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1 Introduction

This paper studies asset trading volume in production economies with heterogenous

agents and dynamically complete markets. The main source of heterogeneity is due

to different labor productivities of agents across firms. They may also have unequal

initial levels of wealth since agents are endowed with different technologies. These

technologies, represented by neoclassical firms, produce the unique consumption good

which is either consumed or invested. On the other hand, they have the same pref-

erences over consumption bundles. The environment is then an extension of the

celebrated Lucas [1978] tree model in the spirit of Brock’s [1982] seminal contribu-

tion.1

The original Lucas tree model, one of the main workhorses in modern finance,

is silent about trade volume. This is a direct consequence of studying a representa-

tive agent framework. However, even those versions of the model with heterogeneous

agents have performed poorly to explain asset trading volume. In particular, Judd,

Kubler and Schmedders [2003] (JKS [2003] from now on) have carefully studied this

environment under assumptions that allow for fairly general patterns of heterogene-

ity across agents. They show that, after some initial rebalancing in asset and stock

holdings, asset trading volume is restricted to a minimum. After the initial period, in-

dependently of the state of nature, agents choose a fixed equilibrium portfolio trading

the same amount of short-lived assets and keeping fixed their stock holdings forever.

The empirical evidence rejects this prediction of fixed portfolios and shows a

nontrivial volume of trading in assets and stocks that fluctuates according to the

aggregate state of the economy. In fact, the finance literature has devoted a significant

amount of attention to study these issues (see, for example, Brock and LeBaron [1996]

and Lo and Wang [2000]). Very importantly, and as properly mentioned by JKS
1Different versions of this framework have been used to study asset pricing in economies with

production. See Boldrin et al. [2001], Jermann [1998] and Lettau [2003] for a discussion of the main
implications.

1



[2003], models explaining this data might significantly improve our understanding

of financial markets and provide valuable information about underlying preferences.

The results in JKS [2003] necessarily call for going beyond the Lucas tree model

with complete markets to fulfill this task. Thus, JKS [2003] conclude that “...other

factors considered in the literature, such as life-cycle factors, asymmetric information,

heterogeneous beliefs, and incompleteness of the asset market, play a significant role

in generating trade volume”.

Instead of relying on those frictions or market imperfections, we argue that a

natural extension to consider first is the production economy proposed by Brock

[1982], adapted to deal with heterogeneous agents. Our environment is then in line

with the literature that has successfully explained both the evolution of real quan-

tities and also important properties of asset prices (see footnote (1)). Within this

framework, we consider different dynamically complete market structures to analyze

equilibrium asset trading volume. We show that this environment can generate a non-

trivial amount of trading in both short-lived and long-lived assets where equilibrium

portfolios depend upon the aggregate state of the economy. The basic idea behind

this result is the following. Consider first a pure exchange economy with individual

endowments following stationary Markov processes. Suppose that there are S states

of nature and the corresponding S Arrow securities are available to trade. Thus, both

Welfare Theorems hold and competitive equilibrium allocations are Pareto optimal.

With this Markovian structure, individual consumption and its corresponding excess

demand will be vectors in RS for any Pareto optimal allocation. With a full set of

Arrow securities it is possible to span RS itself and hence construct a fixed vector

of asset holdings to attain any of these bundles. The same argument works for an

economy with S “trees” with linearly independent dividend processes: it is possible

to attain any of these Pareto optimal bundles in RS with a fixed portfolio of stock

holdings.

Consider now an economy with capital. In this environment, agents can manip-
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ulate not only portfolios but also the stock of capital to transfer consumption across

time and states of nature. To transfer resources either to or from some given state of

nature next period, different levels of next-period’s capital will make agents choose

different portfolios. This is so because the stock of capital itself is used to transfer

consumption between today and tomorrow. If the value of the marginal productivity

of next-period’s capital is high, an agent chooses to transfer more consumption to all

the states next period using capital, hence trading less assets. On the other hand,

if the value of the marginal productivity of next-period’s capital is relatively low, he

transfers less consumption through capital accumulation and purchases more assets

paying next period.

The trading strategy of fixed portfolios is not optimal in equilibrium. The reason

is the same that explains why it is not optimal in an endowment economy with non-

stationary heterogeneity of agents. In this case, equilibrium excess demands will

be in general time dependent if the degree of agents’ heterogeneity changes through

time. Thus, readjustment of asset portfolios would be needed. In an economy with

capital accumulation, the time dependence of agents’ heterogeneity is determined

by the evolution of the distribution of capital across firms. This is the main force

driving our results. In our environment, this changing heterogeneity across agents

arises due to a natural physical friction in production economies with heterogenous

consumers. There, machines are installed one period in advanced in a certain firm.

Next period there is no chance to reallocate these machines after having observed

individual productivities across firms. This implies that the marginal productivity

of capital is not necessarily equalized ex-post across firms. We also assume that

a crucial heterogeneity across agents is that their labor productivities differ across

firms (limited labor substitutability). They can therefore have different equilibrium

wages where this difference depends on the distribution of capital across firms. This

naturally leads to heterogeneity among agents changing with the evolution of this

distribution.
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In order to establish the theoretical reasons for the need of nontrivial trading vol-

ume, we obtain some results that might be of interest by their own. We propose an

algorithm to compute equilibrium portfolios in production economies within a fairly

general set of complete market structures. Also, as a by-product, we establish a rel-

atively simple existence proof of recursive competitive equilibria with heterogeneous

households.

The main contribution of our paper is methodological. The examples we provide

are just to illustrate our main findings without any attempt to mimic specific features

of the data. However, we do believe that quantitative experiments using carefully

calibrated versions of our framework will be helpful in the study of more ambitious

extensions.

The paper is organized as follows. In Section 2, we describe the economy and

present our main theoretical results. In Section 3, we additionally restrict our econ-

omy to CRRA preferences to discuss some particular properties and compute some

examples. Section 4 concludes. All proofs are in the Appendix.

2 The Economy

The economy is populated by I (types of) infinitely-lived agents where i ∈ Υ =

{1, ..., I}. Time is discrete and denoted by t = 1, 2, .... Agents are endowed with one

unit of time every period but, for simplicity, we assume that they do not value leisure.

There is only one consumption good which can be either consumed or invested in a

standard linear technology to produce new capital.2 There is aggregate uncertainty

and st represents the realization of this shock at date t. We assume that {st} is a finite

state first-order stationary Markov process. Transition probabilities are denoted by

π(s, s0) and st, s, s0 ∈ S = {1, ..., S}. Let st = (s0, ..., st) represent the partial history

of aggregate shocks up to date t. These histories are observed by all the agents. The

probability of st ∈ St+1 is constructed from π in the standard way and x(st) denotes
2 It is straightforward to extend the analysis to include both nontrivial labor-leisure choices and

also more general technologies to produce new capital goods. See Espino and Hintermaier [2005].
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the value of x at the node st. The consumption set C is the space of bounded adapted

non-negative consumption processes. That is,

C = {{ct}∞t=0 | ct : St+1 → R+ , sup
st
c(st) <∞}.

Preferences are identical across agents and represented by expected, time-separable,

discounted utility. That is , if ci ∈ C then:

U(ci) =
∞X
t=0

X
st∈St+1

βtπ(st)u(ci(s
t)),

where β ∈ (0, 1) and u : R+ → R+ is strictly increasing, strictly concave and contin-

uously differentiable. Additionally, we assume that u0(0) = +∞ to rule out corner

solutions. The assumption of identical utility functions is irrelevant for our results

in this section. Additional heterogeneity in this dimension could be easily included,

adding in general another potential source for trade.3

There are I technologies available in the economy to produce the consumption

good. Let Ki(st) ≥ 0 denote the stock of capital chosen at the node st and available

in period t+1 to produce with technology i. Let Bi(s)F (Ki, Li) represent technology

i, where Bi : S → R++ and F : R2+ → R+ is concave, strictly increasing, continu-

ously differentiable and satisfies for all Li > 0 : (a) ∂F (0, Li)/∂Ki = ∞ and (b)

limKi→∞ ∂F (Ki, Li)/∂Ki = 0. Condition (a) rules out corner solutions. More impor-

tantly, condition (b) guaranties that there exists some K such that 0 ≤ Ki(st) ≤ K

for all st and all i since consumption must be non-negative.4 Without loss of gener-

ality, we can restrict ourselves to (K1(st), ...,KI(st)) ∈ X ≡ KI
for all st. We denote

Ki = (Ki(s
t)st), K = (K1, ...,KI) where K0 = (K0

1 , ...,K
0
I ) ∈ X is the initial stock of

capital which is assumed to be strictly positive. Note that, for each i, Li(st) = 1 for

all st and denote f(Ki(st−1)) = F (Ki(s
t−1), 1). We assume that Bi 6= Bh for some

i, h to guaranty heterogeneity across firms.
3Differences in discount factor might be more misleading. In that case, it can be shown that the

limiting distribution of consumption will concentrate full mass in the relatively patient agent (see
Espino [2005]).

