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Abstract

We propose a model in which assets with identical cash flows can trade at different prices

because of endogenous differences in liquidity and repo specialness. Agents enter into an infinite-

horizon, steady-state market to establish long or short positions. Both spot and repo transac-

tions involve search and bargaining. Liquidity differences arise because of search externalities,

driven by the presence of short-sellers and the constraint that these must deliver the asset they

borrowed. The price of the more expensive asset includes a liquidity and a specialness premium,

and these are consistent with no-arbitrage. We derive closed-form solutions for small frictions,

and can generate yield differentials in line with observed on-the-run premia.
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1 Introduction

In fixed-income markets, some bonds trade at lower yields than others with almost identical cash

flows. In the US, for example, a just-issued (“on-the-run”) ten-year Treasury bond trades at a

lower yield than a ten-year bond issued three months ago (“off-the-run”). Warga [1992] reports

that yields of on-the-run bonds are on average 55 basis points (bp) below those of their off-the-run

counterparts. Similar phenomena exist in other countries. In Japan, for example, one “benchmark”

government bond trades at an average of 60bp below other bonds with comparable characteristics.1

How can the yields of bonds with almost identical cash flows differ by more than 50bp? Fi-

nancial economists have suggested two apparently distinct hypotheses. First, on-the-run bonds

are more valuable because they are significantly more liquid than their off-the-run counterparts.

Second, on-the-run bonds constitute better collateral for borrowing money on the repo market.

Namely, loans collateralized by on-the-run bonds offer lower interest rates than their off-the-run

counterparts, a phenomenon referred to as “specialness.”2 These hypotheses, however, can provide

only a partial explanation of the on-the-run phenomenon: one must still explain why assets with

almost identical cash flows can differ in liquidity and specialness.

In this paper we propose a theory of the on-the-run phenomenon. We take the view that liq-

uidity and specialness are not independent explanations of this phenomenon, but can be explained

simultaneously by shortselling activity. We determine liquidity and specialness endogenously, ex-

plain why they can differ across otherwise identical assets, and study their effect on prices. A

calibration of our model for plausible parameter values can generate price effects of the observed

magnitude.

Our theory is based on the notion that trade in government-bond markets is bilateral and

can involve search. The assumption of bilateral trade captures the over-the-counter structure of

these markets: transactions between dealers and their customers are negotiated over the phone,

and dealers often negotiate bilaterally in the inter-dealer market.3 The extent of search depends

1For US evidence, see also Amihud and Mendelson [1991], Krishnamurthy [2002], Goldreich, Hanke and Nath
[2002], and Strebulaev [2002]. For Japan, see Mason [1987], Boudoukh and Whitelaw [1991], and Boudoukh and
Whitelaw [1993].

2On liquidity, Sundaresan [1997, pp.16-18] reports that trading volume of on-the-run bonds is about 10 times
larger than that of off-the-run bonds, and Fleming [2002] reports that bid-ask spreads of off-the-run bills are about
five times larger than when these bills are on-the-run. Specialness is measured by comparing a bond’s repo rate, which
is the interest rate on a loan colateralized by the bond, to the general collateral rate, which is the highest quoted
repo rate. Duffie [1996] reports an average specialness of 66bp for on-the-run bonds and 26bp for their off-the-run
counterparts.

3In the US, inter-dealer trading is conducted through brokers. Some brokers operate automated trading systems,
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on the size of a transaction and the type of bond. An investor can execute a small transaction

in an on-the-run bond almost instantly by contacting a dealer. Large transactions, however, can

take more time, especially for off-the-run bonds. For example, a dealer might be unable to cover

a customer’s buy order from its inventory, thus needing to engage in search. Likewise, a dealer

might be unwilling to acquire a large inventory as a result of a customer’s sell order, and might

prefer to search for end buyers. While search times can be in the order of a few hours or days, our

calibration shows that even for such times price effects can be significant.

We consider an infinite-horizon, steady-state economy with two risky assets paying the same

cash flow. Trade occurs because agents experience hedging needs to hold long or short positions.

Upon experiencing a need to hold a long position, an agent enters the market seeking to buy one

of the assets. He then holds the asset until the hedging need disappears, and then seeks to sell.

During the time he is holding the asset, he can lend it to a short-seller for a fee. This corresponds

to a repo transaction in our model, and the fee to repo specialness.4 Conversely, upon experiencing

a need to hold a short position, an agent enters the market seeking to borrow one of the assets.

She then seeks to sell the asset, and when the hedging need disappears, she seeks to buy the same

asset back and return it to the lender. Both the spot and the repo market operate through search

and bilateral bargaining. For simplicity, we abstract from dealers and adopt the standard search

framework (e.g., Diamond [1982]) where agents search for counterparties directly.5

Our model has multiple equilibria: a symmetric one where short-sellers borrow both assets,

and asymmetric ones where they concentrate in one asset, declining any opportunities to borrow

the other. This is because of search externalities. The more agents short-sell an asset, the greater

the asset’s seller pool becomes. The asset’s buyer pool also increases because of the short-sellers

who need to buy the asset back. A larger buyer and seller pool implies lower search times, and the

enhanced liquidity attracts more short-sellers. Thus, our theory can explain differences in liquidity

between otherwise identical assets, consistent with the on-the-run phenomenon.

While the general notion of search externalities is well-understood, its application to the on-

the-run phenomenon is subtle. Absent the short-sellers, there would be no differences in liquidity.

structured as electronic limit-order books. Other brokers, however, operate voice-based systems in which orders are
negotiated over the phone. Barclay, Hendershott and Kotz [2002] report that automated systems account for about
85% of trading volume for on-the-run bonds, but the situation is reversed for off-the-run bonds.

4We describe repo transactions at the beginning of Section 4. See also Duffie [1996] and Fisher [2002], among
others, for a more detailed description.

5Of course, the search framework is only an idealization of price formation in actual bond markets - but so is the
Walrasian auction. Our view is that insofar markets involve an element of search, the search framework can generate
useful insights.
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Indeed, assets would have a common buyer pool, consisting of the agents seeking to establish long

positions. Therefore, they would be equally easy to sell. The same would hold even with short-

sellers, if these were allowed to deliver any asset and not necessarily the one they borrowed. The

delivery constraint effectively “locks” short-sellers into buying one asset, thus generating asset-

specific buyer pools.6

In the asymmetric equilibria, assets differ not only in liquidity but also in specialness. Indeed,

because of the search friction, asset lenders can extract some of the short-sellers’ surplus. This

surplus is positive only for the more liquid asset because it is the one that short-sellers are willing

to borrow. Therefore, only that asset commands a positive fee and hence is “on special.” The

fee constitutes an additional cash flow derived from the asset, raising its price by a specialness

premium. This premium is above and beyond the one associated to the asset’s superior liquidity.

We show that the existence of the two premia is consistent with no-arbitrage: agents cannot profit

by buying one asset and shorting the other.

While our theory can identify a liquidity and a specialness component of the on-the-run pre-

mium, it also implies that this decomposition should be interpreted with caution. Indeed, since

short-sellers are attracted to the more liquid asset, the asset’s specialness is partly generated from

liquidity. Therefore, the specialness premium can be viewed as an additional liquidity premium.

In fact, our theory implies that liquidity and specialness premia are linked in an even more funda-

mental manner because both are generated by short-selling activity.

A calibration of our model can generate price effects of the observed magnitudes, even for short

search times in the order of a few hours or days. For short search times, the liquidity premium

is small, and the price effects are mostly generated by the specialness premium. Of course, this

does not mean that liquidity does not matter; it rather means that liquidity can have large effects

through specialness.

Our theory sheds light on several additional aspects of the on-the-run phenomenon. One

puzzling aspect is that off-the-run bonds are viewed by traders as “scarce” and hard to locate, while

at the same time being cheaper than on-the-run bonds. In our model, off-the-run bonds are indeed

scarce from the viewpoint of short-sellers searching to buy and deliver them. At the same time, they

are cheaper than on-the-run bonds because liquidity is priced by the marginal buyers. These are the

6The delivery constraint is quite prevalent in actual markets, as can be seen, for example, by the incidence of
short-squeezes. In a short-squeeze, short-sellers have difficulty delivering the asset they borrowed and the asset’s
specialness in the repo market increases dramatically. For a description of short-squeezes see, for example, Fisher
[2002].
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agents who seek to establish long positions and can choose between bonds. Our theory also shows

that while the on-the-run phenomenon can arise because of multiple equilibria, the equilibrium

becomes unique when asset supplies are sufficiently different. Short-sellers then concentrate in

the largest-supply asset, consistent with the notion that issue size promotes liquidity. Finally, our

theory allows for an analysis of market integration, achieved when short-sellers are allowed to deliver

either asset.7 We show that market integration raises liquidity and welfare but not necessarily the

price level.

This paper is closely related to Duffie’s [1996] theory of repo specialness. In Duffie, short-sellers

need to borrow an asset and sell it in the market, incurring an exogenous transaction cost. Assets

that can be sold at a low cost are on special because they are in high demand by short-sellers. The

main difference with Duffie is that instead of explaining specialness taking liquidity (transaction

costs) as exogenous, we explain liquidity and specialness simultaneously. Thus, we can explain why

liquidity and specialness might differ for otherwise identical assets. We can also analyze the effects

of issue size, market integration, etc, taking into account the endogenous variation in liquidity.

Empirical studies by Cornell and Shapiro [1989], Jordan and Jordan [1997], Buraschi and

Menini [2002], Krishnamurthy [2002], Moulton [2004], and Graveline and McBrady [2004] show

that on-the-run bond prices contain specialness premia. These papers also provide evidence on

exogenous factors shifting the demand and supply of assets in the repo market. On the demand side,

they show that variables proxying for shortselling activity are positively related to the specialness

premium. On the supply side, they show that variables proxying for the availability of the asset

on the repo market are negatively related to the specialness premium. These relationships are

consistent with Duffie [1996] and our model.

This paper builds on a series of papers by Duffie, Gârleanu and Pedersen, who are the first

to introduce search and bargaining in models of asset market equilibrium. Duffie, Gârleanu and

Pedersen [2004b] consider a model where investors seek to establish long positions, and Duffie,

Gârleanu and Pedersen [2004a] introduce dealers into that model. Duffie, Gârleanu and Pedersen

[2002] introduce short-sellers into a different model where the spot market is Walrasian but the repo

market operates through search. They show that specialness arises because of lenders’ bargaining

power, exactly as in this paper. Our focus differs from theirs in that we seek to explain differences in

7Bennett, Garbade and Kambhu [2000] argue that market integration can be achieved if on- and off-the-run bonds
become standardized in terms of their maturity dates. For example, a two-year bond can be designed to mature on
exactly the same date as a previously-issued five-year bond. The bonds can then be made “fungible,” assigned the
same CUSIP number, and be identical for delivery purposes.
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liquidity across assets. This leads us to extend their framework in several directions. In particular,

we consider a multiple-asset model while they assume only one asset. We also introduce search

both in the spot and the repo market because this is critical for our explanation of the on-the-run

phenomenon.8 Vayanos and Wang [2004] and Weill [2004] consider multi-asset models with search.

They assume no short-sellers, however, and generate differences in liquidity through the constraint

that asset buyers can search in only one market.

This paper is related to the monetary-search literature building on Kiyotaki and Wright [1989]

and Trejos and Wright [1995]. Aiyagari, Wallace and Wright [1996] provide an example of an

economy in which fiat monies (intrinsically worthless and unbacked pieces of paper) endogenously

differ in their price and liquidity. Wallace [2000] analyzes the relative liquidity of currency and

dividend-paying assets in a model based on asset indivisibility. Our relative contribution is to

compare the liquidity of dividend-paying assets as opposed to currency, and introduce short sales.

The latter allows us to examine whether price differences between otherwise identical assets can

lead to an arbitrage.

This paper is also related to the literature on asset pricing with transaction costs. (See, for

example, Amihud and Mendelson [1986], Constantinides [1986], Aiyagari and Gertler [1991], Heaton

and Lucas [1996], Vayanos [1998], Vayanos and Vila [1999], Huang [2003], and Lo, Mamaysky and

Wang [2004].) Besides endogenizing the transaction costs, we add to that literature by introducing

short-sales.

Pagano [1989] studies the concentration of liquidity across market venues. He shows that

markets can coexist, but the outcome is generally dominated by the concentration of trade in one

market.9 Our model differs because we consider concentration of liquidity across assets rather than

markets. In particular, we can examine how the concentration is reflected in asset prices.

Boudoukh and Whitelaw [1993] propose a theory of the on-the-run phenomenon, in which

liquidity is selected by the bond issuer. They show that the issuer can achieve price discrimination

by imposing liquidity differences between otherwise identical bonds. This resembles our result that

relative to market integration, the asymmetric (on-the-run) equilibrium can increase government

8Search in the spot market induces short-sellers to concentrate in one asset. Search in the repo market generates a
positive lending fee, which is necessary to rule out the arbitrage strategy of shorting the on-the-run bond and buying
the off-the-run.

9See also Ellison and Fudenberg [2003] for a general analysis of the coexistence of markets, and Economides and
Siow [1988] for a spatial model of market formation. See also Admati and Pfleiderer [1988] and Chowdhry and Nanda
[1991] for models where trading is concentrated in a specific time or location because of asymmetric information.
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revenue but reduce welfare.

2 Model

Time is continuous and goes from zero to infinity. There is a riskless asset with an exogenous

return r, and two risky assets paying the same cash flow. Cash flow is described by the cumulative

dividend process

dDt = δdt + σdBt, (1)

where δ and σ are positive constants, and Bt is a standard Brownian motion.10 The risky assets

can differ in their supply, and we denote by Si the number of shares of asset i ∈ {1, 2}.

There is an infinite mass of infinitely-lived risk-averse agents who derive utility from the con-

sumption of a numéraire good. All agents have the same CARA utility function,

−E

[
∫ ∞

0
exp (−αct − βt) dt

]

. (2)

Agents differ in their endowment streams. An agent can either receive an endowment that is

positively correlated with dividends, or one that is negatively correlated, or one that is uncorrelated.

