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Abstract

We construct a model where money is essential to examine the role of financial intermediaries

in the propagation of aggregate shocks. We then derive the optimal stabilization response by the

central bank to these shocks where the central bank’s objective is to maximize the welfare of the

representative agent subject to a seigniorage constraint. We show that financial intermediation

can lead to higher consumption volatility and that the optimal policy typically involves providing

an elastic supply of currency to smooth nominal interest rates.
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1 Introduction

Optimal monetary policy has a long and short-run component. The long-run component focuses on

what the optimal trend inflation rate or money growth rate should be. The short-run component

is concerned with the optimal stabilization response to economic shocks. The ‘science of monetary

policy’ requires constructing macroeconomic models to study these issues. What attributes should

such a model have? First, since the issue is optimal monetary policy, it seems obvious that money

should be essential for trade. Second, the model should be based on micro-foundations with opti-

mizing agents. Third, the monetary authority should choose policies that maximize the welfare of

the representative agent subject to the constraints of the economic environment.

How well does the current ‘science of monetary policy’ satisfy these three criteria? New Key-

nesian (NK) models come close to satisfying the second and third criteria. On the other hand, the

NK model fails miserably in terms of satisfying criteria one since they do not explicitly derive the

underlying frictions that give rise to money. Instead money is forced into the model, which gives

rise to the second drawback of the model. For monetary policy to have real effects there must be

nominal price/wage rigidity but this rigidity is simply assumed to exist and is not derived from first

principles. Thus, by having poor microfoundations for money in the models, ad hoc assumptions

about price and wage rigidity must be used for money to have real effects. A more appealing

approach is to model explicitly the frictions that give rise to money. These frictions alone should

be sufficient to give monetary policy real effects thus avoiding the need for assumptions on price

and wage rigidity.

In this paper we study optimal monetary policy in a dynamic stochastic general equilibrium

model in which money is essential. The basic framework is the Berentsen, Camera andWaller (2004)

model of money and credit that builds on the standard Lagos-Wright (2004) model of money. We

introduce a variety of economic shocks to this economy and examine the optimal stabilization

response of the monetary authority for a given long run inflation rate target. The existence of the

credit sector generates a nominal interest rate that the monetary authority is able to manipulate

via changes in the aggregate money stock. The monetary authority’s objective is to maximize the

lifetime expected utility of the representative agent subject to being an equilibrium policy and

satisfying an exogenous seigniorage requirement. In the absence of any seigniorage requirement,

we show that the optimal long run policy is the Friedman rule (a zero nominal interest rate) and

stabilization policy is not needed. However, with binding seigniorage requirements that force the
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monetary authority away from the Friedman rule, stabilization policy has real, welfare improving

effects. We show that stabilizing nominal interest rates is welfare improving for some shocks but

not others.

The paper proceeds as follows. In Section 2 we describe the environment. In Section 3 the

agents optimization problems are presented. Section 4 examines the equilibrium of the economy

and the impact of each shock on the allocation. Section 5 contains the optimal stabilization policies

of the central bank. Section 6 concludes.

2 The Environment

Time is discrete and in each period there are two markets that open sequentially and are perfectly

competitive.1 There is a [0, 1] continuum of infinitely-lived agents and one perishable good produced

and consumed by all agents.

At the beginning of the first market agents get a preference shock such that they either can

consume or produce. With probability n an agent can consume but cannot produce while with

probability 1−n the agent can produce but cannot consume. We refer to consumers as buyers and

producers as sellers. Agents get utility εu(q) from q > 0 consumption in the first market, where ε

is a preference parameter and u0(q) > 0, u00(q) < 0, u0(0) = +∞, and u0(∞) = 0. Furthermore, we

impose that the elasticity of utility e (q) = qu0(q)
u(q) is bounded. Producers incur utility cost c (q) = q/a

from producing q units of output where a is a measure of productivity. To motivate a role for fiat

money, we assume that all goods trades are anonymous. In particular, trading histories of agents

are private information. Consequently, sellers require immediate compensation so buyers pay with

money. There is also no public communication of individual trading outcomes (public memory),

which eliminates the use of trigger strategies to support gift-giving equilibria.

The parameters n, a and ε are stochastic. The random variable n has support [n, n] ∈ (0, 1), a

has support [a, a] , ∞ > a > a > 0, and ε has support [ε, ε], ∞ > ε > ε > 0. Let ω = (n, a, ε) ∈ Ω

be the aggregate state in market 1, where Ω = [n, n]× [a, a] × [ε, ε] is a closed and compact

subset on R3
+. Let f (ω) denote the density function of ω. The shocks follow first order stationary

Markov processes with the stationary transition matrix Π. The stationary conditional density

function is denoted by f (ω|ω−1). Denote the unconditional expectations E (n) = n̂, E(1/a) = 1

1The basic environment is that of Berentsen, Camera and Waller (2004) which is a combination of Lagos and

Wright (2003) and Aruoba, Waller and Wright (2003).
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and E (ε) = 1. Since shocks to n affect the ratio of sellers to buyers it can be interpreted as an

extensive margin aggregate demand shock with high values of n corresponding to many buyers and

high demand for goods.2 Aggregate shocks to ε are intensive margin aggregate demand shocks.

Shocks to a are aggregate productivity shocks. If the shocks are independent, then f (ω|ω−1) =

f (n, n−1) f (a, a−1) f (ε, ε−1).

In the second market all agents consume and produce, getting utility U(x) from x consumption,

with U 0(x) > 0, U 0(0) =∞, U 0(+∞) = 0 and U 00(x) ≤ 0.3 Agents can produce one unit of x with

one unit of labor h. Production of x units of output generates disutility h. The discount factor

across dates is β ∈ (0, 1). There is no uncertainty in market 2. Adding uncertainty to this market

is not interesting because monetary policy will have no effects on real variables in this market since

it is a completely frictionless market.

We assume a central bank exists that controls the supply of fiat currency. The growth rate of

the money stock is given by Mt = γMt−1 where γ > 0 and Mt denotes the per capita money stock

in market 2 in period t. For notational ease variables corresponding to the next period are indexed

by +1, and variables corresponding to the previous period are indexed by −1. Agents receive lump

sum transfers τM−1 = (γ − 1)M−1 over the period t. If τ < 0, we assume the central bank has

the authority to levy taxes in the form of currency to extract cash from the economy. Some of the

transfer is received at the beginning of market 1 and some during market 2. Let τ1M−1 and τ2M−1

denote the transfers in market 1 and 2 in state ω ∈ Ω respectively with (τ1 + τ2)M−1 = τM−1.

Thus, since there is randomness in the economy, the central bank may choose to make the timing

of the injections contingent on the aggregate state of the economy. Note that the growth rate of

the money supply is still deterministic.4 If the timing of the transfers is not state contingent, we

say that policy is passive. Otherwise it is active.