4See Brock [1982, p. 23].
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To study asset trading volume, we need to compute equilibrium portfolios. But

solving the problem directly is difficult. In turn, we follow an indirect, well-known,

strategy proceeding as follows. We first characterize the set of Pareto optimal alloca-

tions. Then, we use the fact that both Welfare Theorems hold since we will analyze

competitive equilibria with alternative complete market structures. In particular, we

want to apply the Second Welfare Theorem characterizing the particular Pareto op-

timal allocation that be decentralized as a competitive equilibrium with zero initial

transfers for each individual. This will then establish the existence of a competitive

equilibrium and it will allow us to study the ability of this framework to generate

asset trading volume.

Planner’s Problem

Under our concavity assumptions on both utility and production functions, the

set of Pareto optimal allocations can be parametrized by welfare weights. Suppose

then that the welfare weight assigned by the planner to agent i is denoted αi. Given

a vector of welfare weights α = (αi)i∈Υ, the planner’s problem is given by:

V (s0,K0;α) = max
(c,K)≥0

X
i∈Υ

αi


∞X
t=0

X
st∈St+1

βtπ(st)u(ci(s
t))

 , (PP)

subject to

X
i∈Υ

ci(s
t) +

X
i∈Υ
[Ki(s

t)− (1− δ)Ki(s
t−1)] =

X
i∈Υ

Bi(st)f(Ki(s
t−1)) for all st,

K(st) ∈ X for all st,

and K0 ∈ X given.

It is a standard exercise to establish that this problem has a recursive formulation

(see Stokey, Lucas and Prescott [1989]). The value function V : S × X × RI+ → R

solves the following functional equation:

V (s,K;α) = max
(c,K)≥0

{
X
i∈Υ

αiu(ci) + β
X
s0

π(s, s0)V (s0,K 0;α)}, (RPP)
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subject to

X
i∈Υ

ci +
X
i∈Υ
[K 0

i − (1− δ)Ki] =
X
i∈Υ

Bi(s)f(Ki),

K 0 ∈ X.

Moreover, it can also be shown that V is strictly increasing, strictly concave in

K and continuously differentiable in the interior of X. The solution to the prob-

lem (RPP) is a set of continuous policy functions (ci(s,K;α),K 0
i(s,K;α))i∈Υ fully

characterizing the set of Pareto optimal allocations.

It is also well-known that both Welfare Theorems hold in this framework. As

already mentioned, we are particularly interested in applying the Second Welfare

Theorem to decentralize a Pareto optimal allocation as a competitive equilibrium

without transfers. Before doing so, we briefly consider an Arrow-Debreu economy to

get more intuition about our main results.

An Arrow-Debreu Framework

We assume that agent i is endowed with technology i. Also, their endowments of

time must be used in the technology with their names. This means that they are not

productive in technologies with other names. This is an extreme assumption of limited

labor substitutability made mainly to simplify the analysis. As the examples below

illustrate, this does not necessarily mean that agents are ex-ante heterogeneous. The

crucial aspect here is that agents are ex-post heterogeneous and this heterogeneity

changes through time according to the evolution of the distribution of capital across

firms. It is important to mention, however, that these assumptions are sufficient but

not necessary for the results. In fact and as discussed in more detail below, it is

possible to consider both more general initial distributions of wealth and also more

general labor productivities across firms.

Suppose that all trade is done at date 0. That is, agents can sign (and fully

enforce) contingent contracts for each st at date 0. Let P (st) be the price of the

consumption good to be delivered at the node st. We normalize P (s0) = 1. Assume
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that each agent runs his own firm and that, without loss of generality, they do not

trade shares for these firms. Below we consider the more general case.

Definition 1 An Arrow-Debreu Competitive Equilibrium (ADCE) is an al-

location (c,K) and a price system P such that

(ADCE 1) Given P, (ci,Ki) solves agent i’s problem

max
(ci,Ki)≥0

X
t

X
st

βtπ(st)u(ci(s
t)),

subject to

X
t

X
st

P (st)ci(s
t) =

X
t

X
st

P (st)[Bi(st)f(Ki(s
t−1)) + (1− δ)Ki(s

t−1)−Ki(st)],

where (s0,K0) are given.

(ADCE 2) For all st :

X
i∈Υ

¡
ci(s

t) +Ki(s
t)− (1− δ)Ki(s

t−1)
¢
=
X
i∈Υ

Bi(st)f(Ki(s
t−1)).

It is well-known how to decentralize any Pareto optimal allocation (parametrized

by the vector of welfare weights α) as an ADCE with transfers.5 Let (c(α),K(α))

be the solution to the planner’s problem (PP) corresponding to welfare weights α.

Let P (st;α) be the implicit price system obtained from the (normalized) Lagrange

multipliers corresponding to the resource constraint at st for the planner’s problem

(PP).

Define the value of consumption for agent i by:

V iC(s0,K0;α) = ci(s0,K0;α) +
X
t≥1

X
st

P (st;α)ci(s
t;α). (1)

In the same way, define the value of net total wealth for agent i by:

V iW (s,K;α) = Bi(s0)f(K
0
i ) + (1− δ)K0

i −Ki(s0;α) (2)

+
X
t≥1

X
st

P (st;α)[Bi(st)f(Ki(s
t−1;α))

+(1− δ)Ki(s
t−1;α)−Ki(st;α)].

5Moreover, it can be shown that in fact the equilibrium price system has inner product represen-
tation in this framework. See Stokey, Lucas and Prescott [1989, Chapter 15].

8



The initial transfer for agent i needed to decentralize a Pareto optimal allocation

(parametrized with α) as a ADCE with transfers is then given by:

Ai(s0,K0;α) = V
i
C(s0,K0;α)− V iW (s0,K0;α). (3)

This means that, given (s0,K0;α), there exists a unique distribution of net trans-

fers determined by (3). Consider (3) evaluated at (st,K(st−1)). That amount would

represent the implicit net “asset position” of every agent when node st is reached

and the implied distribution of capital is given by K(st−1). In fact, one can follow

Negishi’s [1960] approach and show that there exists a vector α0 = α(s0,K0) such

that Ai(s0,K0;α0) = 0 for all i. This establishes the existence of an ADCE as defined

above. Alternatively, we show that it is simpler if we consider the equivalent formula-

tion with sequential trading on spot markets and its corresponding recursive version.

There, the functions A0is will play a crucial role for both constructing equilibrium

portfolios and establishing the existence of competitive equilibria using the Negishi

approach. Moreover, the following framework with sequential markets will allow us

to study asset trading in its natural environment.

2.1 Sequential Trading and Recursive Competitive Equilibrium

Here we will consider two different decentralization structures with sequential trad-

ing and complete markets to study asset trading volume. We will not discuss the

well-known equivalence results between the allocations and prices corresponding to

the following market structures with sequential trading and the previously discussed

ADCE allocations and prices.6

To study different complete market structures, we first present the general frame-

work regarding trading opportunities. Every period t and after having observed st,

agents meet in spot markets to trade the consumption good and different assets. The

possibility of trading I different firm shares implies that there are I long-lived assets

available. Let θij(st) be the number of firm j’s shares chosen by agent i at st. There
6See Ljungqvist and Sargent [2004, Chapter 8].
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is one outstanding share for each firm and then
P
i θij(s

t) = 1 for all st and j.7 We

do not impose short selling constraints however.8

Our assumption about the initial distribution of wealth implies that for each i :

θij(s−1) =
½
1 if i = j
0 otherwise

As before, agents must work in firms of their type. The relevance of this assumption

and how to relax it is discussed below. Let pj(st) be the ex-dividend price of one

share for firm j at the node st. Let wj(st) be the wage paid in firm j per unit of

labor.

