
Inattentive Producers

Ricardo Reis∗

Harvard University

This version: June 2004

First draft: April 2004

Abstract

I present and solve the problem of a producer who faces costs of acquiring, absorbing,

and processing information. I establish a series of theoretical results describing the producer’s

behavior. First, I find the conditions under which she prefers to set a plan for the price she

charges, or instead prefers to set a plan for the quantity she sells. Second, I show that the agent

rationally chooses to be inattentive to news, only sporadically updating her information. I solve

for the optimal length of inattentiveness and characterize its determinants. Third, I explicitly

aggregate the behavior of many such producers. I apply these results to a model of inflation.

I find that the model can fit the post-war data on inflation remarkably well, and the pre-war

facts moderately well.
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1 INTRODUCTION

A long-standing question in macroeconomics is why don’t prices adjust every instant to reflect the

incoming stream of news on the environment facing firms? This question is important because

its answer determines the answer to many other questions in macroeconomics. For instance, the

imperfect adjustment of prices to news on money lies behind the effects of monetary policy on real

activity. To give another example, if we can understand the dynamic response of prices to shocks,

we should be able to explain the dynamics of inflation, one of the key aggregate variables that

macroeconomics purports to explain.

At least since John Maynard Keynes, a popular answer has been to assume that prices are

fixed for periods of time. Barro (1972), Sheshinski and Weiss (1977, 1982), Rotemberg (1982) and

Mankiw (1985) provided a micro-foundation for sticky prices by assuming that there is a fixed

physical cost that firms must pay whenever they change their price. Caballero and Engel (1991)

and Caplin and Leahy (1997) aggregated this infrequent adjustment across many different firms.

Dotsey, King and Woman (1999), Danziger (1999) and Golosov and Lucas (2003) studied the effects

of monetary policy in such an economy. A closely related model of sticky prices has by-passed the

micro-foundations and assumed from the start that prices adjust only at some random dates picked

from a specific distribution function that allows for simple aggregation (Calvo, 1983, Woodford,

2003a).

The model of sticky prices has always been criticized but over the past decade the criticism has

intensified. Researchers have noted that there is little support in the data for the model’s basic

assumption. With the exception of magazine prices and restaurant menus, for most products it is

difficult to identify any significant fixed physical costs of changing prices. Research has also found

that the data does not support the model’s key micro prediction. Bils and Klenow (2002) noted

that individual prices change very frequently in the United States. Finally, many (e.g. Mankiw,

2001) have shown that the macroeconomic predictions of the sticky price model for the relation

between inflation, real activity and monetary policy are counterfactual.

An alternative explanation for the imperfect adjustment of prices to news acknowledges that

people have limited information and a limited ability to perform computations. The starting point

of these models is the realization that in the standard classical model, agents are aware of all the

information every instant and are constantly using it to compute their optimal actions. Yet, there

is an enormous amount of information in world and most of it comes with a cost, in money or
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time, both in acquiring it but especially also in interpreting it. Following the hallmark of the

economic model of choice subject to constraints, information should be treated as a costly good.

The Lucas (1972) islands model showed that if price-setters have imperfect information, they will

adjust incompletely to news, which generates nominal rigidities and real effects of monetary policy.

Mankiw and Reis (2002) provided a limited information alternative to the sticky price Calvo (1983)

model by assuming that agents update their information sets and price plans at randomly chosen

dates. They showed that this model of sticky information is able to match some facts on inflation

and output dynamics and to generate reasonable responses of these variables to monetary policy

shocks.

Currently though, models of pricing based on limited information lack a micro-foundation based

on optimizing behavior, an explicit aggregation across many agents, and an explicit contrast of

their predictions with the data on inflation. This is what this paper proposes to do. I will use the

inattentiveness model of limited information to model the behavior of producers. This model adds

to a standard profit-maximization problem, one new constraint: that agents must pay a cost to

acquire, absorb, and process information in forming expectations and making decisions. The basic

implication of this assumption is that agents rationally choose to be inattentive, only sporadically

updating their information sets and price plans at optimally chosen dates. Because the adjustments

occur at certain dates regardless of the state of the economy at these dates, the model provides

a micro-foundation for time-contingent adjustment. After characterizing the optimal behavior of

inattentive agents, I aggregate over many such agents and explicitly characterize the dynamics of

aggregate variables in this economy. The inattentive economy exhibits nominal rigidity, since prices

only adjust with a delay to shocks. It can therefore be used to study inflation and its relation with

real variables, and I do this by contrasting the model’s predictions for inflation with data from

different periods in U.S. history.

There are a few papers that are more closely related to this one. Caballero’s (1989) derivation

of time-dependent rules from first principles is a precursor to some of the calculations in this paper.

He considers a more restricted choice of planning dates though, and focuses on a different set of

issues. Bonomo and Carvalho (2003) provide a model of optimal time-contingent price adjustment,

but one in which prices must be fixed in between adjustments rather than following possibly time-

varying plans, as in the model in this paper. Burstein (2002) presents a sticky plan model in which

prices also follow pre-determined plans that are only sporadically updated. The price-setters in

his model have full information each instant and use it to decide whether to adjust their plan.
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In the model in this paper instead, consistent with the underlying assumption that information is

costly, not just price plans but also information sets are updated sporadically. Finally, Woodford

(2003b) and Moscarini (2003) model inattentiveness by price-setters using the alternative Sims’

(2003) approach. The model that I use and Sims’ model seem to lead to similar predictions. This

paper’s development of the inattentiveness model should make future comparisons possible. While

this is an important research topic, I do not pursue it here.

The paper is organized as follows. Section 2 states the problem facing producers. Section 3

answers a first question: will the inattentive agent set a plan for prices or for quantities? Section

4 solves the problem of how often to adjust and examines the determinants of inattentiveness.

Section 5 aggregates the behavior of many inattentive agents. Section 6 uses these results to set

up a model of inflation. Sections 7 and 8 contrast the model with data, and section 9 concludes.

2 THE INATTENTIVE PRODUCER’S PROBLEM

2.1 An informal description of the problem

This paper studies the problem of a monopolist producer of a perishable good. Both the production

technology and the demand for the good are uncertain and can change every instant so that to

obtain the full information first-best profits, the producer would have to observe the determinants

of costs and demand every instant. The assumption in this paper is that this entails a cost, namely

that it is costly to acquire, absorb, and process information. It is costly to acquire information in

the sense of collecting all the pieces of information that are relevant to assess the current state of the

world. It is costly to absorb information in the sense of compiling this information into the relevant

sufficient statistics needed to make optimal decisions. And it is costly to process information in the

sense of coming up with the optimal action and implementing it.

For a typical producer, these costs stand, for instance, for the costs of keeping detailed accounts

of sales, the costs of monitoring and assessing the different stages of production, and the payments

to outside consultants for their advice. Radner (1992) made the following insightful observation.

Management is essentially about processing information and making decisions. In 1987, 47% of

the U.S. workforce was employed in managerial occupations and the number is likely higher today.

Even if only a small fraction of these people’s time is spent at acquiring, absorbing, and process-

ing information towards making optimal decisions, the costs of doing so can be very substantial.

Zbaracki et al. (2003) directly measured the costs incurred by a large U.S. manufacturing firm

4



associated with setting its price catalog. These were as high as 1.2% of the company’s revenue and

20% of its net margin.

Facing these costs, the producer optimally chooses to only update her information sporadically,

and to be inattentive to all new information in between adjustment dates. When she does obtain

information, she decides: whether to set prices or quantities; which price to charge or which quantity

to sell for the duration of the plan; and when next to plan. This plan of conduct is set conditional

on the information at the current planning date.

To illustrate these three decisions, consider the example of a fictional baker. Her first decision

is on which variable to write a plan on: price or quantity. If the producer plans to set a price, then

she commits to produce whatever amount is required to let the market clear. That is, if she sets a

price for her bread, she will keep the oven burning and bread coming out as long as customers are

walking through the door.

The baker could instead choose to produce a certain number of breads and give them to a seller.

This seller would then take the bread to the market and distribute it among homes and shops. She

will charge whatever positive price is necessary to sell all the bread today, since by the end of

the day the bread goes bad and becomes worthless. At the end of the day, the seller returns the

proceeds from the sales of the bread to the baker.

Facing this option of prices versus quantities, the baker forms an expectation of her profits under

the two alternatives and chooses the most profitable one. In both cases, an important assumption

that I maintain is market clearing. In the case of a price plan, this implies that some mechanism

in the economy directs consumers to the baker’s shop as long as their marginal utility of bread is

above the posted price. In the case of a quantity plan, there is some mechanism in the economy

that acts as a seller finding the price that clears the market. These mechanisms serve the purpose

of the Walrasian auctioneer that economists routinely assume to ensure that markets clear. While

fictional, this auctioneer serves a key role to ensure the consistency of equilibrium economic models.

Ideally, one would want to model equilibrium in a way that more explicitly takes into account the

information limitations that this paper emphasizes. Barro and Grossman (1971) made important

progress in this direction but this remains a challenge for research.

Having decided what to plan, the producer must then decide the content of the plan. If the

baker chooses a price plan, this consists of choosing which prices to charge until the next planning

date. If she chooses a quantity plan, the content of the plan is a path for the quantity to produce

until the next planning date. In both cases, she will make the decision that maximizes expected
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future profits.

The final decision is when to plan again. When the producer plans today, she decides on the

content of the plan as well as on its horizon. When she reaches the end of the optimally chosen

planning horizon, she obtains new information and writes a new plan. On the one hand, if the

variance of forecast errors grows with time then the longer it has been since the last planning date,

the more costly it is to be inattentive since the actions taken under the current plan are severely

outdated. On the other hand, by extending the horizon of the plan, the producer saves on the costs

of planning. Sufficiently far in the future, the cost of following an outdated plan becomes too high

relative to the cost of obtaining information, and it is optimal to stop and plan again.

Readers might wonder whether there isn’t some information that the producer can costlessly

obtain. For instance, why can’t the baker observe the quantity she sold at the end of the day at

her fixed price, or hear from the seller at which price did she sell the bread? The answer is that, in

principle, she can. But then, the baker must use this one piece of information to infer the current

state of demand, and collect a myriad of other pieces of information that affect the consumer’s

taste for bread or disposable income that will determine demand tomorrow. Moreover, the baker

must go through its entire production process and realize how much exactly did she pay for each

factor of production and how long it took to combine them to make bread, as well as forecast how

all of these are expected to change by tomorrow. Even if some of the information is costless to

acquire, it is still costly to absorb and process this information to change the optimal plan. The

basic assumption in this paper is not inconsistent with people being aware of some events, as long

as it is still costly to think through this information.1 Moreover, as I will show later, even tiny

costs of information can generate substantial inattentiveness.