As in BCW (2004) there are banks that have a record-keeping technology over financial trans-

2When the measures of buyers and sellers are random the aggregate demand for goods is also random and changes

on the extensive margin. Although the measure of sellers is random, with linear production costs equilibrium output

is entirely demand determined. By varying the number of sellers we also change the amount of idle cash balances in

the economy. When banks intermediate deposits, this implies deposits and loans will be random. This suggests that

banks may amplify shocks to the economy. We show below that although banks increase consumption in all states

they also create more consumption volatility for individual agents.
3Following Lagos-Wright (2003), the difference in preferences over the good sold in the last market allows us to

impose technical conditions such that the distribution of money holdings is degenerate at the beginning of a period.
4Lucas (1990) employs a similar process for the money supply to so that changes in nominal interest rates result

purely from allocative shocks and not changes in expected inflation. The same holds true in our model.
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actions that allows them to take deposits and make loans. In the first market the banking sector

opens before trading and agents can borrow and deposit after observing the shocks. Then, buyers

and sellers trade. In the second market the goods market and the banking sector opens simulta-

neously. We assume net settlements, i.e. all financial claims are settled at the end of the period.

This essentially means that loans and deposits cannot be rolled over. Consequently, all financial

contracts are one-period contracts. In all models with credit repayment is a serious issue. However,

since we focus on stabilization issues, we assume repayment can be enforced on all loans.

Banks accept nominal deposits and pay the nominal interest rate id and make nominal loans

at nominal rate i. The banking sector is perfectly competitive, so banks take these rates as given.

There are no operating costs so the zero profit condition implies that id = i.

It is straightforward to show that in a symmetric equilibrium in state ω all borrowers take out

the same size loan, l = l (ω), and depositors deposit the same amount d = d (ω) so that

l =
(1− n)µ

n
d (1)

where µ is an indicator variable that equals 1 if a banking system exists and 0 otherwise. We

introduce µ in order to compare the allocations when banks exist and when they do not.

The precise sequence of action after agents observe the shocks is as follows. First, the monetary

injection τ1M−1 occurs. Second, sellers deposit their excess cash and buyers borrow money from

the banking sector. Thus, monetary policy can influence market interest rates without doing open

market operations — it simply injects money and lets the private sector reallocate the cash thereby

causing interest rates to change. Finally, agents move on to the goods market and trade. In the

second market the injection τ2M−1 occurs and the goods market and banking sector open where

all financial claims are settled.

3 Agents’ Choices and Value functions

In period t, let φ = φ (ω) be the real price of money in the second market given state ω occurred

in market 1. We study equilibria where end-of-period real money balances are time-invariant

φM = φ−1M−1 = z. (2)

We refer to it as a stationary equilibrium.

Consider a stationary equilibrium. Let V (m1, ω−1) denote the expected value from trading in

market 1 with m1 money balances conditional on the aggregate shock ω−1. Let W (m2, l, d) denote
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the expected value from entering the second market with m2 units of money, l loans, and d deposits

when the aggregate state is ω. Note that all quantities and prices are functions of the aggregate

state ω, i.e., m2 = m2 (ω), l = l (ω), and d = d (ω). We suppress this dependence for notational

simplicity. In what follows, we look at a representative period t and work backwards from the

second to the first market to examine the agents’ choices.

3.1 The second market

In the second market agents trade good x and adjust their money balances taking into account cash

payments or receipts from the bank. Loans are repaid by borrowers and bank redeem deposits. If

an agent has borrowed l units of money, then he pays (1 + i) l units of money. If he has deposited

d units of money, he receives (1 + i) d. The representative agent’s program is

W (m2, l, d) = max
x,h,m1,+1

[U (x)− h+ βV (m1,+1, ω)] (3)

s.t. x+ φm1,+1 = h+ φ (m2 + τ2M−1) + φ (1 + i) d− φ (1 + i) l

where m1,+1 is the money taken into period t+1, l is nominal borrowing, and d is nominal deposits

in the first market.

Rewriting the budget constraint in terms of h and substituting into (3) yields

W (m2, l, d) = φ [m2 + τ2M−1 − (1 + i) l + (1 + i) d]

+ max
x,m1,+1

[U (x)− x− φm1,+1 + βV (m1,+1, ω)] .

The first-order conditions are U 0 (x) = 1 and

−φ−1 + βV 0(m1, ω−1) = 0 (4)

where the first-order condition for money has been lagged one period. Thus, V 0(m1, ω−1) is the

marginal value of taking an additional unit of money into the first market open in period t, and

φ−1 is the real price of money in the second market of period t− 1 measured in units of utility.

The envelope conditions are

Wm = φ (5)

Wd = −Wl = φ (1 + i) . (6)

If no banking system exists then Wd = Wl = 0. As in Lagos-Wright (2004) the value function is

linear in wealth. The implication is that all agents enter the following period with the same amount

of money.

6



3.2 The first market

Let qb and qs respectively denote the quantities consumed by a buyer and produced by a seller

trading in market 1. Let p be the nominal price of goods in market 1. It is straightforward to

show that buyers will never deposit funds in the bank and sellers will never take out loans. Thus,

ls = db = 0. In what follows we let l denote loans taken out by buyers and d deposits of sellers. We

also drop these arguments in W (m, l, d) where relevant for notational simplicity.

An agent who has m1 money at the opening of the first market given ω−1 has expected lifetime

utility

V (m1, ω−1) =

Z
Ω
{n [εu (qb) +W (m1 + τ1M−1 + l − pqb, l)]

+ (1− n) [−qs/a+W (m1 + τ1M−1 − d+ pqs, d)]} f (ω|ω−1) dω
(7)

where pqb is the amount of money spent as a buyer, and pqs the money received as a seller.

After the shocks are realized, agents become either a buyer or a seller.

Sellers’ decisions It is straightforward to show that it is optimal for sellers to deposit all their

money balances if i > 0. If i = 0, they are indifferent since they earn no money. In what follows we

assume that if i = 0, then d = 0. This assumption has no implication for the equilibrium allocation

but simplifies the presentation. Thus, the optimal choice for d = d (ω) satisfies

d

⎧⎨⎩ = m1 + τ1M−1 if i > 0

= 0 otherwise
, ω ∈ Ω (8)

A seller’s problem is

max
qs
[−qs/a+W (pqs, d)]

Using (5), the first order conditions reduce to

1 = apφ, ω ∈ Ω. (9)

Since sellers have linear costs in both markets they are indifferent how much they produce in market

1 given (9) holds. In what follows we assume that all sellers produce the same quantities. Note

that sellers cannot deposit receipts of cash obtain from selling output.

Buyers’ decisions If an agent is a buyer in the first market, his problem is:

max
qb,l

[εu (qb) +W (m1 + τ1M−1 + l − pqb, l)]

s.t. pqb ≤ m1 + τ1M−1 + l
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Notice that buyers can spend more cash than what they bring into the first market since they can

borrow cash to supplement their money holdings at the cost of the nominal interest rate. Using

(5) the buyer’s first-order conditions can be written as

u0 (qb)− pφ− pλ = 0, ω ∈ Ω (10)

−iφ+ λ = 0, ω ∈ Ω (11)

λ [m1 + τ1M−1 + l − pqb] = 0, ω ∈ Ω (12)

where λ = λ (ω) are the multipliers of the buyer’s cash constraints for all states ω ∈ Ω.