The correlation between endowments and dividend give rise to hedging demands, inducing agents to

trade. We refer to the agents with the negatively correlated endowment as high-valuation because

they have a positive hedging demand. Likewise, we refer to the agents with the positively correlated

endowment as low-valuation, and to those with the uncorrelated endowment as average-valuation.11

Following Duffie, Gârleanu and Pedersen [2004b], we assume that an agent receives the cumulative

endowment process

det = σe

[

ρtdBt +
√

1 − ρ2
t dZt

]

, (3)

where σe is a positive constant and Zt is a standard Brownian motion independent of Bt. The

process ρt is the instantaneous correlation between the dividend process and the agent’s endowment

10The process (1) is the continuous-time analog of i.i.d. cash flows. In a fixed-income setting, cash flows are
deterministic and the uncertainty arises because of interest rates. Moreover, assets generally have a finite maturity
rather than being infinitely lived. We abstract from these complications to keep the model tractable, but we believe
that the basic intuitions are robust.

11The endowments can be interpreted as a position in a correlated market. For example, low-valuation agents could
have long positions in corporate bonds or mortgage-backed securities, and seek to hedge them by shorting Treasuries.
For a discussion of hedging demand in the Treasury market, see Dupont and Sack [1999].
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process. We set ρt = −ρ < 0 for high-valuation agents, ρt = ρ > 0 for low-valuation agents, and

ρt = 0 for average-valuation agents. The processes (ρt, Zt) are taken to be pairwise independent

across agents.

There is a continuous flow F of average-valuation agents who switch to high valuation, and a

continuous flow F who switch to low valuation. Conversely, high-valuation agents revert to average

valuation with Poisson intensity κ, and low-valuation agents do the same with Poisson intensity

κ. Thus, in a steady state, the measures of high- and low-valuation agents are F/κ and F/κ,

respectively.12 Given that the measure of average-valuation agents is infinite, an individual agent’s

switching intensity from average to high or low valuation is zero.

Agents can hold long, short, or no positions in any asset. Positions must be in multiples of a

“round lot” that we normalize to one share. We are interested in equilibria where high-valuation

agents are long one share or hold no position, low-valuation agents are short one share no hold no

position, and average-valuation agents stay out of the market. In the following sections, we show

that such equilibria exist under appropriate parameter restrictions.

3 Walrasian Equilibrium

In this section we consider the benchmark case where markets are Walrasian. For notational

simplicity, we set A ≡ rα, y ≡ Aσ2/2, x ≡ Aρσσe, and x ≡ Aρσσe.

Proposition 1 In a Walrasian equilibrium, both risky assets trade at the same price p. If

F

κ
>

2
∑

i=1

Si +
F

κ
(4)

and

4y > x + x > 2y > x, (5)

then high-valuation agents either buy one share or stay out of the market, low-valuation agents

short one share, average-valuation agents stay out of the market, and the price is

p =
δ + x − y

r
. (6)

12We focus on steady states throughout this paper.
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That both risky assets trade at the same price follows from no-arbitrage: since assets have the

same cash flow and there are no trading frictions, an agent could make an infinite profit from a price

discrepancy. To explain the intuition for the rest of the proposition, we consider agents’ portfolio

choice problem. An agent who holds zt shares of the risky assets receives the instantaneous cash

flow ztdDt + det. In Appendix A we show that agents choose zt to maximize the mean-variance

objective

Et(ztdDt + det) −
A

2
Vart(ztdDt + det) − rpztdt,

where A is the (constant) coefficient of absolute risk aversion of agents’ value functions. From

Equations (1) and (3), this objective is equivalent to

δzt −
A

2

(

σ2z2
t + 2ρtσσezt

)

− rpzt ≡ C(ρt, zt) − rpzt,

where C(ρ, z) is the incremental certainty equivalent of holding z shares relative to holding none.

Using the definitions of y, x, x, we can write the certainty equivalent as C(ρ, z) = (δ +x)z−yz2 for

a high-valuation agent, C(ρ, z) = (δ−x)z−yz2 for a low-valuation agent, and C(0, z) ≡ δz−yz2 for

an average-valuation agent. The parameter y measures the cost of bearing risk, and the parameters

x and x measure the hedging benefits.

The aggregate asset supply is the sum of the supplies Si, i ∈ {1, 2}, from the issuers, plus the

supply generated by the short-sellers. Let’s guess (and later verify) that low-valuation agents are the

only short-sellers and short one share, in which case the latter supply is equal to the measure F/κ

of low-valuation agents. Equation (4) then implies that the measure F/κ of high-valuation agents

exceeds the aggregate supply. Therefore, in equilibrium high-valuation agents must be indifferent

between buying one share or none, and the price must equal C(ρ, 1)/r, the present value (PV) of

their certainty equivalent of one share.13 Equation (5) ensures that our guess is verified, i.e., at

the price C(ρ, 1)/r, low-valuation agents find it optimal to short one share and average-valuation

agents to stay out of the market.

13Intuitively, Equation (4) ensures that asset demand, generated by the high-valuation agents, exceeds asset supply.
This implies that buyers are the “long” side of the market and bid the price up to their valuation. Equation (4)
simplifies our analysis in several respects. For example, it ensures the existence of a parameter region in which
short-sellers are the infra-marginal traders (Equation (13)).
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4 Search Equilibrium

In this section we assume that markets operate through search and bilateral bargaining. There are

two markets in our economy: the spot market for buying and selling, and the repo market where

short-sellers can borrow an asset. We assume that both operate through search, although they

can differ in the efficiency of the search process. In particular, search frictions can be small in one

market - making it close to Walrasian - but important in the other. The assumption of search and

bilateral bargaining is relevant not only for the spot market, as argued in the Introduction, but

also for the repo market. Indeed, this market is conducted over the counter, and at any point in

time many transactions might be negotiated between different trader pairs (see Duffie [1996]).

In a repo transaction a lender turns his asset to a borrower in exchange for cash. At maturity,

the borrower returns the asset, and the lender returns the cash together with some previously-

agreed interest-rate payment, called the “repo rate.” Hence, a repo transaction is effectively a loan

of cash collateralized by the asset. Treasury securities differ in their repo rates. Most of them share

the same rate, called the “general collateral rate,” which is the highest quoted repo rate and is

close to the Federal Funds Rate. The specialness of an asset is defined as the difference between

the general collateral rate and its repo rate. In our model, instead of assuming that the lender pays

a repo rate to the borrower, we assume that the borrower pays a flow fee w to the lender. Hence,

the “implied” repo rate is the difference r − w between the risk-free rate and the lending fee, and

the specialness is simply w.

For simplicity, we impose from now on a constraint on agents’ portfolios. We assume that

agents can either hold a long position of one share, or a short position of one share, or no position.

Precluding long and short positions of multiple shares is relatively innocuous. Indeed, Section 3

shows that agents can choose to limit themselves to one share because of risk aversion. The less

innocuous part of the constraint is to preclude arbitrage portfolios of offsetting long and short

positions. To impose the discipline of no-arbitrage on the market, we introduce an additional agent

group, the “arbitrageurs.” These are average-valuation agents who never switch to high or low

valuation, and who can hold either one of the three portfolios above or an arbitrage portfolio that

is one share long and one short. We assume that arbitrageurs have infinite measure so that they

can take an unlimited collective position.14

14Alternatively, we could assume that all agents can hold the arbitrage portfolio, and do away with the arbitrageurs.
We return to this issue in Footnote 24.
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In this section we assume that asset supplies are identical, i.e., S1 = S2 = S, and allow for

different supplies in Section 5. In Section 4.1 we describe agents’ life-cycles and the search process.

In Section 4.2 we determine the measures of the different agent types and in Section 4.3 we solve

the agents’ optimization problems. In Section 4.4 we define equilibrium and show that a symmetric

equilibrium can coexist with asymmetric ones where short-sellers decide to borrow only one asset.

4.1 Agents’ Life-Cycles and the Search Process

We look for equilibria in which portfolio decisions resemble those in the Walrasian case, namely,

high-valuation agents seek to buy one share of an asset, low-valuation agents seek to short one

share, and average-valuation agents (including arbitrageurs) stay out of the market. Agents’ life-

cycles in these equilibria are illustrated in the flow diagram of Figure 1. A high-valuation agent is

initially a high-valuation buyer b, who seeks a seller of either asset in the spot market. If he reverts

to average valuation before meeting a seller, he exits the market. Otherwise, if he meets a seller

of asset i ∈ {1, 2}, he buys the asset. He then becomes a lender ℓi of asset i in the repo market,

seeking a borrower. If he reverts to average valuation before meeting a borrower, he exits the repo

market and becomes a seller si of asset i in the spot market. Otherwise, if he meets a borrower

and there are gains from trade, he lends his asset and becomes a high-valuation non-searcher ni.

After that time, he can either become a seller si, or a lender ℓi, or can directly exit the market. We

postpone the precise description of these transitions to the next paragraph. Lastly, a low-valuation

agent is initially a borrower bo, who seeks a lender in the repo market. If she reverts to average

valuation before meeting a lender, she exits the market. Otherwise, if she meets a lender of asset i

and there are gains from trade, she borrows the asset.

We next describe the evolution of a borrower-lender match over time, specifying the outcomes

when one of the parties reverts to average valuation and wants to end the match. (Figure 2

augments the flow diagram of Figure 1 to include the associated transitions.) Once matched, the

lender ℓi becomes a high-valuation non-searcher ni, and the borrower bo becomes a low-valuation

seller si of asset i. If agent si reverts to average valuation before meeting a buyer, she delivers the

asset to agent ni and exits the market, while agent ni becomes a lender ℓi. If instead it is agent

ni who reverts to average valuation, agent si delivers the asset and becomes a borrower bo, while

agent ni becomes a seller si. Otherwise, if agent si meets a buyer, she sells the asset and becomes

a low-valuation non-searcher ni. If she reverts to average valuation after that time, she becomes a
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Figure 1: Partial Flow Diagram.

In the diagram, boxes represent investors’ types and arrows transitions between types.

buyer bi of asset i, and upon meeting a seller she buys and delivers the asset. If instead it is agent

ni who reverts to average valuation, the low-valuation agent (ni or bi) is unable to deliver instantly

because of search. In that event, we assume that agent ni seizes some cash collateral, previously

posted by the low-valuation agent, and exits the market.15

We refer to the different states in agents’ life-cycles as “types.” The types are b and {ℓi, ni, si}i∈{1,2}

for the high-valuation agents, and bo and {si, ni, bi}i∈{1,2} for the low-valuation agents. We denote

by T the set of types, and by µτ the measure of investors of type τ ∈ T . Finally, we denote by bi

the group of all buyers of asset i (both high- and low-valuation), and by si the group of all sellers.

15 This assumption is for simplicity. An alternative assumption is that the low-valuation agent can search for the
asset under a late-delivery penalty, but this would complicate the model without changing the basic intuitions.

In Appendix D we show that because collateral acts as a transfer, its specific value does not affect any equilibrium
variable except the price of the repo contract: high-valuation agents accept to lend their asset for a lower fee if they
can seize more collateral. To downplay this effect, we set the collateral equal to the utility of a seller si. This ensures
that upon reverting to average valuation, agent ni is equally well off when receiving the asset (thus becoming a seller
si) or the cash collateral.
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Figure 2: Full Flow Diagram.

In the diagram, boxes represent investors’ types and arrows transitions between types.

The measures µbi and µsi of these groups are

µbi = µb + µbi (7)

µsi = µsi + µsi. (8)

In each market, agents are matched randomly over time in pairs. We assume that an agent

establishes contact with other agents at Poisson arrival times with fixed intensity. Moreover, there is

random matching in that conditional on establishing a contact, all agents are “equally likely” to be

contacted. Thus, an agent meets members of a given group with Poisson intensity proportional to

that group’s measure. For example, a buyer in the spot market meets sellers of asset i with Poisson

intensity λµsi, where λ is a parameter measuring the efficiency of spot-market search. Therefore,

the Law of Large Numbers (see Duffie and Sun [2004]) implies that meetings between buyers and

sellers of asset i occur at a deterministic rate λµbiµsi. Likewise, meetings between borrowers and

lenders of asset i occur at a deterministic rate νµboµℓi, where ν measures the efficiency of repo-
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market search. If in equilibrium low-valuation agents decide to borrow only one asset, some of the

borrower-lender meetings do not result in a trade. To account for this, we define the endogenous

variable νi by νi = ν if low-valuation agents borrow asset i, and νi = 0 otherwise.

When two agents meet, they bargain over the terms of trade. Bargaining in the spot market

is over the price pi of asset i, and in the repo market is over the flow fee wi that the borrower

must pay to the lender of asset i over the life of the loan. We assume that bargaining takes place

according to a simple game where the two agents make simultaneous offers. If the offers generate a

set of mutually acceptable prices, trade occurs at the mid-point of that set. Otherwise, the meeting

ends and the agents return to the search pool.

4.2 Demographics

We next derive a set of equations that determine the steady-state measures of the different agent

types. Market clearing requires that assets are held by lenders or sellers, i.e.,

µℓi + µsi = Si, (9)

for i ∈ {1, 2}. Moreover, the measure µni of high-valuation agents engaged in a borrower-lender

match must equal the measure of low-valuation agents, i.e.,

µni = µsi + µni + µbi, (10)

for i ∈ {1, 2}. The remaining equations follow from the requirement that the inflow into an agent

type must equal the outflow. Consider, for example, the type b of high-valuation buyers. The

inflow into this type is F because of the new entrants. The outflow is the sum of κµb because some

high-valuation buyers revert to average valuation and exit the market, and
∑2

i=1 λµsiµb because

some high-valuation buyers meet sellers of assets 1 or 2 and buy. Therefore,

F = κµb +
2

∑

i=1

λµsiµb. (11)

In Appendix B we derive the remaining inflow-outflow equations and show that the resulting system

has a unique solution.
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4.3 Optimization

Agents optimize over their consumption flow and risky-asset portfolio. We solve the optimization

problem in two steps: (i) take the portfolio decision as given and solve for optimal consumption, thus

computing an “interim” value function, and (ii) determine the portfolio decision that maximizes this

value function. We characterize the value function in Appendix C, and leave portfolio optimization

to Appendix E where we compute the full equilibrium. In this section we present an intuitive

characterization of the value function corresponding to agents’ equilibrium portfolio decisions, i.e.,

the life-cycles of Section 4.1.

An agent’s value function takes the form

−
1

r
exp

[

−A (Wt + Vτ ) +
r − β + A2σ2

e/2

r

]

,

where Wt is the investment in the riskless asset, and Vτ is a constant that depends on the agent’s

type and to which we refer as the agent’s “utility.” The set of utilities solves a system of nonlinear

equations. The equations, however, become linear and can be solved in closed form in an inter-

esting special case. This is when the coefficient of absolute risk aversion A goes to zero, holding

the parameters y, x, and x constant.16 Because these parameters measure the cost and hedging

benefit of bearing risk, risk considerations matter even in the limit. It is, however, only the risk

of the dividend process that matters, and not the risk associated to the matching process in the

search market. Agents are effectively risk-neutral relative to the latter, and this is what makes the

equations linear. From now on, we focus on the limit case because it captures the key economic

intuitions while also generating simpler equations.

