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Why is long-horizon equity less risky?

A duration-based explanation of the value premium

Abstract

This paper proposes a dynamic risk-based model that captures the high expected returns

on value stocks relative to growth stocks, and the failure of the capital asset pricing model

to explain these expected returns. To model the difference between value and growth stocks,

we introduce a cross-section of long-lived firms distinguished by the timing of their cash

flows. Firms with cash flows weighted more to the future have high price ratios, while

firms with cash flows weighted more to the present have low price ratios. We model how

investors perceive the risks of these cash flows by specifying a stochastic discount factor for

the economy. The stochastic discount factor implies that shocks to aggregate dividends are

priced, but that shocks to the time-varying price of risk are not. As long-horizon equity,

growth stocks covary more with this time-varying price of risk than value stocks, which covary

more with shocks to cash flows. When the model is calibrated to explain aggregate stock

market behavior, we find that it can also account for much of the observed value premium,

the high Sharpe ratios on value stocks relative to growth stocks, and the outperformance of

value (and underperformance of growth) relative to the CAPM.



1 Introduction

This paper proposes a dynamic risk-based model that captures the high expected returns on

value stocks relative to growth stocks, and the failure of the capital asset pricing model to

explain these expected returns. The value premium, first noted by Graham and Dodd (1934),

is the finding that assets with high ratios of price to fundamentals (growth stocks) have low

expected returns relative to assets with low ratios of prices to fundamentals (value stocks).

Fama and French (1992) show that the capital asset pricing model of Sharpe (1964) and

Lintner (1965) cannot account for the value premium. The CAPM predicts that expected

returns should rise with the β on the market portfolio; however, value stocks have higher

expected returns yet do not appear to have higher βs than growth stocks.

To model the difference between value and growth stocks, we introduce a cross-section

of long-lived firms distinguished by the timing of their cash flows. Firms with cash flows

weighted more to the future have high price ratios, while firms with cash flows weighted

more to the present have low price ratios. Drawing an analogy to bonds, we can say that

growth firms are high-duration assets while value firms are low-duration assets.

We model how investors perceive the risks of these cash flows by specifying a stochastic

discount factor for the economy, or equivalently, an intertemporal marginal rate of substitu-

tion for the representative agent. Our model for the stochastic discount factor shares some

of the features of the external habit formation model of Campbell and Cochrane (1999). As

in the model of Campbell and Cochrane (1999), the riskfree rate is constant. Moreover, we

allow the price of risk to vary, implying that at certain times, investors require a greater re-

turn per unit of risk to hold equities than at others. A key difference is the relation between

the price of risk and the aggregate dividend. In the model of Campbell and Cochrane (1999)

they are tightly linked: a shock to the aggregate dividend moves agents closer to their habit

level and raises the return they require for bearing risk.1 In our model the return investors

require for bearing risk moves independently of the aggregate dividend. We show that the

correlation between the aggregate dividend and the price of risk determines, in large part,

the ability of the model to fit the cross-section.

1In the benchmark case of Campbell and Cochrane (1999), aggregate dividends and aggregate consump-

tion are the same. Campbell and Cochrane also examine a case where dividends are correlated with con-

sumption. Because of this correlation, there is still a link between dividends and the price of risk.

1



We require our model to explain not only the cross-section of assets based on price ratios,

but also aggregate stock market behavior. Firms are distinguished by their cash flows which

are defined in terms of shares of the aggregate dividend. We specify share processes that are

stationary, and explore the robustness of our results to different models of the share process.

This modeling strategy, also employed by Menzly, Santos, and Veronesi (2004) and Santos

and Veronesi (2004), ensures that the economy is stationary, and that all future dividends are

marketed. We assume that log dividend growth is normally distributed with a time-varying

mean. We calibrate the dividend process to match conditional and unconditional moments

of the dividend process in the data. Stochastic discount factor parameters are chosen to fit

the time series of aggregate stock market returns. Expected excess returns on equity are

time-varying in the model, implying excess volatility and return predictability. Despite the

simplicity of our model, we find that it can match unconditional moments of the aggregate

stock market. In addition, the model produces predictability of dividends and returns close

to that found in the data.

To test whether our model can explain the value premium, we sort firms into portfolios in

simulated data. We find that risk premia, risk-adjusted returns, and Sharpe ratios increase

as portfolios move from growth to value. We find a value premium (the return on a strategy

that is long the extreme value portfolio and short the extreme growth portfolio) between

3.4% and 5.2% (depending on the share process) compared with a value premium of 4.9%

in the data when portfolios are formed on the basis of book-to-market. We find an α on

the value-minus-growth strategy of between 4.7% and 6.2%, compared with 5.6% in the

data. These results do not arise because value stocks are more risky according to traditional

measures; standard deviations and market βs increase slightly and then decrease, implying

that the extreme value portfolio has a lower standard deviation and β than the extreme

growth portfolio. Our model therefore accounts for a large fraction of the value premium

found in the data.

Our paper builds on previous literature that uses the concept of duration to better un-

derstand the cross-section of stock returns. Using the decomposition of returns into cash

flow and discount rate components proposed by Campbell and Mei (1993), Cornell (1999)

shows that growth companies, such as Amgen, whose cash flows are mainly idiosyncratic,

may have high βs because of the duration of these cash flows, and the induced sensitivity

of prices to market-wide changes in discount rates. Leibowitz and Kogelman (1993) show
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that accounting for the sensitivity of the value of long-run cash flows to discount rates can

reconcile various measures of equity duration. Dechow, Sloan, and Soliman (2002) measure

cash flow duration of value and growth portfolios; they find that empirically, growth stocks

have higher duration than value stocks and that this contributes to their higher βs. Brennan

and Xia (2003) show in a theoretical model that the β on an asset increases in the maturity

of the cash flows. Santos and Veronesi (2004) develop a model that links time variation in

betas to time-variation in expected returns through the channel of duration, and show that

this link is present in industry portfolios. Campbell and Vuolteenaho (2003) decompose the

market return into news about cash flows and news about discount rates. They show that

growth stocks have higher βs with respect to discount rate news than value stocks, consis-

tent with the view that growth stocks are high duration assets. These papers all show that

discount-rate risk is an important component of total volatility, and that growth stocks seem

particularly subject to this discount-rate risk.

This paper also relates to the large and growing body of literature that explores the corre-

lations of returns on value and growth stocks with sources of systematic risk. This literature

looks at either conditional versions of traditional models (Jagannathan and Wang (1996),

Lettau and Ludvigson (2001), Zhang and Petkova (2002)), or identifies a new source of risk

that covaries more with value stocks than with growth stocks (Lustig and VanNieuwerburgh

(2002), Piazzesi, Schneider, and Tuzel (2002), Yogo (2003)). Another strand of literature

relates observed returns on value and growth stocks to aggregate market returns or macro-

economic factors (Brennan, Wang, and Xia (2003), Campbell, Polk, and Vuolteenaho (2003),

Liew and Vassalou (2000), Parker and Julliard (2005), Vassalou (2003)). The results in these

papers raise the question of what it is, fundamentally, about the cash flows of value and

growth stocks that produces the observed patterns in returns. Other work examines the

dividends on value and growth portfolios directly: Bansal, Dittmar, and Lundblad (2003)

and Cohen, Polk, and Vuolteenaho (2002) find evidence that the cash flows of value stocks

covary more with aggregate cash flows. The results in these papers raise the question of why

this observed covariation leads to the value premium. Building on the work of Berk, Green,

and Naik (1999), Gomes, Kogan, and Zhang (2003) propose a general equilibrium model

of firms that produces a cross-section of book-to-market ratios. However, the innovation of

our model is to simultaneously capture the behavior of the aggregate stock market, and to

produce a spread between risk-adjusted returns on value and growth portfolios on the order
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of magnitude seen in the data.

The paper is organized as follows. Section 2 organizes and updates the evidence that

portfolios formed on the basis of prices scaled by fundamentals produce spreads in expected

returns. We show that when value is defined by book-to-market, earnings-to-price, or cash-

flow-to-price, the expected return tends to increase as portfolios move from growth to value,

the standard deviation and β with the market tend to decrease, and the Sharpe ratio and the

α tends to increase. The differences in expected returns and αs between value and growth

portfolios are statistically and economically large.

Section 3 presents our model for aggregate dividends and the stochastic discount factor.

As a first step to solving for prices on the aggregate market and firms, we solve for prices

on zero-coupon equity. These are claims to the aggregate dividend m-periods in the future.

Because zero-coupon equity has a well-defined maturity, it provides a convenient window

through which to view the role of duration in the model. Moreover, as the model has

similarities to essentially affine term structure models (Dai and Singleton (2003), Duffee

(2002)), the prices and risk premia on zero-coupon equity have interpretable, closed-form

expressions. The aggregate market is the sum of all of the zero-coupon equity claims. We

then introduce a cross-section of long-lived assets, defined by their shares in the aggregate

dividend. These assets are themselves portfolios of the zero-coupon equity, and together their

cash flows and market values sum up to the cash flows and market values of the aggregate

market.

Section 4 studies the implication of our model for the time series and the cross-section. We

calibrate the model using the time series of the aggregate returns, dividends, and the price-

dividend ratio. After choosing parameters to match aggregate time-series facts, we examine

the implications for zero-coupon equity. We find that the parameters necessary to fit the time

series imply risk premia, Sharpe ratios, and αs for zero-coupon equity that are increasing

in the maturity. βs and volatility are non-monotonic, and thus do not explain the increase

in risk premia. This shows that the model has the potential to explain the value premium.

We then choose parameters of the share process to approximate the distribution of dividend,

earnings, and cash flow growth found in the data, and produce realistic distributions of

price ratios. We examine several functional forms for the shares. When share processes

are calibrated in this way, and the resulting assets are sorted into portfolios, our model can

explain a large fraction of the observed value premium.
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Section 5 describes the intuition for our results. We show that the covariation of asset

returns with the shocks depends on the duration of the asset. Consistent with the results of

Campbell and Vuolteenaho (2003), growth stocks have greater betas with respect to discount

rates than value stocks. This is the duration effect: because cash flows on growth stocks are

further in the future, their prices are more sensitive to changes in discount rates. Growth

stocks also have greater betas with respect to changes in expected dividend growth. Value

stocks, on the other hand, have greater betas with respect to shocks to near-term dividends.

The price investors put on bearing the risk in each of these shocks determines the rates

of return on value and growth stocks. While shocks to near-term dividends are viewed as

risky by investors, shocks to expected future dividends are hedges under our calibration.

Moreover, though discount rates vary over time, shocks to discount rates are independent of

shocks to dividends and are therefore not priced directly. Even though long-horizon equity

is riskier according to standard deviation and market β, it is not seen as risky by investors

because it loads on risks investors do not mind bearing.

2 Evidence on the value premium

Much previous literature has shown that portfolios of stocks with high ratios of prices to

fundamentals have low future returns compared to stocks with low ratios of prices to funda-

mentals.2 In this section, we update and organize this evidence by running statistical tests

on portfolios formed on ratios of market to book value, price to earnings, price to dividends,

and price to cash flow. We show that in all cases, the sorting produces differences in expected

returns that cannot be attributed to market beta. Moreover, the alpha relative to the CAPM

tends to increasing in the measure of value, as shown by Fama and French (1992) for the

book-to-market ratio. In our model, firms are distinguished on the basis of their cash flows,

thus earnings, dividends, and cash flows are equivalent. For this reason, it is especially of

interest to investigate whether the value effect is apparent in portfolios formed according to

different measures of value.

Table 1 shows summary statistics for portfolios of firms sorted into deciles on the basis

2See Graham and Dodd (1934), Basu (1977, 1983) , Ball (1978), Rosenberg, Reid, and Lanstein (1985),

Jaffe, Keim, and Westerfield (1989), and Fama and French (1992). Cochrane (1999) surveys recent literature

on the value effect.
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of the three characteristics above, as well as on the basis of book-to-market. Data, available

from the website of Ken French, are monthly, from 1952 to 2002. Excess returns are computed

by subtracting monthly returns on the one-month Treasury Bill from the portfolio return.