Define the set of states where the constraint is nonbinding as Ω0 = {ω ∈ Ω |λ (ω) = 0}. Ac-

cordingly, define Ω1 = {ω ∈ Ω |λ (ω) > 0}. Then, if the constraint is not binding, by using (5), (10)

reduces to

aεu0 (qb) = 1, ω ∈ Ω0. (13)

Hence trades are efficient.5 In what follows define the solution of (13) as q∗ = q∗ (ω). From (11) it

is evident that if λ = 0 the interest rate in a monetary equilibrium satisfies i = 0.

If the constraint is binding, then equations (9), (10) and (11) imply

aεu0 (qb) = 1 + i, ω ∈ Ω1. (14)

Since from (11) i > 0, we have aεu0 (qb) > 1 which means trades are inefficient. The buyer spends

all of his money, pqb = m1 + τ1M−1 + l, and consumes qb =
m1+τ1M−1+l

p .

Marginal value of money The marginal value of money satisfies

V 0(m1, ω−1) =

Z
Ω

©
nεu0 (qb) /p+ (1− n)φ (1 + µi)

ª
f (ω|ω−1) dω

In the appendix we show that the value function is concave in m.

Use (9) to replace p = 1/(aφ) to get

V 0(m1, ω−1) =

Z
Ω
φ
©
naεu0 (qb) + (1− n) (1 + µi)

ª
f (ω|ω−1) dω. (15)

Note that banks increase the marginal value of money because sellers can deposit idle cash and earn

interest as opposed to the non-bank case. This is captured by the second term on the right-hand

side. In the non-bank case (µ = 0) this term is just 1− n.

5With n buyers and 1 − n sellers, the planner maximizes nu (qb) − (1− n) c (qs) s.t. nqb = (1− n) qs. Use the

constraint to replace qs in the maximand. The first-order condition for qb is u0 (qb) = c0 (qs).
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3.3 Equilibrium

We now derive the symmetric monetary steady-state equilibrium. Market clearing implies

qb =
1− n

n
qs, ω ∈ Ω. (16)

Note that by symmetry we impose that all sellers produce the same quantity qs even though they

are indifferent regarding how much to produce when (9) holds.

Use (14) to eliminate i and (4) to eliminate V 0(m1, ω−1) from (15) to get

φ−1(ω−1) = β

Z
Ω
φ (ω)

©
1 + [n+ (1− n)µ]

£
aεu0 (qb)− 1

¤ª
f (ω|ω−1) dω.

Then, by using (13) we can rewrite the previous equation as follows:

φ−1(ω−1) = β

Z
Ω
φ (ω) f (ω|ω−1) dω+β

Z
Ω1

φ (ω) [n+ (1− n)µ]
£
aεu0 (aυθz (ω))− 1

¤
f (ω|ω−1) dω.

Here we have taken into account that in a steady-equilibrium m1 =M−1 so buyer’s money holdings

satisfy

(1 + τ1)
³
1− µ+

µ

n

´
M−1 = υθM

where θ = 1−µ+µ/n and υ = (1 + τ1) / (1 + τ).6 Consequently, we have qb = φaυθM = aυθz (ω)

if ω ∈ Ω1, where z = z (ω) is the real stock of money in state ω.

Finally, multiply the first-order condition by M to get

γz−1(ω−1) = β

Z
Ω
z (ω) f (ω|ω−1) dω+β

Z
Ω1

z (ω) [n+ (1− n)µ]
£
aεu0 (aυθz (ω))− 1

¤
f (ω|ω−1) dω.

Since we study equilibria where the end-of-period real money balances are time invariant we can

write this equation as follows

γ

β
z(ω−1) =

Z
Ω
z (ω) f (ω|ω−1) dω +

Z
Ω1

z (ω) [n+ (1− n)µ]
£
aεu0 (aυθz (ω))− 1

¤
f (ω|ω−1) dω.

(17)

Definition 1 A symmetric monetary steady-state equilibrium is a function z(ω) that satisfies (17).

(17) is a functional equation in z(.). If the states are not serially correlated, i.e. if they are i.i.d,

then the right-hand side of (17) is independent of ω−1. Consequently, the real stock of money is a

constant. If the states are serially correlated, the real stock of money is a function of the state.

We now analyze the optimal response to these shocks when the shocks are serially correlated

and when they are not. We begin with the second case.
6Note that θ = 1 if there are no banks and θ = 1/n with banks.
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4 Optimal policy without persistence

Before we derive the optimal response to these shocks, we now analyze each shock separately to

understand how each one affects the allocation.

When the states are not serially correlated (17) can be written as follows

γ − β

β
=

Z
Ω1

[n+ (1− n)µ]
£
aεu0 (aυθz)− 1

¤
f (ω) dω. (18)

4.1 Extensive margin demand shocks

For the analysis of shocks to n, we set 1/a = E (1/a) = 1 and ε = E (ε) = 1. It then follows that

ω = n. Note that the optimal quantities solve q∗ = u0−1 (1).

Proposition 1 For γ ≥ β, a monetary equilibrium exists with q = q∗ for all n at γ = β. For

γ > β, the equilibrium is unique with q = q∗ if n ≤ ñ and q < q∗ if n > ñ, where ñ ∈ (n
¯
,n̄).

Moreover, dñ/dγ < 0.

The Friedman rule replicates the first-best allocation. At the Friedman rule agents can self-

insure at no cost so there is no role for stabilization policies.7 Away from the Friedman rule, buyers

are constrained when there are many borrowers (high n) but are not constrained when there are

many depositors (low n). Since dñ/dγ < 0, the higher is the trend inflation rate, the larger is the

range of shocks where the quantity traded is inefficiently low.

We want to compare the equilibrium outcome in the banking economy to the no-banking case

when these shocks occur. For this purpose we eliminate for now policy responses to these shocks by

setting τ1 (n) = τ implying υ (n) = 1 for all n. We can replicate the no-banking equilibrium simply

by setting µ = 0 which implies θ = 1. The quantities consumed in the no-banking equilibrium are

q (n) = z, where z solves
γ − β

β
=

Z n

n
n
£
u0 (z)− 1

¤
dF (n)

Hence, in the no banking equilibrium, buyers consume the same quantity across states since they

can only spend the cash they bring into market 1 which is independent of the state that is realized.8

In contrast, when banks exist, idle cash from sellers is deposited and lent back out to buyers. This

expands borrowing and leads to higher quantities of goods consumed by buyers. If n > ñ, then

7This is very similar to the result found by Ireland (1996). He shows that even with nominal price stickiness, there

is no need to stabilize aggregate demand shocks at the Friedman rule.
8Note however that aggregate consumption in the economy is increasing in n.
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increasing n means there are more buyers and fewer deposits to lend out. This drives up nominal

interest rates, which decreases consumption. Thus, individual consumption is high in low demand

states and low in high demand states.