Agents can also trade a full set of Arrow securities with zero net supply. The

Arrow security s0 traded at st pays one unit of consumption next period if st+1 = s0

and 0 otherwise. Let q(st)(s0) be the price of this security at st. Denote ai(st, s0) the

holdings of this security. We restrict agents to bounded trading strategies to rule

out Ponzi schemes. These (implicit) bounds are assumed to be sufficiently large such

that they do not bind in equilibrium. All prices are in units of the st-consumption

good.

In this framework with complete markets it is immaterial who runs the firm.9

The firm’s problem is thus to maximize its value. Note that if the firm is not traded

in equilibrium, the problem reduces to an economy where agent of type i runs his

own firm. Firm j’s problem at st (with a stock of capital Kj(st−1)) is given by:

Dj(s
t) = max

Kj≥0

(
dj(s

t) +
X
s0
q(st)(s0)Dj(st, s0)

)
, (4)

subject to

dj(s
t) = Bj(st)F (Kj(s

t−1), Lj(st)) + (1− δ)Kj(s
t−1)−Kj(st)− wj(st)Lj(st),

for all st. Here, Dj(st) is firm j’s value at st.
7This assumption does not affect the results since the Modigliani-Miller theorem holds in this

framework and therefore firms’ financial policies do not affect allocations and prices.
8This last assumption is not crucial and it is frequently used in the literature (see, for example,

Constantinides and Duffie [1996] and JKS [2003]). Brock [1982], however, assumes away short sales.
9Note that there is no conflict of interest here since allocations will be Pareto optimal. Hence,

marginal rates of substitution are equalized across agents of different type.
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From the consumer side, given a price system (p,q,w) agent i0s problem is given

by:

max
(ci,ai,θi)

X
t

X
st

βtπ(st)u(ci(s
t)),

subject to

ci(s
t) +

X
j

pj(s
t)θij(s

t) +
X
s0
q(st)(s0)ai(st, s0)

= wi(s
t) + ai(s

t−1, st) +
X
j

[pj(s
t) + dj(s

t)]θij(s
t−1),

where ci ≥ 0 and (ai, θi) are bounded.

Definition 2 A Competitive Equilibrium with Sequential Trading (STCE)

is a price system (bp, bq, bw) and an allocation n(bci,bθi,bai)i, ( bKj)jo such that:
(STCE 1) Given (bp, bq, bw), (bci,bθi,bai) solves agent i’s problem for each i.

(STCE 2) Given (bp, bq, bw), ( bKj) solves firm j’s problem for each j.

(STCE 3) All markets clear: for all st

X
i∈Υ

ci(s
t) +

X
i∈Υ
[Ki(s

t)− (1− δ)Ki(s
t−1)] =

X
i∈Υ

Bi(st)f(Ki(s
t−1)),X

i

bai(st, s0) = 0 for all s0,X
i

bθij(st) = 1 for all j.

This framework is particularly relevant because it allows to price any security.

For example, consider a short-lived security n with zero net supply and payoffs at t

given by hn(st). If we denote qn(st) the price of this security at st, then it follows by

non-arbitrage arguments that:

qn(s
t) =

X
s0
q(st)(s0)hn(s0). (5)

The Markovian structure of our problem assures that, given a STCE, there exists

an equivalent Recursive Competitive Equilibrium (RCE).10 Consider the set of state
10Here we purposely avoid the concept of Markov Equilibrium. Instead, we follow the literature

pioneered by Mehra and Prescott [1980] and its related concept of RCE. See also Ljungqvist and
Sargent [2004, Chapter 12].
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variables. At the consumer level, these are described by (ai, θi), individual asset

and share holdings, respectively. At the firm level, kj describes firm j’s stock of

capital. Let A, Θ and K describe the distribution of assets, share holdings and

capital, respectively. Therefore, at the aggregate level the set of aggregate state

variables is fully described by (s,Θ, A,K). The price system is given by p,Q,w :

S×RI+×RI+×RI+ → R++ representing prices for shares, Arrow securities and wages,

respectively.

Definition 3 A RCE is a set of value functions for the individuals (Vi)i∈Υ, value

functions for the firms (Dj)j∈Υ, a set of policy functions for the individuals (ci, a0i, θ
0
i)i∈Υ,

policy functions for the firms (k0j)j∈Υ, a set of prices (p,Q,w) and laws of mo-

tion for the aggregate state variables A0 = G(s,A,Θ,K), Θ0 = J(s,A,Θ,K) and

K 0 = H(s,A,Θ,K), such that:

(RCE 1) Given (p,Q,w), for each agent i (ci, a0i, θ
0
i) are the corresponding policy

functions and (Vi, ci, a0i, θ
0
i) solves:

Vi(ai, θi, s, A,Θ,K) = sup
c,a0,θ0

{u(c) + βE
£
Vi(a

0
i, θ

0
i, s

0, A0,Θ0,K 0) k s¤},
subject to

ci +
X
j

pj(s,A,Θ,K)θ
0
ij +

X
s0
Q(s,A,Θ,K)(s0)a0i(s

0),

= wi(s,A,Θ,K) + ai +
X
j

[pj(s,A,Θ,K) + dj(s,A,Θ,K)] θij ,

where A0 = G(s,A,Θ,K), Θ0 = J(s,A,Θ,K) and K 0 = H(s,A,Θ,K).

(RCE 2) Given (p,Q,w), Dj is the recursive version of (4) and (k0j) solves the

firm j’s problem, where dividends are given by:

dj(s, kj , A,Θ,K) = Bj(s)f(kj) + (1− δ)kj − k0j(s, kj , A,Θ,K)− wj(s,A,Θ,K).

(RCE 3) All markets clear.

X
i∈Υ

ci(ai, θi, s, A,Θ,K) +
X
j∈Υ
(k0j(s, kj , A,Θ,K)− (1− δ)kj) =

X
j∈Υ

Bj(s)f(kj),
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X
i∈Υ

a0i(ai, θi, s,A,Θ,K)(s
0) = 0 for all s0,

X
i∈Υ

θj0i (ai, θi, s, A,Θ,K) = 1 for all j.

(RCE 4) Consistency. For all (s,A,Θ,K), each i and each j :

A0i = Gi(s,A,Θ,K) = a
0
i(Ai,Θi, s, A,Θ,K),

Θ0i = Ji(s,A,Θ,K) = θ0i(Ai,Θi, s, A,Θ,K),

K 0
j = Hj(s,A,Θ,K) = k

0
j(s,Kj , A,Θ,K).

The following result will allow us to compute recursively the present discounted

value of different streams. Given α, consider the corresponding Pareto optimal allo-

cation to define the stochastic discount factor by:

Q(s,K;α)(s0) = βπ(s, s0)
u0(c1(s0,K 0(s,K;α);α))

u0(c1(s,K;α))
. (6)

As we will see, agent 1 has been chosen without loss of generality. LetCB(S×RI+×RI+)

be the set of continuous and bounded functions mapping S×RI+×RI+ into the real

numbers. For any continuous function r : S×RI+×RI+ → R, consider the operator

T defined by:

(TR)(s,K;α) = r(s,K;α) +
X
s0
Q(s,K;α)(s0)R(s0,K 0(s,K;α);α).

Lemma 4 Suppose that u0(c1(s,K;α))r(s,K;α) is uniformly bounded and contin-

uous for all (s,K;α) ( that is, (u0 ◦ c1) × r ∈ CB(S×RI+×RI+). Then there exists

a unique continuous function R such that R(s,K;α) = (TR)(s,K;α) for all

(s,K;α).

We now show that all our relevant r(s,K;α)0s are properly bounded and contin-

uous when multiplied by u0(c1(s,K;α)).

