Redistribution and Disability

 InsuranceHugo A. Hopenhayn
UCLA

Juan Carlos Hatchondo
University of Rochester

December 6, 2004

1 Introduction

- Design of welfare programs
- Several types of insurance
- Insurance against permanent low ability shocks redistribution.
- Disability insurance
- Incentives
- Analyze interaction in optimal design in simple model
- Evaluate consequences of lack of coordination (multiple agencies)

2 The model

- Two periods
- Two types of agents with productivities $\left\{x_{l}, x_{h}\right\}$, shares $(1-\pi), \pi$
- Agent's type private (Mirrlees.)
- No disutility of work first period.
- Second period independent shock to disutility of work $e^{\sim} F(e)$.
- Utilitarian Principal.

2.1 Design problem and incentives

- Contracts specify $\left\{c_{1 h}, c_{2 h}, c_{d h}\right\},\left\{c_{1 l}, c_{2 l}, c_{d l}\right\}$.
- Employment decision in second period:

$$
\begin{aligned}
u\left(c_{2 h}\right)-e_{h} & =u\left(c_{d h}\right) \\
u\left(c_{2 l}\right)-e_{l} & =u\left(c_{d l}\right)
\end{aligned}
$$

- Simplified notation for second period utility:

$$
\begin{aligned}
U_{2}\left(c_{2}, c_{d}\right)= & \max _{e}\left(1-F\left(e_{j}\right)\right) u\left(c_{d}\right) \\
& +\int_{0}^{e}(u(c)-a) F(d a)
\end{aligned}
$$

- Self selection constraint:

$$
u\left(c_{1 h}\right)+U_{2}\left(c_{2 h}, c_{d h}\right) \geq u\left(c_{1 l}\right)+U_{2}\left(c_{2 l}, c_{d l}\right)
$$

2.2 The optimal contract

- For convenience take $\pi=\frac{1}{2}$
$\max u\left(c_{1 h}\right)+U_{2}\left(c_{2 h}, c_{d h}\right)+u\left(c_{1 l}\right)+U\left(c_{2 l}, c_{d l}\right)$
subject to:
$u\left(c_{1 h}\right)+U_{2}\left(c_{2 h}, c_{d h}\right) \geq u\left(c_{1 l}\right)+U_{2}\left(c_{2 l}, c_{d l}\right)$
$0 \leq x_{h}-c_{1 h}+\left(x_{h}-c_{2 h}\right) F\left(e_{h}\right)-\left(1-F\left(e_{h}\right)\right) c_{d h}$
$+x_{l}-c_{1 l}+\left(x_{l}-c_{2 l}\right) F\left(e_{l}\right)-\left(1-F\left(e_{l}\right)\right) c_{d l}$

2.3 Some results

- First order condition for first period consumption:

$$
\begin{aligned}
u^{\prime}\left(c_{1 h}\right) & =\lambda-\mu \\
u^{\prime}\left(c_{1 l}\right) & =\lambda+\mu
\end{aligned}
$$

- $c_{1 l}<c_{1 h}$ if and only if self-selection binds $(\mu>0)$.
- $e_{h}>e_{l}$
- If $\mu>0$, then:

1. $c_{2 h}>c_{2 l}>c_{d l}>c_{d h}$
2. $U_{2 h}<U_{2 l}$

- Remark: with no second period incentive constraint \rightarrow full insurance \rightarrow all consumptions identical.
- Incentives for disability limit redistribution.

3 Numerical results

- Calibration $\left(\pi, x_{l}, x_{h}, F, u\right)$

1. $\pi=0.25$
2. $x_{h}=3 x_{l}$
3. $u(c)=\ln c$
4. F exponential hazard rate $\lambda \in\{0.5,1,2\}$

Median Disutility of Effort

(equivalent \% loss in wages)
Hazard disutility
$\lambda=0.5 \quad 75 \%$
$\lambda=1 \quad 50 \%$
$\lambda=2 \quad 29 \%$

Consumption (Constrained/Optimal)

$$
\lambda=0.5 \quad \lambda=1 \quad \lambda=2
$$

C_11	85	89	96
C_2l	127	118	110
C_dl	70	65	58
replacement	55%	55%	53%
C_1h	106	123	110
C_2h	169	135	110
C_dh	40	13	0
replacement	24%	9%	0%
Avg. Replacement	45%	50%	53%

- Limited replacement ratios
- Very low for H types.
- Less redistribution first period.
- Replacement rates decreasing with λ.

Employment and Disability

	$\lambda=0.5$		$\lambda=1$	\square	$\lambda=2$	
	Optimal	Constrained	Optimal	Constrained	Optimal	Constrained
F(e_l)	35.1\%	25.8\%	53.9\%	45.1\%	75.9\%	72.3\%
F(e_h)	72.7\%	51.2\%	90.2\%	90.6\%	98.6\%	100.0\%
$\begin{aligned} & \text { \% } \\ & \text { disabled } \end{aligned}$	55.5\%	67.8\%	37.0\%	43.5\%	18.4\%	20.7\%
autharky		53\%		22\%		0\%

- Lower employment of low types.
- Increase in \% disabled.
- Much more than under autharky.

Welfare

$$
\lambda=0.5 \quad \lambda=1 \quad \lambda=2
$$

$\begin{array}{llll}\text { First Best } & 100.0 & 100.0 & 100.0\end{array}$

- Big gains relative to autharky.
- Considerable difference to first best for low λ.

4 Uncoordinated decisions

- Advantages of coordinated redistribution and disability policies.
- Two principals.
- First principal:

1. Decides on wage taxes
2. Budget for disability insurance office.

- Second principal - disability insurance office:
- Decides $c_{d h}$ and $c_{d l}$.