Corollary 1 Without banks dq/dn = 0. With banks we have dq/dn = −q/n ≤ 0 for n > ñ and

dq/dn = 0 for n ≤ ñ.

The interesting aspect of this result is that while financial intermediation raises average con-

sumption across states, is also causes interest rates to fluctuate thereby making individual con-

sumption more volatile. To see this note that the nominal interest rate is i = 0 for n ≤ ñ and

i = u0 (q)− 1 ≥ 0 for n > ñ. Note also that the expected interest rate satisfies9

γ − β

β
=

Z n

ñ
idF (n) .

Note that the expected nominal interest rate is increasing in γ since dñ/dγ < 0.

4.2 Intensive margin demand shocks

To study ε shocks we set a = 1 and n = n̂. It then follows that ω = ε. Note that in this case the

optimal quantities solve q∗ (ε) = u0−1 (1/ε).

Proposition 2 For γ ≥ β, a monetary equilibrium exists with q = q∗ (ε) for all ε at γ = β. For

γ > β the equilibrium is unique with q < q∗ (ε) for ε > ε̃ and q = q∗ (ε) for ε < ε̃.

Once again the Friedman rule replicates the first-best allocation. At the Friedman rule there

is no role for stabilization. Away from the Friedman rule, buyers are constrained in high marginal

utility states but not in low states.

Corollary 2 With a passive monetary policy dq/dε = 0 for ε > ε̃ and dq/dε > 0 for ε ≤ ε̃.

This Corollary follows from the fact that when buyers are constrained (ε > ε̃) q (ε) = θz which

does not depend on ε. Thus, even though buyers have a high marginal utility for consumption and

would like to buy more goods at the prevailing market price, they cannot. The reason is that their

holdings of money balances are unchanged and the market price is not a function of ε. Thus, from

(14) the excess demand for goods simply leads to an increase in the nominal interest rate on loans

9For n < ñ, buyers have more real balances than they need to buy the efficient quantity. However, since i = 0 in

these states, there is no gain from depositing the excess cash balances in the bank.
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such that agents are able to buy the same quantity of goods. For ε ≤ ε̃, buyers have more than

enough real balances to buy the efficient quantity. So when ε increases, they simply spend more of

their money balances.

4.3 Aggregate productivity shocks

To study aggregate productivity shocks, we set ε = 1 and n = n̂. It then follows that ω = a. Note

that in this case the optimal quantities are q∗ (a) = u0−1 (1/a). Denote R (q) = −qu00 (q) /u0 (q) .

Proposition 3 For γ ≥ β, a monetary equilibrium exists with q = q∗ (a) for all a at γ = β. For

γ > β the equilibrium is unique. If R (q) ≥ 1, then q < q∗ (a) for a > ã and q = q∗ (a) for a < ã.

If R (q) < 1, then q = q∗ (a) for a ≥ ã and q < q∗ (a) for a < ã.

As productivity increases, the marginal costs of producing fall which increases the efficient

quantity. It also implies that prices fall. The issue is whether prices fall sufficiently far to raise real

balances, az, enough to buy the higher efficient quantity. This in turn depends on preferences —

for sufficiently concave preferences it is not sufficient, while for preferences sufficiently linear, prices

increase more than enough to buy the efficient quantity. Thus, we have the following:

Corollary 3 With passive policy, dq/da > 0 for all a.

4.4 Optimal Stabilization

What is the optimal response of the central bank to these shocks? We assume the central bank’s

stabilization policy maximizes the welfare of the representative agent for a given steady-state in-

flation rate. It does so by choosing the quantities consumed and produced in each state subject

to the constraint that the chosen quantities satisfy the conditions of a competitive equilibrium.

The policy is implemented by choosing the injections τ1 and τ2 accordingly. This is a standard

Ramsey problem. The growth rate of the money supply is determined exogenously to finance a

fixed amount of government consumption in market 2. This implies γ > 1.

It is straightforward to show that the expected lifetime utility of the representative agent at the

beginning of period t is given by

(1− β)V (M−1) = U (x)− x− g +

Z
Ω
n [εu (q)− q/a] f (ω, ω−1) dω

where g is the real amount of government spending that is financed in market 2. It is obvious that

x = x∗ so all that remains is to choose q = q (ω).
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The Ramsey problem facing the central bank is

Max
q

Z
Ω
n [εu (q)− q/a] f (ω, ω−1) dω

s.t.
γ − β

β
=

Z
Ω
[n+ (1− n)µ]

£
aεu0 (q)− 1

¤
f (ω, ω−1) dω (19)

q ≤ q∗

where µ is an indicator variable which is equal to 1 when there are no banks and equal to 0 when

there are banks.

Sufficient conditions for a maximum are

n
£
aεu0 (q)− 1

¤
+ λ [n+ (1− n)µ] a2εu00 (q) = 0 and (20)

aεu00 (q)u00 (q)−
£
aεu0 (q)− 1

¤
u000 (q) > 0 for all ω.

The second order condition is satisfied if either u000 (q) ≤ 0 or if u000 (q) > 0 and marginal utility is

log-concave.

The first thing to note is that the planner never chooses q = q∗ (ω) for any state. This is in

contrast to the decentralized equilibrium where q = q∗ (ω) for some range of all three shocks when

γ > β. The reason is that the planner attempts to smooth consumption across states whereas no

state contingent contracts are traded amongst the agents themselves. He does this by setting i > 0.

Consequently, although i = 0 is the optimal policy for all states, unless it can be done for all states,

it is optimal to never set i = 0. Hence, zero nominal interest rates should be an all-or-nothing

policy.

The second thing to note is that while banks do affect the level of consumption across states

that a planner chooses, the existence of banks does not affect the ratios of consumption across

states. To see this, simply taking the ratio of (20) for two realizations of the shocks

nj
£
ajεju

0 ¡qj¢− 1¤
nk [akεku0 (qk)− 1]

=
a2jεju

00 ¡qj¢
a2kεku

00 (qk)

which is independent of µ. In short, the financial system merely relaxes the constraint for the

planner but has no impact on how consumption is allocated across states.

We now want to characterize the planner’s choices across states. With respect to extensive

margin shocks we state the following:

Proposition 4 The constrained planner’s choice of quantities yields dq
dn = 0 when there are no

banks (µ = 0) and
dq

dn
= − u00 (q) [aεu0 (q)− 1]

naεu00 (q)u00 (q) + n [aεu0 (q)− 1]u000 (q) ≥ 0 (21)
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with banks (µ = 1).

According to Proposition (4), without banks the planner chooses the same consumption in each

state which implies υn = υ. The reason is that although the central bank can alter q via its choice

of τ1, doing so would only create consumption variability which is welfare reducing. Consequently,

the best stabilization policy is to keep quantities constant across states. Note that this implies

aggregate consumption still varies across states.