2.2 The formal problem

The monopolist produces a single perishable good with a stochastic technology represented by a

continuous and smooth cost function C(Y, s) : RS+1 → R. The quantity produced is denoted by Y

and s is a vector stochastic process with S components standing for the different relevant bits of

information. The demand for this product is also stochastic and is represented by the continuous

and smooth function Q(P, s) : RS+1 → R, where P stands for the price charged. I assume that

1An alternative assumption is that the producer can costlessly acquire a few pieces of information every instant,
costlessly absorb these into a sufficient statistic, and costlessly use these to evaluate an optimal plan. Still, as long as
there is some other independent information that can only be acquired, absorbed, and processed at a cost, the model
in this paper is still applicable. The inattentiveness is now only with respect to the costly pieces of information.
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demand is always positive and falls with the price being charged.

The stochastic process st is defined on a standard filtered probability space with filtration

F = {Ft, t ≥ 0}. I assume that st has the Markov property and, without loss of generality, that it
is arranged so that it is first-order Markov. The state at a given date t+ τ is then a function of st

and a set of innovations uτ = (ut, ut+τ ], so that I can write st+τ = Ψ(st,uτ ) to denote the transition

between the state at date t and the state at date t+ τ .

The planning dates are denoted by the almost surely non-decreasing function D(i) : N0 → R

with D(0) = 0. The periods of inattentiveness are defined as d(i) = D(i) − D(i − 1). The

optimal choice of planning dates defines a new filtration = = {=t, t ≥ 0} such that =t = FD(i) for

t ∈ [D(i),D(i + 1)). The restriction imposed by a plan is that the producer’s choices at time t
must be measurable with respect to =. That is, her choices for time t must be conditional on the
information she has at time t, which coincides with the available information in the economy at

her last planning date.

The producer maximizes expected profits conditional on her information. If at time t she sets

a price, she obtains profits:2

ΠP (sD(i), t−D(i)) = max
Pt

E[πP (Pt, st)] = max
Pt

E [PtQ(Pt, st)− C(Q(Pt, st), st) | =t] . (1)

The solution is a function of the state at the last planning date sD(i) and of the time since the last

planning. Given the Markov assumption, these are sufficient statistics. If the producer chooses a

quantity to sell, she obtains

ΠY (sD(i), t−D(i)) = max
Yt

E[πY (Yt, st)] = max
Yt

E
£
Q−1(Yt, st)Yt −C(Yt, st) | =t

¤
, (2)

where Q−1(P, s) : RS+1 → R is the inverse demand function. Since the producer can choose either

a price to charge, or a quantity to set, her profits are

Π(sD(i), t−D(i)) = max
©
ΠP (sD(i), t−D(i));ΠY (sD(i), t−D(i)); 0

ª
.

The third possibility allows the firm to shut down if profits are negative.

I make the following assumption on this problem:

2 I will denote the expectation conditional on the information at the current planning date by E[.].
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Assumption 1 The functions C (., .) and Q(., .) are such that:

i) The maximization problems leading to ΠP (s, t) and ΠY (s, t) are well defined for all s and t;

namely, the problems have a solution and expectations can be formed.

ii) ΠP (s, t) and ΠY (s, t) are finite for all possible s.

iii) Π(s, t) is continuous.

Whenever the agent updates her information and plans, she incurs a non-negative finite cost

given by the continuous function K(st) : RS → R. Producers maximize the expected present

discounted (at the rate r > 0) value of profits including planning costs

J(s0,D) = E

( ∞X
i=0

ÃZ D(i+1)

D(i)
e−rtΠ(sD(i), t−D(i))dt− e−rD(i+1)K(sD(i+1))

!)
(3)

by choosing a sequence of planning dates D = {D(i)}∞i=0 that is =−measurable.
This problem has a recursive structure between adjustment dates. Letting s denote the state

at the current planning date and sd the state at the next planning date, I can write the problem as

V (s) = sup
d

½Z d

0
e−rtΠ(s, t)dt+ e−rdE [−K(sd) + V (sd)]

¾
subject to : sd = Ψ(s,ud). (4)

Because I passed the expectations operator through d, I have imposed the constraint that the date

of the next plan must be conditional on the information at the current planning date. Bellman’s

principle of optimality then implies that:3

Proposition 1 The dynamic program in (4) has the same solution as maximizing (3):

V (s) = sup
D

J(s,D).

There is a well-defined, continuous, finite, and unique value function solving this problem, and a

set of necessary first-order conditions characterizing the solution.

The problem in (4) may strike some readers as similar to the regulated Brownian motion prob-

lems familiar to optimal stopping situations. However, in those problems, the producer observes the

3The appendix contains the proof of this and all the other propositions.
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state of the economy every instant and decides whether to adjust or not. Adjustment is then state-

contingent. In the inattentiveness model instead, in between adjustments the producer is getting no

new information. Whereas regulated Brownian motion problems lead to adjustments contingent on

the current state of the economy, inattentive agents adjust at optimally chosen dates regardless of

the state of the economy at those dates. The optimal planning intervals are not necessarily always

the same though since they depend recursively on the state of the economy at the last adjustment

date. Adjustment with inattentiveness is therefore recursively time-contingent, independent of the

current state, but a function of the state at the last adjustment.

3 WHAT TO PLAN

The producer must first choose whether to set a plan for prices or a plan for quantities.4 An

immediate result is:

Proposition 2 If demand is certain, the producer is indifferent between price and quantity plans.

The proof is straightforward: if the demand function is fixed, then setting a price fixes a quantity,

and setting a quantity fixes a price. The producer can choose a price-quantity pair in the stable

demand function. While being inattentive may be costly, it is equally so wether the plan is set in

terms of prices or quantities.

Shocks to demand break this equivalence between price and quantity plans, since setting one

leaves the other to vary with the shocks to ensure market-clearing. Starting with the case of

constant marginal costs and considering demand shocks in isolation leads to the following result,

where Qx stands for the partial derivative of the demand function with respect to argument x:

Proposition 3 With constant marginal costs, up to a second order approximation in the size of

the shocks to demand ksk, plans for prices are preferred if and only if

QsQps +

µ
− Q2s
2Qp

¶
Qpp ≤ 0 (5)

where all the functions are evaluated at the point where s = E [s]. A sufficient, but not necessary,

condition is that −QpsP/Qs ≥ 1.

4Weitzman (1974) studies a related but different problem. He asked whether a central planner should fix ex ante
the demand for a product in terms of price or quantity, knowing the firm will respond to shocks. The problem in this
paper is the exact opposite. It is the firm that is commiting ex ante and demand that is moving with shocks.
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If the condition holds as an equality, the firm is indifferent between the two types of plans, and if

the inequality is reversed, plans for quantities are preferred.

To understand the intuition behind this result, consider the case of a monopolist with a zero

marginal cost of production facing a linear demand curve with slope −1 subject to a scalar multi-
plicative shock with an expected value of 1. The condition for price plans to be preferred becomes:

QsQps < 0. Graphically, in (Y,P ) space, this implies that when it shifts out, the demand curve

becomes flatter; when it shifts in, the demand curve becomes steeper. This is depicted in figure

1. The optimal price is P ∗ and the optimal quantity is Y ∗ where the 45 degree line intersects the

demand curve. If a shock shifts demand out, with a price set at P ∗, the producer will now sell

Y 0, which raises profits by the area of the rectangle ABY 0Y ∗. With a quantity plan, the producer

will sell at price P 0 and profits increase by the area of ACP 0P ∗. Clearly, price plans raise profits

by more if AB > AC. But, since under condition (5), this positive demand shock (Qs > 0) makes

the demand curve flatter (Qps < 0), it must be that AB > AC. Conversely, a negative demand

shock shifts the demand curve inwards and makes it steeper. A price plan sells Y 00 units, while a

quantity plan charges P 00. Since demand is steeper, AD < AE, so price setting leads to smaller

losses. Therefore, if (5) holds, with price plans rather than quantity plans, positive shocks lead to

larger gains and negative shocks to smaller losses. The producer therefore prefers price plans, as

stated in the proposition.

Now let the demand function have some curvature (Qpp 6= 0). Figure 2 plots the case of an

outward shift in demand, but now in the case when Qps = 0 so the slope is unchanged and we can

focus on the second term in (5). According to the proposition, the producer prefers price plans if

Qpp < 0. From the figure, clearly if the demand function is linear then AB = AC, and the producer

is indifferent between the two plans. Fixing the horizontal dislocation of the demand curve after

the shock, and letting the demand curve now be concave, under a quantity plan price increases only

by AD. Since AB > AD, price plans are preferred. The case of a negative shocks works likewise.

Table 1 evaluates proposition 3 for a few commonly used demand specifications. Notably, with

the iso-elastic demand function with multiplicative shocks that is often used in macroeconomics

and international economics, price plans are preferred (case (i)). With the logistic specification

commonly used in empirical studies of market demand in microeconomics and industrial organiza-

tion, as long as the constant in the logistic regression is not too large so the firm does not capture

a very large amount of the market share, price plans are also preferred (case (ii)). These cases are

fortunate since casual observation seems to point towards price plans in the world. At least for
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Figure 1: Price vs. Quantity Plans — Linear Demand
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the common specifications of demand used by economists, the model predicts this should be the

case. More generally, if the demand function is subject to either additive or multiplicative shocks,

a sufficient condition for price plans to be preferred is that the demand function is concave with

respect to price (cases (iii) and (iv)).

Table 1 — Price or quantity plans for different specifications of demand

Case Demand function Parameter restrictions Preferred plan

(i) Y = sP−θ θ > 1 price

(ii) Y = 1
1+ebP−s b > 0 price if E[s] ≤ 2

quantity otherwise

(iii) Y = f(P ) + s fp < 0 price if fpp ≤ 0
quantity otherwise

(iv) Y = sf(P ) s > 0, f > 0, fp < 0 price

Consider now the more general case in which both demand and technology are subject to shocks

and are described by arbitrary demand and cost functions. Then:

Proposition 4 Up to a second order approximation in the size of the shocks to demand ksk, plans
for prices are preferred if and only if

QsQps +

µ
− Q2s
2Qp

¶
Qpp +

Q2p
2Q

¡
CqqQ

2
s + 2CqsQs

¢ ≤ 0 (6)

where all the functions are evaluated at the point where s = E [s].