The equations take a form which is standard in the search literature. This is that the flow

value rVτ of being type τ is derived from the flow benefits accruing to that type (dividends and

lending fees) plus the transitions to other types. For a high-valuation buyer b, for example, the

equation is

rVb = −κVb +
2

∑

i=1

λµsi(Vℓi − pi − Vb), (12)

16Recall from Section 3 that these parameters are defined by y ≡ Aσ2/2, x ≡ Aρσσe, and x ≡ Aρσσe. Therefore,

when A goes to zero, the variances σ and σe must go to infinity. Note that the certainty equivalent C(ρ, z) is
unaffected when taking the limit because its dependence on A, σ, and σe is only through y, x, and x.
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because the flow benefits are zero and the transitions are (i) revert to average valuation at rate κ

and exit the market (utility zero and net utility −Vb), and (ii) meet a seller of asset i ∈ {1, 2} at

rate λµsi, buy at price pi, and become a lender ℓi (utility Vℓi and net utility Vℓi − pi − Vb).

In Appendix D we derive the remaining equations. These must be solved together with the

equations for the price and the lending fee. The price is determined by bargaining between buyers

and sellers. There are two types of buyers, b and bi, and two types of sellers, si and si. Type b has

reservation value ∆b ≡ Vℓi − Vb because after buying asset i he becomes a lender with utility Vℓi.

Type bi has reservation value ∆bi ≡ −Vbi because after buying she delivers the asset and exits the

market. Likewise, the sellers’ reservation values are ∆si ≡ Vsi and ∆si ≡ Vsi − Vni. Because type b

receives a hedging benefit from holding the asset while type si does not, reservation values satisfy

∆b > ∆si. They also satisfy ∆bi > ∆si because type si receives a hedging benefit from holding a

short position while type bi does not. To complete the ranking, we assume that short-sellers are

the infra-marginal traders, both as sellers and as buyers, i.e.,

∆bi > ∆b > ∆si > ∆si. (13)

This assumption makes the analysis more transparent because it ensures that the marginal traders

are comparable across assets, even in equilibria where short-selling is concentrated on one asset.

In Section 4.4 we show that Equation (13) is satisfied under appropriate restrictions on exogenous

parameters.

We focus on simple equilibria of the bargaining game in which all buyers and sellers make

the same offer pi. This offer must be in [∆si, ∆b] to ensure that all traders realize a non-negative

surplus. Given the buyers’ strategy, asking pi is optimal for a seller - a higher ask would preclude

trading while a lower ask would lower the transaction price. Likewise, given the sellers’ strategy,

bidding pi is optimal for a buyer. Obviously any pi ∈ [∆si, ∆b] is an equilibrium. We do not select

among these, but instead treat the buyers’ “bargaining power” φ defined by

pi = φ∆si + (1 − φ)∆b, (14)

as exogenous. The bargaining power φ is equal to the fraction of the overall surplus ∆b −∆si that

the marginal buyer b can extract.

The lending fee is determined by bargaining between borrowers and lenders. We compute it in

Appendix D as a function of the surplus Σi associated to a borrower-lender match, and the fraction

θ of that surplus that a lender can extract.
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4.4 Equilibrium

An equilibrium is characterized by

(i) Measures µτ for all agent types τ ∈ T .

(ii) Utilities Vτ for all agent types τ ∈ T .

(iii) Prices and lending fees (pi, wi) for i ∈ {1, 2}.

(iv) Short-selling decisions νi ∈ {0, ν} for i ∈ {1, 2}.

These variables are a solution to the following fixed-point problem. The measures are determined

from the nonlinear system of Equations (9)-(11) and (33)-(38), as a function of the short-selling

decisions. The utilities, prices, and lending fees are determined from the linear system of equations

(12) and (80)-(90), as a function of the measures and short-selling decisions. Finally, the short-

selling decisions are determined as a function of the utilities from

νi = ν ⇔ Σi ≥ 0, (15)

i.e., agents short-sell asset i if the surplus Σi associated to a borrower-lender match is positive.

A solution to the fixed-point problem is an equilibrium if it satisfies two additional requirements.

First, the conjectured portfolio decisions must be optimal, i.e., high- and low-valuation agents must

adopt the life-cycles of Section 4.1, and average-valuation agents (including arbitrageurs) must hold

no position. Second, the buyers’ and sellers’ reservation values must be ordered as in Equation (13).

We are interested in two types of equilibria: a symmetric one where low-valuation agents short-

sell both assets, i.e., ν1 = ν2 = ν, and an asymmetric one where short-selling is concentrated on

one asset only, say asset 1, i.e., ν1 = ν and ν2 = 0. Computing these equilibria can, in general,

be done only numerically. Fortunately, however, closed-form solutions can be derived when search

frictions are small, i.e., λ and ν are large.17 In the remainder of this section we focus on this case,

emphasizing the intuitions gained by the closed-form solutions. We complement our asymptotic

analysis with a numerical calibration in Section 6.

When search frictions are small, the measure of agents in the “short” side of a market goes

to zero. The short side in the repo market are the borrowers because they enter the market at a

17More precisely, we assume that λ and ν go to ∞, holding the ratio n ≡ ν/λ constant. When taking this limit,
we will say that a variable Z is asymptotically equal to z1/λ + z2/ν, if Z = z1/λ + z2/(nλ) + o(1/λ).
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flow rate, while the lenders are the asset-holders and constitute a stock. The short side in the spot

market depends on the comparison between the asset demand, generated by the high-valuation

agents, and the asset supply, generated by the issuers and the short-sellers. As in the Walrasian

case, we assume that demand exceeds supply, i.e.,

F

κ
> 2S +

F

κ
. (16)

Under this condition, the short side in the spot market are the sellers.

4.4.1 Symmetric Equilibrium

Proposition 2 Assume Equation (16),

x + κ
r+κ+gs

x

1 + κ
r+κ+gs

> 2y > x, (17)

and φ, θ 6= 1, where gs is defined by Equation (60) of Appendix D. Then, for large λ and ν, there

exists a symmetric equilibrium in which prices, lending fees, and types’ measures are identical across

assets.

In the proof of Proposition 2 we determine the asymptotic behavior of the equilibrium. We

confirm that the measures of sellers and borrowers, who are the short side in their respective

markets, go to zero, while the measures of buyers and lenders go to positive limits. In particular,

for each asset i ∈ {1, 2}, the measure of lenders converges to the asset supply S, and the measure

of buyers to a limit mb. On the other hand, the measure of sellers is asymptotically equal to gs/λ,

and that of borrowers to gbo/ν, for two constants gs and gbo. The asymptotic behavior of the price

and the lending fee is described in the following proposition.

Proposition 3 In the symmetric equilibrium of Proposition 2, the price of each asset i ∈ {1, 2} is

asymptotically equal to

pi =
δ + x − y

r
−

κ

λmb

x

r
−

φ(r + κ + 2gs)

λ(1 − φ)mb

x

r
+

gbo

r + κ + κ gs

r+κ+κ+gs
+ gbo

wi

r
, (18)

and the lending fee is asymptotically equal to

wi = θ

(

r + κ + κ
gs

r + κ + κ + gs
+ gbo

)

Σi, (19)
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where

Σi =
x − r+κ+κ+gs

r+κ+gs
(2y − x)

2ν(1 − θ)S
. (20)

The price is the sum of four terms. The first term, (δ + x − y)/r, is the limit to which the

price converges when search frictions go to zero. Not surprisingly, this limit is the Walrasian price

of Proposition 1. Recall that the Walrasian price is the PV of the high-valuation agents’ certainty

equivalent of one share. High-valuation agents bid the price up to their valuation because they are

the long side in the market.

The remaining terms in Equation (18) are adjustments to the Walrasian price due to search

frictions. The second term is a liquidity discount, arising because high-valuation agents incur a

search cost when needing to sell the asset. This cost reduces their valuation and lowers the asset

price. The liquidity discount decreases in the measure of buyers (mb in the limit) because this

reduces the time to sell the asset, and increases in the rate κ of reversion to average valuation

because this reduces the investment horizon. Interpreting the search cost as a transaction cost, the

liquidity discount is in the spirit of Amihud and Mendelson [1986].18

The third term is a discount arising because high-valuation agents have bargaining power in

the search market and can extract some surplus from the sellers. This “bargaining” discount is

present only when the buyers’ bargaining power φ is non-zero.

The last term is a specialness premium, arising because high-valuation agents can earn a fee by

lending the asset in the repo market. This fee is an additional cash flow derived from the asset and

raises its price. The specialness premium is the PV of the asset’s expected lending revenue, but is

smaller that the PV wi/r of a continuous stream of the lending fee. This is because lenders must

search for borrowers and cannot ensure that their asset is on loan continuously. In fact, the time to

meet a borrower does not converge to zero when search frictions become small. For small frictions,

the flow of borrowers who enter into the market are matched almost instantly with lenders. Because,

however, lenders are in positive measure, the meeting time from any given lender’s viewpoint is

finite.19

18Consistent with Amihud and Mendelson, the liquidity discount κx/(λmbr) is (asymptotically) the PV of transac-
tion costs incurred by a sequence of marginal buyers. Indeed, a high-valuation investor (the marginal buyer) reverts
to average valuation at rate κ. He then incurs an opportunity cost x of holding the asset, since he does not realize
the hedging benefit, until he meets a new buyer at rate λmb.

19Formally, the measure of borrowers is asymptotically equal to gbo/ν, and thus the Poisson intensity νµbo at which
borrowers can be contacted converges to gbo.

18



The lending fee arises because of the lenders’ bargaining power θ in the repo market, exactly as

in Duffie, Gârleanu and Pedersen [2002]. When the bargaining power is non-zero, the lenders can

extract some of the short-selling surplus Σ from the borrowers. Of course, when search frictions

become small, lenders can be contacted almost instantly, and competition among them drives the

fee down to zero.

The short-selling surplus Σi increases in the hedging benefit x of the low-valuation agents. It

also increases in gs, which is the Poisson intensity at which sellers can be contacted in the limit.20

The easier the sellers are to contact, the more attractive a short-sale becomes to a low-valuation

agent because it is easier to buy the asset back.

4.4.2 Asymmetric Equilibrium

Proposition 4 Assume Equations (16), (17), φ 6= 1, θ 6= 0, 1, and ν/λ ∈ (n1, n2) for two positive

constants n1, n2. Then, for large λ and ν, there exists an asymmetric equilibrium where short-selling

is concentrated on asset 1.

Taken together, Propositions 2 and 4 imply that there is a parameter range for which a sym-

metric and an asymmetric equilibrium coexist. In the asymmetric equilibrium, low-valuation agents

short-sell only asset 1, declining any opportunities to borrow asset 2. This occurs because of search

externalities. The more agents short-sell asset 1, the greater the asset’s seller pool becomes. The

asset’s buyer pool also increases because of the short-sellers who need to buy the asset back. This

makes asset 1 easier to trade, attracting, in turn, more short-sellers.

While the general notion of search externalities is well-understood, its application to the on-the-

run phenomenon is subtle. Absent the short-sellers, search externalities would not operate. Indeed,

the only agents choosing between the two assets would be the high-valuation buyers. While these

agents value an asset with a larger buyer pool (because they eventually turn into sellers), prices

would adjust so that in equilibrium agents hold both assets. Therefore, the assets would have a

common buyer pool, and be identical from a buyer’s viewpoint.

20The Poisson intensity at which sellers can be contacted is λµs, and converges to gs because the measure of sellers
is asymptotically equal to gs/λ. The surplus is increasing in gs because Equation (17) requires that 2y > x. This
inequality ensures that upon reverting to average valuation, a short-seller prefers to buy the asset back rather than
keeping the short position.

The surplus Σi is positive because of the left-hand-side inequality in Equation (17). In fact, this inequality is
stronger than Σi > 0 because it ensures that low-valuation agents are not only willing to short-sell, but are also the
infra-marginal, i.e., the more eager, sellers.
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Search externalities would not operate even with short-sellers, if these were allowed to deliver

any asset and not necessarily the one they borrowed. Indeed, the assets would have a common buyer

pool, consisting of the high-valuation buyers and the short-sellers who need to deliver. Therefore,

both assets would be equally attractive to short-sell: equally easy to sell because of the common

buyer pool, and equally easy to deliver because one can be substituted for the other.

Summarizing, search externalities can operate only because of the combination of short-sellers

and the constraint that these can deliver only the asset they borrowed. This constraint “locks”

short-sellers into buying one asset, thus generating differences in the assets’ buyer pools. It also

implies that that the size of an asset’s seller pool matters: a short-seller finds it more valuable to

borrow an asset with a larger seller pool because that asset can be delivered more easily.

In the proof of Proposition 4, we determine the asymptotic behavior of the equilibrium. We

show that for each asset i, the measure of lenders converges to the asset supply S, and the measure

of buyers to a limit m̂bi such that m̂b1 > m̂b2. On the other hand, the measure of sellers is

asymptotically equal to ĝsi/λ, and that of borrowers to ĝbo/ν, for constants ĝs1 > ĝs2 and ĝbo. We

return to these constants in Section 4.4.3, where we compare the symmetric and the asymmetric

equilibrium. The asymptotic behavior of the price and the lending fee is in the following proposition.

Proposition 5 In the asymmetric equilibrium of Proposition 4, asset prices are asymptotically

equal to

p1 =
δ + x − y

r
−

κ

λm̂b1

x

r
−

φ

λ(1 − φ)

[

r + κ + ĝs1

m̂b1
+

ĝs2

m̂b2

]

x

r
+

ĝbo

r + κ + κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

w1

r
(21)

and

p2 =
δ + x − y

r
−

κ

λm̂b2

x

r
−

φ

λ(1 − φ)

[

r + κ + ĝs2

m̂b2
+

ĝs1

m̂b1

]

x

r
. (22)

The lending fee for asset 1 is asymptotically equal to

w1 = θ

(

r + κ + κ
ĝs1

r + κ + κ + ĝs1
+ ĝbo

)

Σ1, (23)

where

Σ1 =
x − r+κ+κ+ĝs1

r+κ+ĝs1
(2y − x)

ν(1 − θ)S
. (24)
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An immediate consequence of Proposition 5 is that the price of asset 1 exceeds that of asset

2. This is because of three effects working in the same direction. First, the liquidity discount is

smaller for asset 1 because this asset has a larger buyer pool, i.e., m̂b1 > m̂b2. Second, the bargaining

discount is smaller for asset 1 because the larger buyer pool implies more outside options for the

sellers.21 Finally, asset 1 carries a specialness premium because unlike asset 2, it can be lent to

short-sellers.