In contrast, with banks the planners optimal choice of individual consumption is increasing in

n. Note also that this just the opposite from what happens when the central bank is passive. With

a passive policy, buyers consume more in low n states since loans are plentiful and cheap. However,

this is not optimal. From the viewpoint of the representative agent looking into the future, he

wants to consume more when he is more likely to desire consumption, which is when he is a buyer

(high n). However, these are the states when there is little liquidity in the banking system since

the number of depositors is low. Thus, what the planner would like to do is to increase liquidity

when aggregate demand is high and deposits are low and reduce it when aggregate demand is low

and deposits are high. To accomplish this, the central bank injects more cash into the system in

high n states and less cash in low n states. These transfers are chosen to generate the quantities

solving (20).

An interesting implication of this policy is that the central bank is essentially providing an

elastic supply of currency to the economy — when demand for liquidity is high, the central bank

provides additional currency and withdraws it when the demand for liquidity is low. Note what

this does NOT imply — a constant nominal interest rate across states, which would imply that

consumption is the same in all states.

With respect to intensive margin demand shocks we have:

Proposition 5 The constrained planner’s choice of quantities yields

dq

dε
= − u00 (q)

ε {aεu00 (q)u00 (q)− [aεu0 (q)− 1]u000 (q)} ≥ 0 (22)

with or without banks.

Unlike the passive policy equilibrium, where dq/dε = 0 when q < q∗ (ε) , the planner wants

consumption to be increasing in ε. As before, when agents desire more consumption, it is optimal

to give them more. This is achieved by injecting more liquidity into the system to bring down

14



nominal interest rates thereby allowing agents to buy more goods when it is so desired.10

Proposition 6 The constrained planner’s choice of quantities yields

dq

da
= − u00 (q) {εau0 (q) + 2 [aεu0 (q)− 1]}

a2εu00 (q)u00 (q) + a [aεu0 (q)− 1]u000 (q) ≥ 0 (23)

with or without banks.

5 Optimal policy with persistence

For the rest of the paper we focus on shocks to the number of buyers and sellers since banks play a

key role in the propagation of these shocks. To analyze these shocks we begin with the case where

there are only two states.

5.1 Two states

Consider n ∈
©
nH , nL

ª
where nH > nL > 0. Assume that there are banks (µ = 1). Assume that

the shocks follow a stationary finite state first-order Markov process, which is summarized in the

following transition probability matrix:

nHt+1 nLt+1

nHt πH 1− πH

nLt 1− πL πL

where πj denotes the probability that state j follows state j, i 6= j. Accordingly, 1 − πj is the

probability that state i follows state j. We assume

πH , πL ≥ 1/2 (24)

With strict inequality there is no persistence.

Conjecture a steady state equilibrium with two values for the real stock of money zH and zL.

We will show below under which conditions such an equilibrium exists. The average inflation is

E
³
Mt+1

Mt

´
= γ, while the expected gross real return on money is

Rj = Ej
t

"
φt+1

φjt

#
= Ej

t

"
zt+1

γzjt

#
=
1

γ

zjπj + zi
¡
1− πj

¢
zj

≡ 1

ξj
,

10Recall that the extra liquidity is withdrawn in market two.
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which is negatively associated with expected inflation γ. In our analysis we will focus on ξj rather

than γ since ξj is proportional to γ.

The Friedman rule We can write the two first-order conditions (17) as follows

γ

β
zH = zHu0

¡
qH
¢
πH + zLu0

¡
qL
¢ ¡
1− πH

¢
(25)

γ

β
zL = zHu0

¡
qH
¢ ¡
1− πL

¢
+ zLu0

¡
qL
¢
πL (26)

Substract from both sides the expected real stock of money and rewrite these equations to get

γ

β
zH −EH

t [zt+1] = zHπH
£
u0
¡
qH
¢
− 1
¤
+ zL

¡
1− πH

¢ £
u0
¡
qL
¢
− 1
¤

(27)

γ

β
zL −EL

t [zt+1] = zH
¡
1− πL

¢ £
u0
¡
qH
¢
− 1
¤
+ zLπL

£
u0
¡
qL
¢
− 1
¤

(28)

Evidently, the first-best allocation can be attained with a policy (the Friedman rule) that sets the

expected return on money 1
ξj
equal to the real interest rate 1

β , i.e.,

1

β
=
1

γ

zjπj + zi
¡
1− πj

¢
zj

Note that Friedman rule requires less deflation than in a deterministic model if
zjπj+zi(1−πj)

zj
> 1.

If
zjπj+zi(1−πj)

zj
> 1/β, the Friedman rule requires a positive average rate of inflation. Note that

the Friedman rule requires different policies for the two states.

In order to derive the equilibrium away from the Friedman rule we have to distinguish between

two ranges for γ. We first derive the equilibrium when the rate of inflation is high as made clear

below.

5.1.1 High γ

Assume γ is sufficiently large so that the cash constraint binds in both states.

Proposition 7 A monetary equilibrium where agents are constrained in both states exists and is

unique if

f
¡
z̄L
¢
≥ ğ

¡
z̄L
¢
and g

¡
z̄H
¢
≥ f̆

¡
z̄H
¢

(29)

where the quantities ğ
¡
z̄L
¢
, f
¡
z̄L
¢
, g
¡
z̄H
¢
and f̆

¡
z̄H
¢
are defined in the proof.

Proof. The first-order conditions (25) and (26) can be expressed as follows

zH =
zL

(1− πL)

∙
πH +

β

γ
u0
µ
nLzL

υL

¶¡
1− πL − πH

¢¸
(30)

zL =
zH

(1− πH)

∙
πL +

β

γ
u0
µ
nHzH

υH

¶¡
1− πL − πH

¢¸
. (31)
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Define the sets

ZL =

½
zL ∈ R

¯̄̄̄
πH +

β

γ
u0
µ
nLzL

υL

¶¡
1− πL − πH

¢
≥ 0

¾
and

ZH =

½
zH ∈ R

¯̄̄̄
πL +

β

γ
u0
µ
nHzH

υH

¶¡
1− πL − πH

¢
≥ 0

¾
.

Equation (30) defines a function zH = f
¡
zL
¢
which is strictly increasing in zL ∈ ZL. We can

therefore invert it to get zL = f̆
¡
zH
¢
. Furthermore if πH + β

γu
0
³
nLzL

υL

´ ¡
1− πL − πH

¢
≥ 0, then

zH = 0. Thus zH = 0 for a strictly positive value of zL since
¡
1− πL − πH

¢
< 0. Equation (31)

defines a function zL = g
¡
zH
¢
which is strictly increasing in zH ∈ ZH . We can therefore invert

it to get zH = ğ
¡
zL
¢
. Furthermore, if πL + β

γu
0
³
nHzH

υH

´ ¡
1− πL − πH

¢
= 0, then zL = 0. Thus

zL = 0 for a strictly positive value of zH since
¡
1− πL − πH

¢
< 0.