Lemma 5 For all i, suppose that r(s,K;α) is one of the following functions:

(a) ci(s,K;α),
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(b) Yi(s,K;α) = (Bi(s)f(Ki) + (1− δ)Ki −K 0
i(s,K;α)),

(c) wi(s,K;α),

(d) dj(s,K;α).

Then, in all these cases, (u0 ◦ c1)× r ∈ CB(S×RI+×RI+).

We are ready now to decentralize a Pareto optimal allocation as a RCE with zero

initial transfers, conditional upon our assumptions about initial endowments. We

consider two alternative complete market structures. From now on, we impose the

consistency conditions (RCE 4) and thus we avoid writing policy functions depending

on individual state variables.

2.1.1 Complete Markets I: Only Short-Lived Assets are Traded

Suppose initially that there is a full set of Arrow securities available. Below we show

how to extend the analysis to a more general version of complete markets with an

arbitrary payoff matrix of S short-lived assets.

Consider the set of policy functions characterizing the solution of the recursive

planner’s problem (RPP). Given α, define the stochastic discount factor as before,

using (6). It follows from Lemmas 4 and 5 that the following functional equations

have well-defined continuous solutions:

V iC(s,K;α) = ci(s,K;α) +
X
s0
Q(s,K;α)(s0)V iC(s

0,K 0(s,K;α)), (7)

V iW (s,K;α) = Bi(s)f(Ki) + (1− δ)Ki −K 0
i(s,K;α) (8)

+
X
s0
Q(s,K;α)(s0)V iW (s

0,K 0(s,K;α)).

Note that these are the recursive versions of the value of consumption and net total

wealth, respectively, given by (1) and (2).

Define transfers for agent i by:

τ i(s,K;α) = ci(s,K;α)−
£
Bi(s)f(Ki) + (1− δ)Ki −K 0

i(s,K;α)
¤
,

14



and let “net asset holding” for each agent i be defined by:

Ai(s,K;α) = V iC(s,K;α)− V iW (s,K;α) (9)

= τ i(s,K;α) +
X
s0
Q(s,K;α)(s0)Ai(s0,K 0(s,K;α)).

Note that feasibility implies that
P
iAi(s,K;α) = 0 for all (s,K;α). It fol-

lows from Lemmas 4 and 5 that there exists a unique continuous function Ai :

S×RI+×RI+ → R for each i.

Before showing how to construct a RCE with a full set of Arrow securities using

these Ai’s, let us relate our framework to some previous results in the literature.

The Endowment Economy

Whenever f(Ki) is constant for allKi and δ = 0, we get a version of the Lucas tree

model with heterogeneous agents as described by JKS [2003]. Normalize f(K0
i ) = 1

and let εi(s) = Bi(s) +K0
i for each i. Since the Second Welfare Theorem holds, any

Pareto optimal allocation (parametrized by α), ci(α) ∈ RS , can be decentralized as

a RCE with transfers. Define transfers for agent i by:

τ i(s;α) = ci(s;α)− εi(s),

for each s = 1, ..., S. In that case, the equilibrium Arrow security holdings are the

solution to the S-dimensional system given by:

ai(s;α) = τ i(s;α) +
X
s0
Q(s;α)(s0)ai(s0;α), (10)

for s = 1, ..., S.

It is easy to check that this system has a unique solution. Furthermore, continuity

with respect to α implies that there exists α0 such that ai(s0;α0) = 0 for all i. Thus,

the corresponding Pareto optimal allocation can be decentralized as a RCE without

transfers as defined above. More importantly, and as properly pointed out by JKS

[2003], note that (10) implies that the demands for next period’s Arrow securities

are independent of the unique aggregate state variable, s. That is, independently of
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the state s today, agents construct a fixed equilibrium portfolio of Arrow securities.

In fact, JKS [2003] show that this result is robust to include both more general

heterogeneity across agents and trading in shares. This implies that equilibrium

portfolios are in general constant after some initial rebalancing.

Therefore, the endowment economy version of the Lucas tree model with hetero-

geneous agents and dynamically complete markets cannot generate asset trading once

one controls for the maturing of finite-lived assets. Thus, some other factors need to

be considered. We show that the natural extension that includes production solves

this apparent drawback.

Computing Arrow Security Holdings in the Production Economy

Let us go back to the economy with capital. Given (s,K;α), note that Ai(s,K;α)

is uniquely determined by (9). This is an important aspect and it will be discussed

in some more detail below.

Proposition 6 There exists a welfare weight α0 = α(s0,K0) such that the corre-

sponding Pareto optimal allocation can be decentralized as a RCE. The functions A0is

defined by (9) can be used to construct the policy functions representing asset holdings

in the following way:

a0i(s,K,A)(s
0) = Ai(s0,K 0(s,K);α0),

where A = A(s,K;α0).

We find this result interesting for two reasons. First, it provides a simple exis-

tence proof of a RCE with heterogeneous households which can be easily extended

to some other environments. For example, it is not hard to adapt the details to deal

with irreversible investment and habit persistence in preferences. Secondly, it allows

to construct an intuitive algorithm to compute equilibrium portfolios in production

economies. Below we discuss the ability of this framework to generate asset trading

volume.
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We now extend this result to a more general setup. Suppose that there are S

arbitrary short-lived assets. Let hn(st) be the payoff for security n at t and assume

that the S × S matrix h = (h1, ..., hS) has full rank S and thus markets are dynami-

cally complete. Having computed Ai(s,K) = Ai(s,K;α(s0,K0)) as before and given

K, consider the following S-dimensional system and solve for (ain(K))
S
n=1 such that:

Ai(s,K) =
SX
n=1

hn(s)a
i
n(K), for s = 1, ..., S.

Note that Ai(s0,K0) = 0 for all i does not necessarily imply that ain(K0) = 0 for

all n and i. On the other hand, note that
P
iAi(s,K) = 0 for all (s,K) implies thatP

i a
i
n(K) = 0 for all n and K since h has full rank. Prices for these securities are

given by the recursive formulation of the equation (5) above.

Corollary 7 The recursive Pareto optimal allocation corresponding to α0 can be

decentralized as a RCE such that

a0i(s,A,K)(n) = a
i
n(K

0(s,K)), for all n = 1, ..., S,

where A = A(s,K;α0).

Next we extend our results further to consider an alternative complete market

structure where short-lived and long-lived assets coexist. This particular framework

will allow us to study trading in stocks.

2.1.2 Complete Markets II: Short and Long-Lived Assets Traded

Suppose now that there are S − I short-lived assets in zero net supply. Payoffs for

security n at t are given by hn(st) as before and the S× (S− I) matrix (h1, ..., hS−I)

has rank S − I. Since agents can trade shares for all these I firms, markets will be

dynamically complete.11 Let qn(st) and ain(st) be the price and holdings of the n−th

asset, respectively. Whenever the subindex n is not present, we refer to vectors and

thus product means dot product.
11This is in generic sense. See JKS [2003] and references there for an additional discussion.
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We can write the budget constraint for this case as follows:

h(st)ai(s
t−1)+

X
j

[pj(s
t)+dj(s

t)]θij(s
t−1) = ci(st)−wi(st)+q(st)ai(st)+

X
j

pj(s
t)θij(s

t).

In a STCE, standard non-arbitrage conditions imply that the following condition

will be satisfied for all j and all st :

pj(s
t) =

X
s0
q(st)(s0)[pj(st, s0) + dj(st, s0)]. (11)

Note that, using and (11) and (5), it follows that for all st :

q(st)ai(s
t) +

X
j

pj(s
t)θij(s

t) =
N−IX
n=1

ÃX
s0
q(st)(s0)hn(s0)

!
ain(s

t)

+
X
j

ÃX
s0
q(st)(s0)[pj(st, s0) + dj(st, s0)]

!
θij(s

t)

=
X
s0
q(st)(s0)[

N−IX
n=1

hn(s
0)ain(st)

+
X
j

[pj(s
t, s0) + dj(st, s0)]θij(st)].

If we define financial wealth for agent i at st by:

Wi(s
t) = h(st)ai(s

t−1) +
X
j

[pj(s
t) + dj(s

t)]θij(s
t−1),

then the budget constraint can be rewritten such that for all st :

Wi(s
t) = ci(s

t)− wi(st) +
X
s0
q(st)(s0)Wi(s

t, s0).

