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Abstract

We analyse a game of strategic experimentation with two-armed bandits when

there is no discounting but there is background information. The payoffs from both

the safe arm and the risky arm have quite general specifications, as does the noise in

the observations. With the players using stationary Markov strategies, we describe

all the Markov perfect equilibria, and show that, under all these specifications, the

optimal policy is strikingly similar and depends only on the current expected payoff

from the risky arm and the full-information payoff.
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Introduction

We analyze the undiscounted version of a class of continuous-time two-armed bandit

models, in which a number of players act non-cooperatively. (We introduce background

information to ensure that the problem is well-posed.) Undiscounted models are easier to

solve because the best responses of the players do not depend on continuation values. The

reasons for studying these types of model are two-fold: first, in models where both the

low-discounting and no-discounting cases have been solved, the low-discounting solution

converges to the no-discounting solution as the discount rate tends to zero; consequently,

in cases where the discounted model is hard to solve, the modeller might benefit from

the clues available from the solution to the undiscounted model. Secondly, we are able

to draw a very clear connection from the basic set-up of the model to its solution,

highlighting precisely which particular aspects of the set-up are driving which features

of the solution.

We focus on three examples. In the first, the noise is Brownian motion with unknown

drift, and the agents’ prior belief about this drift is a two-point distribution. In the

second, the noise comes from a Poisson process with unknown intensity, and the agents’

prior belief about this intensity is again a two-point distribution. In the third, the noise

again comes from a Poisson process with unknown intensity, but now the agents’ prior

belief about this intensity is characterized by a Gamma distribution. The equilibria in

the general specification exhibit striking similarities, but some differences. As a result,

we can say to what extent the way that the noise is modelled matters, and to what

extent the distribution of the agents’ prior belief.

The rest of the article is organized as follows. The next section sets up the general

model and provides details of the three examples. Then we establish the efficient bench-

mark where players cooperate in order to maximize joint expected payoffs before we look

at the strategic problem and provide an inefficiency result. Finally, we characterize all

the Markov perfect equilibria of the non-cooperative game and offer some concluding

remarks.

1 Undiscounted Bandits

Time t ∈ [0,∞) is continuous, and there is no discounting. There are N ≥ 1 players,

each of them endowed with one unit of a perfectly divisible resource per unit of time.

Each player faces a two-armed bandit problem where she continually has to decide what
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fraction of the available resource to allocate to each arm.

If a player uses the safe arm S over an interval [t, t + dt), the payoff increment is

dyt = s̃ dt + ν(t), where ν(t) is IID noise with mean 0, and E[s̃] = s, fixed and known

to all players. If a player uses the risky arm R over an interval [t, t + dt), the payoff

increment is dyt = µ̃ dt + ν(t), where ν(t) is again IID noise with mean 0, and E[µ̃] = µ,

fixed but unknown. So s and µ are the expected flow equivalents of the two arms, and

if a player allocates the fraction kt ∈ [0, 1] of the resource to R over an interval of time

[t, t + dt), and consequently the fraction 1− kt to S, then her expected payoff increment

conditional on µ is [(1− kt)s + ktµ] dt.

Regardless of the players’ choices, (k1,t, . . . , kN,t), all the players observe a background

signal which is a perfect substitute for k0,t units of the resource being allocated to R;

assume that k0,t = k0 > 0. This ensures that the players eventually learn the value of µ,

even if they all play S all the time.

The players start with a common prior belief about µ, and thereafter they all observe

each other’s actions and outcomes, so they hold common posterior beliefs throughout

time. Assume that at time t the players believe that µ has CDF H(·; πt), where πt is a

sufficient statistic for the observations on R and the background signal up to time t, and

H represents a conjugate family of distributions. We assume that s ∈ supp H(·; πt), so

each player prefers R, if it is ‘good’, to S, and prefers S to R, if it is ‘bad’. Let m(πt)

denote the expected payoff from R, and let f(πt) denote the full-information payoff:

m(π) = Eπ[µ],

f(π) = Eπ[µ ∨ s].