4.1 Coordination problem

- Free riding on self-selection.
- Does not internalize changes in tax revenue.
- Dynamic game.

4.2 Disability insurance office

- Takes as given $c_{2 h}, c_{2 l}$ (follows from taxes)
- Can discriminate between h, l.
- Offers $c_{d h}, c_{d l}$ to solve:

$$
\begin{aligned}
& \max _{c_{d h}, c_{d l}} F\left(e_{h}\right) u\left(c_{2 h}\right)-\int_{0}^{e_{h}} a f(a) d a+\left(1-F\left(e_{h}\right.\right. \\
& +F\left(e_{l}\right) u\left(c_{2 l}\right)-\int_{0}^{e_{l}} a f(a) d a+\left(1-F\left(e_{l}\right)\right) u(c \\
& \text { subject to } \\
e_{j}= & u\left(c_{2 j}\right)-u\left(c_{2 j}\right), j=h, l \\
B= & F\left(e_{h}\right) c_{d h}+F\left(e_{l}\right) c_{d l}
\end{aligned}
$$

- Marginal cost of increasing $c_{d j}$:

$$
\begin{aligned}
& 1-F\left(e_{j}\right)-f\left(e_{j}\right) c_{d j} \frac{\partial e_{j}}{\partial c_{d j}} \\
= & F\left(e_{j}\right)+f\left(e_{j}\right) c_{d j} u^{\prime}\left(c_{d j}\right)
\end{aligned}
$$

- Marginal benefit: $F\left(e_{j}\right) u^{\prime}\left(c_{d j}\right)$
- Optimal rule equate Mg benefit $/ \mathrm{Mg}$ cost on both types.

$$
\frac{\left(1-F\left(e_{j}\right)\right) u^{\prime}\left(c_{d j}\right)}{\left(1-F\left(e_{j}\right)\right)+f\left(e_{j}\right) u^{\prime}\left(c_{d j}\right) c_{d j}}=\lambda
$$

where λ satisfies budget constraint.

4.3 First Principal's problem

- Same as before with the additional constraint:

$$
=\begin{aligned}
& \frac{\left(1-F\left(e_{h}\right)\right) u^{\prime}\left(c_{d h}\right)}{\left(1-F\left(e_{h}\right)\right)+f\left(e_{h}\right) u^{\prime}\left(c_{d h}\right) c_{d h}} \\
= & \frac{\left(1-F\left(e_{l}\right)\right) u^{\prime}\left(c_{d l}\right)}{\left(1-F\left(e_{l}\right)\right)+f\left(e_{l}\right) u^{\prime}\left(c_{d l}\right) c_{d l}}
\end{aligned}
$$

- Rewriting:

$$
\frac{1}{\frac{1}{u^{\prime}\left(c_{d j}\right)}+\frac{f\left(e_{j}\right)}{1-F\left(e_{j}\right)} c_{d j}}=\lambda
$$

- Decreasing in $c_{d j}$ and increasing (decreasing) in e_{j} if and only if hazard rate is decreasing (increasing).
- If F is exponential, then $c_{d h}=c_{d l}$ is only additional constraint. If hazard rate is increasing $c_{d h}<c_{d l}$ and $e_{h}>e_{l}$. If hazard rate is decreasing, opposite!

4.4 Two principals - numerical results

- Same case as before.
- F is exponential, so only add constraint $c_{d h}=c_{d l}$.

Consumption (two planners/one planner)

$$
\lambda=0.5 \quad \lambda=1 \quad \lambda=2
$$

C_1I	104	104	104
C_2l	93	96	94
C_dl	81	89	70
replacement	47.6	51.2	39.5
one planner	55%	55%	53%
C_1h			
C_2h	75	83	91
C_dh	117	109	116
replacement	414	155	-
one planner	33%	34%	32%
Avg. Replacement	24%	9%	0%
one planner	42%	44%	37%

- More redistribution first period (same consump-
tion!)
- Replacement increases for h and decreases for l.

Employment and Disability

	$\lambda=0.5$		$\lambda=1 \quad \square$		$\lambda=2$	
	Constrained	2 Principals	Constrained	2 Principals	Constrained	2 Principals
F(e_l)	25.8\%	28.5\%	45.1\%	52.4\%	72.3\%	84.4\%
F(e_h)	51.2\%	41.8\%	90.6\%	66.5\%	100.0\%	89.9\%
\% disabled	67.8\%	68.2\%	43.5\%	44.0\%	20.7\%	14.2\%
autharky		53\%		22\%		0\%

- e_{l} goes up and e_{h} goes down.

Welfare

$$
\lambda=0.5 \quad \lambda=1 \quad \lambda=2
$$

First Best
Constrained
Two Principals
Autharky
$\begin{array}{lll}100.0 & 100.0 & 100.0\end{array}$
$\begin{array}{lll}92.7 & 95.4 & 98.3\end{array}$
$91.7 \quad 93.1 \quad 96.5$
$\begin{array}{lll}75.9 & 77.5 & 83.6\end{array}$

- Effects not negligible but small.

4.5 Redistribution and incentives

Redistribution (avg. Taxes on H)			
\qquad $\lambda=0.5$ $\lambda=1$	$\lambda=2$		
Optimal	55%	55%	53%
One planner	46%	44%	48%
two planners	45%	45%	46%

- Interaction with disability insurance incentives leads to lower income redistribution.
- Less so in later period.
- Disability much lower for high wage workers.
- Lack of coordination can lead to more equal disability.