The first panel reports the mean excess return, the second the standard error on the mean,

the third the standard deviation of the return, and the fourth the Sharpe ratio. Means

and standard deviations are in annual percentage terms (multiplied by 1200 in the case of

means and
√
12×100 in the case of standard deviations). Each panel first reports results for

portfolios sorted on the two measures correspond most closely to the dividend-price ratios

in the model. These are the earnings-to-price and the cash-flow to price measures. Each

panel also reports results for portfolios sorted on the basis of the dividend yield and the

book-to-market ratio.

Panel 1 shows that for all measures except the dividend-yield, the mean excess return

increases as one moves from the bottom scaled-price decile (growth stocks) to the top scaled-

price decile (value stocks). The increase is usually, but not always, monotonic. As shown in

Panel 2, the average return on the portfolio that is long the extreme value portfolio and short

the extreme growth portfolio is highly statistically significant, again except when portfolios

are formed on the basis of the dividend yield.

Panel 3 shows that the standard deviation of the excess return tends to decrease as one

moves from the bottom decile to the top. This holds for all four scaled-price measures.

Finally, Panel 4 shows that the Sharpe ratio increases as one moves from the bottom decile

to the top across all four scaled-price measures. For example, when portfolios are formed

on the basis of the earnings-to-price ratio, the bottom decile (growth) has a Sharpe ratio

of 0.24. The Sharpe ratio increases steadily as the earnings-to-price ratio increases; the top

decile has a Sharpe ratio of 0.72. Value stocks not only deliver high returns; they deliver

high returns per unit of standard deviation.

The results in Table 1 suggest that portfolios formed on the basis of earnings-to-price,

cash-flow-to-price, the dividend yield, and book-to-market, may be closely related. This is

confirmed in Table 2, which shows the correlation of the top growth decile and the top value

decile. For the bottom decile (growth), the correlations are 0.93 or above; for the top decile

(value), the correlations are 0.74 or above. In both cases, deciles formed by sorting on the

dividend-yield are less highly correlated with the deciles formed by sorting on the other three

variables than the deciles formed by sorting on the other three variables are with each other.
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This is consistent with the results in Table 1, which shows that results based on sorting on

the dividend-yield were somewhat different than the other variables.

Following the same format as Table 1, Table 3 shows alphas, standard errors on alphas,

betas, standard errors on betas, and R2 statistics when portfolios are formed on the basis of

each measure of value. Alpha is the intercept from an OLS regression of excess returns on the

portfolio on excess returns on the value-weighted NYSE-AMEX-NASDAQ index, multiplied

by 1200. Beta is the slope from this regression. The alpha for the portfolio that is long

the extreme value portfolio and short the extreme growth portfolio is statistically significant

for all four sorting variables. Panel 1 of this table confirms the classic result that value

stocks have high alphas relative to the CAPM. The story is consistent across all sorting

variables, including the dividend-yield: alphas are negative for growth stocks, rise as we go

from growth to value, and are negative for value stocks. As Panel 3 shows, betas tend to

decline as we move from growth to value; except for the extreme growth portfolio, betas are

below one for portfolios in the low deciles and greater than one for portfolios in the high

deciles, across all sorting variables. Thus value stocks have positive alphas relative to the

CAPM, and relatively low betas.

This section shows that, in the data, value stocks have higher expected excess returns

and higher Sharpe ratios than growth stocks. Value stocks have large positive alphas relative

to the CAPM, while growth stocks have negative alphas. Moreover, value stocks do not have

higher standard deviations or higher betas than growth stocks. Thus any story that explains

the value premium needs to take into account the fact that value stocks do not appear to be

riskier than growth stocks according to traditional measures of risk. These empirical results

not only hold when value is defined by the book-to-market ratio, they hold when value is

defined according to the earnings-to-price or cash-flow-to-price ratios.

3 The model

This section presents our model. The first subsection discusses the assumptions on aggregate

cash flows and on the stochastic discount factor. The second subsection solves for prices on

equity that pays the aggregate dividend in a fixed number of years from now; we refer to

these claims as “zero-coupon equity” and they form the fundamental building blocks of

our more complex assets. Interpretable, closed-form expressions are available for prices and
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conditional risk premia for zero-coupon equity. The third subsection describes how zero-

coupon equity aggregates up to the market. The fourth subsection discusses the model for

long-lived assets defined by their shares in the aggregate dividend. These assets, like the

aggregate market, are portfolios of the zero-coupon equity and their prices can be determined

accordingly. Thus the intuition for risk premia and price variation for zero-coupon equity

can be transferred to these long-lived assets.

3.1 Dividend growth and the stochastic discount factor

The model has three shocks: a shock to dividend growth, a shock to expected dividend

growth, and a shock to the preference variable. To model these shocks in a parsimonious

fashion, we let εt+1 denote a 3×1 vector of independent normal shocks that have zero mean,

unit standard deviation, and that are independent of any variables observed at time t. Let

Dt denote the aggregate dividend in the economy at time t, and dt = logDt. The aggregate

dividend is assumed to follow the process

∆dt+1 = g + zt + σdεt+1, (1)

where zt follows the AR(1) process

zt+1 = φzzt + σzεt+1, (2)

with 0 ≤ φz < 1. The conditional mean of dividend growth is g+ zt. Multiplying the shocks

on dividend growth and zt+1 are 1 × 3 vectors σd and σz. The first component of σd is the

loading on the first shock, the second component is the loading on the second shock, etc.

Thus the conditional standard deviation of ∆dt+1 is ||σd|| =
√
σdσ′d. Similarly, the conditional

standard deviation of zt equals ||σz|| =
√
σzσ′z, while the conditional covariance is given by

σdσ
′
z. This model for dividend growth is also explored by Bansal and Yaron (2003), and by

Campbell (1999).

We directly specify the stochastic discount factor for this economy. It is assumed that

the price of risk is driven by a single state variable xt that follows the AR(1) process

xt+1 = (1− φx)x̄+ φxxt + σxεt+1, (3)

with 0 ≤ φx < 1. As above, σx is a 1 × 3 vector. This specification for the price of risk

is used in a continuous-time setting by Brennan, Wang, and Xia (2003). For simplicity, we
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assume that the real riskfree rate, denoted rf = logRf , is constant. Lastly, we need to make

an assumption about which risks in the economy are priced. We could follow the affine term

structure literature (see, e.g., Duffie and Kan (1996)) and allow all three shocks to be priced.

For simplicity, and to reduce the number of degrees of freedom, we assume that only dividend

risk is priced. This allows us to compare our models to the external habit formation models

of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004), where the one

shock to the stochastic discount factor comes from aggregate consumption. The assumption

that only dividend risk is priced implies that shocks to zt and shocks to xt will only be priced

insofar as they correlate with ∆dt+1.

This specification of xt, r
f , and the fact that only dividend risk is priced completely pins

down the stochastic discount factor. We set

Mt+1 = exp

{

−rf − 1

2
x2t − xtεd,t+1

}

(4)

where

εd,t+1 =
σd

||σd||
εt+1.

The conditional log-normality of Mt+1 implies that

lnEt[Mt+1] = −rf − 1

2
x2t +

1

2
x2tσdσ

′
d||σd||−2

= −rf .

Therefore, it follows from no-arbitrage that rf is indeed the riskfree rate. The maximum

Sharpe ratio will be achieved by the asset that is most negatively correlated with Mt+1. Fol-

lowing the same argument as in Campbell and Cochrane (1999), we note that the maximum

Sharpe ratio is given by
σt(Mt+1)

Et[Mt+1]
=
√

ex2
t − 1 ≈ |xt|.

The question naturally arises of how to interpret the variable xt. In the models of

Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004), the price of risk

is a decreasing function of the surplus consumption ratio. Conditionally, the price of risk

is perfectly negatively correlated with consumption growth (and hence aggregate dividend

growth). The corresponding assumption here would be to set σx/||σx|| = −σd/||σd||. However,
we depart from these papers by assuming that shocks to xt+1 are uncorrelated with shocks

to ∆dt+1 and shocks to zt+1. In our model, shocks to xt+1 can be interpreted as shocks
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to preferences or changes in sentiment. These shocks are uncorrelated with changes in

fundamentals. Below, we explain the implications for security returns of this departure from

habit formation.

3.2 Prices of zero-coupon equity

The fundamental building-blocks of the long-lived assets in our economy are “zero-coupon”

equity.3 Let Pnt be the price of an asset that pays the aggregate dividend n periods from

now. In this subsection, we solve for the price of zero-coupon equity in closed form. Let

Rn,t+1 denote the one-period return on zero-coupon equity maturing in n periods. That is,

Rn,t+1 =
Pn−1,t+1

Pnt

. (5)

The returns Rn,t+1 form a term structure of equities, analogous to the term structure of

interest rates. No-arbitrage implies the following Euler equation:

Et [Mt+1Rn,t+1] = 1, (6)

which implies that Pnt and Pn−1,t satisfy the recursive relation

Pnt = Et [Mt+1Pn−1,t+1] , (7)

with boundary condition

P0t = Dt, (8)

because equity maturing today must be worth the aggregate dividend. We conjecture that

a solution to (7) and (8) satisfies

Pnt

Dt

= F (xt, zt, n) = exp {A(n) +Bx(n)xt +Bz(n)zt} . (9)

By the boundary condition, it must be that A(0) = Bx(0) = Bz(0) = 0. Substituting (9)

into (7) produces

Et

[

Mt+1
Dt+1

Dt

F (xt+1, zt+1, n− 1)

]

= F (xt, zt, n). (10)

3The notion of breaking the aggregate dividend into its zero-coupon claims, and using affine term structure

techniques to calculate the value of these claims is also applied in Ang and Liu (2003), Bakshi and Chen

(1996), Bekaert, Engstrom, and Grenadier (2004), Johnson (2002), Wachter (2003), and Wilson (2003).
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Matching coefficients on zt, xt and the constant implies that

Bz(n) =
1− φn

z

1− φz

, (11)

while Bx(n) and A(n) satisfy

Bx(n) = Bx(n− 1)

(

φx − σx
σ′d
||σd||

)

− (σd +Bz(n− 1)σz)
σ′d
||σd||

(12)

A(n) = A(n− 1)− rf + g +Bx(n− 1)(1− φx)x̄+
1

2
Vn−1V

′
n−1, (13)

where

Vn−1 = σd +Bz(n− 1)σz +Bx(n− 1)σx,

and Bx(0) = 0, A(0) = 0. This confirms the conjecture (9).4

Note that Bz > 0 for all n. This makes sense; the higher is zt, the higher is expected

dividend growth, hence the higher is the price of equity that pays aggregate dividend growth

in the future. Because expected dividend growth is persistent, and because Dt+n cumulates

shocks between t and n, the greater is n, the greater the effect of changes in zt on the price.

Thus Bz is increasing in n, and converges to 1/(1− φz) as n approaches infinity.

The economics behind Bx are more complicated. For the case we focus on, xt+1 is

independent of ∆dt+1, so σxσ
′
d = 0. Moreover, in our calibration σzσ

′
d is small compared

to σdσ
′
d. It follows that Bx(n) < 0 for all n. This makes sense: an increase in xt leads

to an increase in risk premia and a decrease in prices.5 We further explore the intuition

behind Bx(n) in Section 4. Finally, An is a constant term that determines the level of price-

dividend ratios. The level depends on the average growth rate of dividends less the riskfree

rate, as well as on the average level of the price of risk (x̄). The remaining term, 1
2
Vn−1V

′
n−1

is a Jensen’s inequality adjustment, and arises because we are taking the expectation of a

log-normal variable.