Assume that both m(·) and f(·) are monotonic. (Establish that E[f(πt)] = f(π0).)

Given a player’s actions {kt}t≥0 such that kt is measurable with respect to the infor-

mation available at time t, her objective is to maximize

E
[∫ ∞

0
[(1− kt)s + ktm(πt)− f(πt)] dt

]
,

where the expectation is over the stochastic processes {kt} and {πt}. This highlights

the potential for the sufficient statistic to serve as a state variable. It also shows that a

player’s payoff depends on others’ actions only through their impact on the evolution of

the sufficient statistic.

Let Kt =
∑N

n=1 kn,t. Assume that, when R is used with intensity K over an interval

2



of length dt, π transits to π′, conditional on what is observed. Let un(π) denote the value

function of player n, and assume that the expected continuation value is then given by

E [un(π′) | K, π ] = un(π) + (K + k0) Cn(π) dt

for some function Cn(·).

Examples

For more details of Example 1, see Bolton and Harris (1999, 2000); with regard to

Example 2(a), see Keller, Rady and Cripps (2005).

Example 1: Brownian noise

With dZn(t) ∼ IIN(0, dt),

S : s dt + σ dZn(t),

R : µ dt + σ dZn(t),

b/g :
√

k0 µ dt + σ dZ0(t).

• µ ∈ {µ0, µ1} and µ0 < s < µ1.

At time t, players believe that Pr[µ = µ1] = πt, so

H(µ; π) =


0 if µ < µ0,

1− π if µ0 ≤ µ < µ1,

1 if µ1 ≤ µ.

and

m(π) = πµ1 + (1− π)µ0,

f(π) = πµ1 + (1− π)s.

Moreover, it follows from Liptser and Shiryayev (1977, Chapter 9) that

E[dπt] = 0 and Var[dπt] = (Kt + k0)
(
∆µ σ−1 πt(1− πt)

)2
dt,

where ∆µ = µ1 − µ0.
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Now, using Itô’s lemma,

un(π + dπ) = un(π) + u′n(π) dπ + 1
2
u′′n(π) dπ2

so

E[un(π + dπ)] = un(π) + (K + k0)
[

1
2
u′′n(π)

(
∆µ σ−1 π(1− π)

)2
]
dt.

Example 2: Poisson noise

Lump-sums arrive according to Poisson processes, and these lump-sums have a mean of

1 over occurrences.

S : Poisson process has parameter s

R : Poisson process has parameter µ

b/g : Poisson process has parameter k0µ

If a player used a time-invariant allocation kt = k, then the delay between the arrivals of

successive lump-sums on a risky arm would be exponentially distributed with parameter

kµ; see Karlin and Taylor (1981, p.146), for instance. We write K+
t for Kt + k0.

(a) µ ∈ {µ0, µ1} and µ0 < s < µ1.

At time t, players believe that Pr[µ = µ1] = πt, so

H(µ; π) =


0 if µ < µ0,

1− π if µ0 ≤ µ < µ1,

1 if µ1 ≤ µ.

and

m(π) = πµ1 + (1− π)µ0,

f(π) = πµ1 + (1− π)s.

Now, w.p. K+
t m(πt) dt a lump-sum arrives on R (or b/g) and

π′t = πt + ∆πt = µ1πt/m(πt),
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and w.p. 1−K+
t m(πt) dt no lump-sum arrives on R (or b/g) and

π′t = πt + dπt = πt −K+
t ∆µ πt(1− πt) dt.

So

E[un(π′)] = K+m(π)un(µ1π/m(π)) dt

+
(
1−K+m(π) dt

) (
un(π)−K+ ∆µ π(1− π)u′n(π) dt

)
= un(π) + K+ [m(π) (un(µ1π/m(π))− un(π))−∆µ π(1− π)u′n(π)] dt.

(b) µ ≥ 0 has a Gamma distribution and s > 0.