The recursive formulation of this last equation is crucial to compute equilibrium

portfolios with trading in long-lived assets. We proceed constructively as before

to establish the existence of a RCE with this market structure. Using the policy

functions from the recursive version of the planner’s problem (RPP), get V iC(s,K;α0)

using (7), where α0 is the welfare weight defined in Proposition 6. Also, define the

value of human wealth for agent i by:

V iω(s,K;α0) = wi(s,K;α0) +
X
s0
Q(s,K;α0)(s

0)Vω(s0,K 0(s,K;α0);α0).
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It follows from Lemmas 4 and 5 that V iω is a well-defined, unique continuous

function. Note that Wi(s,K;α0) = V
i
C(s,K;α0)− V iω(s,K;α0).

Let

dj(s,K;α0) = Bj(s)f(Kj) + (1− δ)Kj −K 0
j(s,K;α0)− wj(s,K;α0), (12)

Dj(s,K;α0) = dj(s,K;α0) +
X
s0
Q(s,K;α0)(s

0)Dj(s0,K 0
j(s,K;α0);α0). (13)

Note that Dj(s,K;α0) is the recursive version of equation (4). Lemmas 4 and 5 imply

that it is well-defined, unique and continuous.

Additionally, define the stock price for each j as the solution to the following

functional equation:

pj(s,K;α0) =
X
s0
Q(s,K;α0)(s

0)[pj(s0,K 0;α0) + dj(s0,K 0;α0)],

whereK 0 = K 0(s,K;α0). Lemmas 4 and 5 imply that there exists a unique continuous

price system solving this functional equation for each j. The prices for the short-lived

securities are given by:

qn(s,K;α0) =
X
s0
Q(s,K;α0)(s

0)hn(s0).

for all n = 1, ..., S − I.

Finally, given K, solve for [(ain(K;α0))
N−I
n=1 , (θ

j
i (K;α0))

I
j=1] satisfying:

Wi(s,K;α0) =
N−IX
n=1

hn(s)ain(K;α0) +
X
j

[pj(s,K;α) + dj(s,K;α)]θij(K;α0), (14)

for all s ∈ {1, ..., S}. Since the matrix [h p+ d] has (generically) full rank S, the

solution is well-defined and unique.

Proposition 8 The recursive Pareto optimal allocation corresponding to the welfare

weight α0 established in Proposition 6 can be decentralized as a RCE with trading in

long-lived assets. There, (A,Θ) is given by the solution of (14) and

a0i(s,A,Θ,K)(n) = ain(K
0(s,K);α0),

θ
0
ij(s,A,Θ,K) = θij(K

0(s,K);α0).
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Discussion of Our Main Results

Before illustrating our results computing some particular examples, the crucial

aspects that differentiate this paper from the rest of the literature need to be em-

phasized here. As mentioned before, JKS [2003] is a particular case of our economy

where equilibrium portfolios in both short-lived and long-lived assets are independent

of the aggregate state of the economy. In that case, asset trading volume is restricted

to the minimum. For instance, in the particular case where the number of states is

the same as the number of trees, there is no trade at all after initial rebalancing.

Consider now the production economy and the dependence of portfolio policy

functions with respect to the aggregate state (denoted by (s,A,Θ,K)). First, notice

that in fact the dependence with respect to (A,Θ) is irrelevant since given (s,K) there

is a unique equilibrium portfolio (A,Θ)(s,K) that can be sustained given by (14).

Thus, the crucial dependence is with respect to (s,K). More importantly, (A0,Θ0)

is the unique vector of net positions in wealth that can be held in equilibrium next

period, in every state of nature s0. They depend upon (s,K) because the physical

state variable next period is determined today through K 0(s,K). Other than that,

equilibrium portfolios do not depend upon (s,K).

Now, to further understand the intuition for our results, consider an economy

populated by two agents trading a full set of Arrow securities. Suppose that there are

two different aggregate states (s,K) and (es, eK) such that K 0
1(s,K) > K

0
1(es, eK) and

K 0
2(s,K) < K

0
2(es, eK).12 Given α0, next period agent 1 is relatively richer if the current

state today is (s,K) than if it is (es, eK). Therefore, the transfers the planner would
need to make tomorrow from agent 2 to agent 1 in order to make the corresponding

consumption bundle affordable is smaller if the current state is (s,K) than if the
12The reader might wonder if states like these are ever reached. The examples computed below

show that the answer is in fact positive. Moreover, it can be formally shown that these states are
reached with positive probability if firms are heterogeneous. Roughly speaking, the argument goes as
follows. The joint process (st,K(st−1)) follows a stationary Markov process (see Stokey, Lucas and
Prescott [1989], Theorem 9.13). It can additionally be shown that the monotone mixing property is
satisfied. Consequently, it follows that such states are reached with positive probability (see Stokey,
Lucas and Prescott [1989], p. 381). Details are left to the reader.
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current state is (es, eK). This implies that A1(s0,K 0(s,K)) < A1(s
0,K 0(es, eK)) for all

s0. The implications for the decentralized version are then the following. In state

(es, eK) agent 1 decreases next-period output through K 0
1(es, eK) across all future states

s0 (when compared with the state (s,K)). To transfer resources contingent on s0,

he uses Arrow securities where a0(s,K,A)(s0) = A1(s
0,K 0

1(s,K)) (remember that

A = A(s,K)). For any s0, this amount depends on the technological possibilities

of generating output in the next period, which is determined by K 0
1(s,K). Thus,

differently from the endowment economy, an agent will have the option to transfer

resources using both securities and capital. Other things equal and for each state s0

next period, a higher level of individual capital next period will make an agent trade

less today in the asset markets in order to transfer less consumption from today to

tomorrow using these assets. And this is the case because he is already transferring

relatively more through this higher level of capital next period.

Note that at any current state (s,K), the degree of heterogeneity across agents is

represented by the distribution of capital K while next period it will be represented

by K 0(s,K). This is the reason why heterogeneity across agents changes as time and

uncertainty unfold. The same reasoning explains changing equilibrium portfolios in

a framework with trading in both short-lived assets and stocks. In particular, it

explains why equilibrium stock holdings are not kept fixed in general.

3 Equilibrium Portfolios with CRRA Preferences

In this section we assume that preferences are restricted to the case where

u(ci) =
(ci)

1−σ

1− σ
, (15)

for each i ∈ Υ where σ > 0 is the coefficient of relative risk aversion.13 Thus, given a

vector α=(α1, ...,αI), first order conditions for the recursive Pareto problem (RPP)
13 In the preceding sections, we assumed that utility functions were bounded from below. In our

examples, if σ ≥ 1 this assumption is not satisfied. However, all our results can be replicated for
these cases using the techniques explained in Alvarez and Stokey [1998].
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imply that any solution will satisfy, for each i :

ci(s,K;α) =
(αi)

1/σPI
j=1 (αj)

1/σ
C(s,K), (16)

where C(s,K) is aggregate consumption. Since the solution is immune to affine linear

transformations of preferences14, the planner’s problem given any α is equivalent to

solving:

V (s,K;α) = max
(C,K0)≥0

{C
1−σ

1− σ
+ β

X
s

π(s, s0)V (s0,K 0;α)}, (P∗)

subject to

C +
X
i

[K 0
i − (1− δ)Ki] =

X
i

Bi(s)f(Ki).

Given the solution (C(s,K),K 0(s,K)) to problem (P∗), individual consumptions

are obtained using (16). Very importantly, note that this means that both the capital

accumulation path and the implicit prices are independent of the wealth distribution.

This is a fundamental feature of the particular representation of preferences we as-

sume in (15). We normalize
PI
j=1 (αj)

1/σ = 1.

Using the solution to problem (P∗), define for each j and each s0 :

dj(s,K) = Bj(s)f(Kj) + (1− δ)Kj −K 0
j(s,K)− wj(s,K),

Q(s,K)(s0) = βπ(s, s0)
u0(C(s0,K 0(s,K)))

u0(C(s,K))
,

pj(s,K) =
X
s0
Q(s,K)(s0)[pj(s0,K 0(s,K)) + dj(s0,K 0(s,K))].