Define z̄L = nLq∗

υL
and z̄H = nHq∗

υH
. Then, the properties of these functions imply that a monetary

equilibrium exists where agents are constrained in both states if and only if

f
¡
z̄L
¢
=

z̄L

(1− πL)

∙
πH +

β

γ
u0 (q∗)

¡
1− πL − πH

¢¸
≥ ğ

¡
z̄L
¢
and (32)

g
¡
z̄H
¢
=

z̄H

(1− πH)

∙
πL +

β

γ
u0 (q∗)

¡
1− πL − πH

¢¸
≥ f̆

¡
z̄H
¢

(33)

Lz  
L Lz z=

H Hz z=  

Hz  

( )Lg z  

( )Lf z  

Existence requires ( ) ( ) and ( ) ( ).L L H Hg z f z g z f z≤ ≥

( ) ( )L Lf z g z≥

( ) ( )H Hg z f z≥

Since f
¡
zL
¢
and ğ

¡
zL
¢
are strictly increasing in zL ∈ ZL the equilibrium is unique if it exists.
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Logarithmic utility For illustration let u(x) = lnx. It then follows that

zju0
¡
qj
¢
=

nj

υj
and q∗ = 1

which is independent of zj . From (25) and (26) we get

qH =
β

γ

£
ζ
¡
1− πH

¢
+ πH

¤
and qL =

β

γ

∙
1

ζ

¡
1− πL

¢
+ πL

¸
where ζ = nLυH/

¡
nHυL

¢
.

For this equilibrium to exist we need qH , qL < q∗ = 1. Thus, we must have

ζ
¡
1− πH

¢
+ πH <

γ

β
and

1

ζ

¡
1− πL

¢
+ πL <

γ

β

which is consistent with (32) and (33). Note that the real stock of money requires that

zH =
nHqH

υH
=

β

γ

∙
nL

υL
¡
1− πH

¢
+

nH

υH
πH
¸
and zL =

nLqL

υL
=

β

γ

∙
nH

υH
¡
1− πL

¢
+

nL

υL
πL
¸

Passive policy and Friedman rule Consider the special case of a passive policy where υH = υL

so ζ = nL

nH
< 1 and πL = πH = π > 1/2. In this case we have qH < qL and zH > zL since

πH+πL ≥ 1. Then if we are in the high n state in period t , the economy is more likely to be in the

high demand state again tomorrow. Since agents are more likely to be buyers in period t+1, there

is an increase in the demand for money in market 2 which increases φH thereby increasing zH . If

the state is nL in period t, then agents are more likely to be sellers next period, so the demand for

money falls causing zL to fall.

Consider the Friedman rule. Assume that we are in the low state. Then, it requires that

1

β
=

1

γ

zLπL + zH
¡
1− πL

¢
zL

=
1

γ

£
nH
¡
1− πL

¢
+ nLπL

¤
πL +

£
nL
¡
1− πH

¢
+ nHπH

¤ ¡
1− πL

¢
[nH (1− πL) + nLπL]

=
1

γ

nH
¡
1− πL

¢
πL + nLπLπL + nL

¡
1− πH

¢ ¡
1− πL

¢
+ nHπH

¡
1− πL

¢
[nH (1− πL) + nLπL]

=
1

γ

2nH (1− π)π + nLππ + nL (1− π) (1− π)

[nH (1− π) + nLπ]

=
1

γ

2nH (1− π)π + nL (1− 2π (1− π))

[nH (1− π) + nLπ]

=
1

γ

nL + 2
¡
nH − nL

¢
(1− π)π

[nH (1− π) + nLπ]
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Note that

nL + 2
¡
nH − nL

¢
(1− π)π

[nH (1− π) + nLπ]
≤ 1

nL + 2
¡
nH − nL

¢
(1− π)π ≤

£
nH (1− π) + nLπ

¤
since

¡
nH − nL

¢
[2 (1− π)π − 1 + π] ≤ 0

Assume that we are in the high state. Then, it requires that

1

β
=

1

γ

zHπH + zL
¡
1− πH

¢
zH

=
1

γ

£
nL (1− π) + nHπ

¤
π +

£
nH (1− π) + nLπ

¤
(1− π)

[nL (1− π) + nHπ]

=
1

γ

2nL (1− π)π + nHππ + nH (1− 2π (1− π))

[nL (1− π) + nHπ]

=
1

γ

nH − 2
¡
nH − nL

¢
(1− π)π

[nL (1− π) + nHπ]

Consumption smoothing Note that the central bank can make qL = qH by setting

nH

nL
=

υH

υL

This stabilizes consumption across states and requires a procyclical policy when n is high υ is

high. The question then is whether or not this is the optimal policy — would the planner choose

consumption smoothing? The answer is almost certainly no. The planner wants more consumption

in the high state and less in the low state just as before.

5.1.2 Low γ

Now suppose that agents are only constrained in state H or only constrained in state L.

Proposition 8 A monetary equilibrium where agents are constrained in state H and unconstrained

in state L exists and is unique if

ğ
¡
z̄L
¢
≥ f

¡
z̄L
¢
and g

¡
z̄H
¢
≥ f̆

¡
z̄H
¢

(34)

where the quantities ğ
¡
z̄L
¢
, f
¡
z̄L
¢
, g
¡
z̄H
¢
and f̆

¡
z̄H
¢
are defined in the proof.

A monetary equilibrium where agents are constrained in state L and unconstrained in state H exists

and is unique if

ğ
¡
z̄L
¢
≤ f

¡
z̄L
¢
and g

¡
z̄H
¢
≤ f̆

¡
z̄H
¢
. (35)
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Proof. If agents are only constrained in state H we have

qH =
υHzH

nH
< q∗ ≤ υLzL

nL

Accordingly, the first-order conditions (25) and (26) can be expressed as follows

γ

β
zH = zHu0

µ
υHzH

nH

¶
πH + zLu0 (q∗)

¡
1− πH

¢
γ

β
zL = zHu0

µ
υHzH

nH

¶¡
1− πL

¢
+ zLu0 (q∗)πL

Rewrite these equations to get

zH
¡
1− πL

¢
= zL

∙
πH +

β

γ
u0 (q∗)

¡
1− πH − πL

¢¸
(36)

zL
¡
1− πH

¢
= zH

∙
πL +

β

γ
u0
µ
υHzH

nH

¶¡
1− πL − πH

¢¸
(37)

Equation (36) defines a function zH = f
¡
zL
¢
which is strictly increasing in zL. We can therefore

invert it to get zL = f̆
¡
zH
¢
. Furthermore we have zH = 0 if qL = 0. Equation (37) defines a

function zL = g
¡
zH
¢
which is strictly increasing in zH ∈ ZH . We can therefore invert it to get

zH = ğ
¡
zL
¢
. Furthermore, if πL + β

γu
0 ¡qH¢ ¡1− πL − πH

¢
= 0, we have zL = 0. Thus zL = 0 for

a strictly positive value of zH since
¡
1− πL − πH

¢
< 0.