4The fact that price-dividend ratios are exponential affine in the state variables invites a comparison

to the affine term structure literature, where bond prices are exponential affine in the state variables. In

fact, this model is related to the essentially affine class of continuous-time term structure models explored

by Dai and Singleton (2003) and Duffee (2002). Our model is essentially affine rather than affine because

the stochastic discount factor is quadratic, as a result of the homoscedastic price-of-risk variable. Ang and

Piazzesi (2003) examine a discrete-time essentially affine term structure model.
5In an alternative setting, it might be that (σd + Bz(n − 1)σz)σd < 0. In this case, an increase in xt

would decrease risk premia and increase prices.
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In order to understand risk premia on the more complicated assets, it is helpful to un-

derstand risk premia on zero-coupon equity. Define rn,t+1 = logRn,t+1. To gain an under-

standing of the model, we compute logEt[Rn,t+1/R
f ] = Et[rn,t+1−rf ]+ 1

2
σt(rn,t+1)σt(rn,t+1)

′,

following Campbell (1999).6 It follows from (9) that rn,t+1 can be written as

rn,t+1 = Et[rn,t+1] + σt(rn,t+1)εt+1, (14)

where

σt(rn,t+1) = Vn−1 = σd +Bx(n− 1)σx +Bz(n− 1)σz. (15)

Therefore returns are conditionally log-normally distributed, and we can re-write the condi-

tional Euler equation (6) as

Et

[

exp

{

−rf − 1

2
x2t − xtεd,t+1 + Et[rn,t+1] + σt(rn,t+1)εt+1

}]

= 1.

Taking logs of both sides and solving for the expectation produces the relation

Et[rn,t+1 − rf ] +
1

2
σt(rn,t+1)σt(rn,t+1)

′ = σt(rn,t+1)
σ′d
||σd||

xt

= (σd +Bx(n− 1)σx +Bz(n− 1)σz)
σ′d
||σd||

xt. (16)

Risk premia on zero-coupon equity depend on the loadings on each of the sources of risk,

multiplied by the “price” of each source of risk. In our base case, the term σxσ
′
d disappears,

so the loading on shocks to xt, Bx(n), is not relevant for risk premia on zero-coupon equity.

In other cases we will examine, this term becomes important. Also determining risk premia

is the loading on zt, Bz(n), and the price of zt-risk, given by ||σd||−1σzσ
′
dxt. In what follows,

similar reasoning can be used to understand the price of risk of the aggregate market and of

firms, all of which are portfolios of these underlying assets.

3.3 Aggregate market

The aggregate market is the claim to all future dividends. Accordingly, its price-dividend

ratio is the sum of the ratios of price to aggregate dividends of the zero-coupon equity

described in the section above. Thus

Pm
t

Dt

=
∞∑

n=1

Pnt

Dt

=
∞∑

n=1

exp {A(n) +Bx(n)xt +Bz(n)zt} . (17)

6When we match the simulated model to the data, we will compute E[Rt+1 −Rf ].
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Appendix B gives necessary and sufficient conditions on the parameters such that (17) con-

verges for all xt and zt. The return on the aggregate market equals:

Rm
t+1 =

Pm
t+1 +Dt+1

Pm
t

=
(Pm

t+1/Dt+1) + 1

Pm
t /Dt

Dt+1

Dt

. (18)

3.4 Firms

Zero-coupon equity illustrates how duration matters to risk premia in a particularly stark

way. However, there is no obvious analogue of zero-coupon equity in the data. Instead,

in the data there are long-lived securities that pay a sequence of cash flows over time. We

want to construct a cross-section of securities that sum up to the aggregate market portfolio.

Moreover, we want to ensure that no one security comes to dominate the market portfolio

over time; that is, the cross-sectional distribution of dividends, returns, and ratios of prices

to aggregate dividends should be stationary. In order to accomplish this, we follow Lynch

(2003) and Menzly, Santos, and Veronesi (2004) and specify the share each security has in

the aggregate dividend process Dt+1. The continuous-time framework of Menzly, et al. allows

them to specify the share process as stochastic, yet still keep shares between 0 and 1. This

is more difficult in discrete time, and for this reason we adopt the simplifying assumption

that the share process is deterministic.

Suppose there are N long-lived “firms” in the economy. Define an N -vector of shares,

si, such that si ≥ 0 and
∑N

i=1 si = 1. At time t, we define firm i as the asset that pays

dividend siDt today, a dividend of si+1Dt+1 next period, etc. We specify si as a function of

i for 1 ≤ i ≤ N , and set

si = s(i−1 mod N)+1

for i > N . By this definition, firm i becomes firm i+ 1 next period. For example, at time t,

firm 1 pays dividend s1Dt and has ex-dividend price:

P F
1,t = s2P1,t + s3P2,t

N−4 terms
︷ ︸︸ ︷
+ · · ·+ sNPN−1,t + s1PN,t + s2PN+1,t + · · · .

At time t+ 1, this firm is now firm 2, pays dividend s2Dt+1, and has ex-dividend price:

P F
2,t+1 = s3P1,t+1 + s4P2,t+1

N−5 terms
︷ ︸︸ ︷
+ · · ·+ sNPN−2,t+1 + s1PN−1,t+1 + s2PN,t+1 + s3PN+1,t+1 + · · · .

13



Equation (6) implies that these prices are consistent with no-arbitrage:

Et[Mt+1

(
s2Dt+1 + P F

2,t+1

)
] = s2P1,t + Et[Mt+1 (s3P1,t+1 + · · ·+ sNPN−2,t+1 + s1PN−1,t+1 + · · · )]

= s2P1,t + s3P2,t + · · ·+ sNPN−1,t + s1PN,t + s2PN+1,t + · · ·

= P F
1,t.

More generally, firm k < N pays dividend skDt at time t and has ex-dividends price

P F
k,t = sk+1P1,t

N−(k+2) terms
︷ ︸︸ ︷
+ · · · + sNPN−k,t + s1PN−k+1,t + s2PN−k+2,t + · · · ,

while firm N pays dividend sNDt and has price

P F
N,t = s1P1,t + s2P2,t

N−3 terms
︷ ︸︸ ︷
+ · · · + sNPN,t + s1PN+1,t + s2PN+2,t + · · · ,

and so forth. Note that firm N becomes firm 1 next period. The same argument as above

shows that these prices are consistent with no-arbitrage. This structure ensures that the

economy is stationary, that in each period the sum of the dividends across all firms equals

the aggregate dividend, and that all future dividends are marketed as of date t. Beyond

these requirements, the key element of this structure is that it generates dispersion in when

firms pay dividends. Other models of firms which generate such dispersion, such that the

distribution of firms is stationary and sums to the market should yield results similar to

those we describe below.

One implication of this modeling strategy is that ratios of prices to fundamentals forecast

future growth opportunities in the cross-section. Broadly speaking, this is consistent with

findings in the empirical literature. Bernstein and Tew (1991) show that firms with low

dividend yields have higher forecasted growth rates, as measured by the mean five-year

expected growth rate on IBES. Fama and French (1995) show that low book-to-market

ratios correlate with higher future growth in earnings and profitability. Cohen, Polk, and

Vuolteenaho (2003) show that low book-to-market firms have higher future return on equity

than low book-to-market firms, and that this predictive power extends fifteen years into the

future.

Given the firm price P F
k,t, the ratio of price to the one-period dividend equals

P F
k,t

DF
k,t

=
P F

k,t

skDt

. (19)
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Because P F
k,t/Dt is a function of the state variables xt and zt, the price-dividend ratio for the

firm is also a function of the state variables. Returns on the firm are given by

RF
k,t+1 =

P F
k+1,t+1 +DF

k+1,t+1

P F
k,t

=
(P F

k+1,t+1/D
F
k+1,t+1) + 1

P F
k,t/D

F
k,t

Dt+1

Dt

sk+1

sk

. (20)

Note that all firms in this economy are ex-ante identical; they are simply “out of phase” with

each other. Because of this, the market values of firms are very similar. A more complex

model would be required to account for differences in firm size.

4 Implications for Equity Returns

To study implications for the aggregate market and the cross-section, we simulate 50,000

quarters from the model. Given simulated data on shocks εt+1 and state variables xt+1 and

zt+1, we compute ratios of prices to aggregate dividends for zero-coupon equity from (9),

the price-dividend ratio for the aggregate market from (17), and the price-dividend ratio for

firms from (19). Returns can then be computed using (5) for zero-coupon equity, (18) for

the market, and (20) for firms.

As discussed below, we calibrate the model to the annual data set of Campbell (1999)

that begins in 1890. We update Campbell’s data (which ends in 1995) until the end of 2002.

So that our simulated values are comparable to the annual values in the data, we aggregate

up to an annual frequency. Annual flow variables (returns, dividend growth) are constructed

by compounding their quarterly counterparts. Price-dividend ratios for the market and for

firms are constructed analogously to annual price-dividend ratios in the Campbell data set.

We divide the price by the current dividend on the asset, plus the previous three quarters of

dividends on the asset.

Section 4.1 describes the calibration of our model to the aggregate time series. Section

4.2 shows the implications for the behavior of the aggregate market and dividend growth

and discusses the fit to the data. Section 4.3 discusses implications for prices and returns

on zero-coupon equity. While zero-coupon equity have no analogue in the data, they are

a useful construct in that they allow us to illustrate the properties of the model in a stark

way. Section 4.4 discusses the calibration of the share processes which determine the prices
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of long-lived assets (“firms”), and describes implications of the model for portfolios formed

on the basis of scaled-price ratios.

4.1 Calibration

Following Menzly, Santos, and Veronesi (2004), we calibrate the model to provide a rea-

sonable fit to aggregate data. We then ask whether the model can match moments of the

cross-section. In order to accurately capture the characteristics of our persistent processes,

we use the century-long annual data set of Campbell (1999), which we update through 2002.

The riskfree rate is the return on 6-month commercial paper purchased in January and rolled

over in July. Stock returns, prices, and dividends are for the S&P 500 index. More details

on data construction are contained in the Data Appendix of Campbell (1999). All variables

are adjusted for inflation.

We set rf equal to 1.93%, the mean of the riskfree rate in our sample. The average

dividend growth in the sample is 2.28%, therefore this is our value for g. Less straightforward

is the determination of the process zt, the expected mean of dividend growth. This process,

strictly speaking, is unobservable to the econometrician. However, Lettau and Ludvigson

(2002) show that if consumption growth follows a random walk and if the consumption-

dividend ratio is stationary, the consumption-dividend ratio captures all the predictability

in dividend growth. Therefore the consumption-dividend ratio can be identified with zt up

to an additive and multiplicative constant.

For the purposes of calibration, we adopt the set-up of Lettau and Ludvigson (2002) and

calibrate the autocorrelation of zt and the correlation between shocks to expected dividend

growth and shocks to zt using the consumption-dividend ratio.7 In our annual sample,

the consumption-dividend ratio has a persistence of 0.91 and a conditional correlation with

dividend growth of -0.83. This still leaves the conditional standard deviations ||σd|| and ||σz||.
We set ||σd|| to match unconditional standard deviation of annual dividend growth in the

data.8 Our empirical results imply a standard deviation of zt that is small relative to the

7An equivalent way of writing down our model would be to assume a process, called consumption, that

follows a random walk, and model the consumption-dividend ratio as an AR(1) process. Note however that

consumption plays no special role in our model.
8The model is simulated at a quarterly frequency and aggregated up to an annual frequency. Because

dividend growth is slightly mean reverting, and because the variance of zt is small, this results in an uncon-
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standard deviation of dividend growth. Despite the fact that dividend is predictable at long

horizons by the consumption-dividend ratio, the consumption-dividend ratio has very little

predictive power for dividend growth at short horizons (with an R2 of 3%). Moreover, the

autocorrelation of dividend growth is relatively low (-.09%). We show that ||σz|| = .0016

(.0032 per annum) produces similar results in simulated data.