Compute first the value of aggregate consumption as the solution of the following

functional equation:

VCA(s,K) = C(s,K) +
X
s0
Q(s,K)(s0)VCA(s

0,K 0(s,K)). (17)

Lemmas 4 and 5 imply that there exists a unique continuous solution VCA .

14Here,
P

i αi
(ci(st))1−σ

1−σ reduces to
(C(st))1−σ

1−σ
³P

i (αi)
1/σ
´σ

for each st.
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Note that for each i

V iW (s,K) = Bi(s)f(Ki) + (1− δ)Ki −K 0
i(s,K)

+
X
s0
Q(s,K)(s0)V iW (s

0,K 0(s,K)),

is independent of α. Also, since wi(s,K) = Bi(s)F2(Ki, 1) we have that

V iω(s,K) = wi(s,K) +
X
s0
Q(s,K)(s0)V iω(s

0,K 0(s,K)),

is independent of α as well. Note also that it can be verified that for each agent i we

have:

V iC(s,K;α) = (αi)
1/σ VCA(s,K), (18)

for all α. To obtain this result, substitute this candidate for V iC in (7). Using (17)

and the uniqueness of the V iC show that (18) holds. Therefore, it follows that for all

i :

Ai(s,K;α) = V iC(s,K;α)− V iW (s,K)

= (αi)
1/σ VCA(s,K)− V iW (s,K).

Given some initial (s0,K0), we are ready to compute α(s0,K0) by simply letting:

αi(s0,K0) =

µ
V iW (s0,K0)

VCA(s0,K0)

¶σ

, (19)

for i = 1, ..., (I − 1). Put αI(s0,K0) =
³
1−PI−1

j=1 (αj(s0,K0))
1/σ
´σ
. As shown in

Proposition 8, since for each i :

V iW (s,K) = [pi(s,K) + di(s,K)] + V
i
ω(s,K),

it is possible to check that in fact:

Wi(s0,K0;α(s0,K0)) = pi(s0,K0) + di(s0,K0),

as our assumptions on initial distribution of wealth require for economies where both

short-lived and long-lived assets are traded.15

15See the proof of Proposition 8 in the Appendix.
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The examples below will quantitatively illustrate our main findings. In both

examples, we let the number of Markov states S = 5 and the number of agents and

technologies I = 2. Using the CRRA specification given by (15), we set σ = 2 for both

agents, and the discount factor β = 0.95. Both technologies are assumed to be Cobb-

Douglas, where F (Ki, Li) = K0.33
i L0.67i , i = 1, 2. The depreciation rate is assigned

a value of δ = 0.1. Less extreme assumptions about limited labor substitutability

can be considered if, for example, F (Ki, L1, L2) = Kα
i

¡
ai1 (L1)

ρ + ai2 (L2)
ρ¢ 1−αρ with

ai1+a
i
2 = 1. Here, 0 < ρ ≤ 1 and 1/(1−ρ) is the elasticity of substitution between L1

and L2. In our particular framework, we simply impose aii = 1 for each technology i.

The mapping from states to total factor productivities for the individual tech-

nologies, Bi (s) , is as follows:

s = 1 s = 2 s = 3 s = 4 s = 5
B1 (s) 1.00 1.05 0.95 1.05 0.95
B2 (s) 1.00 1.05 1.05 0.95 0.95

.

Note that this formulation purposely allows for both aggregate and “redistributive”

shocks to production possibilities. In particular, shocks {1, 2, 5} will represent an

economy in “normal times”, an expansion and a recession, respectively. On the other

hand, shocks {3,4} have a redistributive component.

The Markov transition matrix is given by:

Y
=


0.6 0.1 0.1 0.1 0.1
0.1 0.6 0.1 0.1 0.1
0.1 0.1 0.6 0.1 0.1
0.1 0.1 0.1 0.6 0.1
0.1 0.1 0.1 0.1 0.6

 .
We assume that the initial state of the Markov process is s0 = 1, and the initial value

for both types of capital stock is set to the steady state value computed for this specific

s0. Very importantly, note that these initial conditions, coupled with our assumptions

about (B1, B2) and Π, imply that agents are ex-ante identical. As already mentioned,

heterogeneity across agents appears as time and uncertainty unfold.
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3.1 Example 1: Arrow Securities

In the first example we assume that the set of securities that can be sequentially

traded consists of a full set of Arrow securities.

The solution proceeds by taking the steps outlined above, i.e., by solving the plan-

ner’s problem to get aggregate consumption and investment, solving the functional

equations VCA and V
i
W , and finding the welfare weights implied by the initial values,

according to equation (19).

Finally, for each i, let:

Ai(s,K) = (αi(s0,K0))
1/σ VCA(s,K)− V iW (s,K),

and construct equilibrium portfolios of Arrow securities according to Proposition 6.

Figures 1-3 below present the results for this example. Figure 1 shows the evo-

lution of consumption, capital, asset holdings and asset prices for a realization of a

time series for 100 periods. Figures 2 and 3 show histograms of the stationary distri-

butions of Arrow security holdings and trading volume respectively. Trading volume

is simply defined as the number of individual securities traded every period. For

security s0, this is represented by the absolute value of agent 1’s security holdings in

s0, that is |a01(s,A,K)(s0)|. As suggested above, the asset holdings of these securities

fluctuate. In particular, they evolve conditional upon the evolution of capital across

firms. Note that the symmetry of payoffs and transition probabilities is reflected in

the symmetry of trading volumes. For the holdings the same pattern obtains, just

modified by the general principle that agents go short in the Arrow security that pays

off in states when their own type is relatively more productive and tend to hold the

Arrow security that pays a return when their relative productivity is low.
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Figure 1: Time Series Solution, T = 100.
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Figure 2: Stationary Distributions of Arrow Security Holdings
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Figure 3: Stationary Distributions of Asset Trading Volumes.

3.2 Example 2: Trading Short and Long Lived Securities

In this example, we assume that the securities that can be traded in the economy are

different. Here, there are 2 long-lived assets. They represent shares in the individual

firms where the number of outstanding shares is normalized to unity. Given that

S = 5, we assume that there are 5 − 2 = 3 short-lived assets and consequently

markets are dynamically complete. The short-lived assets are in zero net supply and

have the following payoff structure:

h1 =


1
0
0
0
0

 , h2 =

0
1
0
0
0

 , h3 =

0
0
0
0
1

 .
Recall, from the specification of Bi (s) , that s = 1, 2, 5 are the states that map

into equal total factor productivities for both types. For each of these states there is

a security which pays one unit if and only if that state occurs.

Since we assume that markets are dynamically complete in both examples, the
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allocation of consumption and capital is the same. Therefore, we can rely on the

solution of the planner’s problem from the previous example since the welfare weights

to decentralize this Pareto optimal allocation as a RCE with this alternative market

structure is the same as in the previous example (Proposition 8). The value of

aggregate consumption, VCA , is then the same as well. On the other hand, functional

equations need to be solved to compute the value of human wealth, V iω, and also the

equilibrium prices of shares, pj . We then have all the ingredients required to calculate

equilibrium portfolio holdings.

For each i, let:

Wi(s,K) = (αi(s0,K0))
1/σ VCA(s,K)− V iω(s,K),

and construct equilibrium portfolios as in Proposition 8. The following set of Figures

illustrates the results for this example. Like in the previous example, trading volume

is simply defined as the number of individual securities traded every period. For firm

j stock, this is represented by the absolute value of the difference in agent 1’s stock

holdings of firm j, that is
¯̄
θ01j − θ1j

¯̄
.

The fifth panel in Figure 4 shows that agents tend to hold short positions in

their own firms’ stocks and go long in the other agent’s firm. Intuitively, this allows

them to hedge risk against idiosyncratic income shocks, which they are facing by

being productive just in the firm of their own type. The picture of share prices

shows that there is some common movement but also some changes of relative stock

prices over time. The holdings of short-lived securities seem low, especially when

compared to the amount of stocks in the portfolio. These observations are clear from

the stationary distribution of asset holdings in Figure 5. Figure 6 demonstrates the

peculiar symmetry contained in the model’s assumptions. The payoff-structure of the

short-lived assets is neutral with respect to types, meaning that it does not provide

returns when redistributive shocks to individual production occur. Payoffs in those

states can only come from individual share holdings.
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Figure 4: Time Series Solution, T = 100.
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Figure 5: Stationary Distribuition of Asset Holdings.
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Figure 6: Stationary Distributions of Asset and Stock Trading Volumes.