Our model rationalizes the apparent paradox that off-the-run bonds are generally viewed as

“scarce” and hard to locate, while at the same time being cheaper than on-the-run bonds. We

show that off-the-run bonds are indeed scarce from the viewpoint of short-sellers seeking to buy

and deliver them. At the same time, they are cheaper than on-the-run bonds because the marginal

buyers are the agents seeking to establish long positions. These agents value the superior liquidity

of the on-the-run bonds and the ability to lend the bonds in the repo market.

Since asset prices differ in the asymmetric equilibrium, a natural question is whether there

exists a profitable arbitrage. By construction, an arbitrage cannot exist in our model because it

would be eliminated by the group of arbitrageurs. The question is instead why arbitrageurs choose

to hold no position even though asset prices differ.

Since asset 1 is more expensive than asset 2, an arbitrageur could buy asset 2 and short asset

1. The arbitrageur would, however, have to pay the lending fee for asset 1. Therefore, the strategy

is unprofitable if

p1 − p2 <
w1

r
, (25)

i.e., the price differential between the two assets does not exceed the PV of the lending fee.22 In

equilibrium, however, the lending fee affects not only the cost of the arbitrage, but also the benefit:

it raises the price differential through the specialness premium. To examine whether Equation (25)

is satisfied, we thus need to substitute the equilibrium values of p1 and p2 from Proposition 5:

(φr + κ)

λ(1 − φ)

[

1

m̂b2
−

1

m̂b1

]

x

r
+

ĝbo

r + κ + κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

w1

r
<

w1

r
.

21This logic does not apply to buyers because the marginal buyers are the high-valuation agents who are not limited
to the seller pool of a specific asset.

22In the proof of Proposition 4 we show that the strategy is unprofitable under the weaker condition p1 − p2 <
w1/r+ξ, for some some transaction cost ξ of establishing the arbitrage position: because trading opportunities arrive
one at a time in a Poisson manner, it is not possible to set up the two legs of the position simultaneously, and this
generates a cost of being unhedged for some time period.
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The first term on the left-hand side reflects asset 1’s lower liquidity and bargaining discounts relative

to asset 2, and we refer to it as asset 1’s liquidity premium. By buying asset 2 and shorting asset

1, an arbitrageur capitalizes on this premium. The arbitrageur also capitalizes on the specialness

premium, which is the second term on the left-hand side. Crucially, however, the specialness

premium is only a fraction of the cost w1/r of the arbitrage because lenders cannot ensure that

their asset is on loan continuously (as emphasized in Section 4.4.1). Thus, Equation (25) is satisfied

when the lending fee is large enough.23

An arbitrageur could follow the opposite strategy of buying asset 1 and shorting asset 2. In

the proof of Proposition 4 we show that this strategy is unprofitable if

ĝbo

r + κ ĝs1

r+κ+gs1
+ ĝbo

w1

r
≤ p1 − p2. (26)

The left-hand side is the arbitrageur’s fee income from lending asset 1 in the repo market. This

exceeds the specialness premium (included in p1 − p2) because the arbitrageur can hold asset 1

forever, thus being a better lender than a sequence of high-valuation agents. Because, however, the

arbitrageur loses on the liquidity premium (the remaining part of p1−p2), Equation (26) is satisfied

when the lending fee is small enough. In the proof of Proposition 4 we show that Equations (25)

and (26) are jointly satisfied when the ratio ν/λ of relative frictions in the spot and repo markets

is in some interval (n1, n2). In Section 6 where we calibrate the model, we explore the implications

of this restriction for the relative sizes of the liquidity and specialness premia.24

4.4.3 Comparison of the Symmetric and the Asymmetric Equilibrium

We next compare the equilibria of Propositions 2 and 4.

Proposition 6 In the asymmetric equilibrium:

23When Equation (25) does not hold, arbitrageurs enter the market buying asset 2 and shorting asset 1. We
conjecture that because arbitrageurs are in infinite measure, they buy the whole supply of asset 2 and trading in that
asset ceases.

24Equations (25) and (26) ensure that arbitrage portfolios are suboptimal for arbitrageurs, i.e., average-valuation
agents with no initial position. They do not apply, however, to average-valuation agents with “inherited” positions.
Consider, for example, a low-valuation agent with a short position in asset 1, who reverts to average valuation. The
agent can unwind the short position by trading with a seller of asset 1, but might also accept to trade with a seller
of asset 2. This would hedge the short position, lowering the cost of waiting for a seller of asset 1.

In our analysis, we rule out such strategies by assuming that arbitrage portfolios can be held only by arbitrageurs.
This is partly for simplicity, to keep agents’ life-cycles manageable. One could also argue that many investors do not
engage in such strategies because of costs to managing multiple positions, settlement costs, etc. (These costs could
be smaller for sophisticated arbitrageurs.) Needless to say, it would be desirable to relax this assumption.
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(i) There are more buyers and sellers of asset 1 than in the symmetric equilibrium.

(ii) There are fewer buyers and sellers of asset 2 than in the symmetric equilibrium.

(iii) The lending fee of asset 1 is higher than in the symmetric equilibrium.

(iv) The prices of the two assets straddle the symmetric-equilibrium price when φ = 0. For other

values of φ (e.g., 1/2), both prices can exceed the symmetric-equilibrium price.

(v) Social welfare is higher than in the symmetric equilibrium.

Since in the asymmetric equilibrium short-selling is concentrated on asset 1, there are more

sellers of this asset than in the symmetric equilibrium. There are also more buyers because of the

short-sellers who need to buy the asset back. Conversely, asset 2 attracts fewer buyers and sellers

than in the symmetric equilibrium.

The lending fee of asset 1 is higher than in the symmetric equilibrium because of two effects.

First, because there are more buyers and sellers of asset 1, a short-sale is easier to execute, and

the short-selling surplus is higher. Moreover, lenders of asset 1 are in better position to bargain for

this surplus because they do not have to compete with lenders of asset 2.

To explain the price results, we recall that prices differ from the Walrasian benchmark because

of a liquidity discount, a bargaining discount, and a specialness premium. In the asymmetric

equilibrium, asset 1’s liquidity discount is smaller than in the symmetric equilibrium because there

are more buyers. Moreover, asset 1’s specialness premium is higher because of the higher lending

fee. Conversely, asset 2’s liquidity discount is higher than in the symmetric equilibrium, and its

specialness premium is zero. Therefore, absent the bargaining discount, i.e., when the buyers’

bargaining power φ is zero, asset 1 trades at a higher price and asset 2 at a lower price relative to

the symmetric equilibrium.

Perhaps the most surprising result of Proposition 6 is that both assets can trade at a higher

price relative to the symmetric equilibrium. Thus, the bargaining discount can reverse the effects

of liquidity and specialness. To explain the intuition, we recall that short-sellers exit the seller pool

faster when the asset they have borrowed has a larger buyer pool. This occurs in the asymmetric

equilibrium because asset 1 has more buyers than either asset in the symmetric equilibrium. There-

fore, there are fewer short-sellers in the asymmetric equilibrium, and the aggregate seller pool can

be smaller. This can, in turn, worsen the buyers’ bargaining position and raise the prices of both
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assets. In the calibrated example of Section 6, we show that for plausible parameter values, prices

of both assets are indeed higher in the asymmetric equilibrium.

To measure social welfare, we add the utilities Vτ of all agents, discounting those of future

entrants at the interest rate r. From the Bellman equations of Section 4.3, an agent’s utility is

equal to the PV of the flow benefits derived over the agent’s lifetime. Therefore, social welfare is

equal to the PV of the flow benefits derived by all agents. In the proof of Proposition 6 we show

that welfare depends on the equilibrium allocation through

2
∑

i=1

[

µni(x + x − 2y) − µsix − µbi(2y − x)
]

. (27)

The first term inside the summation corresponds to the gains from trade between high- and low-

valuation agents, achieved through short-sales. The extent of short-sales is given by the measure

µni of low-valuation non-searchers. The last two terms correspond to inefficiencies arising because

some average-valuation agents hold positions that are no longer optimal. These agents are either

sellers si seeking to unwind a long position, or buyers bi seeking to unwind a short position.

When search frictions are small, the measure µsi converges to zero, while
∑2

i=1 µni converges to

the measure F/κ of low-valuation agents. Therefore, welfare depends on the equilibrium allocation

only through the measure
∑2

i=1 µbi of buyers seeking to unwind short positions. In the asymmetric

equilibrium these buyers can trade faster because asset 1 has more sellers than either asset in the

symmetric equilibrium. Therefore,
∑2

i=1 µbi is lower and social welfare higher.

5 Extensions

5.1 Different Supplies

In this section we consider the case where asset supplies differ. Without loss of generality, we take

asset 1 to be in larger supply, i.e., S1 > S2.

Proposition 7 Assume Equation (4). As λ and ν become large:

(i) An equilibrium where low-valuation agents short-sell both assets exists for a set of values of

S1 − S2 that converges to {0}.
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(ii) An equilibrium where short-selling is concentrated on asset 1 exists for all values of S1 − S2.

(iii) An equilibrium where short-selling is concentrated on asset 2 exists for a set of values of

S1 − S2 that converges to [0, Ŝ] with Ŝ > 0.

(iv) Social welfare is higher when short-selling is concentrated on asset 1 rather than asset 2.

Proposition 7 shows that asset supply is a powerful device in selecting among the equilibria

of Section 4. For small search frictions, the symmetric equilibrium becomes knife-edge, existing

only when asset supplies are very close. The intuition is the asset in larger supply (asset 1) has a

larger seller pool because it has a larger pool of lenders who can revert to average valuation. This

makes it more attractive to short-sellers because they can unwind a position more easily. When

search frictions are small, short-sellers can afford to wait for asset 1 in the repo market, declining

to borrow asset 2, and this eliminates the symmetric equilibrium.

The asymmetric equilibria are not knife-edge. In particular, short-selling can be concentrated

on the smaller-supply asset 2 even when supplies are not very close. Intuitively, while asset 2 has

a smaller pool of lenders who can revert to average valuation, it can have a larger overall seller

pool because of the short-sellers. This makes it more attractive to short-sell and reinforces the

equilibrium. Of course, short-sellers can compensate for the difference in supplies only when this

difference is not too large. Otherwise, short-selling can only be concentrated on asset 1. Asset 1’s

seller pool in this equilibrium is larger than asset 2’s in the equilibrium where asset 2 attracts the

short-sellers. Thus, when short-selling is concentrated on asset 1, short-sellers can unwind their

positions more easily and social welfare is higher.

A commonly held view is that on-the-run bonds are more liquid and special because they

are the most recently issued. Proposition 7 suggests that this view could be consistent with our

multiple equilibrium view, in the following way. Market participants typically consider that off-

the-run bonds are in smaller “effective supply” than on-the-run bonds. For example, Amihud

and Mendelson [1991] note that (off-the-run Treasury) “notes have been locked away in investor’s

portfolio, and a large part of the issue is not available for trading.” Therefore, if on-the-run bonds

are in greater “effective supply” than off-the-run bonds, Proposition 7 suggests that they are more

likely to be liquid and special.
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5.2 Market Integration

We next relax the constraint that short-sellers can deliver only the asset they borrowed. In the

Treasury market this could be achieved if on- and off-the-run bonds are standardized in terms of

their maturity dates. For example, a two-year bond could be designed to mature on exactly the

same date as a previously-issued five-year bond. The two bonds could then be made “fungible,”

assigned the same CUSIP number, and be identical for delivery purposes. Bennett et al. [2000]

propose specific measures to implement this outcome, arguing that it would enhance the liquidity

of the Treasury market.

When short-sellers can deliver any asset, markets are effectively integrated as if there is a single

asset in supply 2S. In Proposition 8 we compare this outcome to the equilibria of Propositions 2

and 4.

Proposition 8 Suppose that there is a single asset in supply 2S. Then

(i) The asset price is higher than in the symmetric equilibrium.

(ii) The asset price is higher than the price of asset 2 in the asymmetric equilibrium. It can be

higher or lower than the price of asset 1 and the average price of the two assets.

(iii) Social welfare is higher than in the symmetric and asymmetric equilibria.

Under market integration, each asset has more buyers than in the symmetric and asymmetric

equilibria. Therefore, the liquidity and bargaining discounts are smaller. The specialness premium

tends to be larger because market integration increases the short-selling surplus (by facilitating

delivery), thus increasing the fee that lenders can extract. Offsetting this effect, is that lenders of

asset 1 in the asymmetric equilibrium are in better position to bargain for the surplus because they

do not have to compete with lenders of asset 2. This can generate the surprising result that the

price under market integration can be lower than the average price in the asymmetric equilibrium.

Social welfare is always higher, however, because short-sellers can deliver more easily.

An interesting implication of the proposition is that for some parameter values, government

revenue can be maximized in the asymmetric equilibrium, while social welfare is always maximized

under market integration. This suggests that in some circumstances, a revenue-maximizing Trea-
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sury might have little incentive to relax the constraint that shortsellers can only deliver the asset

they borrowed.

6 Calibration (To be added)

7 Conclusion

This paper proposes a search-based theory of the on-the-run phenomenon. We take the view that

liquidity and specialness are not independent explanations of this phenomenon, but can be explained

simultaneously by shortselling activity. We determine liquidity and specialness endogenously, ex-

plain why they can differ across otherwise identical assets, and study their effect on prices. We show

that the price of the more expensive asset includes a liquidity and a specialness premium, and these

are consistent with no-arbitrage. We derive closed-form solutions in the arguably realistic case of

small search frictions, and show that a calibration can generate yield differentials of the observed

magnitude. Our model can shed light on additional aspects of the on-the-run phenomenon, such

as the apparent puzzle that off-the-run bonds are cheap yet “scarce,” and the effects of issue size

and market integration.

Our analysis suggests that the search framework can be a fruitful tool for analyzing financial-

market phenomena. While only an idealization, it captures the bilateral nature of trading in

over-the-counter markets. It also provides an analytically tractable and internally consistent model

of the ease of transacting in markets where there is little asymmetric information about payoffs.25

It is not obvious to us that the Walrasian auction would be more realistic model of the government-

bond market: both models make strong assumptions, and both predict similar prices when search

frictions are small. Moreover, while the on-the-run phenomenon is inconsistent with the Walrasian

model, it can be explained in a parsimonious fashion (i.e., without the need to include additional

frictions) with a search model.