At time t, players believe that µ ∼ Ga(αt, βt), so π = (α, β), the pdf of µ is given by

h(µ; π) =
βα

Γ(α)
µα−1e−µβ

with α > 0, β > 0, and note that Eπ[µ] = α/β and Varπ[µ] = α/β2. Then

m(π) = α/β,

f(π) =
∫ ∞

0
(µ ∨ s) h(µ; π) dµ

(Check monotonicity of f(·). With

∂f

∂α
=
∫ ∞

0
(µ ∨ s) ln

(
µ

α/β

)
h(µ) dµ,

∂f

∂β
=
∫ ∞

0
(µ ∨ s)

(
α

β
− µ

)
h(µ) dµ,

expect ∂f/∂α > 0, ∂f/∂β < 0.)

Now, w.p. K+
t m(πt) dt a lump-sum arrives on R (or b/g) and

π′t = (αt + ∆αt, βt + dβt) = (αt + 1, βt + K+
t dt),

and w.p. 1−K+
t m(πt) dt no lump-sum arrives on R (or b/g) and

π′t = (αt, βt + dβt) = (αt, βt + K+
t dt).

(For the evolution of πt, see for example DeGroot, 1970, Chapter 9.) So

E[un(π′)] = K+m(π)un(α + 1, β + K+ dt) dt +
(
1−K+m(π) dt

)
un(α, β + K+ dt) dt
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= K+m(π)un(α + 1, β) dt +
(
1−K+m(π) dt

) (
un(π) + K+ ∂un(π)/∂β dt

)
= un(π) + K+ [m(π) (un(α + 1, β)− un(π)) + ∂un(π)/∂β] dt.

2 The Cooperative Problem

Suppose that the N players work cooperatively, i.e. want to maximize the average ex-

pected payoff by jointly choosing the action profiles {(k1,t, . . . , kN,t)}t≥0. This is a dy-

namic programming problem with the current value of π as the state variable.

If current actions are (k1, . . . , kN), the average expected payoff increment is given by[
(1− K

N
)s + K

N
m(π)

]
dt with K =

∑N
n=1 kn. As the expected continuation value is of the

form u(π)+ (K +k0) C(π) dt, the cooperative’s problem reduces to choosing the optimal

level of the overall allocation K given the current state π.

By the Principle of Optimality, the value function of the cooperative, expressed as

average payoff per agent, satisfies

u(π) = max
K∈[0,N ]

{[
(1− K

N
)s + K

N
m(π)− f(π)

]
dt + E [u(π′) | K, π ]

}
leading to the Bellman equation

0 = max
K∈[0,N ]

{
s− f(π) + K

N
(m(π)− s) + (K + k0) C(π)

}
.

Since the maximand in the Bellman equation is an affine function of K, it is immediate

that it is always optimal to choose either K = 0 (all agents use S exclusively), or K = N

(all agents use R exclusively). As k0 > 0, the Bellman equation can be rearranged as

0 = max
K∈[0,N ]

{
s− f(π) + K

N
(m(π)− s)

K + k0

}
+ C(π)

= max
K∈[0,N ]

{
k0

N
(s−m(π))− (f(π)− s)

K + k0

}
− 1

N
(s−m(π)) + C(π).

Proposition 2.1 (Cooperative solution) In the N-agent cooperative problem, the state

space can be divided into two regions such that in one region it is optimal for all to play

S exclusively and in the other it is optimal for all to play R exclusively. The boundary

between these two regions is given by values π∗N satisfying

k0

N
(s−m(π∗N)) = f(π∗N)− s. (1)

6



Proof: When the numerator in the reworked Bellman equation is positive, it is optimal

to minimize the denominator by choosing K = 0, and when the numerator is negative,

it is optimal to maximize the denominator by choosing K = N . Since both m(π) and

f(π) are monotonic in π, values of π∗N that make the numerator zero form the boundary

between the two regions.