There are two new terms in equation (6) involving the slope of marginal costs. The first

term shows that decreasing marginal costs (Cqq < 0) provides an extra incentive for price plans.

Intuitively, recall that the optimal quantity sold with full information is determined by marginal

costs equalling marginal revenue. If marginal costs are steeply increasing, then shifts in marginal

revenue have a small impact on the optimal quantity sold, so that a quantity plan is close to

optimal. If instead marginal costs are decreasing, shifts in demand lead to a large discrepancy

between the optimal quantity and the one set by a plan and this explains why Cqq < 0 makes

price plans preferred. This effect was emphasized by Klemperer and Meyer (1986) in their study of

whether the strategic interaction between firms is best described by the Bertrand or the Cournot
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models. The second new term shows that if an outward shift of demand (Qs > 0) lowers marginal

costs (Cqs < 0) then price plans are preferred. Intuitively, following the shock, a quantity plan

leads to a higher price being charged, but lower marginal costs imply that a lower price should be

charged. Following a quantity plan is therefore more costly, so a price plan is preferred.

Overall, whether in the world we observe price of quantity plans and whether the choice is as

predicted by the model, are interesting questions. The difficulty is to find data on which type of

plan firms follow.5 If such data is available though, the results in this section together with those

in Klemperer and Meyer (1986) provide a number of predictions that can be tested.

4 THE DETERMINANTS OF INATTENTIVENESS

4.1 The optimality conditions

Recall that optimal inattentiveness solves:

V (s) = max
d

½Z d

0
e−rtΠ(s, t)dt+ e−rdE [−K(sd) + V (sd)]

¾
subject to : sd = Ψ(s,u

d) (7)

The necessary first-order condition for optimality is:

Π(s, d) + rE [K(sd)] = E

·
rV (sd) + (Ks(sd)− Vs(sd))

∂Ψ(s,u
d)

∂d

¸
(8)

On the left-hand side is the marginal cost of adjusting and on the right-hand side is the marginal

benefit; at an optimum the two are equated. The marginal cost equals the sum of two components:

the loss in profits earned without adjustment and the flow value of the fixed cost of planning. The

marginal benefit has two components as well. The first is the value of being at a planning date.

The second captures the changes in planning costs and in the value of being at a planning date

that comes with delaying the adjustment. These are the benefits from adjusting today by avoiding

larger costs of adjusting tomorrow, and by capturing the future value of having adjusted today

rather than tomorrow when this value is expected to be lower.

5An exception is Aiginger (1999), who asked a sample of managers of 930 Austrian manufacturing businesses
“What is you main strategic variable: do you decide to produce a specific quantity, thereafter permitting demand
to decide upon price conditions, or do you set the price, with competitors and the market determining the quanity
sold?” In response, 68% of managers professed to follow price plans, while 32% admitted to quantity plans.
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Another set of optimality conditions are the envelope theorem conditions with respect to each

of the components of the state vector s:

Vj(s) =

Z d

0
e−rtΠj(s, t)dt+ e−rdE

h
(−Ks(sd) + Vs(sd))Ψj(s,u

d)
i
. (9)

Equations (7)-(9) characterize the solutions V (s) and d(s) of the optimal inattentiveness problem.

4.2 A general approximate solution

The dynamic program in (7) can be easily solved numerically. Analytically, in general, the optimal

inattentiveness is a complicated function of the state of the economy. However, a simple approxi-

mate solution can be found by perturbing the problem around the point where the costs of planning

are zero. This approach requires only that V (s) and d(s) are locally differentiable with respect to

the costs of planning. Define the function F (s, t) : RS+1 → R as the difference between profits

earned with full information and profits earned while following a pre-chosen plan. Then:

Proposition 5 A perturbation approximation of the optimal inattentiveness around the situation

when planning is costless is:

d∗(s) =

s
2K(s)

Ft(s, 0)
.

This solution shows that inattentiveness is determined by two factors. First, the larger are the

costs of planning, the longer is inattentiveness. Moreover, since d∗(.) is of order
√
K, second order

costs of planning lead to first-order long inattentiveness. The reason is that inattentive agents are

near-rational in the Akerlof and Yellen (1985) sense. While optimal inattentive behavior differs

from optimal behavior with full information, because the profit function is flat at a maximum, this

deviation only has a second order effect on profits (Mankiw, 1985). The agent is therefore willing

to tolerate a first-order period of inattentiveness with only second order costs of planning since the

inattentiveness involves a loss in profits that is also only second order.

The second determinant of inattentiveness is Ft(.). The faster the losses from being inattentive

accumulate, the shorter is inattentiveness. This could be the case if demand or production are very

volatile so that larger forecast errors of the future are more likely. Another reason for a large Ft is if

profits are very elastic with respect to price or quantity, so that small errors due to inattentiveness

lead to large losses. In these cases, it is more costly to be inattentive, so the agent plans more

often.
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4.3 The iso-elastic case

One special case is worth solving more explicitly. It is common to assume that demand is iso-

elastic with multiplicative shocks, Q(εt, Pt) = εtP
−θ
t , where ε is a non-negative demand shock with

expectation ε̄, and θ > 1 is the elasticity of demand. I further assume that the marginal cost of

production, s, follows an independent geometric Brownian motion with volatility σ > 0 and that

planning costs a fixed share κ of profits.

Using the result in table 1, in this case the producer sets a plan for prices. To maximize profits,

she charges:

Pt =
θ

θ − 1E [st] . (10)

An interesting property of this demand function is that the optimal price does not depend on shocks

to demand. If there were no technology shocks, the producer could be inattentive forever. She does

not need to monitor the shocks to demand to set her optimal price.

With shocks to technology, the following result holds:

Proposition 6 Under the assumptions in this section, optimal inattentiveness is the solution of

the equation:

2re−
θ(θ−1)σ2

2
d∗ − θ(θ − 1)σ2e−rd∗ + £θ(θ − 1)σ2 − 2r¤ (1− κr) = 0

This solution is independent of the states of demand or production. If κ > 1/r, it equals infinity.

If κ < 1/r, then d∗ is unique and finite, and it increases with κ, decreases with σ2, and increases

with θ. In the vicinity of κ = 0, it approximately equals:

d∗ =

s
4κ

σ2θ(θ − 1)

This result illustrates the determinants of inattentiveness. First, inattentiveness is larger, the

larger are the costs of planning, and it is first-order long with second-order planning costs. Second,

more volatile shocks lead to more frequent updating since inattentiveness is more costly in a world

that is rapidly changing. Third, a smaller price elasticity of demand implies that the optimal price

is less responsive to fluctuations in marginal costs. The inattentive price is therefore on average

closer to the full information price, so the loss from being inattentive is smaller. Thus, the agent

stays inattentive for longer.

15



There is some evidence in favor of this last prediction. Bils and Klenow (2002) find that

variables capturing the flexibility of demand account for much of the variation in the frequency of

price adjustment across goods. For instance, most goods sold in supermarkets and grocery stores

have very elastic demands since there is intense competition in these goods from multiple stores

and brands. These prices are among those that seem to change more often in response to market

conditions. In opposition, consider the 10 most infrequently revised prices in the United States

according to Bils and Klenow (2002). Four of these are fees set by the government, while another

three are coin-operated machines and magazines, for which there are clear high physical cost of

changing prices. That the prices of these 7 goods are adjusted very infrequently is not mysterious.

The other three are more interesting: vehicle inspection, legal fees, and safe deposit box rentals.

Note that these are goods for which demand is likely not very sensitive to prices, thus supporting

the prediction of the model.

4.4 Real and nominal rigidities

More generally, it is common in macroeconomics to consider a world in which there are many

identical firms indexed by j, each a monopolist setting the price of a good facing a state of the

economy composed of the price level, P , the level of aggregate demand, Y , and a vector of shocks

to productivity, A. The profit function then becomes π(p(j) − p, y, a), where small letters denote

the logarithms of the respective capital letters. The natural level of output, yn, is defined as the

output level if the costs of planning are zero so all the producers are attentive. The appendix shows

that for an individual producer in an inattentive economy, a second order log-linear approximation

of optimal inattentiveness around where the shocks equal their expected value is:6

d∗ =
2

α

s
K

−πppV ar [y − yn]
. (11)

An important determinant of optimal inattentiveness is α, which equals −πpy/πpp. Ball and
Romer (1990) named this last parameter the inverse of an index of “real rigidities.” The reason for

this label is that a first order log-linear approximation shows that a producer wishes to set its price

equal to p+ α(y − yn). The parameter α therefore measures how much the firm wishes to change

its price in response to shocks. If α is small, keeping a price unchanged in response to a shock is

close to being optimal. Being inattentive then involves a small cost, so producers are inattentive

6 If the random variables follow Ito processes, this result is exact.
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for longer, precisely as we see in equation (11). Longer inattentiveness in turn implies that prices

react with a longer delay to shocks, so having a low α is the key property of the profit function

that ensures substantial nominal rigidities. This is the Ball and Romer (1990) result applied to the

inattentiveness model.

5 AGGREGATION

5.1 Aggregation with identical firms

In an economy with many inattentive producers, can we say anything in general about how their

decisions dates are distributed? At first, one might expect that this distribution depends so tightly

on the assumptions about the individual producers, that little can be concluded in general. Sur-

prisingly, it turns out that there are some very general answers to this question.

Assume that there are many producers in the economy. The sequence of planning dates for each

producer D = {D(i)}∞i=1 forms a sequence of stochastic increasing events, while the inattentiveness
intervals {d(i)}∞i=1 are a sequence of non-negative random variables. I assume that the probability

that two or more decision dates occur simultaneously for a given producer is zero. This is a

statement that the costs of planning are positive almost surely. I also assume that planning dates

are not always integral multiples of some non-negative number, so D is not a lattice. That is, I

assume that firms do not always stay inattentive for d∗ periods, or 2d∗ periods, or 3d∗ periods, or

so on. While this case could be considered, I prefer to focus on the more interesting case where

inattentiveness varies randomly with changes in the profits of firms and the costs of planning.

Given that a decision occurred at date 0, let f1(t) be the probability density function (p.d.f.)

for d(1) = t. The p.d.f. for how long the next inattentiveness period will last is denoted by f2(t),

and so on, so that fi(t) is the p.d.f. for the duration of d(i). I assume that:

Assumption 2 The functions fi(t) are:

i) mutually independent;

ii) independent across producers;

iii) the same for all producers.