25See Admati and Pfleiderer [1992] for an asymmetric-information model in which two identical assets can differ in
liquidity.
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A Walrasian Equilibrium

In this section we prove Proposition 1. An agent maximizes his intertemporal utility (2) subject to

the budget constraint

dWt =

[

rWt − ct +

2
∑

i=1

(δ − rpi)zit

]

dt +

[

σ

2
∑

i=1

zit + ρtσe

]

dBt + σe

√

1 − ρ2
t dZt

and the transversality condition

lim
T→∞

E [exp(−AWT − βT )] = 0,

where Wt is the wealth, zit the number of shares invested in asset i ∈ {1, 2}, and A ≡ ra. The

agent’s controls are the consumption c ∈ R and the investments z1, z2 ∈ Z. Obviously, if p1 6= p2

the agent can achieve infinite utility by demanding an infinite amount of assets, contradicting

equilibrium. Thus, in equilibrium p1 and p2 must be equal. Denoting their common value by p,

and the aggregate investment in the risky assets by z ≡ z1 + z2, we can write the budget constraint

as

dWt = [rWt − ct + (δ − rp)zt] dt + [σzt + ρtσe] dBt + σe

√

1 − ρ2
t dZt.

The agent’s value function J(Wt, ρt) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
(c,z)∈R×Z

{

− exp(−αc) + D(c,z)J(W, ρ) − βJ(W, ρ)
}

, (28)

where

D(c,z)J(W, ρ) ≡ JW (W, ρ) [rW − c + (δ − rp)z] +
1

2
JWW (W, ρ)

[

σ2z2 + 2ρσσez + σ2
e

]

+κ(ρ) [J(W, 0) − J(W, ρ)] ,

and where the transition intensity κ(ρ) is equal to κ for ρ = ρ, and κ for ρ = ρ. We guess that

J(W, ρ) takes the form

J(W, ρ) = −
1

r
exp

[

−A[W + V (ρ)] +
r − β + A2σ2

e

2

r

]

,
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for some function V (ρ). Replacing into Equation (28), we find that the optimal consumption is

c(ρ) = r[W + V (ρ)] −
r − β + A2σ2

e

2

A

and the optimal investment satisfies

z(ρ) ∈ argmaxz∈Z{C(ρ, z) − rpz} ≡ Z(ρ)

for the incremental certainty equivalent C(ρ, z) introduced in Section 3. Plugging c(ρ) back into

Equation (28), we find that Equation (28) is satisfied iff

0 = −rV (ρ) + max
z∈Z

{C(ρ, z) − rpz} + κ(ρ)
1 − e−A(V (0)−V (ρ))

A
. (29)

Equation (29) implies that V (0) = maxz{C(ρ, z)−rpz}/r. Moreover, given V (0), the equations for

V (ρ) and V (ρ) are in only one unknown, and it is easy to check that they have a unique solution.

We next determine the equilibrium value of p. Because each type-ρ agent holds a position

z(ρ) ∈ Z(ρ), the average position zm(ρ) of these agents is in the convex hull of Z(ρ). Market

clearing requires that zm(0) = 0 because average-valuation agents in infinite measure. It also

requires that

F

κ
zm(ρ) +

F

κ
zm(ρ) =

2
∑

i=1

Si. (30)

Because the function z → C(ρ, z) − rpz is strictly concave, the set Z(ρ) consists of either one or

two elements. If there exists a z such that

C(ρ, z) − rpz > max {C(ρ, z + 1) − rp(z + 1), C(ρ, z − 1) − rp(z − 1)} , (31)

then this z is unique and Z(ρ) = {z}. Otherwise, there exists a unique z such that

C(ρ, z) − rpz = C(ρ, z + 1) − rp(z + 1), (32)

and Z(ρ) = {z, z +1}. Using Equation (5) and the first-order conditions (31) and (32), it is easy to

check that for p = (d+x−y)/r, Z(ρ) = {0, 1}, Z(ρ) = {−1}, and Z(0) = {0}. Equation (30) follows

then from (4), implying that p = (δ + x− y)/r is an equilibrium price. It is the unique equilibrium

price because if p > (δ + x− y)/r then no agent would choose z > 0, and if p < (δ + x− y)/r then

high-valuation agents would choose z ≥ 1, while other agents would choose at least as much as for

p = (δ + x − y)/r.
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B Demographics

B.1 Inflow-Outflow Equations

The inflows and outflows for each agent type are as follows:

Lenders ℓi: The inflow is the sum of λµbµsi because some high-valuation buyers meet sellers, and a

flow fi from the high-valuation non-searchers. The outflow is the sum of κµℓi because some lenders

switch to average valuation and become sellers, and νiµboµℓi because some lenders meet borrowers

and become high-valuation non-searchers. Thus,

λµbµsi + fi = κµℓi + νiµboµℓi. (33)

High-valuation non-searchers ni: The inflow is νiµboµℓi from the lenders. The outflow is the sum

of fi, and κµni because some high-valuation non-searchers revert to average valuation and either

become sellers (flow κµsi) or seize the collateral and exit the market (flow κ(µni + µbi)). Thus,

νiµboµℓi = fi + κµni. (34)

Sellers si: The inflow is the sum of κµℓi from the lenders, and κµsi from the high-valuation non-

searchers. The outflow is λµbiµsi because some sellers meet buyers and exit the market. Thus,

κµℓi + κµsi = λµbiµsi. (35)

Borrowers bo: The inflow is the sum of F because of the new entrants, and
∑2

i=1 κ(µsi + µni)

because of the low-valuation sellers and non-searchers who are called to deliver the asset. The

outflow is the sum of κµbo because some borrowers revert to average valuation and exit the market,

and
∑2

i=1 νiµboµℓi because some borrowers meet lenders and become low-valuation sellers. Thus,

F +
2

∑

i=1

κ(µsi + µni) = κµbo +
2

∑

i=1

νiµboµℓi. (36)

Low-valuation sellers si: The inflow is νiµboµℓi from the borrowers. The outflow is the sum of

κµsi because some low-valuation sellers are called to deliver the asset and become borrowers, κµsi
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because some low-valuation sellers revert to average valuation and exit the market, and λµbiµsi

because some low-valuation sellers meet buyers and become low-valuation non-searchers. Thus,

νiµboµℓi = κµsi + κµsi + λµbiµsi. (37)

Low-valuation non-searchers ni: The inflow is λµbiµsi from the low-valuation sellers. The outflow

is the sum of κµni because some low-valuation non-searchers are called to deliver the asset and

become borrowers, and κµni because some low-valuation non-searchers revert to average valuation

and become buyers. Thus,

λµbiµsi = κµni + κµni. (38)

Buyers bi: The inflow is κµni from the high-valuation non-searchers. The outflow is the sum of

κµbi because some buyers are called to deliver the asset and exit the market, and λµbiµsi because

some buyers meet sellers and exit the market. Thus,

κµni = κµbi + λµbiµsi. (39)

We consider the system formed by the accounting equations (7) and (8), the market-clearing

equations (9) and (10), and the inflow-outflow equations (11) and (35)-(39). The total number of

equations is 18 (because some are for each asset), and the 18 unknowns are the measures of the 14

agent types and {µbi, µsi}i∈{1,2}. A solution to the system satisfies Equations (33) and (34), which

is why we do not include them into the system. Indeed, adding Equations (37)-(39), and using

Equation (10), we find

νiµboµℓi = κµsi + κµni + λµbiµsi.

Therefore, Equation (34) holds with

fi = κµsi + λµbiµsi.

For this value of fi, Equation (33) becomes

λµbiµsi + κµsi = κµℓi + νiµboµℓi,

and is redundant because it can be derived by adding Equations (35) and (37).
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To solve the system, we reduce it to a simpler one in the six unknowns µbo, µb, and {µbi, µsi}i∈{1,2}.

Adding Equations (37) and (38), we find

µsi + µni =
νiµboµℓi

κ + κ
. (40)

Plugging into equation (36), and using Equation (9), we find

F = κµbo +
κ

κ + κ

2
∑

i=1

νiµbo(S − µsi). (41)

Equations (37) and (9) imply that

µsi =
νiµbo(S − µsi)

κ + κ + λµbi
. (42)

Equation (38) implies that

µni =
λµsiµbi

κ + κ
(43)

and Equation (39) implies that

µbi =
κµni

κ + λµsi
. (44)

Combining these equations to compute µbi, and using Equation (7), we find

µbi = µb +
κλµbiνiµbo(S − µsi)

(κ + κ)(κ + κ + λµbi)(κ + λµsi)
. (45)

Noting that µℓi + µsi = S − µsi, we can use Equation (35) to compute µsi:

µsi =
κS

κ + λµbi

. (46)

Adding Equations (42) and (46), and using Equation (8), we find

µsi =
κS

κ + λµbi

+
νiµbo(S − µsi)

κ + κ + λµbi

. (47)
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The new system consists of Equations (11), (41), (45), and (47). These are six equations

(because some are for each asset), and the six unknowns are µbo, µb, and {µbi, µsi}i∈{1,2}. Once

this system is solved, the other measures can be computed as follows: µsi from (42), µni from (43),

µbi from (44), µsi from (46), µℓi from (9), and µni from (10).

To cover the case where search frictions are small, we make the change of variables ε ≡ 1/λ,

n ≡ ν/λ, αi ≡ νi/ν, γsi ≡ λµsi, and γbo ≡ νµbo. Under the new variables, Equations (11), (41),

(45), and (47) become

F = κµb +
2

∑

i=1

µbγsi, (48)

F =
εκγbo

n
+

κ

κ + κ

2
∑

i=1

αiγbo(S − εγsi), (49)

µbi = µb +
κµbiαiγbo(S − εγsi)

(κ + κ) [ε(κ + κ) + µbi] (κ + γsi)
, (50)

γsi =
κS

εκ + µbi

+
αiγbo(S − εγsi)

ε(κ + κ) + µbi

, (51)

respectively.

B.2 Existence and Uniqueness

We next show that the system of Equations (48)-(51) has a unique symmetric solution when α1 =

α2 = 1 (the “symmetric” case), and a unique solution when α1 = 1 and α2 = 0 (the “asymmetric”

case). Using Equation (50) to eliminate γbo in Equation (51), we find

γsi =
κS

εκ + µbi

+ (µbi − µb)
(κ + κ)(κ + γsi)

κµbi

.

Multiplying by µbi, and setting i = 1, we find

γs1µb =
κSµb1

εκ + µb1
+ (µb1 − µb)

κ

κ
(κ + κ + γs1). (52)
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In the rest of the proof, we use Equations (48), (49), (50) for i ∈ {1, 2}, and (51) for i = 2, to

determine µb and µb1 as functions of γs1 ∈ (0, S/ε). We then plug these functions into Equation

(52), and show that the resulting equation in the single unknown γs1 has a unique solution.

We first solve for µb. In the asymmetric case, Equation (50) implies that µb2 = µb, Equation

implies that γs2 = κS/(εκ + µb), and Equation (48) implies that

F = κµb + µb

(

γs1 +
κS

εκ + µb

)

. (53)

The RHS of Equation (53) is (strictly) increasing in µb ∈ (0,∞), is equal to zero for µb = 0, and

goes to ∞ for µb → ∞. Therefore, Equation (53) has a unique solution µb ∈ (0,∞). This solution

is decreasing in γs1 because the RHS is increasing in γs1. In the symmetric case, Equation (48)

implies that µb = F/(κ + 2γs1). This solution is again decreasing in γs1.

We next solve for µb1. Equation (49) implies that

γbo =
F

εκ
n

+ κ
κ+κ

∑2
i=1 αi(S − εγsi)

=
F

εκ
n

+ κ
κ+κ

(1 + α2)(S − εγs1)
,

where the second step follows because in the symmetric case γs2 = γs1 and in the asymmetric case

α2 = 0. Plugging into Equation (50), setting i = 1, and dividing by µb1, we find

1 =
µb

µb1
+

(S − εγs1)nF

[ε(κ + κ) + µb1] (κ + γs1) [ε(κ + κ) + n(1 + α2)(S − εγs1)]
. (54)

The RHS of Equation (54) is decreasing in µb1 ∈ (0,∞), goes to ∞ for µb1 → 0, and goes to zero for

µb1 → ∞. Therefore, Equation (53) has a unique solution µb1 ∈ (0,∞). This solution is decreasing

in γs1 because the RHS is decreasing in γs1 and increasing in µb (which is decreasing in γs1).

We next substitute µb and µb1 into Equation (52), and treat it as an equation in the single

unknown γs1. To show uniqueness, we will show that the LHS is increasing in γs1 and the RHS is

decreasing. In the symmetric case, the LHS is equal to

γs1µb =
γs1F

κ + 2γs1
,

and is increasing. In the asymmetric case, Equation (53) implies that the LHS is equal to

γs1µb = F − κµb −
κSµb

εκ + µb

,
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and is increasing because µb is decreasing in γs1. The first term in the RHS is increasing in µb1,

and thus decreasing in γs1. To show that the second term is also decreasing, we multiply Equation

(54) by µb1(κ + κ + γs1):

(µb1 − µb)(κ + κ + γs1) =
µb1(κ + κ + γs1)(S − εγs1)nF

[ε(κ + κ) + µb1] (κ + γs1) [ε(κ + κ) + n(1 + α2)(S − εγs1)]
.

The RHS of this equation is decreasing in γs1 because it is decreasing in γs1 and increasing in µb1

(which is decreasing in γs1). Therefore, the second term in the RHS of Equation (52) is decreasing

in γs1.

To show existence, we note that for γs1 = 0, the LHS of Equation (52) is equal to zero, while

the RHS is positive. Moreover, for γs1 = S/ε, the LHS is equal to Sµb/ε, while the RHS is equal to

κSµb

εκ + µb

<
Sµb

ε

because µb1 = µb. Therefore, there exists a solution γs1 ∈ (0, S/ε).

B.3 Small Search Frictions

The case of small search frictions corresponds to small ε. Thus, the solution in this case is close

to that for ε = 0 provided that continuity holds. Our proof so far covers the case ε = 0, except

for existence. We next show that Equation (16) ensures existence for ε = 0. We also compute the

solution in closed form and show continuity.