Remaining parameters are x̄, φx, and ||σx||. Because the variance of expected dividend

growth is small, the autocorrelation of the price-dividend ratio is primarily determined by

the autocorrelation of x. We therefore set φx = 0.87
1
4 = 0.966, as 0.87 is the autocorrelation

of the price-dividend ratio in annual data. We choose ||σx|| to equal 0.12, or 0.24 per annum,

to match the volatility of the log price dividend ratio. We choose x̄ so that the maximal

Sharpe ratio, when xt is at its long-run mean, is 0.70. This produces Sharpe ratios for the

cross-section that are close to those in the data. From the calculations in Section 3.1, x̄

solves
√
ex̄2 − 1 = 0.70. This translates into x̄ = 0.625. As discussed in the subsequent

section, this produces an average Sharpe ratio for the market that is 0.41, somewhat higher

than the data equivalent of 0.33. However, expected stock returns are measured with noise,

and 0.41 is still below the Sharpe ratio in postwar data.

To link the conditional standard deviation of ∆dt+1, zt+1, and, xt+1, and the conditional

correlation of ∆dt+1 and zt+1 with the vectors σd, σz, σx, we assume, without loss of generality,

that the 3× 3 matrix






σd

σz

σx







is lower triangular. Thus

ε1,t+1 = εd,t+1,

so that σd has a nonzero first element equal to ||σd|| and zero second and third elements. σz

has a nonzero first and second element and zero third element. The first two elements are

identified by ||σz|| and the covariance σdσ
′
z. We focus on the case where xt+1 is independent

of ∆dt+1 and zt+1, so the first and second elements of σx equal zero, and the third equals

||σx||. Table 4 summarizes these parameter choices.

ditional annual standard deviation of dividend growth very close to that in the data.
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4.2 Implications for the Aggregate Market and Dividend Growth

Table 5 presents statistics from simulated data, and the corresponding statistics computed

from actual data. The volatility of the price-dividend ratio is fit exactly, and the autocor-

relation of the price-dividend ratio is very close (0.87 in the data versus 0.88 in the model).

This is not a surprise because ||σx|| and φx were set so that the model fits these parameters.

The model produces a mean of the price-dividend ratio which is a bit too low, 20.1 in the

model versus 25.6 in the data. Matching this statistic is a common difficulty for models of

this type: for example, Campbell and Cochrane (1999) also find an average price-dividend

ratio of 18.2. As they explain, this statistic is poorly measured due to the persistence of

the price-dividend ratio. The model fits the volatility of equity returns (19.2% in the model

versus 19.4% in the data), though it produces an equity premium that is a bit too high

(7.9% in the model versus 6.3% in the data). As with the mean of the price-dividend ratio,

the average equity premium is measured with noise. In the long-annual data set, the annual

auto-correlation of returns is slightly positive (.03). In our model, the auto-correlation is

slightly negative (-.02). The autocorrelation of dividend growth is small and negative (-.03),

just as in the data (-.09).

Table 6 reports the results of long-horizon regressions of continuously compounded excess

returns on the log price-dividend ratio in the model and in the data. In our sample, as

elsewhere (see Campbell and Shiller (1988), Cochrane (1992), Fama and French (1989), and

Keim and Stambaugh (1986)), high price-dividend ratios predict low returns. The coefficients

rise with the horizon. The R2 start small, at 0.05 at an annual horizon, and rise to 0.31

at a horizon of ten years. The t-statistics, using auto-correlation and heteroscedasticity-

adjusted standard errors, are significant at the 5% level. The simulated data exhibits the

same pattern. The coefficients rise with the horizon. The R2 start at 0.06 and rise to 0.28.

We conclude that the model generates a reasonable amount of return predictability.9

Table 6 reports the results of long-horizon regressions of dividend growth on the price-

dividend ratio. As Campbell and Shiller (1988) show, dividend growth is not predictable by

returns, contrary to what might be expected from a dividend-discount model. This result

9Lettau and Ludvigson (2002) find evidence that excess returns are predictable by expected dividend

growth, as well as by the price-dividend ratio. This effect can be captured in our model by allowing shocks

to xt to be positively correlated with shocks to zt. Introducing this positive correlation has very little effect

on our cross-sectional results, hence for simplicity we focus on the case of zero correlation.
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also holds true in our data set: the coefficients from a regression of dividend growth on

the price-dividend ratio are always insignificant and are accompanied by small R2 statistics.

In contrast, the consumption-dividend ratio predicts dividend growth. The coefficients are

significant, and the adjusted R2 statistics start at 3% for an annual horizon and rise to 25%

for a horizon of ten years.

Our model replicates both of these findings. Despite the fact that the mean of dividends is

time-varying, dividends are only slightly predictable by the price-dividend ratio. A regression

of simulated dividend growth on the simulated price-dividend ratio produces R2 that range

from 2% to 9% at a horizon of 10 years (in the data, the adjusted R2 range from 0 to 5%).

By contrast, dividends are predictable by zt. Here, the R
2 statistics range from 4% to 24%,

close to the values in the data. We conclude our model captures the pattern of dividend

predictability found in the data.

4.3 Prices and Returns on Zero-Coupon Equity

Figure 1 plots the solution for A(n), Bz(n) and Bx(n) as a function of n for the parameter

values given above. A(n) is steadily decreasing. This is a necessary feature for convergence

of the solution for all xt and zt, and it makes economic sense: the further the payoff is in

the future, the lower the value of the security when the state variables are at their long-run

means. What generates the decrease is the positive average price of risk x̄ and riskfree rate

rf . Counteracting this decrease is average dividend growth g and the Jensen’s inequality

term. The net effect is that A(n) is decreasing in n.

In contrast, Bz(n) is positive, is increasing in maturity n, and asymptotes to a value

of 1/(1 − φz). The intuition for this variable is explained in Section 3.1. As discussed in

Section 3.1, Bx(n) is negative. This implies that an increase in the price of risk xt leads to

a decrease in valuations. Note that Bx(n) is non-monotonic in n. It starts at 0, decreases to

below -1, then increases, and eventually converges to a value near -0.5. It is not surprising

thatBx(n) initially decreases in maturity. This is the duration effect: the longer the maturity,

the more sensitive is the asset to changes in the discount rate. More curious is the fact that

Bx rises after a maturity of 50 quarters. This is because the duration effect is countered by

the increase in Bz(n). Because expected dividend growth and dividend growth are negatively

correlated, shocks to expected dividend growth act as a hedge. Moreover, as the plot of Bz
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shows, expected dividend growth becomes more important the longer the maturity of the

equity. Therefore equity that pays in the far future is less sensitive to changes in xt than

equity that pays in the medium term, though both are more sensitive than short-horizon

equity.

Figure 2 plots the ratios of price to aggregate dividends for zero-coupon equity as a

function of maturity (Equation 9). The top panel sets zt to be two long-run standard

deviations (2||σz||/(1 − φ2z)
1/2) below its long-run mean, the middle panel to the long-run

mean of zero, and the bottom panel to two long-run standard deviations above the long-

run mean. Each panel plots the price-dividend ratio for xt at its long run mean and two

long-run standard deviations (2||σx||/(1 − φ2x)
1/2) above and below the long-run mean. Not

surprisingly, prices are increasing in expected dividend growth zt for all values of xt and for

all values of the maturity. Moreover, for all values of the maturity and all values of zt, prices

decrease in xt. The higher are conditional expected returns, the lower are prices.

For most values of zt and xt, prices decline with maturity. Generally, the further in the

future the asset pays the aggregate dividend, the less it is worth today. Exceptions occur

when xt is two standard deviations below its long-run mean. In this cases, the premium for

holding risky securities is negative in the short term, so short-horizon payoffs are discounted

by more than long-horizon payoffs. Because xt reverts back to its long-run mean, this effect

is transitory and only holds at the short end of the equity “yield curve”. The greater is zt,

the longer the effect persists. This makes sense: when expected dividend growth is high,

equity that pays the aggregate dividend further in the future will go up in price more than

equity that pays the aggregate dividend in the present. When zt is two standard deviations

above its long-run mean and xt is two standard deviations below its long-run mean, the

price of zero-coupon equity increases with maturity out to about 7 years, and then decreases

again.

Figure 3 shows statistics for annual returns on zero-coupon equity. Annual returns are

calculated by compounding quarterly returns defined by (5). The top panel shows that the

risk premium ERi,t+1−Rf decreases monotonically with maturity. The effect is economically

large: for equity that pays a dividend in the next two years, the risk premium is 18% while

the risk premium declines to 4% for equity that pays a dividend 40 years from now.

The second panel of Figure 3 plots the volatility of annual returns. The volatility initially

increases with maturity, and then begins to decrease monotonically at a maturity of ten years.
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For long-horizon equity, increased risk premia are not accompanied by increased standard

deviations. The third panel of Figure 3 shows that the unconditional Sharpe ratio declines

monotonically in maturity from a value of 0.8 to a value of 0.2. Even for short-horizon equity,

the volatility increases less than the mean. These results suggest that the model has the

potential to explain the patterns described in Table 1. Those firms that have more weight in

lower-maturity equity will have higher expected returns, higher Sharpe ratios, and possibly

lower variance, than firms that have more weight in equity of greater maturity.

Figure 4 shows the results of regressing simulated returns on zero-coupon equity on

simulated returns on the market portfolio. The top panel plots the regression α, the middle

panel the β, and the last panel the R2 from the regression. As in Figure 3, returns are annual.

The first panel shows that the α relative to the CAPM is decreasing in maturity over most

of the range, and increases very slightly for long-duration equity. For the shortest-duration

equity the α is as high as 11%. The α falls below zero for equity maturing in 5 or more

years. The α never falls below -5%. Thus the model produces relatively large positive αs

and relatively small negative αs, just as in the data, as shown in Table 3.

The second panel of Figure 4 shows the β. The β first increases, and then, beginning

with a maturity of about ten years, decreases slowly as a function of maturity. The βs

for zero-coupon equity lie in a relatively narrow range; the lowest β (for very long horizon

equity) is about 0.7. The highest β (for equity of about ten years ) is 1.5. The β for the

shortest-horizon equity is about 0.9. This plot shows that at least for short-horizon equity,

high αs are not necessarily accompanied by high βs. This also gives the model the potential

to match the data described in Table 3.

While the simplicity of zero-coupon equity makes it a convenient way to illustrate the

properties of the model, it does not have a direct interpretation in terms of value and growth.

The price-dividend ratio is not well-defined because zero-coupon equity only pays dividends

during a single quarter. For this reason, we turn to a model of firms: long-lived assets that

have nonzero cash flows in every period.

4.4 Implications for the Cross-Section of Returns

This section shows the implications of the model for portfolios formed on the basis of price

ratios. Following Menzly, Santos, and Veronesi (2004), we exogenously specify a share process
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for cash flows on long-lived assets. In each year of simulated data, we sort these assets into

deciles based on the ratio of price to dividends (or equivalently, earnings or cash flows) and

form portfolios of the assets within each decile. This follows the procedure used in empirical

studies of the cross-section (e.g. Fama and French (1992)). We then perform statistical

analysis on the portfolio returns.

Specifying the share process

As described in Section 3.4, specifying a model for firms is equivalent to specifying a sequence

s1, . . . , sN of dividend shares, such that
∑N

i=1 si = 1. As explained in Section 3.4, firm i pays

dividend siDi,t at time t, si+1Di,t+1 at time t + 1, etc. At time t + 1, firm i becomes firm

i + 1. We choose two functional forms for si to illustrate the implications of our model

for a cross-section of long-lived assets. While this model for firms is simple and somewhat

mechanical, it accomplishes our objective of creating dispersion in the timing of cash flows

across firms in a straightforward way.

The first functional form assumes that the rate of growth in the shares falls linearly in i:

si+1

si

= g0

(

1− i− 1

N/2− 1

)

(21)

for i = 1, . . . , N−1. The value of s1 is set so the weights sum to 1. For the first N/2 quarters,

the firm’s share in the aggregate dividend process grows, each year at a slower rate. After

100 quarters, the share in the aggregate dividend process declines. Eventually, the firm’s

share in the aggregate dividend process becomes negligible. At this point the share begins to

grow again, as described in Section 3.4. A possible interpretation is that the capital invested

in the dying firm is used to fund a new, growing firm.