Independence of decisions dates is convenient since then I only need to keep track of when was the

last decision date for each producer. The assumption that all producers are independent and alike

in turn allows me to interpret fi(t) as the actual fraction of agents that are revising their plan at
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a given instant in time.

While assumption 2 preserves great generality for the results that follow, it does restrict the

domain of the problem. For instance, (i) implies that no permanent shocks are allowed to the

producer’s computational ability. This excludes events such as the introduction of a new accounting

system in a firm that allows it to process information at a lower cost from then onwards. The

assumption that inattentiveness is independent across firms in turn precludes aggregate shocks to

information processing ability, such as for instance the introduction of computers or the Internet.

Finally, (iii) precludes the study of the case of some firms, due to better organization, management,

or economies of scale, having lower information processing costs. Note that (iii) is not a crucial

assumption: I will relax it later in this section. Parts (i) and (ii) of assumption 2 on the other hand

are important for the results that follow. One cannot get results without making some minimal

assumptions so I leave for future research the task of relaxing these.

It is useful to introduce the following functions:

Fi(t) - the cumulative density function associated with fi(t),

Gi(t) - the probability that have not planned since date D(i− 1), i.e., Gi(t) = 1− Fi(t),

Ai(t) - the age of a plan, i.e., At = t−D(i− 1) for D(i− 1) ≤ t < D(i),

Vi(t) - the remaining duration of the plan, i.e., Vi(t) = D(i)− t for D(i− 1) ≤ t < D(i),

Ii(t) - the number of plans made by date t, i.e., I(t) = {i : D(i) ≤ t < D(i+ 1)},
H(t) - the mean number of planning dates until t, i.e., H(t) = E [I(t)],

ρ - the long-run mean number of planning dates in a unit of time, i.e., ρ = 1/E[d(i)] as t→∞.
Together, these different functions characterize of the distribution of producers in the economy.

I wish to focus on the properties of an economy that has settled at a steady state after operating

for a very long time. Towards this, I introduce the following:

Definition: The distribution of inattentiveness across firms is

(i) stationary, if for any t > 0 and any x ≥ 0, the probability of x decision dates in the interval
(a, a+ t) is the same for all a ≥ 0;

(ii) an equilibrium, if it is the limit of the system as t −→∞.

I focus on studying the stationary equilibrium distribution of inattentiveness across firms.

Given this setup and without any further assumptions, the following remarkable result holds:

Proposition 7 Under assumption 2, the only stationary equilibrium distribution function for inat-

tentiveness is the exponential distribution with parameter ρ. The distribution G(t) and the distri-
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butions of A(t) and V (t) are all exponential with parameter ρ.

The process of arrival of decision dates is therefore a Poisson process with parameter ρ. That is,

if at any point in time, we survey the producers on how long ago they last planned, we will find

that the share not having planned for x periods equals ρe−ρx. Every instant, the share of firms

planning is constant and equal to ρ. This is a fortunate result. The exponential distribution is easy

to manipulate and its memoryless property allows for tractable aggregation and dynamics.

5.2 Heterogeneous firms

I now drop the requirement that the producers are identical. I still require parts (i) and (ii) of

assumption 2, and I further assume that the inattentiveness distribution of each individual agent

is stationary.

If each producer has been in operation for a long time, then its distribution of inattentiveness

will have converged to the exponential distribution, according to proposition 7. Whatever the

characteristics of firm j, proposition 7 states that, with regards to the length of inattentiveness,

they can all be summarized by the intensity of attention ρ(j). Then:

Proposition 8 In an economy with J firms, each with an intensity of attention of ρ(j), and

each being at its individual stationary equilibrium distribution of inattentiveness, the distribution

of inattentiveness across firms is exponential with parameter ρ =
PJ

j=1 ρ(j).

That is, with each firm’s planning dates arriving as a Poisson process, the economy’s planning dates

arrive as a Poisson process as well. This is an exact result that holds even if there are only J = 2

firms in the economy.

An even more general result can be established though, by not requiring that each firm has

reached its equilibrium distribution. This can be important if there is substantial entry and exit of

firms in the economy. At any date, there will be a significant number of firms that have only been

in business for a short time and so whose inattentiveness is not well described by proposition 7. In

this case, I introduce two new assumptions: (1) that as J → ∞, then PJ
j=1 ρ(j) tends to a finite

constant ρ; and (2) that after a decision date, the probability of there not being a new decision

date by the same producer at some point in the next ∆—length period, should tend to unity equally

for all producers as ∆ tends to zero. Both conditions are aimed at diminishing the probability that

one producer accumulates a large number of decision dates in a short period of time and dominates
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the cross-sectional distribution. An application of a famous result known as the Palm-Khintchine

theorem then states that:

Proposition 9 As J →∞, the distribution of inattentiveness across firms tends to the exponential
distribution with parameter ρ.

The combination of propositions 7, 8 and 9, provide a strong case for using the Poisson process to

model the arrival of decision dates in the aggregate economy. Some intuition for these results can be

found in other common physical phenomena. Consider a large telephone exchange which receives an

incoming stream of pooled telephone calls from many different independent individuals. Or consider

the places where flying bombs from many different sources hit the south of London during World

War II. Another example is the arrival of goals at the many different matches that compose the

World cup soccer tournament. The distribution of phone calls arrivals, the spatial distribution of

bombs, and the distribution of arrival of World cup goals are all, essentially, analogous phenomena

to the arrival of the decision dates of agents in an inattentive economy.

These analogies are interesting because while it is difficult to measure the inattentiveness of

economic agents, these other three physical phenomena are easily observed. A well-known statistical

regularity is that all of these physical phenomena empirically follow a Poisson process. In turn, these

observations motivated Khintchine (1960) to prove a theorem that provides a precise mathematical

justification for these facts, of which proposition 9 is an application. Both mathematics and empirics

therefore provide a strong case for exponentially distributed inattentiveness.

6 AN APPLICATION: A MODEL OF INFLATION

6.1 The model

Assume that there are many identical firms (a continuum) indexed by j. Each produces a differ-

entiated good facing a constant price elasticity demand function: Yt(j) = Yt(Pt(j)/Pt)
−θ. They all

operate a linear production technology Yt(j) = AtLt(j), that uses Lt(j) units of labor to produce

Yt(j) units of output subject to exogenous stochastic labor productivity At. They hire labor in

the market paying a real wage Wt(j)/Pt. The labor supply function is ω(lt(j), yt), where again

small letters denote the logarithms of the respective capital letters. It increases with the amount

of labor supplied, with an elasticity of ψ, and increases with aggregate income, with an elasticity of

σ, through a standard income effect that makes agents prefer more leisure in good times. Finally,
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assume that the costs of planning are a constant fraction κ of profits at the time of planning. This

will make it easier to calibrate this parameter.

The profit function then is of the form π(pt(j)− pt, yt, at) that I studied in section 4.4. A first

order log-linearization shows that a firm that last planned at time D charges at time t:

pt(j) = ED [pt + α(yt − ynt )] .

The natural level of output is the output in the economy if agents are attentive. A first order

log-linearization shows that ynt −E[yt] = 1+ψ
σ+ψ (at −E[at]). The parameter α is the Ball and Romer

(1990) index of real rigidities, which in this economy equals:

α =
σ + ψ

1 + θψ
.

Finally, to close the model, I postulate an exogenous stochastic process for nominal income

mt = pt + yt. This limits the applicability of the model, since it is difficult to think of realistic

fiscal or monetary policy shocks as shocks to nominal income. Nevertheless, while monetary policy

does not control mt, it certainly affects it. It is important for monetary policy to understand the

relation between nominal income and inflation, even leaving aside the link between the direct policy

instruments and nominal income.

More generally, the assumptions that mt is exogenous and of a given labor supply function ω(.)

allow me to abstract from the consumption and leisure decisions made by inattentive households and

on their interaction with inattentive producers. For the purpose of studying inflation and its links

to productivity and nominal income, these assumptions are not too restrictive since most existing

models share this structure. However, while the model allows for a general study of inflation, it is

not adequate to study other macroeconomic variables, such as, for instance, real wages. To do so

would require building up the consumption and labor supply sides of the model.7

6.2 The type of plan and length of inattentiveness

The theoretical results proven so far can be applied to this problem. The first result is that since

demand has a constant price elasticity and is subject to multiplicative shocks, table 1 implies that

firms will set plans for their prices.

7Reis (2003) studies the behavior of inattentive consumers so, in principle, one could build a model with both
inattentive consumers and producers. For now, I leave this for future work.
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The second main theoretical result concerned the optimal choice of the length of inattentiveness.

Equation (11) provided an approximation to this choice. Using the profit function for this model,

this formula becomes:

d∗ =
2

α

r
κ

θ(θ − 1)(ψ + 1)V ar [yt − ynt ]
. (12)

To assess the predictions of the model for inattentiveness, consider different possible parameter

values. For θ, σ and ψ, my preferred parameter values are: θ = 10, since it implies a markup of

about 11% which is approximately consistent with the estimates in Basu and Fernald (1997); σ = 1,

so that real wages and real output grow at the same rate in the long run; and ψ = 1/0.15, to match

the estimates of the elasticity of labor supply surveyed in Pencavel (1986). The baseline calibration

in Chari, Kehoe and McGrattan (2000) differs only in ψ, since their parameter choices imply that

ψ = 1.25. Rotemberg and Woodford (1997) estimate using aggregate data that θ = 7.88, σ = 0.16,

and ψ = 0.47. Finally, Ball and Romer (1990) set σ = 0, and use observations on the average

markup and the elasticity of labor supply to prefer the values θ = 7.8 and ψ = 6.7.

Using the benchmark value of σ = 1, then up to a constant ynt = at = log(Yt/Lt). I therefore

use log output per hour to measure ynt . I measure yt by quarterly real GNP and use an Hodrick-

Prescott filter to isolate the cycle in the output gap. The standard deviation of yt − ynt in the U.S.

data from 1954 to 2003 is 0.014.

Finally, one must choose a value for the costs of planning as a share of profits. Zbaracki et al.