4 Conclusion

The endowment version of the Lucas tree model with heterogeneous agents and dy-

namically complete markets has performed poorly to explain asset trading volume,

as explained by Judd, Kubler and Schmedders [2003]. This paper extends that en-

vironment in a natural way to study asset trading volume in production economies

with heterogenous agents and alternative dynamically complete market structures.

We show that this environment can generate a nontrivial amount of trading in both

short-lived and long-lived assets. The main difference is that in our framework agents

are able to manipulate not only portfolios but also the stock of capital to transfer

consumption across time and states of nature. For a given state of nature next pe-

riod, different distributions of next period’s capital will make agents choose different

equilibrium portfolios to transfer resources either to or from that state. The stock

of capital itself is used to transfer consumption from today to tomorrow. Depending

upon the value of the marginal productivity of capital next period, in some cases an
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agent chooses to transfer more consumption to all the states next period using capi-

tal (high value of marginal productivity) trading relatively less assets. In other cases

(low value of marginal productivity), he transfers less consumption accumulating less

and trades more assets paying next period. This alternative instrument to transfer

consumption across time is naturally missed in a pure exchange economy.

The crucial aspect in our model is that at a given period, heterogeneity across

agents is determined by the distribution of capital across firms. And this is the case

because we assume that labor of different types are imperfect substitutes. There-

fore, the evolution of the distribution of capital explains why agents’ heterogeneity

changes as time and uncertainty unfold. This naturally leads to changing equilibrium

portfolios.

An important aspect illustrated by the examples above is that it is possible to

shut down initial heterogeneity making agents ex-ante identical. Very importantly,

they show that this framework can generate changing ex-post heterogeneity and con-

sequently one can still get nontrivial asset trading volume. It is still an open question

if the model can generate trading volume when the driving forces generating these

changes in heterogeneity in our framework are assumed away (namely, ex-post dif-

ferences in marginal productivity of capital across firms and different equilibrium

wages). In that case, to generate changes in heterogeneity one should only rely on

the persistence of unequal initial levels of wealth. This has been left for future re-

search.

The model presented here can be easily extended in several directions to allow

for more realistic assumptions. As already mentioned, it is easy to have agents with

arbitrary initial distributions of endowments and property rights. More importantly,

it is possible to adjust the details in the characterization of the planner’s problem

to deal with adjustment costs and habit persistency in preferences. The impact of

these two additional assumptions coupled together (and even the necessity of them)

have been studied in the literature. In particular, they have been successful to help
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explaining both key asset-returns facts and business-cycle facts, outperforming the

standard RBC model and the Lucas tree model (see Boldrin et al. [2001] and Jermann

[1998]). It seems natural then to study the impact of this more ambitious framework

on asset trading volume. This would be a fairly straightforward task within the

framework presented here.

Other potential application of our model and its extensions would be in the inter-

national RBC literature. For example, one could pin down welfare weights to match

the actual distribution of wealth across countries. Thus, the model can be considered

a benchmark to understand asset trading across different countries.
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Appendix

Notice first that necessary and sufficient conditions characterizing the planner’s so-

lution are given by:16

u0(c1(s,K;α)) = β
X
s0

π(s, s0)u0(c1(s0,K 0(s,K;α))× (20)

[Bi(s
0)f 0(K 0

i(s,K;α)) + (1− δ)],

αiu
0(ci(s,K;α)) = αhu

0(ch(s,K;α)), for all i, h ∈ Υ, (21)X
i∈Υ

ci(s,K;α) +
X
i∈Υ
[K 0

i(s,K;α)− (1− δ)Ki] =
X
i∈Υ

Bi(s)f(Ki). (22)

This already uses the Benveniste-Scheinkman condition which implies that for all

i :

∂V (s,K;α)

∂Ki
= α1u

0(c1(s,K;α))[Bi(s)f 0(Ki) + (1− δ)]. (23)

On the other hand, using the consistency requirements (RCE 4), the following

conditions fully characterize a RCE (see footnote (16)):

1 =
X
s0
Q(s,A,Θ,K)(s0)[Bj(s0)f 0(K 0

j(s,A,Θ,K)) + (1− δ)], (24)

wj(s,A,Θ,K) = Bj(s)F2(Kj , 1),

Q(s,A,Θ,K)(s0) = βπ(s, s0)
u0(ci(s0, A0,Θ0,K 0))
u0(ci(s,A,Θ,K))

, (25)

pj(s,A,Θ,K) =
X
s0
Q(s,A,Θ,K)(s0)[pj(s0, A0,Θ0,K 0) + dj(s0, A0,Θ0,K 0)], (26)

ci(s,A,Θ,K) +
X
j

pj(s,A,Θ,K)θ
0
ij(s,A,Θ,K) (27)

+
X
s0
Q(s,A,Θ,K)(s0)a0i(s

0)(s,A,Θ,K)

= wi(s,A,Θ,K) +Ai +
X
j

[pj(s,A,Θ,K) + dj(s,A,Θ,K)] θij ,

X
i∈Υ

ci(s,A,Θ,K)−
X
j∈Υ
(K 0

j(s,A,Θ,K)− (1− δ)Kj) =
X
j∈Υ

Bj(s)f(Kj), (28)

16Note that under our assumptions the transversality condition is immediately satisfied. This
condition is not only sufficient but also necessary in this framework.
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X
i∈Υ

A0i(s,A,Θ,K)(s
0) = 0, for all s0, (29)

X
i∈Υ
Θ0ij(s,A,Θ,K) = 1, for all j. (30)

It is important to mention that to apply the Second Welfare Theorem, except for (27),

(29) and (30), the conditions characterizing a RCE are satisfied either by construction

or by definition.

Proof of Lemma 4. Let CB(S×RI+×RI+) be the set of continuous and bounded

functions mapping S×RI+×RI+ into the real numbers. Consider the alternative oper-

ator eT :
(eTM)(s,K;α) = r(s,K;α)u0(c1(s,K;α)) +X

s0
βπ(s, s0)M(s0,K 0(s,K;α);α).

Step 1. First we check that eT : CB(S×RI+×RI+)→ CB(S×RI+×RI+).

Suppose that M ∈ CB(S×RI+×RI+). By assumption, r(s,K;α)u0(c1(s,K;α)) is

continuous for all (s,K;α) and there exists some 0< B <∞ such that |r(s,K;α)u0(c1(s,K;α))| <

B for all (s,K;α). It is clear then that (eTM) ∈ CB(S×RI+×RI+).
Step 2. Now we show that eT is a contraction mapping.
We check Blackwell’s sufficient conditions. We start with discounting. Consider

any a > 0. Note that:

(eT (M + a))(s,K;α) = r(s,K;α)u0(c1(s,K;α)) +
X
s0

βπ(s, s0)
¡
M(s0,K 0(s,K);α) + a

¢
≤ r(s,K;α)u0(c1(s,K;α)) +

X
s0

βπ(s, s0)M(s0,K 0(s,K);α) + βa

= (eTR)(s,K;α) + βa.

Monotonicity is obvious: if M(s,K;α) ≥ D(s,K;α) for all (s,K;α), it is imme-

diate that (eTM)(s,K;α) ≥ (eTD)(s,K;α) for all(s,K;α).
By the contraction mapping theorem we can conclude that eT is a contraction with

a unique solution M ∈ CB(S×RI+×RI+). Therefore, to conclude the proof, define:

R(s,K;α) =M(s,K;α))/u0(c1(s,K;α)).
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It can be checked immediately that R is a continuous function which is the unique

fixed point of the operator T as required.

Proof of Lemma 5. First notice that since policy functions are continuous,

r(s,K;α)u0(c1(s,K;α)) is continuous for all these cases. We now check that it is also

bounded. Let Y = max(s)
P
iBi(s)f(K) + (1− δ)K. To simplify the exposition, let

us assume that there exists some γ ∈ (0, 1) such that γf(K) ≤ f 0(K)K for all K.