As a robustness check, we examine a second functional form. The second functional form

assumes that the rate of growth in the shares is a positive constant g1 for the first half of

the firm’s life-cycle, and −g1 for the second half of the firm’s life-cycle. In other words,

si+1

si

= g1 (22)

for i = 1, . . . , N/2− 1; 0 for i = N/2; and

si+1

si

= −g1 (23)
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for i = N/2 + 1, . . . , N − 1. Once again, the value of s1 is set so that the weights sum to

1. We calibrate each specification for firm shares using data on the cross-section of cash

flows and price-dividend ratios. Here and throughout, we set the number of firms to be 200,

implying a 200-quarter, or equivalently, a 50-year life cycle for a firm.

We first describe the calibration for the model with linearly declining growth. The

parameter that controls the shrinking growth rate, g0, is set so that the cross-section of

dividend growth rates matches the cross-section of firms in the sample. Because data on

earnings and cash flows are not available prior to 1952, we construct the cross-section for

data from 1952 to 2002.10 The parameter g0 is set to be 0.75/4, for a per-annum value

of 0.75. The specification (21) then implies that firms start their life cycle with an annual

growth rate of 75%, growth declines to 0% after 25 yeas, and reaches -75% after another 25

years to complete one cycle. The top panel of Figure 5 plots the implied expected growth

rate of dividends for firms in the model, as well as the cross-section of average growth rates

in earnings, dividends, and cash flows. Because the firms in our model have no debt, the

dividends in our model may be better analogues to earnings and cash flows in the data,

rather than dividends themselves. As the top panel of Figure 5 shows, the linear model with

g0 set at 0.75/4 does a reasonable job of fitting the cross-section of growth rates in the data.

The second panel of Figure 5 shows the distribution of firm price-dividend ratios in the

model, and price ratios in the data. The linearly declining growth model for shares produces

more high price-dividend ratio firms than there are in the data. These firms have high

price-dividend ratios because they have extremely low current dividends. It is possible to

construct a model that fits the distribution more closely by imposing a lower bound on the

dividend share, at the cost of a somewhat more complicated functional form for si. This

modification is pursued in Appendix A.

Figure 6 shows corresponding results for the model with constant growth in shares. When

calibrated with an annual growth rate of 20% (g1 = .20/4 = .05), the model with constant

growth produces a reasonable fit to the cross-section of dividend, earnings, and cash-flow

10Adrian and Franzoni (2002) Ang and Chen (2003), and Campbell and Vuolteenaho (2003) show that

value stocks have higher betas in the pre-war period, so the CAPM performs better. By matching the cross-

section to the postwar data, we choose a harder target. We also assume that agents observe the parameters

in the economy. Lewellen and Shanken (2002) show that introducing learning into a traditional model can

help in understanding value premia.
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growth in the data, despite its simplicity. A drawback of the constant growth model is the

frequency of very high or very low dividend growth rates. This aspect of the distribution is

better matched with the linear-growth model. However, the constant-growth model produces

a superior fit tho the cross-section of price ratios, as shown in the second panel of Figure 6.

We conclude that the linearly declining growth and the constant growth model produce

reasonable cross-sections of dividend growth and price-dividend ratios. As we will show,

our results for portfolio statistics are very similar, regardless of which model we use. This

suggests that our results will be robust to a range of cross-sectional distributions for firm

dividend growth.

Portfolio returns

At the start of each year in the simulation, we sort firms according to their price-dividend

ratio into deciles. We then form equally-weighted portfolios of the firms in each decile. As

firms move through their life-cycle, they slowly shift (on average) from the growth category

to the value category, and then revert back eventually to the growth category. Of course,

this process is not deterministic, just as it is not deterministic in the data. Shocks have

different impacts on the price-dividend ratio, the variable that determines the appropriate

decile for the firm.

Having sorted the firms into deciles at the beginning of each “year”, we compute statistical

tests on returns over the year. Table 8 shows results for the linearly declining share growth

specification; Table 9 shows results for constant share growth specification. Because the

results are quantitatively similar, we discuss only Table 8.

The first panel of Table 8 shows the expected excess return, the standard deviation, and

the Sharpe ratio for each portfolio. These simulation results should be compared to the

numbers in Table 1, which shows corresponding results for the data. The expected return on

extreme growth stocks is 4.44% per annum, while for extreme value stocks, it is 9.65% per

annum.11 A similar spread is generated in the data: the lowest book-to-market stocks have a

11Here and throughout this section, we compare the statistics on annual returns in the model to statistics

on monthly returns in the data. The monthly data statistics are annualized as described in Section 2. We

choose this approach because it corresponds most closely to the approach taken in the empirical literature

on the value premium. Data results for annual returns are very similar to those in Tables 1-3 (except for

standard errors).
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premium of 5.67 percent, while the highest have a premium of 10.55%. The model generates

reasonable volatilities; between 19% and 17%. The volatilities for book-to-market sorted

portfolios vary between 18% and 15% in the data. The model predicts that the volatility

decreases as one moves from the growth to the value portfolio, so growth stocks are actually

more volatile than value stocks, despite the lower return. This effect is also found in the

data. The model predicts that the Sharpe ratio for the extreme growth stocks is 0.23, and

for the extreme value stocks is 0.57, and that the Sharpe ratio increases monotonically in the

decile number. In comparison, the low book-to-market portfolio has a Sharpe ratio of 0.32

in the data, the Sharpe ratio increases steadily as a function of decile, and the high book-

to-market portfolio is 0.57. To summarize, in the model, value stocks have high expected

returns, low volatility, and high Sharpe ratios, just as in the data. The magnitude of the

difference between value and growth is comparable to that in the data.

The second panel of Table 8 shows αs and βs relative to the CAPM. Annual excess

portfolio returns are regressed on excess returns on the aggregate market (the claim to all

future dividends). α, β and the R2 are reported for each decile. The second panel shows that

the model can replicate the classic result of Fama and French (1992): value portfolios have

positive αs relative to the CAPM, while growth portfolios have negative αs. Moreover, value

portfolios tend to have lower βs than growth portfolios. Our model predicts αs that rise

from -2.86 for the extreme growth portfolio, to 3.30 for the extreme value portfolio. In the

data, the lowest book-to-market portfolio has an α of -1.66, while the highest book-to-market

portfolio has an α of 3.97. Thus the model generates αs of the correct magnitude, as well

as a sizeable spread between value and growth. Moreover, αs in the model are asymmetric:

growth αs are smaller in absolute value than value αs, as in the data.

The third panel of Table 8 runs regressions of portfolio returns on the market and on a

high-minus-low factor (HML), generated by the return on a short position in the extreme

growth portfolio and a long position in the extreme value portfolio. The purpose is to

see whether the model analogue to the high-minus-low factor of Fama and French (1992)

describes the cross-section of returns in the model, as it does in the data. We find that the

αs nearly disappear when we add HML to the regression; they are two orders of magnitude

smaller than the αs relative to the CAPM. Not surprisingly, the loading on the HML factor

increases in the decile; growth portfolios have a negative loading on the HML factor, while

value portfolios have a positive loading.
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The final panel of Table 8 compares the unconditional correlations of the portfolios with

the stochastic discount factor, the shock to dividends, the shock to expected dividend growth

orthogonal to dividend growth, and the shock to the preference variable. The correlation

with the stochastic discount factor is lower, the greater the decile. This is consistent with

the result that the Sharpe ratio increases in the decile; it follows from the unconditional

Euler equation that the lower the correlation with the stochastic discount factor, the higher

the Sharpe ratio.

The final panel also examines differential unconditional correlations with the shocks.

Value stocks have the highest correlations with shocks to dividend growth (correlations

range from .11 for the extreme growth portfolio to .26 for the extreme value portfolio).

In contrast, growth stocks have a higher correlation with the independent component of

the shock to expected dividend growth (correlations range from .21 for the extreme growth

portfolio to .17 for the extreme value portfolio). While a shock to expected dividend growth

raises the valuation of all portfolios, (as in the present value models of Campbell and Shiller

(1988) and Vuolteenaho (2002)), it especially affects the valuations of growth stocks, which

pay dividends in the distant future. Finally, all portfolios are negatively correlated with

shocks to the Sharpe ratio variable xt. A positive shock to xt raises expected returns, and

thus lowers prices and realized returns. Growth stocks are more negatively correlated with

xt than value stocks (correlations range from -.41 for the extreme growth portfolio to -.29

for the extreme value portfolio). This is because of duration; growth stocks pay dividends

further in the future, and thus are impacted more by a shock to expected returns.

This section has shown that the model replicates the principle aspects of the value pre-

mium in the data: value stocks have high expected returns, low volatility, high Sharpe

ratios, high alphas, and low betas, relative to growth stocks. Value and growth stocks also

differ in their correlations with the underlying shocks to the economy. As the next section

shows, these differences in correlations are the root of the model’s ability to explain the value

premium.

5 Model Intuition

What explains the model’s ability to capture the value premium? As hinted in the previous

section, the value premium arises from the differential correlations of value and growth
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portfolios on underlying shocks.

Figure 8 presents another look at this issue. Rather than correlations, Figure 8 contains

βs from unconditional regressions of portfolio returns on the three shocks, and the R2 from

the unconditional regressions. Three results are apparent. First, βd is positive and increasing

as the portfolios go from growth to value, second βz is positive and decreasing as portfolios

go from growth to value, and βx is negative and increasing as firms go from growth to value.

The R2s follow the same direction as the absolute value of the βs. Shocks to dividends

account for an increasing amount of the total variance, shocks to z represent a decreasing

amount of the variance, and shocks to x represent a decreasing amount of the variance as

portfolios go from growth to value. It should not be surprising that the R2 fail to sum to 1.

The three shocks account for 100% of the conditional variance of returns. Figure 8, however,

plots the results from unconditional regressions. In this section, we first discuss the intuition

for the differential loadings on the shocks. We then connect these loadings to risk premia.

The results in Figure 8 arise from the different loadings of zero-coupon equity on the

underlying shocks. As (15) shows, the loadings of returns on shocks to x and z is determined

by Bx and Bz (the loadings on the shock to d is always the same conditionally). For the

parameter values we estimate, Bz is positive and increasing in the maturity n while Bx is

negative, and first decreases, and then, at high maturities, increases in n (Figure 1). In the

case of Bz the increase occurs because long-horizon dividend growth matters more for assets

that pay dividends in the future; for Bx, the pattern is accounted for by the duration effect,

and because the risk price on expected dividend growth is negative. The intuition for these

patterns is explained further in Sections 3 and 4.3.

The loadings on zt for zeros is echoed for portfolios, because portfolios are formed from

firms that are weighted averages of the underlying zeros. For high price-dividend firms

(growth firms), the share of aggregate dividends is increasing. These firms place greater

weight on higher-maturity equity than on lower-maturity equity. Thus their returns load

more on Bz than the returns of value firms, which place more weight on lower maturity

equity. The loadings on xt are a bit different for portfolios than for zero-coupon equity.

There is no evidence of the non-monotonicity seen in Figure 1. This is because, all else

equal, equity that pays further in the future is worth less. Medium-horizon equity may

therefore have a greater weight than long-horizon equity, even for growth firms. The non-

monotonicity in Bx occurs sufficiently far out in the equity term structure that it does not
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appear in the loadings of portfolios.

The loadings of portfolios on various shocks present an intriguing link with the empirical

results of Campbell and Vuolteenaho (2003). Using the vector auto-regression methodol-

ogy of Campbell (1991), Campbell and Vuolteenaho decompose unexpected market returns

into changes in expectations of future discount rates and changes in expectations of future

dividend growth rates. Changes in expected discount rates are computed using the vector

auto-regression; changes in expected growth rates are the residual: the variation in market

returns not explained by variation in discount rates. When the market return is decomposed

in this way, Campbell and Vuolteenaho show that βs with respect to changes in expected

discount rates decrease in magnitude as portfolios go from growth to value, while βs with

respect to cash flows increase in magnitude as portfolios go from growth to value.