(2003) followed a large U.S. manufacturing firm through its decision process, and estimated how

much it cost for this company to set a new price catalog. A conservative use of their estimates that

considers only the costs that are internal to the firm is 4.6% of the company’s net margin. However,

the accounting definition of the net margin may not be the most adequate measure of profits in

this model. Using instead the Zbaracki et al. (2003) estimates of the costs of planning as a share

of total costs leads to an estimate of 2.8%. I will also consider the impact on inattentiveness of

having lower costs of planning, namely 1% and 0.1%.
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Table 2 — Optimal expected length of inattentiveness in quarters

Parameter combinations (θ, σ, ψ)

Baseline Chari et al. Rotemberg-Woodford Ball-Romer

(10, 1, 6.7) (10, 1, 1.25) (7.88, 0.16, 0.47) (7.8, 0, 6.7)

Costs 0.046 10 13 26 12

of 0.028 8 10 20 9

planning 0.010 5 6 12 6

0.001 2 2 4 2

Table 2 shows the predictions from equation (12) for the average quarters of inattentiveness. A

first result to take away from the table is that very small costs of planning can lad to considerable

inattentiveness. Even when it costs only 0.1% of profits to plan, producers only plan about every

6 months. A second conclusion is that for the baseline parameters and the Zbaracki et al. (2003)

estimates of the costs of planning, we should expect to see firms changing their plans about every

2 years. The model therefore predicts inattentiveness of a plausible order of magnitude.

One can turn these predictions into a test of the model. Carroll (2003) and Mankiw, Reis

and Wolfers (2003) use data on inflation expectations to infer the speed at which information

disseminates in the economy. Both estimate an average inattentiveness of about one year. For the

four different parameter combinations in the columns of table 2, costs of planning of 0.7%, 0.4%,

0.1%, and 0.5% of profits respectively, would generate an inattentiveness of 4 quarters. Once you

take into account the likely magnitude of estimation errors by Zbaracki et al. (2003), these values

are plausible. The model is therefore consistent with the separate observations on inattentiveness

and the costs of planning.

6.3 The Phillips curve

Up to a first order log-linear approximation, the log price level equals the sum of the logs of prices

set by different producers. If the index of the firms, j, stands for how long has it been since the

producer last updated her plan, then

pt =

Z ∞

0
pt(j)dG(j),
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where G(j) is the distribution of how long it has been since the last adjustment. The third main

theoretical result in this paper can now be used. Because there is an infinite number of firms, the

third main theoretical result states that G(j) tends to the exponential distribution with parameter

ρ which equals the inverse of the average length of inattentiveness. Therefore:

pt = ρ

Z ∞

0
e−ρjEt−j [pt + α(yt − ynt )] dj.

Taking time derivatives and rearranging, inflation is given by:8

ṗt − αρpt = α2ρ(yt − ynt ) + ρ

Z t

−∞
e−ρ(t−s)Es [ṗt + α(ẏt − ẏnt )] ds.

This is a continuous-time version of the sticky information Phillips curve of Mankiw and Reis

(2002). As they showed, it has three desirable features that match the existing evidence. First,

disinflations are always contractionary (although announced disinflations are less contractionary

than announced ones). Second, monetary policy shocks have their maximum impact on inflation

with a substantial delay. Third, the change in inflation is positively correlated with the level of

economic activity.9

Mankiw and Reis (2002) reached this Phillips curve by making three assumptions. First, they

assumed that agents are inattentive, only sporadically updating their information sets. Second, they

assumed that they set plans for prices. And third, they assumed that the arrival of decision dates

is a Poisson process. This paper instead only assumed that there is a cost of acquiring, absorbing

and processing information. It derived inattentiveness as the optimal response of producers to such

costs. It showed the conditions under which agents choose to set plans for prices. And it found that

in a world with many agents, the distribution of inattentiveness converges to the distribution of a

Poisson process. The inattentiveness model provides a micro-foundation for the sticky information

assumptions.

Having this micro-foundation has many advantages. The model can be used to understand other

features of producer behavior aside from pricing, such as for instance the price vs. quantity decision.

Moreover, the model provides a unified framework to study different types of behavior by different

agents. It can be applied to study the actions of consumers, investors, or other economic agents.

This is beneficial not just from the perspective of having a theory that is parsimonious and widely

8 I use the standard notation ẋt to denote the time derivative of a generic variable xt.
9The Calvo (1983) sticky price model, on the other hand, can fit none of these facts.
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applicable, but also empirically, since the model generates predictions across many dimensions that

can be tested in different ways. A further advantage of having a micro-foundation is that it links

the two key reduced form parameters, α and ρ, to preference and technology parameters, which is

helpful in assessing the likely values of these parameters. Moreover, at least since Lucas (1976),

economists have hoped that these parameters are structural in the sense that they do not vary across

different policy regimes and so can be used to reliably evaluate the impact of different policies.

7 CANTHEMODEL FIT THE POST-WARFACTS ON INFLA-

TION?

The two relevant reduced-form parameters of the model are α and ρ. Using the baseline parameters

for θ, σ and ψ, the implied value of α is 0.11.10 For ρ, I use the estimates of Carroll (2003) and

Mankiw, Reis and Wolfers (2003) and set ρ = 0.25 implying an average inattentiveness of 1 year,

which, following the discussion in section 6.2, is also consistent with the other micro parameters.

To specify the stochastic processes for at and mt, I use quarterly U.S. from 1954:1 to 2003:4.

Data for the log output per hour in the nonfarm business sector suggests that at is a random walk,

with a standard deviations of shocks of 0.008. Nominal GNP growth is well described by an AR(1)

with autoregressive parameter 0.39 and a standard deviation of shocks of 0.009.

7.1 Moments and the time-series of inflation

Table 3 uses these parameter values to display the model’s predictions for different moments of

inflation. It also shows the equivalent moments in the U.S. data.

The model fits the data remarkably well. It closely fits the univariate properties of inflation:

mean, variability, and persistence. Moreover, it matches well the correlation of inflation with

nominal income and productivity, both contemporaneously and with 1-quarter leads and lags. The

match is often at the 4th decimal place and, with only one exception, the model’s predictions do

not differ from the empirical moments by more than 0.05.

10The parameter α plays two crucial roles. First, a small α leads to long periods of inattentiveness and so a small ρ
(section 4.4). Second, keeping ρ fixed, a smaller α generates larger real effects of nominal shocks. The reason is that,
the smaller is α, the stronger are strategic complementarities in pricing (Cooper and John, 1988), so the firms that
are adjusting wish to set their individual prices close to those set by non-adjusting firms. Price adjustment is limited,
and so monetary shocks have a large real effect. Using the Chari et al (2000) parameters, α = 0.17, the Rotemberg
and Woodford (1997) estimates, α = 0.13, and the Ball and Romer (1990) parameters, α = 0.13. Woodford (2003a,
pp. 163-173) discusses the calibration of α at length and, taking into account both micro and aggregate evidence, he
concludes that a value between 0.10 and 0.15 is adequate.
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The only significant deviation between the data and the model is that the latter predicts slightly

more serial correlation for inflation than what we find in the data. However, if the measurement of

inflation in the data is polluted with classical measurement error, we should expect the model to

predict too much persistence. If measurement error accounts for the tiny discrepancy between the

standard deviation of inflation in the model and the data (0.0003), then the model would predict

that observed inflation would have a serial correlation of 0.8869, very close to what we observe.

Table 3 — Model vs. data in the post-war U.S.

Model Data

Mean(∆pt) 0.0124 0.0093

St.Dev.(∆pt) 0.0059 0.0062

Corr.(∆pt,∆pt−1) 0.9961 0.8859

Corr.(∆pt,∆mt) 0.3749 0.4263

Corr.(∆pt,∆mt−1) 0.4240 0.3972

Corr.(∆pt,∆mt+1) 0.3555 0.3780

Corr.(∆pt,∆at) -0.2436 -0.2667

Corr.(∆pt,∆at−1) -0.2395 -0.2501

Corr.(∆pt,∆at+1) -0.2067 -0.1619

Notes: The notation ∆xt denotes the quarterly change in variable xt. The model’s predictions

were obtained by simulating the model feeding in the empirical innovations to nominal income and

productivity. In the data column are the sample moments in the period 1960:1-2003:4.

An alternative way to highlight the model’s good fit is to use the empirical innovations to build

a series for predicted inflation and compare it with actual inflation. These two series are plotted

in figure 3. You can see that the predictions of the model track the data remarkably well. The

correlation between predicted and actual inflation is 0.83.

7.2 Impulse responses of inflation

Another test of the model is to examine its predictions for the response of inflation to shocks.

The impulse response of inflation to a shock to mt is particularly important. Policies that affect

demand, such as monetary or fiscal shocks, affect inflation through mt. If the model predicts this

impulse response correctly then it should be useful to policymakers in assessing different policies.
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Figure 3: Actual and predicted U.S. quarterly inflation
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Figure 4 plots the impulse response of inflation to a shock to mt estimated from the data,

together with 95% confidence interval bands.11 The prediction of the model is also plotted in the

figure. Again, the fit is remarkably good. The predicted impulse response is always within the

empirical confidence interval and is close to the point estimates. The model is able to capture well

the magnitude of the impact of shocks to nominal income on inflation, as well as the fact that the

maximum impact occurs 7 quarters after the shock.

Figure 5 plots the impulse response of inflation to shocks to productivity. The model performs

slightly worse here, since its predictions differ from the data significantly in the first 2 quarters

after the shock. Afterwards though, the model’s predictions are within the confidence intervals.

11There is an extensive literature estimating such impulse responses. Figure 4 is consistent with the typical reults
in this literature (see Christiano, Eichenbaum and Evans, 1999).
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Figure 4: Impulse response of inflation to a shock to nominal income
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8 CAN THE MODEL FIT THE PRE-WAR FACTS ON INFLA-

TION?

An important use of models is to predict the effect of different policies. This requires that they are

structural in that they remain valid across different policy regimes. So far, I have shown that the

inattentiveness model can successfully explain inflation in the post-war period. However, during

this time, monetary policy did not go through drastic changes. For the most part, policymakers

aimed at targeting inflation, even if this goal varied in importance relative to other goals such as

stabilizing output.12 As a result, post-war inflation is well-described by a stable stochastic process.

This was not always the case. Before World War I, monetary policy was very different from what

it is now. There was no Federal Reserve system and the gold standard dictated monetary policy,

imposing a de facto target on the dollar price level. Inflation was close to serially uncorrelated, in

stark contrast with the unit-root behavior of the post-war period.