This solution exhibits all of the familiar properties: the optimal strategy has a thresh-

old where the agents change irrevocably from R to S; there are occasions where the agents

make a mistake by changing from R to S although the risky action is actually better;

the probability of mistakes decreases as the reward from the safe action decreases, and

as the number of agents increases.

The above proposition determines the efficient strategies. More precisely, we can

distinguish two aspects of efficiency here. Given an action profile {(k1,t, . . . , kN,t)}t≥0 for

the N players, the sum Kt =
∑N

n=1 kn,t measures how much of the N units of the resource

is allocated to risky arms at a given time t – we will call this number the intensity of

experimentation. On the other hand, the integral
∫ T
0 Kt dt measures how much of the

resource is allocated to risky arms overall up to time T – we will call this number the

amount of experimentation that is performed.

The efficient intensity of experimentation exhibits a bang-bang feature, being N in

one region of the state space, and 0 in the other. Thus, the efficient intensity is maximal

at early stages, and minimal later on.

As we shall see next, Markov equilibria of the N -player strategic problem are never

efficient – the intensity of experimentation will always be inefficient because of each

player’s incentive to free-ride on the efforts of the others.

3 The Strategic Problem

From now on, we assume that there are N ≥ 2 players acting non-cooperatively. We

consider stationary Markovian strategies with the common value of π as the state vari-

able. We describe the best response correspondence, and show that all Markov equilibria

are inefficient.
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Best responses

Fix a value π. With kn ∈ [0, 1] indicating player n’s action at that value and K =∑N
n=1 kn, let K¬n = K − kn, which summarizes the actions of the other players.

Proceeding in the same way as in the previous section, we find that the rearranged

Bellman equation for player n is

0 = max
kn∈[0,1]

{
(K¬n + k0)(s−m(π))− (f(π)− s)

K + k0

}
− (s−m(π)) + Cn(π).

Player n’s best response, k∗n, is determined by looking at the numerator of the maxi-

mand:

k∗n


= 0 if (K¬n + k0)(s−m(π)) > (f(π)− s),

∈ [0, 1] if (K¬n + k0)(s−m(π)) = (f(π)− s),

= 1 if (K¬n + k0)(s−m(π)) < (f(π)− s).

(2)

Inefficiency of Markov perfect equilibria

If the players use symmetric strategies in equilibrium, then, whenever a positive frac-

tion of the resource is allocated to each arm, that fraction, k†N , is calculated from the

indifference condition in (2) together with K¬n = (N − 1)k†N , i.e.

k†N(π) =
1

N − 1

(
f(π)− s

s−m(π)
− k0

)
,

and note that k†N(π∗1) = 0, i.e. all the players stop using R when a single agent would do

so.

If the players use asymmetric strategies in equilibrium, then, whenever all the other

players are using S exclusively, so K¬n = 0, player n’s decision is the same as in the

single-agent case, so she too would switch from R to S when the state is π∗1. Further, as

we will see in the next section, when fewer than N − 1 players are using S exclusively,

in equilibrium the remaining players use symmetric actions near to π∗1 and again stop

using R at π∗1.

Since the region of the state space where an N -agent cooperative plays R increases

with N , and any equilibrium of the N -player experimentation game has players using R

only where a single agent would, all these equilibria are inefficient. Further, close to the

single-agent boundary the equilibrium intensity of experimentation is at most 1, whereas
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the intensity of experimentation for the cooperative is N .

4 Equilibria

Sets of mutual best responses are given below and the resulting total experimentation

schedule for N = 3 is illustrated in Figure 1, which shows the intensity of experimentation
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Figure 1: Intensity of experimentation in three-player equilibria

as a function of the incentive to experiment, defined by

I(π) =
f(π)− s

s−m(π)

when m(π) < s, and ∞ otherwise. Equation (2) can then be rewritten as

k∗n


= 0 if I(π) < k0 + K¬n,

∈ [0, 1] if I(π) = k0 + K¬n,

= 1 if I(π) > k0 + K¬n.