To emphasize that ε = 0 is a limit case, we use m and g instead of µ and γ. Equations (48)-(51)

become

F = κmb +

2
∑

i=1

mbgsi, (55)

F =
κ

κ + κ

2
∑

i=1

αigboS, (56)

mbi = mb +
καigboS

(κ + κ)(κ + gsi)
, (57)

gsi =
κS

mbi

+
αiγboS

mbi

. (58)
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We first solve the system of (55)-(58) in the symmetric case (α1 = α2 = 1), suppressing the asset

subscript because of symmetry. Equation (56) implies that

gbo =
(κ + κ)F

2κS
, (59)

Equation (58) implies that

gs =
κS + κ+κ

2κ
F

mb

, (60)

and Equation (55) implies that

mb =
F

κ + 2gs
. (61)

Substituting gbo, gs, and mb from Equations (59)-(61) into Equation (57), we find that mb solves

the equation

1 =
F

κmb + 2κS + κ+κ
κ

F
+

F

2κmb + 2κS + κ+κ
κ

F
. (62)

This equation has a positive solution because of Equation (16).

We next consider the asymmetric case (α1 = 1, α2 = 0), and use m̂ and ĝ instead of m and g.

Equation (57) implies that m̂b2 = m̂b, Equation (58) implies that

ĝs2 =
κS

m̂b

, (63)

Equation (56) implies that

ĝbo =
(κ + κ)F

κS
, (64)

Equation (58) implies that

ĝs1 =
κS + κ+κ

κ
F

m̂b1
, (65)

36



and Equation (55) implies that

m̂b =
F − κS

κ + ĝs1
. (66)

Substituting ĝbo, ĝs1, and m̂b from Equations (64)-(66) into Equation (57), we find

m̂b1 =
F

κ
− 2S −

F

κ
, (67)

which is positive because of Equation (16).

To show continuity at ε = 0, we write Equation (52) as

γs1µb −
κSµb1

εκ + µb1
− (µb1 − µb)

κ

κ
(κ + κ + γs1) = 0,

and denote by R(γs1, ε) the RHS (treating µb and µb1 as functions of (γs1, ε)). Because µb, µb1 > 0

for (γs1, ε) = (gs1, 0) (symmetric case) and (γs1, ε) = (ĝs1, 0) (asymmetric case), the functions µb

and µb1 are continuously differentiable around that point, and so is the function R(γs1, ε). Moreover,

our uniqueness proof shows that the derivative of R(γs1, ε) w.r.t. γs1 is positive. Therefore, the

Implicit Function Theorem ensures that for small ε, Equation (52) has a continuous solution γs1(ε).

Because of uniqueness, this solution coincides with the one that we have identified.

C Optimization

This appendix studies the stochastic control problem faced by an individual investor with CARA

utility, in the search equilibrium of Section 4. We define the investor’s problem, provide Hamilton-

Jacobi-Bellman (HJB) equations as well as an optimality verification argument along the lines of

Duffie, Gârleanu and Pedersen [2004b] and Wang [2004]. In the last part, we show that the non-

linear HJB equations admit a linear approximation when the coefficient of constant risk aversion

is close to zero.

C.1 Investor’s Problem

We fix probability space (Ω,F ,P), as well as a filtration {Ft, t ≥ 0} satisfying the usual conditions

(see Protter [1990]). An investor (low-valuation, high-valuation, or arbitrageur) can be of either one
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of finitely many types that we denote by τ ∈ T . The set T of type is the product of feasible porfolio

holdings and of income-dividend correlations. The arrival times of trading counterparties and of

changes of income-dividend correlations are counted by some adapted counting process Nt ∈ N
K

with constant intensity γ ∈ R
K
+ . An investor with initial type τ0 and initial wealth W0 chooses

a predictable T -valued type process τt and an adapted consumption and wealth process (ct, Wt)

subject to the following feasibility conditions. First, the type τt must remain constant during the

inter-arrival times of the counting process Nt. Second, when the investor is in state τ ∈ T and

when the process Nt(k) jumps, the investor can choose among transitions τ ′ ∈ T ′(τ, k) ⊆ T . For

example, when a buyer b meets a seller of asset i, he can either stay a buyer or make a transition

to the lender type ℓi. The investor’s wealth process evolves according to the SDE

dWt = (rWt + m(τt) − ct) dt +
√

σ(τt)2 + σ2
e dB̃t +

K
∑

k=1

P (τt−, τt) dNt(k),

where B̃t is some adapted standard Brownian motion and, for all (τ, τ ′) ∈ T 2, P (τ, τ ′) is the payoff

of making a transition from type τ to type τ ′. For example, the payoff of making a transition from

type b to type ℓi is P (b, ℓi) = −pi. In addition, the wealth process must satisfy

lim
T→∞

E [exp(−βT − rαWT )] = 0 (68)

E

(
∫ T

0
exp(−zWt) dt

)

< ∞, (69)

for all T ≥ 0 and z ∈ {rα, 2rα}. These conditions will be satisfied by our candidate optimal control

and allow us to complete the standard optimality verification argument. The investor problem is

to choose admissible type, wealth, and consumption processes in order to maximize intertemporal

utility

−E

[
∫ ∞

0
exp(−βt − αct) dt

]

.
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C.2 Hamilton Jacobi Bellman Equations

We guess an optimal control by seeking a value function J : R × T → R solving the following

system of Hamilton Jacobi Bellman equations (HJB)

0 = sup

{

− exp
(

−α c(τ)
)

+ D(c,τ ′)J(W, τ) − βJ(W, τ)

}

, (70)

for all τ ∈ T , with respect to policy functions c : T → R and τ ′ : T × {1, . . . , K} → T , subject to

τ ′(τ, k) ∈ T ′(τ, k), and where

D(c,τ ′)J(W, τ) ≡ JW (W, τ)
(

rW − c(τ) + m(τ)
)

+
1

2

(

σ(τ)2 + σ2
e

)

JWW (W, τ)

+
K

∑

k=1

γ(k)

(

J
(

W + P (τ, τ ′(τ, k)), τ ′(τ, k)
)

− J(W, τ)

)

. (71)

We guess that there exists a solution of the form

J(W, τ) = −
1

r
exp

(

−A(W + V (τ)) +
r − β + A2σ2

e/2

r

)

, (72)

where A ≡ rα. Substituting our guess in (70) and maximizing with respect to consumption, we

find that there exists a solution of the form (72) if an only if V ∈ R
T solves

0 = −rV (τ) + m(τ) −
A

2
σ(τ)2 +

K
∑

k=1

γ(k) max
τ ′(τ,k)∈T ′(τ,k)

1 − e−A
(

V (τ ′(τ,k))−V (τ)+P (τ,τ ′(τ,k))
)

A
,(73)

for all τ ∈ T . The consumption maximizing (70) given V (τ) is

c(τ) = r(W + V (τ)) −
r − β + A2σ2

e/2

A
. (74)

C.3 Optimality Verification

In this section we outline an optimality verification argument that closely follows Duffie, Gârleanu

and Pedersen [2004b] and Wang [2004]. Let’s suppose that some V solves the system (73) and that
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the maximum is achieved by some policy function τ ′( · , · ). We verify that the investor’s problem is

solved by the type process τ∗
t that is generated recursively by the policy function τ ′( · , · ), together

with the consumption and wealth processes

c∗t = r(Wt + V (τ∗
t )) −

r − β + A2σ2
e/2

A

dW ∗
t =

(

−rV (τ∗
t ) +

r − β + A2σ2
e/2

A
+ m(τ∗

t )

)

dt +
√

σ(τ∗
t ) + σ2

edB̃t +
K

∑

k=1

γ(k)P (τ∗
t−, τ∗

t ) dNt(k).

The type process is feasible by construction. We only need to check conditions (68) and (69).

Condition (69) holds because, for all z ∈ R, the process exp(−zWt) is a Geometric Brownian Motion,

with state dependent and bounded drift, bounded volatility, and bounded jumps. One checks the

transversality condition (68) by showing that, for each T ≥ 0, E [J(W ∗
T , τ∗

T )] = e(β−r)T E [J(W0, τ0)],

following exactly the same steps as in Duffie, Gârleanu and Pedersen [2004b]. Let’s now consider

any feasible type, consumption and wealth processes (τt, ct, Wt). By Ito’s Lemma

e−βtJ(Wt, τt) = J(W0, τ0) +

∫ T

0
e−βt (DJ − βJ) dt +

∫ T

0
e−βtJW (Wt, τt)

√

σ2(τt) + σ2
edBt

+
K

∑

k=1

∫ T

0
e−βt

(

J(Wt− + P (τt−, τt)) − J(Wt−, τt−)
)(

dNt(k) − γ(k) dt
)

.

The regularity condition (69) implies that the last two integral terms are martingales. On the

other hand, the HJB equations imply that DJ − βJ ≤ exp(−αct). Replacing this inequality into

the previous equation and taking expectations on both sides, we find

−E

[
∫ T

0
exp(−αct − βt) dt

]

+ E
[

e−βT J(WT , τT )
]

≤ J(W0, τ0) (75)

with an equality for (τ∗
t , c∗t , W

∗
t ). Then, letting T go to infinity in (75) and using the transversality

condition (68), we find that the investor intertemporal utility is less or equal than J(W0, τ0) with

an equality for (τ∗
t , c∗t , W

∗
t ), establishing optimality.
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C.4 First-Order Approximation

Let’s assume that x(τ) ≡ Aσ(τ) does not depend on A. We study the family of HJB equations

indexed by A ∈ R:

0 = −rV (τ)+m(τ)−x(τ)+

K
∑

k=1

γ(k) max
τ ′(τ,k)∈T ′(τ,k)

H

(

A , V
(

τ ′(τ, k)
)

+P
(

τ, τ ′(τ, k)
)

−V (τ)

)

, (76)

for all τ ∈ T , where H(x, y) ≡ (1 − e−xy)/x if x > 0 and H(0, y) = 0. Because the function H

has power series expansion
∑∞

n=1(−1)n(xn−1yn)/n! it is infinitely continuously differentiable for all

(x, y) ∈ R+ × R. We first show that the system (76) of HJB equation has a unique solution at

A = 0. To see why this is the case one rewrite the system as

V (τ) =
m(τ) − x(τ)

r +
∑K

k=1 γ(k)
+

K
∑

k=1

γ(k)

r +
∑K

j=1 γ(j)
max

τ ′(τ,k)∈T ′(τ,k)

(

V
(

τ ′(τ, k)
)

+ P
(

τ, τ ′(τ, k)
)

)

, (77)

for all τ ∈ T . Equation (77) defines a mapping from R
K to itself. The Blackwell sufficient

condition (Stokey and Lucas [1989] page 54) implies that this mapping is a contraction, with

modulus (γ(1)+. . .+γ(K))/(r+γ(1)+. . .+γ(K)) < 1. Therefore, an application of the Contraction

Mapping Theorem (Stokey and Lucas [1989] page 54) shows that the system (77) has a unique

solution that we denote V 0. We let τ0( · , · ) be a policy function achieving the maximum. Given

τ0( · , · ), V 0 solves a system of linear equations that is invertible (because it can also be viewed as

a contraction). We show

Proposition 9 (First-Order Approximation.) If, for all τ ∈ T , τ0(τ, · ) is the unique maxi-

mizer of (77) given V 0, then there exists a neighborhood N1 ⊆ R+ of zero, a neighborhood N2 ⊆ R
K

of V 0, and an infinitely continuously differentiable function φ : N1 → N2 such that, for all A ∈ N1,

V is a solution of the system (76) of HJB equations if and only if V = φ(A). Moreover, for all

A ∈ N1, for all τ ∈ T , τ0(τ, · ) is the unique maximizer of (76) given V = φ(A).

We fix τ0( · , · ) and consider the system of equations

G(τ, A, V ) = −rV (τ)+m(τ)−x(τ)+
K

∑

k=1

γ(k)H

(

A, V
(

τ0(τ, k)
)

+P
(

τ, τ0(τ, k)
)

−V (τ)

)

= 0, (78)

41



for all τ ∈ T . The function G is is infinitely continuously differentiable and its Jacobian at

(A, V ) = (0, V 0) is invertible. Therefore an application of the Implicit Function Theorem (see Taylor

and Mann [1983]) provides neighborhoods Ñ1 ∈ R+ and Ñ2 ∈ R
K , and an infinitely continuously

differentiable function φ such that, for all A ∈ N1, H(A, V ) = 0 if and only if V = φ(A). Because

τ0(τ, · ) is the unique maximizer of (77), we know that for all feasible policy function τ ′, τ ′(τ, · ) 6=

τ0(τ, · ) implies

0 > −rV 0(τ) + m(τ) − x(τ) +
K

∑

k=1

γ(k)H

(

0, V 0
(

τ ′(τ, k)
)

+ P
(

τ, τ ′(τ, k)
)

− V 0(τ)

)

. (79)

By continuity of H and φ, these strict inequalities hold in some neighborhood N1 of zero. Therefore,

for all A ∈ N1, V = φ(A) is a solution of the system (76) of HJB equations, and τ0 achieves the

maximum.

D Utilities and Prices

We start by deriving the equations for the types’ utilities and the lending fee. To do so, we need to

expand the set of types, characterizing a high-valuation non-searcher by the state of his borrower.

Depending on whether that agent is a seller si, non-searcher ni, or buyer bi, we denote the high-

valuation non-searcher by nsi, nni, and nbi, respectively. This ensures that transitions across types

are Markovian.

Lender ℓi: The equation is

rVℓi = δ + x − y + κ(Vsi − Vℓi) + νiµbo(Vnsi − Vℓi). (80)

The flow benefit is the certainty equivalent C(ρ, 1) = δ+x−y of holding one share. The transitions

are (i) revert to average valuation at rate κ and become a seller si, and (ii) meet a willing borrower

at rate νiµbo, lend the asset, and become of type nsi.

High-valuation non-searcher nsi: The equation is

rVnsi = δ + x − y + wi + κ(Vsi − Vnsi) + κ(Vℓi − Vnsi) + λµbi(Vnni − Vnsi). (81)

The flow benefits are the certainty equivalent C(ρ, 1) of holding one share, and the lending fee wi.

The transitions are (i) revert to average valuation at rate κ and become a seller si, (ii) agent si
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reverts to average valuation at rate κ and returns the asset, in which case agent nsi becomes a

lender ℓi, and (iii) agent si meets a seller at rate λµbi, in which case agent nsi becomes of type nni.

High-valuation non-searcher nni: The equation is

rVnni = δ + x − y + wi + κ(Ci − Vnni) + κ(Vnbi − Vnni). (82)

The flow benefits are as for type nsi. The transitions are (i) revert to average valuation at rate κ

and seize the collateral Ci, and (ii) agent ni reverts to average valuation at rate κ, in which case

agent nni becomes of type nbi.