12Romer and Romer (2002) give a fascinating account of the changes in the conduct of monetary policy since 1950.
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Figure 5: Impulse response of inflation to a shock to productivity
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A demanding test of the model is to ask whether it can explain pre-war inflation as well as

post-war inflation. This amounts to asking whether the model survives the Lucas (1976) critique.

I obtain data for the pre-war period from three sources. Kendrick (1961) provides estimates of

output per hour in the nonfarm sector from 1889 to 1913.13 There are two different estimates of

nominal GNP and its deflator from 1869 to 1913, by Romer (1989) and Balke and Gordon (1989).

For the purposes of this paper, the two estimates of nominal income are quite similar. However,

the estimates of inflation are very different. I consider both. All of the reliable data for this period

comes at an annual frequency.

The stochastic properties of mt and at were markedly different during this period relative to

the post-war period. Annual nominal income is now approximately described by a simple random

walk, for both the Romer (1989) and the Balke and Gordon (1989) estimates. As for output per

13 In the beginning of the XXth century, agriculture had a large weight in the U.S. economy with manhours in
the farm sector accounting for about 30% of total manhours. Nevertheless, measuring at as output per hour in
the nonfarm sector or as output per hour in the whole economy is not important for my purposes: the correlation
coefficient between the two series is 0.98.
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hour, it is approximately white noise in the data.

The fact that the data is annual poses a challenge. Implementing the model requires knowledge

of the quarterly processes for mt and at, but there are many different quarterly processes that can

generate behavior close to a random walk or to white noise once they are aggregated to an annual

frequency. There is no way of using the data to pin down a single statistical model.

I proceed by opting for the most parsimonious statistical representations of nominal income

and output per hours that are consistent with the data. For instance, I choose a random walk

for quarterly nominal income growth. This implies that annual nominal income should be an

IMA(1,1) process, with a moving average coefficient of 0.24. The data does not statistically reject

this specification. For productivity, the most parsimonious quarterly process that generates an

annual white noise is a quarterly white noise. These statistical models fit the data well. The hope

is that the predictions that I will derive are not too sensitive to different assumptions that are also

consistent with the data.

Finally, I must take a stand on how the micro parameters have changed between the two time

periods and on how this has affected α and ρ. In many ways, the United States after World War

II has been quite different from what it was in the beginning of the XXth century. However, there

is no clear indication that the elasticity of demand for products or the income and wage elasticities

of labor supply were much different then from what they are now. I therefore keep α unchanged at

0.11 in the pre-war period. By keeping this parameter fixed, if I err, I will do so against the model.

I will be forcing it to fit two distinct periods with the same parameters.

By the same argument, I will also keep average inattentiveness fixed at 4 quarters. While it is

possible that this has changed, it is unclear in which direction. On the one hand, the variability

of the output gap fell by 80% between the pre and the post-war periods.14 In this more volatile

pre-war world, agents would wish to plan much more often. On the other hand, it is likely that

the great advances in information technology during the XXth century have reduced the costs of

planning. Agents would wish to plan less often in the pre-war world, when planning was more

costly. To inspect the sensitivity of the results, I also consider an alternative where agents update

their plans on average only every three years.

Table 4 contrasts the predictions from the model with the data for the period when I have data

14This is true for both the Romer (1989) and the Balke and Gordon’s (1989) estimates. While the variability of
real GNP is quite different between the two series, the variability of the gap between log real GNP and log output
per hour is similar.
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on all the series, 1890-1913. The second column of panels A and B have the sample moments in

the Romer (1989) and Balke and Gordon (1989) datasets respectively. Note how different these are

from the post-war estimates in table 3. It would be remarkable to have a model that could fit both

periods.

The second column has the average predictions of the model and the third column has 90%

confidence intervals.15 Table 4 shows that the performance of the model is not quite as successful as

in the post-war data. The model substantially over-estimates average inflation and under-estimates

the variability of inflation. It also fares poorly in predicting the contemporaneous correlations

between nominal income, productivity, and inflation.

Nevertheless, over the other dimensions, the model does a good job. It predicts about the right

amount of persistence of inflation in the data. Moreover, the model captures well the dynamic

relation between inflation and lagged and lead nominal income. The same is true of the relation

between productivity and inflation. The model can therefore match 5 of the 9 moments in the

table.

One possible source of bias is the extent of measurement error in the data. This is likely

particularly relevant for the measurement of inflation, as the wide differences between Romer (1989)

and Balke and Gordon (1989) attest (the correlation between their respective inflation series is only

0.25). Column 3 reports the predictions of the model assuming that there is classical measurement

error of inflation accounting for the discrepancy between the model’s predicted standard deviation

and the data. Measurement error can account not just for the discrepancy between the model and

the data for the variability of inflation, but also reconciles the predictions with the data for the

contemporaneous correlation between inflation and productivity.

Column 5 reports the predictions of the model when agents are inattentive for 3 years on average.

The main successes and failures of the model are the same as before.

15The estimates in the two panels differ because the volatility of the shocks differs across the two datasets. For
instance, nominal income is twice more volatile in the Balke and Gordon (1989) estimates than in Romer’s (1989).
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Table 4 — Model vs. data in the pre-war U.S.

Panel A — Romer data

Data Model 90% Confidence interval Measurement Model with

error adjustment 3-year updating

Mean(∆pt) 0.0082 0.0230 0.0180 ; 0.0279 0.0230 0.0230

St.Dev.(∆pt) 0.0280 0.0085 0.0063 ; 0.0111 0.0280 0.0031

Corr.(∆pt,∆pt−1) 0.1615 0.2242 -0.1985 ; 0.5904 0.0208 0.4910

Corr.(∆pt,∆mt) 0.7508 0.1184 -0.2020 ; 0.4154 0.0287 -0.0258

Corr.(∆pt,∆mt−1) 0.2482 0.4044 0.0840 ; 0.6601 0.0980 0.0801

Corr.(∆pt,∆mt+1) 0.0187 -0.0758 -0.4056 ; 0.2605 -0.0184 -0.1495

Corr.(∆pt,∆at) -0.0916 -0.6510 -0.8349 ; -0.4347 -0.1577 -0.5311

Corr.(∆pt,∆at−1) 0.2212 0.3233 0.0746 ; 0.5585 0.0783 0.2636

Corr.(∆pt,∆at+1) 0.2571 0.3234 0.0729 ; 0.5604 0.0783 0.2622

Panel B — Balke-Gordon data

Data Model 90% Confidence interval Measurement Model with

error adjustment 3-year updating

Mean(∆pt) 0.0070 0.0229 0.0165 ; 0.0293 0.0229 0.0228

St.Dev.(∆pt) 0.0285 0.0102 0.0073 ; 0.0137 0.0285 0.0039

Corr.(∆pt,∆pt−1) 0.1225 0.3808 -0.0255 ; 0.6954 0.0487 0.6243

Corr.(∆pt,∆mt) 0.5343 0.1278 -0.1796 ; 0.4083 0.0354 -0.0306

Corr.(∆pt,∆mt−1) 0.3277 0.4437 0.1537 ; 0.6735 0.1229 0.0885

Corr.(∆pt,∆mt+1) -0.0960 -0.0853 -0.4074 ; 0.2392 -0.0236 -0.1633

Corr.(∆pt,∆at) -0.0955 -0.5481 -0.7550 ; -0.3207 -0.1518 -0.4365

Corr.(∆pt,∆at−1) 0.2127 0.2703 0.0265 ; 0.5091 0.0749 0.2172

Corr.(∆pt,∆at+1) 0.2583 0.2724 0.0272 ; 0.5085 0.0754 0.2175

Notes: The notation ∆xt denotes the annual change in variable xt. The data column has sample moments for the

two data sources for 1890-1913. The predictions of the model come from drawing innovations to nominal income and

productivity from normal distributions with variances set to equal the data. The table reports the average over 10,000

simulations, and the 5% and 95% percentiles of the simulated distributions. The second to last column contains the

model’s predictions under the assumption that classical measurement error accounts for the discrepancy between

actual and predicted inflation. The last column has the model’s predictions if average inattentiveness is 3 years.
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The results in table 4 are therefore mixed. The model fits some dimensions of the pre-war U.S.

data, but misses other features of the data. Given the tall order put forward to the model though,

the results are encouraging. The inattentiveness model not only fits U.S. post-war data remarkably

well, but it can also capture many of the dimensions of the data in the pre-war period. Few (if any)

of the existing models of inflation would perform this well across such different periods in history.

9 CONCLUSION

I have presented a model in which producers face costs of acquiring, absorbing and processing

information. Producers optimally choose to be inattentive to current news, only sporadically up-

dating their information, expectations, and plans. I derived three main theoretical results. First,

I established the conditions under which producers set plans for the price to charge, rather than

the quantity to sell. For the more commonly used specifications of demand in Economics, these

conditions predicted that producers would set plans for prices. Second, I characterized the determi-

nants of the optimally chosen inattentiveness. Third, I showed that under general circumstances,

an exponential distribution approximates well the distribution of inattentiveness in an economy

with many inattentive agents.

This set of results should be useful in constructing models of inattentive economies to study

different phenomena. In this paper, I applied the model to study inflation. I showed that the

inattentiveness model provides a micro-foundation to the sticky information Phillips curve. I then

took the model to the data and found that it fits the post-war U.S. data on inflation remarkably

well. Finally, I asked whether the model could also fit the pre-war facts on inflation. This allowed

me to assess whether the model was invariant across policy regimes, and provided a very demanding

test of the model. It fared moderately well.

This paper provided the counterpart to the micro-founded sticky-price model of Sheshinski and

Weiss (1978, 1982), Caballero and Engel (1991) and Caplin and Leahy (1997), for models of nominal

rigidity based on limited information. Combining its modelling tools and results with those in Reis

(2003), who studies inattentive consumption choices, provides the foundations for constructing

fully-fledged, micro-founded, general equilibrium models of interacting inattentive agents. This is

not an easy task, and there remain several difficult (but interesting) obstacles to overcome. Given

the success that models based on inattentiveness have in describing the data, this seems to be a

worthy pursuit.
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10 APPENDIX

Proof of Proposition 1: Since Π(s, t) and K(s) are well-defined and continuous and D satisfies

the measurability restrictions, then J(s,D) is well-defined. From assumption 1, 0 ≤ Π(s, t) < +∞
for all s and t. The costs of planning are also non-negative and finite. Therefore J(s,D) is bounded

below and above. The constraint set for D including the measurability restrictions and the law

of motion for the state is clearly non-empty. Bellman’s principle of optimality (Stokey and Lucas,

1989, pages 67-77) then shows that V (s) = maxD J(s,D). Since J(s,D) is well-defined and bounded

above, so is V (s). The fact that V (s) exists, is unique, and continuous follow from the continuity of

Π(s, t) and K(s), and the fact that V (s) is the fixed point of a contraction mapping of continuous

into continuous functions (Stokey and Lucas, 1989, pages 49-55).¥

Proof of Propositions 3 and 4: With full information on the state of the demand shocks

s, let the optimal choices of price and quantity be denoted by the functions P (s) and Y (s). These

are the solutions from maximizing either πP (P, s) with respect to P , or πY (Y, s) with respect to

Y , respectively. With full information, the solutions to the two problems are of course equivalent:

Y (s) = Q(P (s), s).