Thus existence requires that

ğ
¡
z̄L
¢
≥ f

¡
z̄L
¢
=

z̄L

(1− πL)

∙
πH +

β

γ
u0 (q∗)

¡
1− πH − πL

¢¸
and (38)

g
¡
z̄H
¢
=

z̄H

ζ (1− πH)

∙
πL +

β

γ
u0 (q∗)

¡
1− πL − πH

¢¸
≥ f̆

¡
z̄H
¢

(39)

Lz
L Lz z=

H Hz z=

Hz

( )Lg z  

( )Lf z  

Existence requires ( ) ( ) and ( ) ( ).L L H Hg z f z g z f z≥ ≥

( ) ( )L Lg z f z≥

( ) ( )H Hg z f z≥
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Since f
¡
zL
¢
and ğ

¡
zL
¢
are strictly increasing in zL the equilibrium is unique if it exists.

The proof when agents are constrained in state L only is similar and therefore omitted.

Logarithmic utility Assume agents are constrained in state H only. With log utility we have

qH =
υHzH

nH
≤ q∗ = 1 <

υLzL

nL

From (25) and (26) we get

zL =
βnH

¡
1− πL

¢
υH (γ − πLβ)

and zH =
βnH

£
πHγ + β

¡
1− πH − πL

¢¤
γυH (γ − βπL)

(40)

For this equilibrium to exist we need

υHzH

nH
≤ 1⇒

£
πHγ + β

¡
1− πH − πL

¢¤
(γ − βπL)

≤ γ

β
⇒ β

¡
πH + πL − 1

¢
≤ γ

which holds for all values of πH and πL if γ ≥ β.

We also need

1 <
υLzL

nL
⇒ 1 < ζ

β
¡
1− πL

¢
(γ − πLβ)

⇒ γ

β
< ζ

¡
1− πL

¢
+ πL

Thus, for γ ∈
¡
β, ζ

¡
1− πL

¢
+ πL

¤
, (40) is an equilibrium.

5.2 k states

Now suppose there are k > 2 shocks taking the value nj ∈ [n, n] with nj+1 > nj for all j. Continue

to assume that we have log utility. The discrete number of shocks version of (17)

γ

β
zs =

kX
j=1

zju0
µ
υjzj

nj

¶
πsj

Conjecture that for all nj ≥ ñ, the agents are constrained while for nj < ñ they are unconstrained.

We thus have

zs =
β

γ

kX
j=ñ

zjπsj +
β

γ

ñ−1X
j=1

nj

υj
πsj for s = 1, 2, .., k

Ordering these equations from the lowest value state to the highest value state gives us a system

of equations that can be written as

AZ = B

where Z is a k x 1 matrix whose ith element is zi, B is a k x 1 matrix whose ith element is

ci = −β
γ

ñ−1X
j=1

nj

υj
πij
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and A is a k x k matrix that can be partioned as

A =

⎡⎣ I P

∅ T

⎤⎦
where I is a ñ− 1 x ñ− 1 identity matrix, ∅ is a k+1− ñ x ñ− 1 matrix of zeros and P is a ñ− 1

x k + 1− ñ matrix whose ijth element is β
γπ

ij . Finally, T is a k + 1− ñ x k + 1− ñ matrix whose

off diagonal elements are β
γπ

ij and whose diagonal elements are
³
βπii−γ

β

´
. Thus a steady state is

the solution to

Z = A−1B

Conditions need to be imposed that each z is positive. It then simply comes down to deriving

conditions such that
υizi

ni
≤ q∗ = 1 <

υjzj

nj

for i < ñ and j ≥ ñ. This should give us conditions on the range of γ.

6 Conclusion
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Appendix

Marginal value of money Differentiating (7) with respect to m1

V 0(m1, ω−1) =

Z
Ω
n
h
εu0 (qb)

∂qb
∂m1

+Wm

³
1− p ∂qb

∂m1
+ ∂l

∂m1

´
+Wl

∂l
∂m1

i
+(1− n)

h
−(1/a) ∂qs∂m1

+Wm

³
1 + p ∂qs

∂m1
− ∂d

∂m1

´
+Wd

∂d
∂m1

i
f (ω|ω−1) dω

Recall from (5) and (6) that Wm = φ and Wd = −Wl = φ (1 + id) ∀m2. Furthermore,
∂qs
∂m1

= 0

because the quantity a seller produces is independent of his money holdings. We also know that

∂ds
∂m1

= 1 since a seller deposits all his cash when i > 0. Hence,

V 0(m1, ω−1) =

Z
Ω

n
n
h
εu0 (qb)

∂qb
∂m1

+ φ
³
1− p ∂qb

∂m1
+ ∂l

∂m1

´
− φ (1 + i) ∂l

∂m1

i
+(1− n)φ [(1 + (1− µ) i)]} f (ω|ω−1) dω

Since i > 0 implies pqb = m1+ l we have
³
1− p ∂qb

∂m1
+ ∂l

∂m1

´
= 0. Furthermore, note that Note that

εu0 (qb)
∂qb
∂m1
− φ (1 + i) ∂l

∂m1
= εu0 (qb)

∂qb
∂m1
− φ (1 + i)

h
p ∂qb
∂m1
− 1
i

= ∂qb
∂m1

[εu0 (qb)− φ (1 + i) p] + φ (1 + i) = φ (1 + i) = φaεu0 (qb) .

Hence

V 0(m1, ω−1) =

Z
Ω
φ
©
naεu0 (qb) + (1− n) (1 + (1− µ) i)

ª
f (ω|ω−1) dω

Define m∗ = pq∗ where q∗ = u0−1 (1/(aε)). Then if m1 < m∗, 0 < qb < q∗, implying ∂qb
∂m1

> 0 so

that V 00(m1, ω−1) < 0. If m1 ≥ m∗, qb = q∗ implying ∂qb
∂m1

= 0, so that V 00(m1, ω−1) = 0. Thus,

V (m1, ω−1) is concave ∀m.¥

Proof of Proposition 1. The proof involves two steps. We first show that for a given z a critical

value ñ exist such that if n < ñ trades are efficient and if n > ñ they are inefficient. We then show

that an unique z exist.

Step 1: Critical value ñ. In a steady-equilibrium m1 =M−1 so buyer’s money holdings satisfy

(1 + τ1)
³
1− µ+

µ

n

´
M−1 = υθM (41)

where θ = 1 − µ + µ/n and υ = (1 + τ1) / (1 + τ). Note that θ = 1 if there are no banks and

θ = 1/n with banks. Thus, in any equilibrium pq ≤ υθM . Then, the seller’s first-order condition

p = 1/φ implies that in any equilibrium q ≤ υθz. The efficient quantity is defined to be u0 (q∗) = 1.

If trades are efficient, q = q∗ ≤ υθz otherwise q = υθz < q∗. Consequently, there is a critical value

ñ for which

ñ = ñ (z) =
µυz

q∗ − (1− µ) υz
(42)
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Note that ∂ñ
∂z ≥ 0. This implies that q = q∗ for n ≤ ñ and q = υθz for n > ñ.