While not precisely analogous, shocks to xt are similar in spirit to news about discount

rates in the VAR framework of Campbell and Vuolteenaho (2003). It is therefore encouraging

that our model produces βs with respect to shocks to xt that increase in magnitude as

portfolios go from growth to value. The analogue to the dividend news term is less clear

in our model. Campbell and Vuolteenaho compute this as a residual, though in our model

Figure 8 shows that the residual variance is not accounted for by shocks to current or expected

future dividends. More of the residual is accounted for by ∆dt+1 than by shocks to zt+1;

thus it is also encouraging that value stocks load more on ∆dt+1 than growth stocks.

Figure 8 shows that value and growth portfolios have different loadings on the underlying

shocks in the economy. How this translates into risk premia depends on the prices of risk

of these shocks. Equation (16) provides an illustration of how conditional risk premia on

zero-coupon equity vary based on loadings on different shocks. As discussed in Section 4.1

we estimate that shocks to expected dividend growth zt are negatively correlated with shocks

to realized dividend growth, based on dividend and consumption data. This empirical result

implies that expected dividend growth has a negative risk price; because it is negatively

correlated with shocks to realized dividend growth it serves as a hedge and reduces risk

premia.

We assume that shocks to xt carry a zero risk price; shocks to xt are assumed to be

uncorrelated with shocks to realized dividends or expected dividend growth. This assumption

represents a departure from the models of Campbell and Cochrane (1999) and Menzly,

Santos, and Veronesi (2004), where shocks to the price of risk are, conditionally, perfectly
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negatively correlated with shocks to aggregate dividends. What role does this assumption

play in our analysis?

To answer this question, consider the equation for the conditional risk premium for equity

that matures next period, versus the conditional risk premium for equity that matures two

periods from now. By (16), equity that matures next period has a risk premium of

logEt[R1,t+1/R
f ] = ||σd||xt.

Equity that matures two periods from now has a risk premium of

logEt[R2,t+1/R
f ] =

(

1− ρdx||σx||+ ρdz
||σz||
||σd||

)

||σd||xt,

where

ρdx =
σdσ

′
x

||σd||||σx||
represents the conditional correlation between ∆dt+1 and xt+1, and

ρdz =
σdσ

′
z

||σd||||σz||

represents the conditional correlation between ∆dt+1 and zt+1. The risk premium on equity

that matures next period is equal to the quantity of risk – the standard deviation of dividends

– multiplied by the price of risk xt. For equity maturing two periods from now, there is also

the risk due to changes in xt and changes in zt. The latter effect will be relatively small

because σz is a small fraction of σd. Whether long-horizon equity has a lower risk premium

than short-horizon equity (as is necessary to explain the value premium) is due in large

part to the sign of the correlation of dividend growth with xt. In particular, ρdx < 0 leads

to relatively higher premia for long-horizon equity, while ρdx > 0 leads to relatively lower

premia for long-horizon equity.

We make this statement precise by solving the model under three different possibilities for

ρdx. Figure 7 plots risk premia on zero-coupon equity when ρdx = 0 (our base case), ρdx < 0,

and ρdx > 0. For ρdx = 0, Panel A shows that risk premia decrease in maturity, as long as

xt > 0 (as it is most of the time). The reason for this decrease is the negative correlation

between ∆dt+1 and zt+1. In contrast, for ρdx < 0, Panel B shows that risk premia generally

increase in the maturity. Long-horizon equity (i.e. growth stocks) have greater risk premia

than short-horizon equity. This occurs even though ρdz is negative, as in Panel A. Even a
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modest correlation of -.5 between dividends and the price-of-risk overrides the effect of ρdz.

The case of ρdx < 0 is of special interest because it corresponds to the correlation between the

price of risk and aggregate dividends in external habit models. In the models of Campbell

and Cochrane (1999) and Menzly, Santos, and Veronesi (2004), shocks to the aggregate

dividend (which is identified with consumption) increase surplus consumption, and therefore

lower the amount of return investors demand for taking on risk. Indeed, in a term structure

context, Wachter (2003) shows that the model of Campbell and Cochrane (1999) implies

that long-horizon assets exhibit greater risk premia than short horizon assets for exactly this

reason. Long-horizon assets load more negatively on the shock to discount rates; if discount

rates are negatively correlated with consumption (or dividends) then long-horizon assets will

command greater risk premia.

An alternative to both the external habit models, and to our approach is to set the cor-

relation between dt+1 and xt+1 to be positive. This case is illustrated in Panel C. Under this

assumption, risk premia fall more dramatically in the maturity than under the assumption

that dt+1 and xt+1 are uncorrelated and the premium for short-horizon equity is greater.

These results at first suggest that a model that seeks to explain the value premium should

set ρdx > 0, rather than ρdx = 0 as we assume. However, the sign of ρdx has time series

implications as well as cross-sectional ones. We are able to calibrate our model to match

the time series of aggregate stock returns, as well the cross-section of value and growth

portfolios because our model produced reasonable risk premia in the aggregate. For ρdx > 0,

this may not be the case. Figure 7 shows that the greater is ρdx, the lower are risk premia

in the economy, for all but the shortest-maturity equity. This makes sense; as an asset that

pays cash flows in the future, equity must load negatively on xt. If investors view xt-risk

as a hedge (ρdx > 0), this makes equity less risky. On the other hand, if xt moves in the

same direction as dividends (ρdx < 0), equity becomes more risky. Explaining the level of the

equity premium is therefore easiest when ρdx < 0 and hardest when ρdx > 0. The assumption

that ρdx < 0 is part of what enables Campbell and Cochrane (1999) and Menzly, Santos, and

Veronesi (2004) to explain the high variance and the high premium commanded by stock

returns, with comparatively little variance in fundamentals.

Faced with this tension between the time series and the cross section, we choose to set

the correlation between dividend growth and xt at zero. This section has shown that ρdx, in

combination with the duration effect and the correlation between current and future dividend
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growth, makes long-horizon equity less risky than short-horizon equity. It creates a large

premium on value stocks, while at the same time limiting their risk. We hope that future

work will reveal micro-economic foundations that determine this important parameter.

6 Conclusion

This paper has proposed a parsimonious model of the stochastic discount factor that accounts

for both the aggregate time series behavior of the stock market, and for the relative risk and

return of value and growth stocks. At the root of the model is a dividend process calibrated

to match the dividend process in the data, and a stochastic discount factor with a single

factor proxying for investors’ time-varying preference for risk. This factor, called xt, is

analogous to the inverse of surplus consumption in the external habit models of Campbell

and Cochrane (1999) and Menzly, Santos, and Veronesi (2004). When xt is high, investors

demand a greater return for risk. Time-varying preferences for risk allows the model to

capture excess volatility and return predictability found in the data. Our specification for

xt allows for interpretable closed-forms solutions for asset prices and risk premia.

A key difference between our model and external habit models is that xt does not arise

from fluctuations in the aggregate dividend. This may seem like a small detail but it is key

to the model’s ability to explain how value stocks can have both higher returns and less risk

than growth stocks. In our model, growth and value stocks differ based on their cash flows.

Growth stocks have more of their cash flows in the future. They are high-duration assets,

and thus their returns covary more with the price of risk xt. We have shown that for growth

stocks to have relatively low returns, it must be the case that investors do not fear shocks to

xt. This only occurs if the conditional correlation of the price of risk with dividend growth

is zero or positive. We assume the correlation is zero. In contrast, external habit models

assume a correlation of negative one. Shocks to the price of risk are feared as much, if not

more, than shocks to cash flows.

Our proposed resolution to the value puzzle is risk-based. Value stocks, as short-horizon

equity, vary more with fluctuations in cash flows – the fluctuations that investors fear the

most. Growth stocks, as long-horizon equity, vary more with fluctuations in discount rates,

which are independent of cash flows and which investors do not fear. We have shown that

the value premium is only puzzling from the point of view of models where risk preferences,
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and thus discount rates, are constant. When risk preferences vary, and vary independently

from consumption and dividends, we have shown that the value premium is not a puzzle

after all.
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7 Appendix

A Including a Lower Bound in the Share Specification

Including a lower bound in the share specifications (21) and (22)–(23) allows for a superior

fit to the cross-section of price ratios. For a model with shares si, we can define a new share

process ŝi such that

ŝi = s + si(1−Ns)

where N is the number of firms, and 0 ≤ s < 1/N . Then the sequence ŝ1, . . . , ŝN is positive,

sums to 1, and thus forms a well-defined share process. Moreover, s will be a lower bound

on the share of the aggregate dividend.

Figure 9 shows the results for linearly declining growth, when the share process has a

lower bound of s = 0.1%. This change implies fewer firms with very high growth rates,

and fewer firms with higher price dividend ratios. The distribution of dividend growth and

the distribution of price ratios provide a closer match to the data, as shown in Figure 9.

Introducing a lower bound to the constant growth case has a similar effect, as shown in

Figure 10. Tables 10 and 11 show that the behavior of the cross-section of returns is similar

to the cases when there are no lower bound. Qualitatively, the effects are similar to the case

where there is no lower bound. The α for the extreme value portfolio is 2.6% for the linear

growth case, and 2.7% for the constant growth case, while the α for the extreme growth

stocks is -2.2% for the linear growth case and -2.0% for the constant growth case.

B Convergence of the Price-Dividend Ratio

Because xt and zt can take on both positive and negative values, a necessary (but not

sufficient) condition for (17) to converge for all values of xt and zt is that Bx(n) and Bz(n)

approach finite values as n→∞. Bz converges if and only if:

|φz| < 1 (24)

Let

λ = σd/||σd||

Assuming (24) holds, Bx converges if and only if

|φx − σxλ| < 1 (25)
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Given (24)

lim
n→∞

Bz(n) =
1

1− φz

≡ B̄z

Define B̄x to be the solution to

B̄x = B̄x(φx − σxλ)− (σd +
σz

1− φz

)λ

Then

B̄x = −(σd + σz/(1− φz))λ

1− (φx − σxλ)

Given (24) and (25), it follows that

lim
n→∞

Bx(n) = B̄x

and

lim
n→∞

Vn = σd +
σz

1− φz

+ B̄xσx ≡ V̄

Finally, let

Ā = −r + g + B̄x(1− φx)x̄+
1

2
V̄ V̄

It follows from the recursion for An that for N sufficiently large

A(n) ≈ Ān+ constant

for n ≥ N , and therefore

∞∑

n=N

exp {A(n) +Bz(n)zt +Bx(n)xt} ≈ exp
{
constant + B̄zzt + B̄xxt

}
∞∑

n=N

exp
{
Ān
}
.

It follows that necessary and sufficient conditions for convergence are (24), (25), and

−r + g + B̄x(1− φx)x̄+
1

2
V̄ V̄ < 0 (26)
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Table 1: Growth vs. Value Portfolios

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

Mean Excess Return (% per year)

E/P 4.71 5.02 6.97 7.04 7.00 9.18 9.94 11.18 11.68 12.95 8.25

C/P 5.05 6.07 6.49 6.73 8.48 7.72 8.85 9.18 11.47 11.81 6.77

D/P 7.35 6.41 7.28 7.41 6.49 7.60 7.73 9.49 8.84 7.45 0.10

B/M 5.67 6.55 6.98 6.51 8.00 8.33 8.27 10.08 9.98 10.55 4.88

Standard Error of Mean

E/P 0.78 0.64 0.62 0.59 0.62 0.61 0.60 0.61 0.65 0.73 0.62

C/P 0.76 0.64 0.61 0.63 0.62 0.60 0.60 0.60 0.61 0.69 0.59

D/P 0.78 0.69 0.66 0.64 0.62 0.60 0.59 0.58 0.56 0.56 0.69

B/M 0.71 0.64 0.64 0.62 0.59 0.59 0.59 0.61 0.63 0.74 0.61

Standard Deviation of Excess Return (% per year)

E/P 19.35 15.93 15.49 14.78 15.43 15.04 14.87 15.29 16.11 18.11 15.40

C/P 18.99 15.95 15.24 15.75 15.43 14.95 14.96 14.98 15.14 17.24 14.57

D/P 19.36 17.11 16.31 15.85 15.43 15.00 14.58 14.37 13.93 13.83 17.08

B/M 17.77 15.89 15.82 15.42 14.65 14.73 14.74 15.11 15.71 18.46 15.15

Sharpe Ratio

E/P 0.24 0.32 0.45 0.48 0.45 0.61 0.67 0.73 0.73 0.72 0.54

C/P 0.27 0.38 0.43 0.43 0.55 0.52 0.59 0.61 0.76 0.69 0.46

D/P 0.38 0.37 0.45 0.47 0.42 0.51 0.53 0.66 0.63 0.54 0.01

B/M 0.32 0.41 0.44 0.42 0.55 0.57 0.56 0.67 0.64 0.57 0.32

Notes: Summary statistics for 10 growth to value portfolios. “D/P” are deciles computed

from sorting firms based on their dividend yields, “E/P” are sorts based on the earnings

yields, “C/P” are sorts based on the ratio of cash flows to price and “B/M” are sorts on the

book-to-market ratio. All data are from Ken French’s website. The data are monthly and

span the 1952 to 2002 period.