With uncertainty, the optimal price charged in a price plan, P ∗, is defined by the first order-

condition of the problem in (1): E(πPp (P
∗, s)) = 0. A first order Taylor approximation of this

equation around E(s) shows that: P ∗ = P (E [s]) + O(kŝk2). I denote s − E[s] by ŝ. Using this

solution for price in the demand function and doing another first-order Taylor approximation, the

quantity sold under a price plan is: Y ∗ = Y (E [s]) + O(kŝk2). This is the well-known certainty
equivalence result that, up to a first order approximation, optimal choices are equal to the choices

with full information if the random variables equal their expected values. By a similar argument,

the optimal price charged and quantity sold with a quantity-plan are P̂ = P (E [s]) +O(kŝk2), and
Ŷ = Y (E [s]) +O(kŝk2).

Then, note that

πP (P ∗, E(s)) = πP (P (E [s]) +O(kŝk2), E [s])
= πP (P (E [s]), E [s]) + πPp (P (E [s]), E [s])O(kŝk2) +O(kŝk3)
= πP (P (E [s]), E [s]) +O(kŝk3),

showing that when s equals its expected value, profits under a price plan differ from profits with
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full information by at most a third-order term. The second line follows from a Taylor approxi-

mation, and the third line from the first order condition. Similar steps show that πY (Ŷ , E [s]) =

πY (Y (E [s]), E [s]) +O(kŝk3), so πP (P ∗, E [s])− πY (Y (E [s]), E [s]) is at most third order.

A second-order approximation of the difference between the profits with price or quantity plans

around E [s] gives:

πP (P ∗, s)−πY (Ŷ , s) = πP −πY +¡πPs − πYs
¢
(s−E [s])+ 1

2

¡
πPss − πYss

¢
(s−E [s])2+O(kŝk3). (13)

All the functions on the right hand side are evaluated at (P ∗, E [s]) or (Ŷ , E [s]). Consider each of

the terms in turn. I already know that πP −πY is or order O(kŝk3). After taking expectations, the
second term disappears. As for the third term, since using the definitions of the profit functions,

πPss = P ∗Qss−CqqQ
2
s−CqQss−2CqsQs and πYss = Q−1ss Q−Css, and since P ∗ = P (E(s))+O(kŝk2),

the third term becomes:

1

2

¡
PQss −Q−1ss Q−CqqQ

2
s − CqQss − 2CqsQs

¢
(s−E [s])2.

Finally, use the first-order condition for profit-maximization with respect to prices, Q + PQp =

CqQp, to replace for P . Since price plans are preferred to quantity plans if ΠP (s, t) > ΠY (s, t),

taking expectations of (13), this condition becomes:

− Q

2Qp

¡
Qss +QpQ

−1
ss

¢− 1
2

¡
CqqQ

2
s + 2CqsQs

¢
> O(kŝk3).

Using the inverse function theorem, it is easy to show that Qss+QpQ
−1
ss =

2QsQps

Qp
− QppQ2s

Q2p
so that

price plans are preferred if:

− Q

Q2p

µ
QsQps − QppQ

2
s

2Qp

¶
−
µ
CqqQ

2
s

2
+ CqsQs

¶
> O(kŝk3)

Rearranging gives the condition in proposition 4.

With constant marginal costs, the term in the second brackets equals zero, so the expression

becomes the condition in proposition 3. Moreover, the second-order condition for the price profit-

maximization problem is −Qpp/2Qp < 1/P . Combining this inequality with (5) gives the sufficient

condition in proposition 3.¥

Proof of Proposition 5: Re-write the costs of planning as K(st) = κ2K̃(st). I will approxi-
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mate the solution around the κ = 0 point.16 First, subtract the discounted profits obtained from

setting prices or quantities with current information on st. Using V (.) to denote the value function

for this problem (a slight abuse of notation):

V (s) = max
d

½
−
Z d

0
e−rtF (s, t)dt+ e−rdE

h
−κ2K̃(Ψ(s,ud)) + V (Ψ(s,u

d))
i¾

(14)

The optimality conditions are only slightly different:

−F (s, d) + rκ2E
h
K̃(sd)

i
= E

·
rV (sd) +

³
κ2K̃s(sd)− Vs(sd)

´ ∂Ψ(s,u
d)

∂d

¸
, (15)

Vj(s) = −
Z d

0
e−rtFj(s, t)dt+ e−rdE

h³
−κ2K̃s(sd) + Vs(sd)

´
Ψj(s,u

d)
i
.(16)

Since I will be perturbing the solution with respect to κ, the envelope theorem condition with

respect to κ is also relevant:

Vκ(s) = e−rdE[−2κK̃(sd) + Vκ(sd)] (17)

The system of equations (14)-(17) defines the optimum. When κ = 0, the solution to the system

is d∗ = 0 and V (s) = 0. At this optimum, F (s, 0) = 0 for all s and so Fj(s, 0) = 0 as well. Similarly,

the nth-order derivatives of V with respect to s are all zero. Perturbing the system (14)-(17) by

differentiating with respect to κ and evaluating at κ = 0 (where d∗ = 0, V = 0, Vs = 0):

Vκ = Vκ

−Ftdκ = rVκ +
d

dκ

·
1

dt
E(dV )

¸
Vjκ = VsκΨj

0 = −2K̃ − rVκdκ +
d

dκ

·
1

dt
E(dV )

¸
dκ

All the function are evaluated at s and t = 0. The first and third equations contain no information

but the second and fourth form a system of equations that I can use to, substituting for the term

in E(dV ), solve for dκ:

dκ =

s
2K̃

Ft
.

16The reader is invited to check that perturbing with respect to κ2 leads to a bifurcation. The method of undeter-
mined gauges could be used to show that the leading term in an approximation is κ.
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Since the approximation to d∗ is d∗ = dκκ, and since
√
K = κ

p
K̃, the expression for d∗ follows.¥

Proof of Proposition 6: Expected profits under a price plan are:

Π(s, t) =
ε̄

θ − 1
µ

θ

θ − 1
¶−θ

| {z }
≡Ξ

E[st]
1−θ = Ξs1−θ,

where the second equality follows from the fact that E(sd) = s for a geometric Brownian motion.

The problem in (7) then becomes:

V (s) = max
d

½
Ξs1−θ

Z d

0
e−rtdt+ e−rdE

h
−κΞs1−θd + V (sd)

i¾
.

Given the iso-elastic form of the return function, the value function is iso-elastic as well. Let

V = As1−θ, where A is a coefficient to be determined. The Bellman equation then becomes:

As1−θ = max
d

½
Ξ(1− e−rd)s1−θ

r
+ e−rd (−κΞ+A)E

h
s1−θd

i¾
.

Cancelling terms and since E(s1−θd ) = s
1−θ

ebd, as st is a geometric Brownian motion:

A = max
d

½
Ξ(1− e−rd)

r
+ e(b−r)d (−κΞ+A)

¾
. (18)

The first-order condition from the maximization problem is:

∂A

∂d
= e−rd

h
Ξ+ (b− r)ebd (−κΞ+A)

i
= 0

At the optimum d∗, (18) gives the solution for A:

A =
Ξ(1− e−rd∗)− rκΞe(b−r)d∗

r
¡
1− e(b−r)d∗

¢ .

Using this in the first order condition and rearranging then yields the condition:

H(b, κ, d∗) ≡ re−bd
∗ − be−rd

∗
+ (b− r) (1− κr) = 0

Substituting for b and multiplying by 2 gives the result in the proposition.
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Next, I check the second-order conditions for the maximization problem in (18). Note that:

∂2A

∂d2
= −r e−rd

h
Ξ+ (b− r)ebd (−κΞ+A)

i
| {z }

=∂A/∂d

+e−rdb(b− r)ebd (−κΞ+A) .

At the optimal d∗, the first order condition implies that the first term in the sum is zero, and that

the second term equals −Ξbe−rd. Therefore:

∂2A

∂d2
= −Ξbe−rd < 0,

which guarantees that the zero of the function H(b, κ, d) corresponds to a maximum.

The optimal choice of inattentiveness d∗ is the zero of H(.). Consider then two cases: (i) b > r,

and (ii) r > b. In case (i), it is easy to show that for κ > 0, then H(b, κ, 0) < 0, Hd(.) > 0, and

limd→∞H(.) = (b−r)(1−κr). It follows that if κ < 1/r there is a unique optimal finite d; otherwise

d∗ = +∞. For d∗ > 0, the implicit function theorem implies that sign{∂d∗/∂κ} = sign{−Hκ(.)}
which is positive so d∗ increases with κ. Similarly, it takes a little work to show thatHb(b, κ, d

∗) > 0,

which implies that d∗ decreases with b, and therefore with σ2 and θ. Turn now to case (ii). Now

H(b, κ, 0) > 0 and Hd(.) < 0 but still, if κ < 1/r, then limd→∞H(.) < 0, so there is a unique finite

d∗. It is easy to show that now Hκ(.) > 0 while it takes some work to show that Hb(b, κ, d
∗) < 0,

from where the same comparative statics follow.

Finally, to obtain the approximation, you can use the result in proposition 5. The equation in

proposition 6 allows for a check on this result. Let κ̃ =
√
κ, and note that H(b, 0, 0) = 0, that

Hd(b, 0, 0) = 0 and that Hκ̃(b, 0, 0) = 0. The implicit function theorem, Hddκ̃ + Hk = 0 then

does not apply since Hd = 0, but because Hκ̃ = 0, the point κ̃ = d = 0 is a bifurcation point.

