a:
1+ 1 1 T
§F(_§71’1+X7U*)
The seller can stall for longer if
€0 (0s) (o« +%) — 132 1 < . Z+02>
1F(-3,1,1+ %,0.) 1— 02 D\ *
G - r Ox 1 r 5\ 1 1 r
i A — — E— — —
ﬂﬂ(a*) (a*+/\> > [ g (a*+/\ a*)2F< 2,1,1+/\,a*
5 [1—”—2} . 1 1 1
u 3 > i ro 2 (U*“I‘K—UE) 5 _7171+£7U*>
1 -0, f%F(f%7171+§;0—*) 1+X 1—o02 A 2 2 A



We require § < % for o, to have a solution. Thus we expand around small £ up to first order. In

this case o, & 3%, F (—=4,1,14 %,0.) =1 — 2%. Thus we require
BTNy 8r 1 srNTr 5 7r
2\ 22 2 88X/ 2) 2N 4\
T 51
4 2 4

which is indeed true giving the result.
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