Table 2: Correlation of Value and Growth Portfolios

D/P E/P C/P B/M

Top Growth Decile

E/P 1.00 0.98 0.93 0.96

C/P 0.98 1.00 0.93 0.97

D/P 0.93 0.93 1.00 0.94

B/M 0.96 0.97 0.94 1.00

Top Value Decile

E/P 1.00 0.94 0.76 0.85

C/P 0.94 1.00 0.74 0.85

D/P 0.76 0.74 1.00 0.75

B/M 0.85 0.85 0.75 1.00

Notes: Correlations among of growth and value portfolios formed from sorting on different

variables. “D/P” are deciles computed from sorting firms based on their dividend yields,

“E/P” are sorts based on the earnings yields, “C/P” are sorts based on the ratio of cash

flows to price and “B/M” are sorts on the book-to-market ratio. All data are from Ken

French’s website. The data are monthly and span the 1952 to 2002 period.



Table 3: Growth vs. Value Portfolios

CAPM: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + εit

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

αi (% per year)

E/P -3.09 -1.62 0.69 0.95 0.74 3.25 4.08 5.33 5.60 6.22 9.31

C/P -2.70 -0.54 0.19 0.24 2.33 1.79 3.01 3.46 5.75 5.34 8.04

D/P -0.58 -0.73 0.62 0.98 0.44 1.77 2.03 4.11 3.96 3.44 4.01

B/M -1.66 -0.17 0.33 0.22 2.12 2.37 2.59 4.30 4.05 3.97 5.63

Standard Error of αi

E/P 1.12 0.74 0.86 0.75 0.86 0.95 0.95 1.07 1.18 1.38 2.14

C/P 1.03 0.78 0.76 0.80 0.94 0.93 0.98 1.06 1.11 1.28 2.01

D/P 1.03 0.80 0.88 0.88 1.00 1.00 0.96 1.07 1.19 1.47 2.05

B/M 0.90 0.65 0.69 0.84 0.86 0.83 1.01 1.07 1.15 1.53 2.12

βi

E/P 1.18 1.01 0.95 0.92 0.95 0.90 0.89 0.89 0.92 1.02 -0.16

C/P 1.17 1.00 0.95 0.98 0.93 0.90 0.89 0.87 0.87 0.98 -0.19

D/P 1.20 1.08 1.01 0.97 0.92 0.88 0.86 0.82 0.74 0.61 -0.59

B/M 1.11 1.02 1.01 0.95 0.89 0.90 0.86 0.87 0.90 1.00 -0.11

Standard Error of βi

E/P 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.04

C/P 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04

D/P 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04

B/M 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04

R2

E/P 0.83 0.89 0.84 0.87 0.84 0.80 0.80 0.75 0.73 0.71 0.02

C/P 0.85 0.88 0.87 0.87 0.81 0.80 0.78 0.75 0.73 0.72 0.04

D/P 0.86 0.89 0.85 0.84 0.79 0.77 0.78 0.72 0.63 0.43 0.27

B/M 0.87 0.91 0.90 0.85 0.83 0.84 0.76 0.75 0.73 0.65 0.01

Notes: Estimates from CAPM regressions of 10 growth to value deciles. “D/P” are deciles

computed from sorting firms based on their dividend yields, “E/P” are sorts based on the

earnings yields, “C/P” are sorts based on the ratio of cash flows to price and “B/M” are

sorts on the book-to-market ratio. All data are from Ken French’s website. The data are

monthly and span the 1952 to 2002 period.



Table 4: Parameters of the Model

∆dt+1 = g + zt + σdεt+1

zt+1 = φzzt + σzεt+1

xt+1 = (1− φx)x̄+ φxxt + σxεt+1

Mt+1 = exp

{

−rf − 1

2
x2t − xt

σd

||σd||
εt+1

}

Variable Value

g 2.28%

rf 1.93%

x̄ 0.625

φz 0.91

φx 0.87

||σd|| 0.145

||σz|| 0.0016

||σx|| 0.24

Correlation of ∆d and z shocks -0.83

Correlation of ∆d and x shocks 0

Correlation of z and x shocks 0

Implied volatility parameters

Variable Values

σd [ 0.0724, 0, 0 ]

σz [ -0.0013, 0.0009, 0 ]

σz [ 0, 0, 0.12 ]

Notes: The model parameters are calibrated to the Campbell’s (1999) century-long annual

sample starting in 1889 and updated through 2002. The model is simulated at a quarterly

frequency. The unconditional mean of dividend growth g, the riskfree rate rf , the persistence

variables φx and φz, and the conditional standard deviations ||σd||, ||σd||, ||σd||, are in annual

terms (i.e. 4g, φ4x, 2||σd||). Parameters g, rf , and ||σd|| are set to match their data counterparts.

Parameters φz and the correlation between shocks to z and shocks to ∆d are set to match

their data counterparts, assuming that the the conditional mean of dividend growth is the

log of the consumption-dividend ratio in the data.



Table 5: Aggregate Asset Pricing Implications

Data Model

E(P/D) 25.55 20.96

σ(p− d) 0.38 0.38

AC of p− d 0.87 0.88

E[Rm −Rf ] 6.33% 7.87%

σ(Rm −Rf ) 19.41% 19.19%

AC of Rm −Rf 0.03 -0.04

Sharpe ratio of market 0.33 0.41

AC of ∆d -0.09 -0.04

σ(∆dt) 14.48% 14.43%

Notes: Aggregate moments for the parameter values in Table 4. The model is simulated for

50,000 quarters and statistics are aggregated to an annual frequency. The asset pricing data

is from Campbell’s (1999) century-long annual sample starting in 1889 and updated through

2002.



Table 6: Long Horizon Regressions – Excess Returns

Horizon in Years

1 2 4 6 8 10

∑H
i=1 r

m
t+i − rf

t+i = β0 + β1(pt − dt) + εt

Data

β1 -0.12 -0.23 -0.37 -0.60 -0.86 -1.09

t-stat (-2.39) (-2.44) (-2.01) (-2.24) (-2.97) (-3.54)

R2 [0.05] [0.08] [0.10] [0.16] [0.25] [0.31]

Data up to 1994

β1 -0.21 -0.39 -0.61 -0.89 -1.16 -1.34

t-stat (-3.45) (-4.04) (-3.17) (-4.08) (-5.81) (-6.22)

R2 [0.07] [0.13] [0.19] [0.30] [0.41] [0.44]

Model

β1 -0.11 -0.21 -0.36 -0.49 -0.58 -0.65

R2 [0.06] [0.11] [0.18] [0.23] [0.26] [0.28]

Notes: Long-horizon regressions of excess returns and dividend growth using Campbell’s

annual data set and the model simulated using parameter values in Table 2. For each data

regression, the table reports OLS estimates of the regressors, Newey-West (1987) corrected

t-statistics (in parentheses) and adjusted R2 statistics in square brackets. Significant coeffi-

cients using the standard t-test at the 5% level are highlighted in bold face.



Table 7: Long Horizon Regressions – Dividend Growth

Horizon in Years

1 2 4 6 8 10

Data

∑H
i=1∆d

m
t+i = β0 + β1(pt − dt) + εt

β1 0.02 -0.01 -0.04 -0.12 -0.23 -0.31

t-stat (0.56) (-0.23) (-0.34) (-0.85) (-1.26) (-1.61)

R2 [-0.01] [-0.01] [-0.01] [0.00] [0.02] [0.05]

∑H
i=1∆d

m
t+i = β0 + β1(ct − dt) + εt

β1 0.10 0.18 0.34 0.56 0.65 0.68

t-stat (2.30) (2.52) (3.05) (3.42) (3.56) (3.78)

R2 [0.03] [0.06] [0.13] [0.24] [0.26] [0.25]

Model

∑H
i=1∆d

m
t+i = β0 + β1(pt − dt) + εt

β1 0.05 0.09 0.17 0.24 0.29 0.33

R2 [0.02] [0.03] [0.06] [0.08] [0.09] [0.09]

∑H
i=1∆d

m
t+i = β0 + β1zt + εt

β1 3.73 7.09 13.19 18.13 22.23 25.81

R2 [0.04] [0.07] [0.13] [0.18] [0.21] [0.24]

Notes: Long-horizon regressions of excess returns and dividend growth using Campbell’s

annual data set and the model simulated using parameter values in Table 2. For each data

regression, the table reports OLS estimates of the regressors, Newey-West (1987) corrected

t-statistics (in parentheses) and adjusted R2 statistics in square brackets. Significant coeffi-

cients using the standard t-test at the 5% level are highlighted in bold face.



Table 8: Growth vs. Value Portfolios: Linear Growth

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

ERi −Rf 4.44 4.55 4.85 5.29 6.00 6.91 7.91 8.79 9.37 9.65 5.20

σ(Ri −Rf ) 19.22 19.32 19.48 19.52 19.41 19.05 18.47 17.82 17.24 16.91 8.33

Sharpe Ratio 0.23 0.24 0.25 0.27 0.31 0.36 0.43 0.49 0.54 0.57 0.62

CAPM: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + εit

αi -2.86 -2.80 -2.59 -2.20 -1.49 -0.47 0.76 1.94 2.84 3.30 6.17

βi 0.99 1.00 1.01 1.02 1.02 1.00 0.97 0.93 0.89 0.86 -0.13

R2
i 0.96 0.96 0.97 0.98 0.99 1.00 1.00 0.98 0.95 0.94 0.09

CAPM & HML: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + γiHMLt + εit

αi 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.02 0.03 0.04 0.00

βi 0.93 0.94 0.95 0.97 0.99 0.99 0.99 0.97 0.95 0.93 0.00

γi -0.47 -0.46 -0.43 -0.36 -0.25 -0.08 0.12 0.31 0.46 0.53 1.00

R2
i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unconditional Correlations

ρ(Ri,M) -0.08 -0.08 -0.09 -0.09 -0.11 -0.12 -0.14 -0.16 -0.18 -0.19 -0.19

ρ(Ri, ε1) 0.11 0.11 0.12 0.13 0.14 0.17 0.19 0.22 0.24 0.26 0.27

ρ(Ri, ε2) 0.21 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.17 -0.14

ρ(Ri, ε3) -0.41 -0.41 -0.41 -0.41 -0.40 -0.39 -0.36 -0.34 -0.31 -0.29 0.35

Notes: Simulated return statistics for 10 portfolios formed according to price-dividend ratios.

Parameter values for the aggregate market are as in Table 4. The model is simulated at a

quarterly frequency and returns are aggregated up to an annual frequency. Growth of the

dividend shares is assumed to decline linearly from 75% p.a. to -75% p.a. There is no lower

bound for the dividend share.