(3)

(See Bolton and Harris, 2000, Sections 6 and 7.)
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Let J0 denote the set of players using S exclusively, and J1 denote the set of players

using R exclusively. Let j0 = #J0 and j1 = #J1.

Case 1: j0 + j1 = N .

(a) j1 = 0, I(π) < k0;

(b) 0 < j1 < N , k0 + j1 − 1 < I(π) < k0 + j1;

(c) j1 = N , k0 + N − 1 < I(π).

If j1 < N , then for any player n in J0 we have K¬n = j1, so k∗n = 0 ⇔ I(π) < k0 + j1.

If j1 > 0, then for any player n in J1 we have K¬n = j1−1, so k∗n = 1 ⇔ I(π) > k0+j1−1.

This case leads to the horizontal sections in the figure.

Case 2: j0 + j1 = N − 1.

• 0 ≤ j1 < N , I(π) = k0 + j1, and the player not in J0 or J1 chooses any k ∈ (0, 1).

If player n is not in J0 or J1 we have K¬n = j1, so k∗n ∈ (0, 1) ⇔ I(π) = k0 + j1.

For any player n in J0 we have K¬n = j1 + k, so k∗n = 0 ⇔ I(π) < k0 + j1 + k, i.e. k > 0.

For any player n in J1 we have K¬n = j1 − 1 + k, so k∗n = 1 ⇔ I(π) > k0 + j1 − 1 + k,

i.e. k < 1.

This case leads to the vertical sections in the figure.

Case 3: j0 + j1 < N − 1.

• I(π) = k0 + j1 +[N − (j0 + j1)−1]k, 0 < k < 1, and each player not in J0 or J1 chooses

the same k ∈ (0, 1) such that the preceding equality is met.

If player n is not in J0 or J1 we have K¬n = j1 + [N − (j0 + j1)− 1]k, so k∗n ∈ (0, 1) ⇔
I(π) = k0 + j1 + [N − (j0 + j1)− 1]k.

For any player n in J0 we have K¬n = j1 + [N − (j0 + j1)]k, so k∗n = 0 ⇔ I(π) <

k0 + j1 + [N − (j0 + j1)]k, i.e. k > 0.

For any player n in J1 we have K¬n = j1 − 1 + [N − (j0 + j1)]k, so k∗n = 1 ⇔ I(π) >

k0 + j1 − 1 + [N − (j0 + j1)]k, i.e. k < 1.

Futher, k ∈ (0, 1) ⇔ k0 + j1 < I(π) < k0 + j1 + [N − (j0 + j1)− 1].

This case leads to the sloping sections in the figure.

All the MPE are just combinations of these three cases. In Figure 1 above, the

dotted line is the efficient outcome, and we can see the equilibrium experimentation that

approaches this the closest as the upper envelope consisting of alternating horizontal and

sloping solid lines – this is the equilibrium that maximizes total experimentation at any

given belief, and, as such, should also maximize aggregate payoffs.
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Concluding Remarks

We have seen that the players’ best responses depend only on the current expected payoff

from the risky arm and the full-information payoff. In all set-ups where the agents’ prior

belief about the unknown parameter is a two-point distribution, these two payoffs are

identical and thus the equilibrium actions are the same function of the agents’ belief –

the specification of the noise is irrelevant. Even for very different distributions of the

agents’ prior belief, the equilibrium actions depend only on the ratio of these two payoff

functions adjusted by the safe payoff.

Of course, the evolution of the agents’ posterior belief does depend on how the noise

is modelled, as do equilibrium payoffs. To calculate the equilibrium payoffs in the three

examples, one has to solve a second order ordinary differential equation in example 1

(Brownian noise), a first order ordinary differential-difference equation in example 2(a)

(Poisson noise, two-point distribution), and a first order system comprising an ordinary

difference equation and a partial differential equation in example 2(b) (Poisson noise,

Gamma distribution). With regard to example 1, see Bolton and Harris (2000), and for

example 2(a), see Keller, Rady and Cripps (2005); example 2(b) is work in progress.
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