One further round of differentiation plus the fact that Hdκ̃(b, 0, 0) = 0 lead to the conclusion that

dκ̃ =
p−Hκ̃κ̃/Hdd. A little more algebra shows that Hκ̃κ̃(b, 0, 0) = −2r(b − r) and Hdd(b, 0, 0) =

br(b− r). Since a first-order Taylor approximation of d∗ around κ̃ = 0 is given by d∗ = dκ̃
√
κ, the

approximation result in the proposition follows.¥

Proof of equation (11): If the agent is inattentive, she will set the same price that all other

inattentive agents set. Then p(j) = p, which solves E[πp(1, y, a)] = 0. If she is attentive, she sets

price p(j)∗ that solves: πp(p(j)
∗ − p, y, a) = 0. A second-order approximation around the point

(1, E[y], E[a]) of the difference between profits if attentive or inattentive is:
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π(p(j)∗ − p, y, a)− π(1, y, a) =

π + πp(p(j)
∗ − p) + πy(y −E[y]) + πa(a−E[a]) +

1

2

£
πpp(p(j)

∗ − p)2 + πyy(y −E[y])2 + πaa(a−E[a])2
¤

+πpy(p(j)
∗ − p)(y −E[y]) + πpa(p(j)

∗ − p)(a−E[a]) + πya(y −E[y])(a−E[a])

−π − πy(y −E[y])− πa(a−E[a])− 1
2

£
πyy(y −E[y])2 + πaa(a−E[a])2

¤− πya(y −E[y])(a−E[a])

All the functions are evaluated at (1, E[y], E[a]). Cancelling common terms and since πp = 0, gives:

π(p(j)∗−p, y, a)−π(1, y, a) = 1

2

£
πpp(p(j)

∗ − p)2 + 2πpy(p(j)
∗ − p)(y −E[y]) + 2πpa(p(j)

∗ − p)(a−E[a])
¤

The natural level of output is defined by πp(1, yn, a) = 0; it is the output that prevails if all are

attentive. A log-linear approximation shows that πpy(yn − E[y]) = −πpa(a − E[a]). A log-linear

approximation to the first-order condition for p(j)∗ gives p(j)∗−p = α(y−yn), where α = −πpy/πpp.
Using these results to substitute for (a−E[a])and for p(j)− p in the expression above gives:

π(p(i)∗ − p, y, a)− π(1, y, a) = −πppα
2(y − yn)2

2

From the definition of the F (s, t) function, it then follows:

F (s, t) = −πppα
2E[(yt − ynt )

2]

2

Since V ar[y − yn] = E[(y − yn)2] − (E[y]−E[yn])2, and since the equation defining the natural

level of output implies that E[yn]−E[y] is second order, it follows that:

F (s, t) = −πppα
2V ar[yt − ynt ]

2

Finally, Ft(s, 0) is the instantaneous variance of the output gap.¥

Aggregation: The arrival of decision dates is a point process of the type that is studied in

renewal theory. Cox (1962) and Khintchine (1960) are classic references, while Ross (1983) has a

more recent treatment. The proofs that follow combine results from this literature.

Proof of Proposition 7: This proof proceeds over a sequence of steps.
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Step 1 : Reducing the problem to only two distributions.

Define the probability h(τ , t) for two consecutive periods of length τ and t respectively, as the

probability that (a) there was at least one decision date in τ , (2) there were 0 decision dates in

period t. The probability of (b) conditional on (a) is h(τ , t)/F (τ). As τ → 0, this is the conditional

probability that no decision dates occur in period t, under the condition that the first moment of

this period was a decision date. This is Palm’s function: ϕ(t) = limτ→0 h(τ , t)/F (τ). Khintchine

(1960, pages 45-48) proves the following result:

Theorem: Fk(t) = 1− ϕ(t) for all k ≥ 2.

I therefore only need to describe two distributions, F1(t), and F (t) = Fk(t) for all k ≥ 2.

Step 2 : Proving the following result :

Theorem (Wald): E
hPI

i=1 d(i)
i
= E[I]E[d(i)]

Proof: Let ι(i) = 1 if i ≤ I but ι(i) = 0 if i > I. Then,
PI

i=1 d(i) =
P∞

i=1 d(i)ι(i) so:

E

"
IX

i=1

d(i)

#
= E

" ∞X
i=1

d(i)ι(i)

#
=

∞X
i=1

E [d(i)ι(i)] ,

where the last equality uses the independence of the d(i). But then, note that ι(i) is determined

by the first I − 1 decision dates and so is independent of the occurrence of the next decision date
d(I). It then follows that:

∞X
i=1

E [d(i)ι(i)] = E [d(i)]
∞X
i=1

E [ι(i)] = E [d(i)]E [I]

Step 3 : Proving the following result:

Elementary Renewal Theorem: ρ = limt→∞H(t)/t.

Proof: From the definition of D(i) and I(t), is follows that:

I(t)+1X
i=1

d(i) = D(I(t) + 1) > t.

Taking expectations and using Wald’s theorem from step 2:
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E [d(i)]E [I(t) + 1] > t⇔
H(t) + 1

t
>

1

E [d(i)]
.

The second line follows from the definition of H(t) and re-arranging. Taking the limit:

lim inf
t→∞

H(t)

t
≥ 1

E [d(i)]
.

Next, fix a constant X and define an alternative decision process by

d̄(i) =

 d(i), if d(i) ≤ X

X, if d(i) > X

for i = 1, 2, ... This in turn defines, D̄(i) =
Pi

j=1 d̄(j), Ī(t) = sup
©
i : D̄(i) ≤ t

ª
, and H̄(t) = E[Ī(t)].

Since the inattentiveness lengths are bounded above by X:

D̄(I(t) + 1) < t+X.

After taking expectations, using Wald’s theorem, and taking the limit:

lim sup
t→∞

H̄(t)

t
≤ 1

E
£
d̄(i)

¤ .
Finally, note that D̄(i) ≤ D(i) necessarily, and so Ī(t) ≥ I(t). It then must be that H̄(t) ≥ H(t).

Letting X →∞, so that E £d̄(i)¤→ E [d(i)], we obtain

lim sup
t→∞

H(t)

t
≤ 1

E [d(i)]
.

I have then shown that:

lim
t→∞

H(t)

t
=

1

E [d(i)]
= ρ.

This proof assumed that E [d(i)] < ∞. If E [d(i)] = ∞ a similar proof holds using the truncated

process and since E
£
d̄(i)

¤→∞, now ρ→ 0.

Step 4 : Finding the distribution f1(t).
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From the definition of Vt, the time until the next planning date:

Prob(Vτ = t) = f1(τ + t) +

Z τ

0
f(t+ u)dH(τ − u).

This is because for the time to the next planning date to be in (t, t+∆t), either the first decision

date took place in this interval, or the last decision date occurred at some other date u. Take the

limit of this expression as τ →∞, having the first term go to zero (which I will verify later). Then,
by the elementary renewal theorem:

lim
τ→∞Prob (Vτ = t) = ρ

Z ∞

0
f(t+ u)du = ρ (1− F (t)) .

The second equality uses the definition of F (t). It is important to note the following:

lim
τ→∞

Z τ

0
f(t+ u)dH(τ − u) = ρ

Z ∞

0
f(t+ u)du

does not hold generally under only the elementary renewal theorem but requires a closely related

alternative called the Key Renewal Theorem (Ross, 1983, pages 61-65). Under many cases though,

the elementary renewal theorem suffices.

Then, recall that since I am focussing on an equilibrium, time 0 corresponds to an observation

of a world that has been operating since −∞. Therefore

f1(t) = lim
τ→∞Prob (Vτ = t) = ρ(1− F (t))

Step 5 : Proving that H(t) = ρt.

Using the definition of H(t):

H(t) =
∞X
i=1

iProb[I(t) = i]

=
∞X
i=1

i (Prob[D(i) ≤ t]− Prob[D(i+ 1) ≤ t])

But, Prob[D(i) ≤ t] = F1 ∗ Fi−1(t) where ∗ stands for a convolution. Then:
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H(t) =
∞X
i=1

i (F1 ∗ Fi−1(t)− F1 ∗ Fi(t))

= F1 +
∞X
i=1

(i+ 1)F1 ∗ Fi(t)−
∞X
i=1

iF1 ∗ Fi(t)

=
∞X
i=1

F1 ∗ Fi−1(t)

The Laplace transform of it is (using the fact that Fi(t) = F (t) for i ≥ 2 from step 1):

L(H(s)) = L(F1(s))
1− L(F (s))

The Laplace transform of the initial distribution is:

L(F1(s)) =
L(f1(s))

s

=
L(ρ(1− F (s)))

s

=
ρ (1− L (F (s)))

s

where the first and third equalities are standard results for Laplace transforms, and the second

equality comes from using the result in step 4. Going back to L(H(s)) and substituting for L(F1(s)):

L(H(s)) = ρ/s.

Inverting the Laplace transform, it follows that H(t) = ρt.

Step 6: Proving that the distribution is exponential.

Collecting the results in steps 4 and 5, then:

Prob (Vτ = t) = f1(τ + t) +

Z τ

0
f(u+ t)dH(τ − u)

= ρ(1− F (τ + t)) + ρ

Z τ

0
f(u+ t)u

= ρ(1− F (t)),
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which holds exactly for all t. But then, since at a planning date VD(i) and D(i) coincide:

f(t) = ρ(1− F (t))

This forms a differential equation, with solution:

f(t) = ρe−ρt.

The distribution of inattentiveness is exponential. That the other distributions in the proposition

are also exponential follows easily.¥

Proof of Proposition 8: The process of arrival of decision dates for each firm is an independent

Poisson process. An elementary result is that the sum of J independent Poisson processes with

parameter ρ(j) is a Poisson process with rate
PJ

j=1 ρ(j).¥

Proof of Proposition 9: This just states the Palm-Khintchine theorem, applied to the setup

in this paper. See Khintchine (1960) for the proof.¥

Results for the model in section 6: The profit function in this model is:

π(pt(j)− pt, yt, at) = eyt+(1−θ)(pt(j)−pt) − eyt−θ(pt(j)−pt)−aω (yt − θ(pt(j)− pt)− at, yt) .

In the proof of equation (11) I showed that yn−E[y] = −πpa
πpy
(a−E[a]). Using a first-order approx-

imation to logω(., .) and evaluating the derivatives of the profit function shows that −πpy/πpp =
(1 + ψ)/(σ + ψ). Similarly, evaluating −πpy/πpp gives the expression for α in the text. To get d∗,
just compute πpp/π and use the expression for α.¥
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