High-valuation non-searcher nbi: The equation is

rVnbi = δ + x − y + wi + κ(Ci − Vnbi) + λµsi(Vℓi − Vnbi). (83)

The flow benefits are as for type nsi. The transitions are (i) revert to average valuation at rate κ

and seize the collateral Ci, and (ii) agent bi meets a seller at rate λµsi and returns the asset, in

which case agent nbi becomes a lender ℓi.

Seller si: The equation is

rVsi = δ − y + λµbi(pi − Vsi). (84)

The flow benefit is the certainty equivalent C(0, 1) = δ−y of holding one share. The only transition

is to meet a buyer at rate λµbi, sell at price pi, and exit the market.

Borrower bo: The equation is

rVbo = −κVbo +

2
∑

i=1

νiµℓi(Vsi − Vbo). (85)

The flow benefits are zero. The transitions are (i) revert to average valuation at rate κ and exit

the market, and (ii) borrow asset i at rate νiµℓi and become a seller si.

Low-valuation seller si: The equation is

rVsi = −wi + κ(Vbo − Vsi) − κVsi + λµbi(Vni + pi − Vsi). (86)

The flow benefit is paying the lending fee wi. The transitions are (i) being asked to deliver (because

the high-valuation agent reverts to average valuation at rate κ) and become a borrower, (ii) revert
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to average valuation at rate κ and exit the market, and (iii) meet a buyer of asset i at rate λµbi,

sell at price pi, and become a low-valuation non-searcher ni.

Low-valuation non-searcher ni: The equation is

rVni = −δ + x − y − wi + κ(Vbo − Ci − Vni) + κ(Vbi − Vni). (87)

The flow benefits are the certainty equivalent C(ρ,−1) = −δ + x − y of shorting one share, and

paying the lending fee wi. The transitions are (i) being asked to deliver at rate κ, lose the collateral

Ci, and become a borrower, and (ii) revert to average valuation at rate κ and become a buyer bi.

Buyer bi: The equation is

rVbi = −δ − y − wi + κ(−Ci − Vbi) + λµsi(−pi − Vbi). (88)

The flow benefits are the certainty equivalent C(0,−1) = −δ − y of shorting one share, and paying

the lending fee wi. The transitions are (i) being asked to deliver at rate κ, lose the collateral Ci,

and exit the market, and (ii) meet a seller at rate λµsi, buy at price pi, and exit the market.

Price pi: Using Equation (14) and the definitions of ∆b and ∆si, we find

Vℓi − pi − Vb = φ(Vℓi − Vb − Vsi). (89)

The LHS is equal to the trading surplus of the marginal buyer b, and the RHS is equal to the

overall surplus (marginal buyer plus marginal seller) times the bargaining power φ.

Lending fee wi: The counterpart of Equation (89) is

Vnsi − Vℓi = θ(Vnsi + Vsi − Vℓi − Vbo) ≡ θΣi, (90)

because the trading surplus of a lender ℓi is Vnsi−Vℓi, and the overall surplus is the sum of Vnsi−Vℓi

plus the borrower surplus Vsi − Vbo.

Using Equations (12) and (80)-(90), we will compute the lending fee wi and the price pi as a

function of the short-selling surplus Σi. We will then derive a linear system for Σ1 and Σ2.

D.1 Lending Fee

Subtracting Equation (80) from (81), we find

(r + κ + κ + νiµbo)(Vnsi − Vℓi) = wi + λµbi(Vnni − Vnsi), (91)
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subtracting Equation (81) from (82), we find

(r + κ + κ + λµbi)(Vnni − Vnsi) = κ(Ci − Vsi) + κ(Vnbi − Vℓi), (92)

and subtracting Equation (82) from (83), we find

(r + κ + κ)(Vnbi − Vnni) = λµsi(Vℓi − Vnbi). (93)

Equations (92) and (93) imply that

Vnbi − Vnsi =
κ

r + κ + κ + λµbi
(Ci − Vsi) +

κ(r + κ + κ) − λµsi(r + κ + κ + λµbi)

(r + κ + κ)(r + κ + κ + λµbi)
(Vnbi − Vℓi).

Adding Vnsi − Vℓi on both sides and solving for Vnbi − Vℓi, we find

Vnbi−Vℓi =
(r + κ + κ)(r + κ + κ + λµbi)

(r + κ + κ)(r + κ + λµbi) + λµsi(r + κ + κ + λµbi)

[

κ(Ci − Vsi)

r + κ + κ + λµbi
+ Vnsi − Vℓi

]

Substituting Vnbi − Vℓi from this equation into (92), we find

Vnni − Vnsi =
κ(r + κ + κ + λµsi)(Ci − Vsi) + κ(r + κ + κ)(Vnsi − Vℓi)

(r + κ + κ)(r + κ + λµbi) + λµsi(r + κ + κ + λµbi)
.

Substituting Vnni − Vnsi from this equation into (91), and using Vnsi − Vℓi = θΣi (i.e., Equation

(90)), we can determine the lending fee as a function of the short-selling surplus:

[

r + κ + κ
(r + κ)(r + κ + κ + λµsi) + λµsi(κ + λµbi)

(r + κ + λµbi)(r + κ + κ) + λµsi(r + κ + κ + λµbi)
+ νiµbo

]

θΣi

= wi +
κλµbi(r + κ + κ + λµsi)

(r + κ + κ)(r + κ + λµbi) + λµsi(r + κ + κ + λµbi)
(Ci − Vsi). (94)

D.2 Price

Equation (84) implies that

Vsi − pi =
δ − y − rpi

r + λµbi
. (95)
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Subtracting rpi from both sides of Equation (80), and using (90) and (95), we find

Vℓi − pi =
1

r + κ

[

δ + x − y − rpi + νiµboθΣi + κ
δ − y − rpi

r + λµbi

]

. (96)

Substituting (95) and (96) into (89), we find

δ − y − rpi +
(1 − φ)(r + λµbi)

r + κ + (1 − φ)λµbi

[

x + νiµboθΣi − (r + κ)Vb

]

= 0. (97)

Substituting d − y − rpi from Equation (97) into (96), we find

Vℓi − pi =
φ(x + νiµboθΣi) + (1 − φ)(r + κ + λµbi)Vb

r + κ + (1 − φ)λµbi

.

Substituting Vℓi − pi from this equation into (12) and solving for Vb, we find

Vb =
φ

∑2
j=1

λµsj

r+κ+(1−φ)λµbj
(x + νjµboθΣj)

(r + κ)
[

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj

] .

Substituting Vb from this equation into (97), we can determine the price as a function of the

short-selling surplus:

pi =
δ − y

r
+

(1 − φ)(r + λµbi)

r [r + κ + (1 − φ)λµbi]



x + νiµboθΣi −
φ

∑2
j=1

λµsj

r+κ+(1−φ)λµbj
(x + νjµboθΣj)

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj



 . (98)

D.3 Short-Selling Surplus

Adding Equations (81) and (86), and subtracting Equations (85) and (80), we find

(r + κ + κ + νiµboθ)Σi +
2

∑

j=1

νjµℓj(1 − θ)Σj = λµbi(Vnni + Vni + pi − Vnsi − Vsi). (99)

Adding Equations (82), (87), and rpi = rpi, and subtracting Equations (81) and (86), we find

(r+κ+κ+λµbi)(Vnni+Vni+pi−Vnsi−Vsi) = rpi−δ+x−y+κ(pi−Vsi)+κ(Vnbi+Vbi+pi−Vℓi). (100)
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Adding Equations (83), (88), and rpi = rpi, and subtracting Equation (80), we find

(r + κ + λµsi)(Vnbi + Vbi + pi − Vℓi) = rpi − δ − y + κ(pi − Vsi) − νiµboθΣi. (101)

Substituting Vnbi +Vbi +pi−Vℓi from Equation (101) into (100), and then substituting Vnni +Vni +

pi − Vnsi − Vsi from Equation (100) into (99), we find

[

r + κ + κ + νiµboθ

[

1 +
λµbiκ

(r + κ + κ + λµbi)(r + κ + λµsi)

]]

Σi +
2

∑

j=1

νjµℓj(1 − θ)Σj

=
λµbi

r + κ + κ + λµbi

[

x +
r + κ + κ + λµsi

r + κ + λµsi
[rpi − δ − y + κ(pi − Vsi)]

]

. (102)

To derive an equation involving only Σ1 and Σ2, we need to eliminate the price pi. We have

rpi − δ − y + κ(pi − Vsi)

= −2y + rpi − δ + y + κ
rpi − δ + y

r + λµbi

= −2y +
(1 − φ)(r + κ + λµbi)

r + κ + (1 − φ)λµbi



x + νiµboθΣi −
φ

∑2
j=1

λµsj

r+κ+(1−φ)λµbj
(x + νjµboθΣj)

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj



 ,

where the first step follows from Equation (95) and the second from (98). Plugging back into

Equation (102), we can write it as

aiΣi +
2

∑

j=1

fjΣj + bi

2
∑

j=1

gjΣj = ci, (103)

where

ai = r+κ+κ+νiµboθ

[

r + κ + κ

r + κ + κ + λµbi

+
φ(r + κ)λµbi(r + κ + κ + λµsi)

(r + κ + κ + λµbi)(r + κ + λµsi)[r + κ + (1 − φ)λµbi]

]

,

fi = νiµℓi(1 − θ),

bi =
(1 − φ)λµbi(r + κ + κ + λµsi)(r + κ + λµbi)

(r + κ + κ + λµbi)(r + κ + λµsi) [r + κ + λ(1 − φ)λµbi]
,

47



gi = φνiµboθ

λµsi

r+κ+(1−φ)λµbi

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj

,

ci =
λµbi

r + κ + κ + λµbi



x −
r + κ + κ + λµsi

r + κ + λµsi



2y −
(1 − φ)(r + κ + λµbi)

r + κ + (1 − φ)λµbi

x

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµsj







 .

The short-selling surpluses Σ1 and Σ2 are the solution to the linear system consisting of Equation

(103) for i ∈ {1, 2}.

Note that the collateral Ci does not enter in Equation (103), and thus does not affect the short-

selling surplus. It also does not affect the price, from Equation (98). It affects only the lending

fee because when lenders can seize more collateral they accept a lower fee. From now on (and as

stated in Footnote 15), we set the collateral equal to the utility of a seller si, i.e.,

Ci = Vsi. (104)

E Search Equilibrium

In this section we prove Propositions 2-8.

Proof of Proposition 2: From Appendix B we know that given the short-selling decisions ν1 =

ν2 = ν, the types’ measures are uniquely determined. From Appendix D we know that given

any short-selling decisions and types’ measures, the utilities, prices, and lending fees are uniquely

determined. Therefore, what is left to show is (i) the short-selling surplus Σ1 = Σ2 is positive, (ii)

buyers’ and sellers’ reservation values are ordered as in Equation (13), and (iii) agents’ portfolio

decisions are optimal. To show these results, we recall from Appendix B that when search frictions

become small, i.e., λ goes to ∞ holding n ≡ ν/λ constant, µbi converges to mb, µℓi converges to S,

λµsi converges to gs, and νµbo converges to gbo.

We start by computing Σi, wi, and pi, thus proving Proposition 3. Equation (103) implies that

when Σ1 = Σ2 ≡ Σ,

Σ =
c

a + 2(f + bg)
,

where we suppress the asset subscripts from a, b, c, f, g because of symmetry. When search frictions
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become small, a and b converge to positive limits, c converges to

x −
r + κ + κ + gs

r + κ + gs
(2y − x), (105)

g converges to zero, and f converges to ∞, being asymptotically equal to νS(1− θ). Therefore, the

surplus converges to zero, and its asymptotic behavior is as in Proposition 3.

Equations (94) and (104) imply that the lending fee is

wi =

[

r + κ + κ
(r + κ)(r + κ + κ + λµsi) + λµsi(κ + λµbi)

(r + κ + λµbi)(r + κ + κ) + λµsi(r + κ + κ + λµbi)
+ νiµbo

]

θΣi.

Because the term in brackets converges to

r + κ + κ
gs

r + κ + κ + gs
+ gbo,

the lending fee converges to zero, and its asymptotic behavior is as in Proposition 3.

Equation (98) implies that the price is equal to

pi =
δ − y

r
+

1

r

[

1 −
φr + κ

(1 − φ)λmb
+ o(1/λ)

] [

x + gboθΣi −
2φgsx

(1 − φ)λmb
+ o(1/λ)

]

.

Using this equation and the fact that Σi is in order 1/λ, it is easy to check that the asymptotic

behavior (i.e., order 1/λ) of the price is as in Proposition 3.

To show that Σi is positive, we need to show that Equation (105) is positive. This follows

because Equation (17) implies that

x > 2y +
κ

r + κ + gs
(2y − x) > 2y − x +

κ

r + κ + gs
(2y − x) =

r + κ + κ + gs

r + κ + gs
(2y − x). (106)

We next show that reservation values are ordered as in Equation (13), i.e., ∆bi > ∆b and

∆si > ∆si. For this, we need to compute Vbi and Vni − Vsi. Adding Equations (88) and rpi = rpi,

and using Equation (104), we find

Vbi + pi =
rpi − δ − y − wi + κ(pi − Vsi)

r + κ + λµsi
. (107)
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Adding Equations (87) and rpi = rpi, and subtracting Equation (86), we similarly find

Vni + pi − Vsi =
rpi − δ + x − y + κ(Vbi + pi) + κ(pi − Vsi)

r + κ + κ + λµbi

. (108)

Inequality ∆bi > ∆b is equivalent to

−Vbi − pi > Vℓi − pi − Vb

⇔
δ + y − rpi + wi − κ(pi − Vsi)

r + κ + λµsi
>

φ

1 − φ
(pi − Vsi)

⇔
δ + y − rpi + wi − κ rpi−δ+y

r+λµbi

r + κ + λµsi
>

φ

1 − φ

rpi − δ + y

r + λµbi

(109)

where the second step follows from Equations (89) and (107), and the third from Equation (95).

Because rpi converges to δ + x− y, and wi converges to zero, the LHS of Equation (109) converges

to (2y − x)/(r + κ + gs), which is positive from Equation (17), while the RHS converges to zero.