(a) Note first that from (21), it follows that u0(c1(s,K;α)) = αi
α1
u0(ci(s,K;α)) for

all i. Since u is concave, it follows that for all c > 0 :

0 ≤ cu0(c) ≤ u(c) ≤ u(Y ).

(b) Since the planner’s value function is concave, strictly increasing and differen-

tiable, it follows that:

0 ≤ ∇kV (s,K) ·K ≤ V (s,K)− V (s, 0) ≤ max
s
V (s,K) ≡ V .

Also, the envelope condition implies that,

α1u
0(c1(s,K;α))

ÃX
i∈Υ
[Bi(s)f

0(Ki)Ki + (1− δ)Ki]

!
= ∇kV (s,K) ·K ≤ V .

Assumptions about production functions let us conclude that for all (s,K;α) :

0 ≤ α1u
0(c1(s,K;α))[γBi(s)f(Ki) + (1− δ)Ki] ≤ V .

Also, since wi(s,K;α) = (1 − γ)Bi(s)f(Ki), we can immediately conclude that

u0(c1(s,K;α))wi(s,K;α) is uniformly bounded. Moreover, note that:

u0(c1(s,K;α))

ÃX
i∈Υ

Yi(s,K;α)

!
= u0(c1(s,K;α))

ÃX
i∈Υ

ci(s,K;α)

!
, (31)

is also uniformly bounded. Note here that:

u0(c1(s,K;α))Yi(s,K;α) ≤ u0(c1(s,K;α))[Bi(s)f(Ki) + (1− δ)Ki],

is bounded from above. This implies that u0(c1(s,K;α))Yi(s,K;α) is also uniformly

bounded from below since otherwise it follows from (31) that there exists some h
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such that u0(c1(s,K;α))Yh(s,K;α) is unbounded from above. But this case has been

already ruled out.

Finally note that |dj(s,K;α)| = |Yi(s,K;α)− wi(s,K;α)| ≤ |Yi(s,K;α)|+wi(s,K;α)

and then u0(c1(s,K;α)) |dj(s,K;α)| is uniformly bounded as well.

Proof of Proposition 6. Note first that if αi = 0 then ci(s,K;α) = 0

and consequently V iC(s,K;α) = 0 for all (s,K) in this case. This implies that

Ai(s,K;α) = −V iW (s,K;α). By definition and given that the planner chooses to

operate the technology i optimally, it is easy to show that V iW (s,K;α) > 0 for all

(s,K) with K > 0.17 Now we will proceed in two steps.

Step 1.There exists some α0 = α(s0,K0) such that Ai(s0,K0;α(s0,K0)) = 0.

It can be verified that A0is are homogeneous of degree 0 in α. Therefore, we can

normalize and consider welfare weights in the I − 1 dimensional unit simplex, ∆I−1.

Define the vector-valued function g as follows:

gi(α) =
max[αi −Ai(s0,K0;α), 0]P
imax[α

i −Ai(s0,K0;α), 0] ,

for each i. Note that H(α) =
P
imax[α

i − Ai(s0,K0;α), 0] is positive for all α ∈

∆I−1.18 Also, gi(α) ∈ [0, 1] and
P
i g
i(α) = 1 for all α. Thus, g is a contin-

uous function mapping ∆I−1 into itself. By Brower’s fixed point theorem, there

exists some α0 = α(s0,K0) such that α0 = g(α0). Suppose now that αi0 = 0 for

some i. This implies that −Ai(s0,K0;α0) ≤ 0. But we have already discussed that

−Ai(s0,K0;α0) = VW (s0,K0;α0) > 0 if αi0 = gi(α) = 0 and then this would lead to

a contradiction. Hence, αi0 > 0 for all i and this implies that α
i −Ai(s0,K0;α0) > 0

17The intuition for this can be grasped as follows. VW is the “value” of operating the firm i, using
the planner’s shadow prices. The planner might choose not to operate this technology at all getting
a non-negative value since Ki ≥ 0. But under our assumptions the planner’s solution is interior and
unique. This implies that this value VW has to be strictly greater than this alternative plan rendering
a non-negative value. Additional details are available upon request.
18That is,

H(α) =
X
i

max[αi −Ai(s0,K0;α), 0] ≥
X
i

αi −
X
i

Ai(s0,K0;α) = 1

for all α ∈ ∆I−1.
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for all i. Consequently,

H(α0)α
i
0 = max[α

i
0 −Ai(s0,K0;α), 0] = αi0 −Ai(s0,K0;α0).

Note that this implies that H(α0)
P
i α

i
0 =

P
i α

i
0 −

P
iA

i(s0,K0;α0) = 1 = H(α0).

Therefore, αi0 = αi0−Ai(s0,K0;α0) which immediately shows that Ai(s0,K0;α0) = 0

for all i.

Step 2. Let A = A(s,K;α0) and define for each i :

a0i(s,K,A)(s
0) = Ai(s0,K 0(s,K);α0)), (32)

Q(s,A,K)(s0) = βπ(s, s0)
u0(c1(s0,K 0(s,K);α0))

u0(c1(s,K;α0))
. (33)

It is important to remember that Ai(s,K) equals the unique present discounted

value of future over-expenditures that can be afforded at the state (s,K). Consider

the conditions characterizing a RCE, assuming away trading in stocks. All these

conditions are satisfied by construction19. Note that:

Ai = [ci(s,A,K) +K
0
i(s,A,K)− ki(1− δ)−Bi(s)f(Ki)]

+
X
s0
Q(s,A,K)(s0)a0i(s,A,K)(s

0),

where ci(s,A,K) = ci(s,K;α0) and K 0
i(s,A,K) = K 0

i(s,A;α0) for all i. In fact,

given (s,K), the unique levels of asset holdings that can be sustained in a RCE are

fully characterized by A(s,K). Therefore, the solution of the planner’s problem with

welfare weights α0 coupled with (32) and (33) constitutes a RCE.

Proof of Proposition 8. The construction of the RCE is identical to that

detailed in Proposition 6. Details are left to the reader except for one step. We show

that given α0 = α(s0,K0), it follows that for each i :

Wi(s0,K0;α0) = pi(s0,K0;α0) + di(s0,K0;α0),

19Note that market clearing conditions in asset markets are satisfied also by construction as dis-
cussed in the text.
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and therefore there is no need for additional transfers at (s0,K0) given the ownership

structure assumed. To see this, note that for each i :

V iW (s,K;α0) = Bi(s)f(Ki) + (1− δ)Ki −K 0
i(s,K;α0)

+
X
s0
Q(s,K;α0)(s

0)V iW (s
0,K 0(s,K;α0);α0)

= di(s,K;α0) + wi(s,K;α0) +
X
s0
Q(s,K;α0)(s

0)V iW (s
0,K 0(s,K;α0);α0).

Then, we can actually write:

V iW (s,K;α0) = di(s,K;α0) + wi(s,K;α0)

+
X
s0
Q(s,K;α0)(s

0)
£
Di(s

0,K 0(s,K;α0);α0) + V iω(s
0,K 0(s,K;α0);α0)

¤
.

where Di is defined by (13). Since the stock prices are uniquely determined, it can

be verified that for all i :

pi(s,K;α0) =
X
s0
Q(s,K;α0)(s

0)Di(s0,K 0(s,K;α0);α0),

and, therefore,

V iW (s,K;α0) = [pi(s,K;α0) + di(s,K;α0)] + V
i
ω(s,K;α0). (34)

SinceAi(s,K;α0) = V iC(s,K;α0)−V iW (s,K;αo) andWi(s,K;α0) = V
i
C(s,K;α0)−

V iω(s,K;α0), this immediately implies that

Wi(s0,K0;α0) = pi(s0,K0;α0) + di(s0,K0;α0),

as desired. Finally, notice that adding up (14) and using (34) it follows that market

clearing conditions for assets and stocks markets ((29) and (30) respectively) are

satisfied since
P
iAi(s,K;α0) = 0 and the matrix [h p+ d] has (generically) full

rank S.
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