Table 9: Growth vs. Value Portfolios: Constant Growth

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

ERi −Rf 5.00 5.18 5.47 5.90 6.46 7.15 7.89 8.58 9.16 10.08 5.09

σ(Ri −Rf ) 19.27 19.48 19.64 19.67 19.51 19.08 18.38 17.56 16.99 17.30 8.27

Sharpe Ratio 0.26 0.27 0.28 0.30 0.33 0.37 0.43 0.49 0.54 0.58 0.62

CAPM: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + εit

αi -2.60 -2.52 -2.31 -1.93 -1.33 -0.50 0.52 1.59 2.48 3.38 5.98

βi 1.00 1.01 1.02 1.03 1.02 1.00 0.97 0.92 0.88 0.88 -0.12

R2
i 0.97 0.97 0.97 0.98 0.99 1.00 1.00 0.98 0.96 0.93 0.07

CAPM & HML: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + γiHMLt + εit

αi 0.05 0.04 0.02 0.01 0.01 0.01 0.03 0.05 0.06 0.05 0.00

βi 0.95 0.96 0.98 0.99 1.00 0.99 0.98 0.95 0.93 0.95 0.00

γi -0.44 -0.43 -0.39 -0.32 -0.22 -0.09 0.08 0.26 0.40 0.56 1.00

R2
i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unconditional Correlations

ρ(Ri,M) -0.06 -0.06 -0.06 -0.07 -0.08 -0.09 -0.10 -0.12 -0.14 -0.15 -0.19

ρ(Ri, ε1) 0.09 0.09 0.10 0.11 0.12 0.14 0.17 0.19 0.22 0.24 0.29

ρ(Ri, ε2) 0.19 0.19 0.18 0.17 0.17 0.16 0.16 0.16 0.15 0.14 -0.16

ρ(Ri, ε3) -0.41 -0.41 -0.41 -0.41 -0.40 -0.39 -0.37 -0.34 -0.32 -0.29 0.34

Notes: Simulated return statistics for 10 portfolios formed according to price-dividend ratios.

Parameter values for the aggregate market are as in Table 4. The model is simulated at a

quarterly frequency and returns are aggregated up to an annual frequency. Growth of the

dividend shares is assumed to be constant at 20% p.a. for the first half of the life-cycle and

at -20% p.a. for the second half of the life-cycle. There is no lower bound for the dividend

share.



Table 10: Growth vs. Value Portfolios: Linear Growth with Lower Bound

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

ERi −Rf 5.81 5.60 5.51 5.80 6.37 7.10 7.88 8.58 9.09 9.25 3.44

σ(Ri −Rf ) 20.32 19.61 18.88 18.73 18.84 18.75 18.40 17.96 17.54 17.19 7.24

Sharpe Ratio 0.29 0.29 0.29 0.31 0.34 0.38 0.43 0.48 0.52 0.54 0.48

CAPM: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + εit

αi -2.15 -2.07 -1.88 -1.56 -1.06 -0.32 0.60 1.53 2.26 2.59 4.73

βi 1.07 1.03 0.99 0.99 1.00 1.00 0.98 0.95 0.92 0.89 -0.17

R2
i 0.98 0.98 0.98 0.99 0.99 1.00 1.00 0.99 0.97 0.96 0.20

CAPM & HML: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + γiHMLt + εit

αi 0.02 0.00 -0.04 -0.04 -0.02 0.00 0.00 0.01 0.02 0.02 0.00

βi 0.99 0.95 0.93 0.93 0.96 0.98 1.00 1.00 1.00 0.99 0.00

γi -0.46 -0.44 -0.39 -0.32 -0.22 -0.07 0.13 0.32 0.47 0.54 1.00

R2
i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unconditional Correlations

ρ(Ri,M) -0.07 -0.07 -0.07 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.12

ρ(Ri, ε1) 0.12 0.12 0.12 0.13 0.14 0.16 0.18 0.20 0.22 0.23 0.21

ρ(Ri, ε2) 0.17 0.18 0.19 0.19 0.18 0.17 0.16 0.16 0.15 0.15 -0.13

ρ(Ri, ε3) -0.40 -0.40 -0.40 -0.39 -0.39 -0.38 -0.36 -0.34 -0.32 -0.31 0.39

Notes: Simulated return statistics for 10 portfolios formed according to price-dividend ratios.

Parameter values for the aggregate market are as in Table 4. The model is simulated at a

quarterly frequency and returns are aggregated up to an annual frequency. Growth of the

dividend shares is assumed to decline linearly from 75% p.a. to -75% p.a. The lower bound

for the dividend share is 0.1%.



Table 11: Growth vs. Value Portfolios: Constant Growth with Lower Bound

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

ERi −Rf 5.50 5.68 5.87 6.13 6.50 7.00 7.58 8.18 8.71 9.40 3.91

σ(Ri −Rf ) 19.35 19.63 19.58 19.42 19.20 18.89 18.44 17.88 17.46 17.60 6.72

Sharpe Ratio 0.28 0.29 0.30 0.32 0.34 0.37 0.41 0.46 0.50 0.53 0.58

CAPM: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + εit

αi -1.97 -1.90 -1.71 -1.40 -0.96 -0.36 0.40 1.24 1.99 2.69 4.67

βi 1.01 1.03 1.03 1.02 1.01 1.00 0.97 0.94 0.91 0.91 -0.10

R2
i 0.98 0.98 0.99 0.99 0.99 1.00 1.00 0.99 0.97 0.96 0.08

CAPM & HML: Ri
t −Rf

t = αi + βi(R
m
t −Rf

t ) + γiHMLt + εit

αi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.00

βi 0.97 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.97 0.00

γi -0.43 -0.41 -0.37 -0.31 -0.21 -0.08 0.08 0.26 0.42 0.57 1.00

R2
i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unconditional Correlations

ρ(Ri,M) -0.09 -0.09 -0.09 -0.10 -0.11 -0.12 -0.13 -0.14 -0.16 -0.17 -0.19

ρ(Ri, ε1) 0.15 0.15 0.15 0.16 0.17 0.18 0.20 0.22 0.24 0.26 0.27

ρ(Ri, ε2) 0.19 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.15 0.14 -0.16

ρ(Ri, ε3) -0.39 -0.39 -0.38 -0.38 -0.37 -0.37 -0.35 -0.33 -0.31 -0.29 0.35

Notes: Simulated return statistics for 10 portfolios formed according to price-dividend ratios.

Parameter values for the aggregate market are as in Table 4. The model is simulated at a

quarterly frequency and returns are aggregated up to an annual frequency. Growth of the

dividend shares is assumed to be constant at 20% p.a. for the first half of the life-cycle and

at -20% p.a. for the second half of the life-cycle. The lower bound for the dividend share is

0.1%.



Figure 1: Model Solution
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Notes: This figure shows the solutions of the system of algebraic equations (11)-

(13) for the parameter values in Table 4.



Figure 2: Price/Dividend Ratio of Zero-Coupon Equity
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Notes: This figure plots the ratio of the price of n-period zero-coupon equity

to the aggregate (quarterly) dividend as a function of maturity n for the pa-

rameter values in Table 4. The three panels show the zero-coupon curves for

z = −2||σz||/
√

1− φ2z, z = 0 and z = 2||σz||/
√

1− φ2z. Each panel plots three

graphs for x = x̄− 2||σx||/
√

1− φ2x, x = x̄ and x = x̄+ 2||σx||/
√

1− φ2x.



Figure 3: Properties of Zero-Coupon Equity
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Notes: This figure shows return statistics for zero-coupon equity as a function of

maturity. The top panel plots risk premia of annual level returns over the riskfree

rate. The second panel plots the standard deviation of annual level returns. The

third panel plot the Sharpe ratio (risk premia dividend by standard deviation).



Figure 4: CAPM Regressions for Zero-Coupon Equity
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Notes: This figure shows results from unconditional CAPM regressions of annual

returns of zero-coupon equity on the market return. The top panel plots α(n),

the middle panel plots β(n) and the bottom panel plots the R2(n) as a function of

maturity.



Figure 5: Cross-Sectional Distribution – Linear Growth

Notes: This figure compares the cross-sectional distribution of growth rates of

various cash flow measures and price ratios in the model (assuming linearly de-

clining growth in shares) to those in the data. The top panel plots the distribution

of annual growth rates of dividends, earnings and cash flows (defined as in Fama

and French) across all firms for the 1952 – 2002 period. Growth rates are cen-

sored at 100%. Firms that exit the sample are assigned a growth rate of -100%.

The solid line is the distribution of annual dividend growth rates for all firms

in a simulation of 50,000 quarters. The bottom panel plots the corresponding

distribution of various price multiples in the data and in the simulated model.



Figure 6: Cross-Sectional Distributions – Constant Growth

Notes: This figure compares the cross-sectional distribution of growth rates of

various cash flow measures and price ratios in the model (assuming constant

growth in shares) to those in the data. The top panel plots the distribution of

annual growth rates of dividends, earnings and cash flows (defined as in Fama and

French) across all firms for the 1952 – 2002 period. Growth rates are censored at

100%. Firms that exit the sample are assigned a growth rate of -100%. The solid

line is the distribution of annual dividend growth rates for all firms in a simulation

of 50,000 quarters. The bottom panel plots the corresponding distribution of

various price multiples in the data and in the simulated model.



Figure 7: Effect of ρdx on Zero-Coupon Equity

Panel A: ρdx = 0
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Panel B: ρdx = −0.5
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Panel C: ρdx = 0.5
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Notes: The three panels show the risk premium for zero-coupon equity as a

function of the maturity for the parameter values in Table 4. Each panel has

three graphs that plot the risk premium at the mean of xt, x̄, and plus and

minus two long-run standard deviations from x̄. The top panel assumes that the

correlation of dividend shocks and shocks to xt is zero, the middle panel assumes

that the correlation of dividend shocks and shocks to xt is -0.5 and the bottom

panel assumes that the correlation of dividend shocks and shocks to xt is 0.5. All

other parameter values are identical.



Figure 8: Regressions on Fundamental Shocks
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Notes: This figure plots the OLS coefficients and R2 statistics from regressions

of annual portfolio returns on the fundamental shocks. Firms are constructed

assuming linearly decreasing dividend growth. The top panels regress portfo-

lio returns on the shock to dividends 2σdεt, the middle panels regress portfolio

returns on the shocks to the component of expected dividend growth that is un-

correlated with the shock to dividends 2σz(2)εt(2), and the bottom panels regress

firm returns on the shocks to the Sharpe ratio 2σxεt (note that the shocks to the

Sharpe ratio are uncorrelated with shocks to dividends and expected dividends).



Figure 9: Cross-Sectional Distributions – Linear Growth with with Lower Bound

Notes: This figure compares the cross-sectional distribution of growth rates of

various cash flow measures and price ratios in the model (assuming linearly de-

clining growth in shares with a lower bound of 0.1%) to those in the data. The

top panel plots the distribution of annual growth rates of dividends, earnings

and cash flows (defined as in Fama and French) across all firms for the 1952 –

2002 period. Growth rates are censored at 100%. Firms that exit the sample are

assigned a growth rate of -100%. The solid line is the distribution of annual div-

idend growth rates for all firms in a simulation of 50,000 quarters. The bottom

panel plots the corresponding distribution of various price multiples in the data

and in the simulated model.



Figure 10: Cross-Sectional Distributions – Constant Growth with Lower Bound

Notes: This figure compares the cross-sectional distribution of growth rates of

various cash flow measures and price ratios in the model (assuming constant

growth in shares with a lower bound of 0.1%) to those in the data. The top

panel plots the distribution of annual growth rates of dividends, earnings and

cash flows (defined as in Fama and French) across all firms for the 1952 – 2002

period. Growth rates are censored at 100%. Firms that exit the sample are

assigned a growth rate of -100%. The solid line is the distribution of annual

dividend growth rates for all firms in a simulation of 50,000 quarters. The bottom

panel plots the corresponding distribution of various price multiples in the data

and in the simulated model.