Step 2: Existence and uniqueness. From (18) the first-order condition for m1,+1 satisfies

γ − β

β
=

Z n

n
[n+ (1− n)µ]

£
u0 (q)− 1

¤
f (n) dn.

where q = qb (n).

From (42) and the fact that q = υθz < q∗ if n > ñ, we can write it as

γ − β

β
=

Z n

n
[n+ (1− n)µ]

£
u0 (υθz)− 1

¤
f (n) dn ≡ RHS.

The right-hand side is a function of z only. For z → 0 we have

lim
z→0

RHS = lim
z→0

Z n

n
[n+ (1− n)µ]

£
u0 (υθz)− 1

¤
f (n) dn =∞.

For z = q∗/υθ we have ñ = n and therefore

RHS
¯̄̄
z= q∗

υθ

= 0 ≤ γ − β

β
.

Hence a monetary equilibrium exists.

To establish uniqueness use Leibnitz rule to find

∂RHS

∂z
= υθ

Z n

ñ
[n+ (1− n)µ]u00 (υθz) f (n) dn− u0 (q∗) f (ñ)

∂ñ

∂z
≤ 0

So the the right-hand side is monotonically decreasing in z. Consequently, we have a unique z,

denoted z, such that

ñ =
µυz

q∗ − (1− µ) υz

and

q = q∗ if n ≤ ñ and q < q∗ otherwise.

Note that if µ = 0, ñ = 0 so the inefficient quantity is consumed for all n for γ > β.

Finally, recall that, due to idiosyncratic trade shocks and financial transactions, money holdings

are heterogeneous after the first market closes. Therefore, if we set m1 =M−1, the money holdings

of agents at the opening of the second market are m2 = 0 for buyers and m2 =
³

n
1−n

´
θυM for

sellers. Solving for equilibrium consumption and production in the second market, with x∗ =

U 0−1 (1) ,gives

Trading history: Production in the last market:

Buy hb = x∗ + q
aθ +

¡
θ−1
θ

¢
e (q)u (q)

Sell hs = x∗ −
³

n
1−n

´ £ q
aθ +

¡
θ−1
θ

¢
e (q)u (q)

¤
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Given our range of n,
³

n
1−n

´
is bounded. Since we assumed that the elasticity of utility e (q) is

bounded, we can scale U(x) such that there is a value x∗ = U 0−1 (1) greater than the last term for

all q ∈ [0, q∗]. Hence, hs is positive for for all q ∈ [0, q∗] ensuring that the equilibrium exists.

Proof that banks lower aggregate consumption variability:

TO DO

Proof of Proposition 2: In a steady state equilibrium the real value of money is constant so

φM = φ−1M−1 = z. Thus, using (??) and (14) we can write (??) as

γ − β

β
=

Z ε

ε

£
εu0 (q)− 1

¤
dF (ε) (43)

In any equilibrium pq ≤ υθM . Then, the seller’s first-order condition p = 1/φ implies

q ≤ υθz

The efficient quantity is q∗ (ε) = u0−1 (1/ε). Thus, if trades are efficient we have q = q∗ (ε) ≤ υθz

which requires that
q∗ (ε)

υθ
≤ z (44)

Consequently, since - as we show below - z is strictly decreasing in γ, for a given distribution of

shocks, there exists a critical value for ε, denotes ε̃ such that if ε ≤ ε̃ q = q∗ (ε) and if ε > ε̃ then

q < q∗ (ε). The critical value satisfies

ε̃ =
1

u0 (υθz)

Note that ε̃ is decreasing in z and attains zero at z = 0.

Using this expression we can obtain a single expression in z

γ − β

β
=

Z ε

ε̃

£
εu0 (υθz)− 1

¤
dF (ε)

The right-hand side expression is monotonically decreasing in z. To see this note that

∂RHS

∂z
= f (ε̃) ε̃2u00 (q) υθ +

Z ε

ε̃

£
εu00 (q) υθ

¤
dF (ε) < 0

Thus there exists a unique value of z such that .......¥

Proof of Proposition 3: Taking the expectation of (15) with respect to the marginal utility and

using (4) yields
φ−1
φβ

=

Z a

a

£
nau0 (q) + (1− n) (1 + i)

¤
dF (a) (45)

where qεb =
¡
1−n
n

¢
qεs = q.
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In a steady state equilibrium the real value of money is constant so φM = φ−1M−1 = z. Thus,

using (??) and (14) we can write (45) as

γ − β

β
=

Z a

a

£
au0 (q)− 1

¤
dF (a) (46)

In any equilibrium pq ≤ υθM . Then, the seller’s first-order condition p = 1
aφ implies

q ≤ aυθz

The efficient quantity is q∗ (a) = u0−1 (1/a). Thus, if trades are efficient we have q = q∗ (a) ≤ aυθz

which requires that
q

aυθ
≤ z

There are two cases. Assume first that R (q) = −qu00 (q) /u0 (q) ≥ 1 and that for a given distribution

of shocks, there exists a critical value for a, denotes ã such that if a ≤ ã q = q∗ (a) and if a > ã

then q < q∗ (a). The critical value satisfies

ãu0 (ãυθz) = 1.

Then R (q) = −qu00 (q) /u0 (q) ≥ 1 implies that dã
dz ≥ 0. Using this expression we can obtain a single

expression in z
γ − β

β
=

Z a

ã

£
au0 (aυθz)− 1

¤
dF (a)

The right-hand side is monotonically decreasing in z. To see this note that

∂RHS

∂z
= −f (ã) ã2u0 (ãυθz) dã

dz
+

Z a

ã

£
au00 (q) aυθ

¤
dF (a) < 0

Consequently, there exists a unique value of z denoted by z such that ã solves ãu0 (ãυθz) = 1 so

that if a ≤ ã q = q∗ (ε) and if a > ã then q < q∗ (a).

Assume next that R (q) = −qu00 (q) /u0 (q) < 1 and that for a given distribution of shocks, there

exists a critical value for a, denotes ã such that if a < ã q < q∗ (ε) and if a ≥ ã then q = q∗ (a).

The critical value satisfies

ãu0 (ãυθz) = 1.

Then R (q) = −qu00 (q) /u0 (q) < 1 implies that dã
dz < 0. Using this expression we can obtain a single

expression in z
γ − β

β
=

Z ã

a

£
au0 (aυθz)− 1

¤
dF (a)
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The right-hand side is monotonically increasing in z. To see this note that

∂RHS

∂z
= f (ã) ã2u0 (ãυθz)

dã

dz
+

Z ã

a

£
au00 (q) aυθ

¤
dF (a) < 0

Consequently, there exists a unique value of z denoted by z such that ã solves ãu0 (ãυθz) = 1 if

a < ã q < q∗ (a) and if a ≥ ã then q = q∗ (a).¥

Proof of Proposition 4: ¥

Proof of Proposition 6: ¥

Proof of Proposition 5: ¥
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