Inequality ∆si > ∆si is equivalent to

Vni + pi − Vsi > pi − Vsi

⇔
x + r+κ+κ+λµsi

r+κ+λµsi
[rpi − δ − y + κ(pi − Vsi)] −

κ
r+κ+λµsi

wi

r + κ + κ + λµbi
>

rpi − δ + y

r + λµbi
,

where the second step follows from Equations (95), (107), and (108). When search frictions become

small, this inequality holds if the limit of the numerator in the LHS exceeds that forss the RHS,

i.e.,

x −
r + κ + κ + gs

r + κ + gs
(2y − x) > x.

This holds because of the first inequality in Equation (106).

We finally show that portfolio decisions are optimal. The flow benefit that an average-valuation

agent can derive from a long position in asset i is bounded above by δ−y+wi, and the flow benefit for

a short position is bounded above by −δ−y. Therefore, an average-valuation agent finds it optimal

to establish no position, or to unwind a previously established one, if (δ − y + wi)/r < min{pi, Ci}
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and (δ + y)/r > pi. These conditions are satisfied for small frictions because pi converges to

(δ + x − y)/r, wi converges to zero, Ci − pi converges to zero, and 2y > x.

A high-valuation agent finds it optimal to buy asset i if Vℓi − pi − Vb ≥ 0. This condition is

satisfied because

Vℓi − pi − Vb =
φ

1 − φ
(pi − Vsi) =

φ

1 − φ

rpi − δ + y

r + λµbi
∼

φ

1 − φ

x

λµbi
≥ 0.

The agent then finds it optimal to lend the asset because Vnsi − Vℓi = θΣi > 0. Likewise, a low-

valuation agent finds it optimal to borrow asset i because Vsi − Vbo = (1 − θ)Σi > 0, and to sell it

because Vni + pi − Vsi = pi − ∆si > pi − ∆si = pi − Vsi > 0. Finally, an arbitrage portfolio is not

profitable because the two assets trade at the same price and carry the same lending fee.

Proof of Proposition 3: See the proof of Proposition 2.

Proof of Proposition 4: We need to show that (i) the short-selling surplus Σ1 is positive and

Σ2 is negative, (ii) buyers’ and sellers’ reservation values are ordered as in Equation (13), and (iii)

agents’ portfolio decisions are optimal. We recall from Appendix B that for small search frictions

and given the short-selling decisions ν1 = ν and ν2 = 0, µbi converges to m̂bi, µℓi converges to S,

λµsi converges to ĝsi, and νµbo converges to ĝbo.

We start by computing Σ1, w1, p1, and p2, thus proving Proposition 5. Equation (103) implies

that when ν2 = 0,

Σ1 =
c1

a1 + f1 + b1g1
.

When search frictions become small, c1 converges to

x −
r + κ + κ + ĝs1

r + κ + ĝs1
(2y − x), (110)

and the dominant term in the denominator is f1 ∼ νS(1 − θ). Therefore, the surplus converges to

zero, and its asymptotic behavior is as in Proposition 5. To determine the asymptotic behavior of

the lending fee and the price, we proceed as in the proof of Proposition 2.

To show that Σ1 is positive, we need to show that Equation (110) is positive. This follows from

Equation (106) and the fact that ĝs1 > gs, established in the proof of Proposition 6. To show that
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Σ2 is negative, we note that from Equation (103),

Σ2 =
c2 − (f1 + b2g1)Σ1

a2
=

c2 −
f1+b2g1

a1+f1+b1g1
c1

a2
.

When search frictions become small, the numerator converges to the same limit as c2 − c1. This

limit is equal to

[

r + κ + κ + ĝs1

r + κ + ĝs1
−

r + κ + κ + ĝs2

r + κ + ĝs2

]

(2y − x),

and is negative if ĝs1 > ĝs2. Using Equations (63) and (65), we can write this inequality as

κS + κ+κ
κ

F

m̂b1
>

κS

m̂b

. (111)

Equations (65)-(67) imply that

m̂b =
F − κS

F − κS + F
m̂b1. (112)

Using this equation, we can write Equation (111) as

κS + κ+κ
κ

F

κS
>

F − κS + F

F − κS
.

It is easy to check that this inequality holds because of Equation (16).

To show that ∆bi > ∆b and ∆si > ∆si, we proceed as in the proof of Proposition 2. The only

change is that the condition for ∆si > ∆si now is

x −
r + κ + κ + ĝs

r + κ + ĝs
(2y − x) > x.

This inequality is implied by the first inequality in Equation (106) and the fact that ĝs1 > gs.

The arguments in the proof of Proposition 2 establish portfolio optimality for all agents except

the arbitrageurs. Arbitrageurs could attempt to exploit the price differential in the asymmetric

equilibrium by buying one asset and shorting the other. We next show that buying asset 2 and

shorting asset 1 is unprofitable under Equation (??) (which is implied by (25)), while buying asset
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1 and shorting asset 2 is unprofitable under (26). We then show that Equations (25) and (26) are

satisfied if ν/λ is in an interval (n1, n2).

Buy asset 2, short asset 1

Because trading opportunities arrive one at a time, an arbitrageur cannot set up the two legs of

the position simultaneously. The arbitrageur can, for example, buy asset 2 first, then borrow asset

1, and then sell asset 1. Alternatively, he can borrow asset 1 first, then buy asset 2, and then sell

asset 1. The final possibility, which is to sell asset 1 before buying asset 2 is suboptimal. Indeed,

for small search frictions the time to meet a buyer converges to zero while the time to meet a seller

does not. Therefore, the cost of being unhedged converges to zero only when asset 2 is bought

before asset 1 is sold.

Suppose now that the arbitrage strategy is profitable. Because the payoff of the strategy is

decreasing in asset 1’s lending fee, there exists a fee w1 > w1 for which the arbitrageur is indifferent

between following the strategy and holding no position. If for this fee it is optimal to initiate the

strategy by buying asset 2, the arbitrageur can be in three possible states:

(i) Long position in asset 2. State n2 with utility Vn2.

(ii) Long position in asset 2 and borrowed asset 1. State s1n2 with utility Vs1n2.

(iii) Long position in asset 2 and short in asset 1. State n1n2 with utility Vn1n2.

The utilities are characterized by the following flow-value equations:

rVn2 = δ − y + νµℓ1(Vs1n2 − Vn2) (113)

rVs1n2 = δ − y − w1 + λµb1(Vn1n2 + p1 − Vs1n2) + κ(Vn2 − Vs1n2) (114)

rVn1n2 = −w1 + κ(Vn2 − C1 − Vn1n2). (115)

When in state n2, the arbitrageur receives the certainty equivalent C(0, 1) = δ − y of holding one

share, and can transit to state s1n2 by borrowing asset 1. When in state s1n2, the arbitrageur

receives δ − y, pays the lending fee w1, can transit to state n1n2 by selling asset 1, and can transit

to state n2 if the lender calls for delivery. Finally, when in state n1n2, the arbitrageur is fully

hedged, pays the lending fee, and can transit to state n2 if the lender calls for delivery. Solving
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Equations (113)-(115), we find

rVn2 = δ − y +
νµℓ1

r + κ + νµℓ1

[

−w1 +
λµb1

r + κ + λµb1
[rp1 − δ + y + κ(p1 − C1)]

]

.

The arbitrageur is indifferent between initiating the strategy and holding no position if Vn2 is equal

to p2. Using this condition, and substituting C1 from Equations (95) and (104), we find

w1 =
λµb2

r + λµb2
(rp1 − δ + y) −

r + κ + νµℓ2

νµℓ2

(rp2 − δ − y).

For small search frictions, this equation becomes

w1 = r(p1 − p2) −
rx

λm̂b1
−

(r + κ)x

νS
,

and is inconsistent with Equation (??) since w1 < w1.

Suppose instead that it is optimal to initiate the strategy by borrowing asset 1. The arbitrageur

then starts from a state s1, in which he has borrowed asset 1 but holds no position in asset 2. The

utility Vs1 in this state is characterized by

rVs1 = −w1 + λµs2(Vs1n2 − p2 − Vs1), (116)

because the flow benefit is to pay the lending fee, and the transition is to state s1n2 by buying

asset 1. The utility in states s1n2 and n1n2 is given by Equations (114) and (115), respectively.

The utility in state n2, however, is given by

rVn2 = δ − y + νµℓ1(Vs1n2 − Vn2) + λµb2(p2 − Vn2) (117)

instead of (113). Indeed, since it it suboptimal to initiate the strategy by buying asset 2, buying

that asset is dominated by holding no position. Therefore, if the arbitrageur finds himself with a

long position in asset 2, he prefers to unwind it upon meeting a seller. Equations (114), (115), and

(117) imply that

Vs1n2 =

r+κ+νµ
ℓ1

+λµb2

r+νµ
ℓ1

+λµb2
(δ − y) + κλµb2

r+νµ
ℓ1

+λµb2
p2 − w1 + λµb1

r+κ+λµb1
[rp1 − δ + y + κ(p1 − C1)]

r(r+κ+νµ
ℓ1

+λµb2)+κλµb2

r+νµ
ℓ1

+λµb2

.
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Plugging into Equation (116), and using Equations (95), (104), and the indifference condition which

now is Vs1 = 0, we find

w1 =

λµb1

r+λµb1
(rp1 − δ + y) −

r+κ+νµ
ℓ1

+λµb2

r+νµ
ℓ1

+λµb2
(rp2 − δ + y)

1 +
r(r+κ+νµ

ℓ1
+λµb2)+κλµb2

λµs2(r+νµ
ℓ1

+λµb2)

.

For small search frictions, this equation becomes

w1 =
r(p1 − p2) −

rx
λm̂b1

− κx
νS+λm̂b2

1 + r(nS+m̂b2)+κm̂b2

ĝs2(nS+m̂b2)

,

and is inconsistent with Equation (??) since w1 < w1.

Buy asset 1, short asset 2

We consider a “relaxed” problem where asset 1 can be bought instantly and asset 2 can be

borrowed instantly at a lending fee of zero. Clearly, if the arbitrage strategy is unprofitable in the

relaxed problem, it is also unprofitable when more frictions are present.

Suppose that the arbitrage strategy is profitable. Because the payoff of the strategy is increasing

in asset 1’s lending fee, there exists a fee w1 < w1 for which the arbitrageur is indifferent between

following the strategy and holding no position. When following the strategy, the arbitrageur is

always in a state where he holds asset 1 and has borrowed asset 2, because these can be done

instantly. If the arbitrageur has not sold asset 2, he can be in four possible states:

(i) Seeking to lend asset 1. State ℓ1s2 with utility Vℓ1s2.

(ii) Lent asset 1 to an agent s1. State ns1s2 with utility Vns1s2.

(iii) Lent asset 1 to an agent n1. State nn1s2 with utility Vnn1s2.

(iv) Lent asset 1 to an agent b1. State nb1s2 with utility Vnb1s2.

If the arbitrageur has sold asset 2, he can be in the four corresponding states that we denote with

n2 instead of s2.

For brevity, we skip the eight flow-value equations, but note that they have a simple solution.

To each outcome concerning asset 1 (ℓ1, ns1, nn1, nb1) and to each outcome concerning asset 2
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(s2, n2), we can associate a separate utility that we denote by V̂ . We can then write the utility

of a state (which is a “joint” outcome) as the sum of the two separate utilities. For example, the

utility Vℓ1s2 is equal to V̂ℓ1 + V̂s2. This decomposition is possible because the outcomes concerning

each asset evolve independently.

The utilities V̂ℓ1, V̂ns1, V̂nn1, and V̂nb1 are characterized by the flow-value equations

rV̂ℓ1 = νµbo(V̂ns1 − V̂ℓ1)

rV̂ns1 = w1 + λµb1(V̂nn1 − V̂ns1)

rV̂nn1 = w1 + κ(V̂nb1 − V̂nn1)

rV̂nb1 = w1 + λµs1(V̂ℓ1 − V̂nb1).

and the utilities V̂s2, V̂n2 are characterized by

rV̂s2 = δ − y + λµb2(V̂n2 + p2 − V̂s2)

rV̂n2 = κ(V̂s2 − C2 − V̂n2).

In particular, the flow benefit δ − y is the certainty equivalent from the long position in asset 1,

which is unhedged when the arbitrageur seeks to sell asset 2. Solving these equations, we find

rVℓ1s2 = rV̂ℓ1 + rV̂s2

=

νµbo

r+νµbo

(

1 − λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

)

1 −
νµbo

r+νµbo

λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

w1 +

[

δ − y +
λµb2

r + κ + λµb2
[rp2 − δ + y + κ(p2 − C2)]

]

.

The arbitrageur is indifferent between initiating the strategy and holding no position if Vℓ1s2 is

equal to p1. Using this condition, and substituting C1 from Equations (95) and (104)

νµbo

r+νµbo

(

1 − λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

)

1 −
νµbo

r+νµbo

λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

w1 = rp1 − δ + y −
λµb2

r + λµb2
(rp2 − δ + y).

For small search frictions, this equation becomes

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1 = r(p1 − p2) +
rx

λm̂b2
,
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and is inconsistent with Equation (26) since w1 > w1.

Equations (25) and (26) are jointly satisfied

The two equations are jointly satisfied if

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1

r
< p1 − p2 <

w1

r
.

Substituting p1 and p2 from Equations (21) and (22), we can write this equation as

A1
w1

r
<

B

λ
+ A2

w1

r
<

w1

r
, (118)

where

A2 ≡
ĝbo

r + κ + κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

< A1 ≡
ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

< 1

and

B ≡
(φr + κ)

(1 − φ)

[

1

m̂b2
−

1

m̂b1

]

x

r
> 0.

Equation (118) is satisfied if

B

A1 − A2
>

λw1

r
>

B

1 − A2
.

In this inequality, n enters only through the product λw1. Therefore, the inequality is satisfied for

some interval n ∈ (n1, n2).

Proof of Proposition 5: See the proof of Proposition 4.

Proof of Proposition 6: We first show a small lemma.

Lemma 1 For χ < 1, inequality (1 − χ)m̂b1 > mb is equivalent to

(1 − 2χ)(F − χκm̂b1) > χF. (119)
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Proof: Since mb is the unique positive solution of Equation (62), whose RHS is decreasing in mb,

inequality (1 − χ)m̂b1 > mb is equivalent to

1 >
F

κ(1 − χ)m̂b1 + 2κS + κ+κ
κ

F
+

F

2κ(1 − χ)m̂b1 + 2κS + κ+κ
κ

F

⇔ 1 >
F

F + F − χκm̂b1

+
F

F + F + (1 − 2χ)κm̂b1

⇔
F − χκm̂b1

F + F − χκm̂b1

>
F

F + F + (1 − 2χ)κm̂b1

,

where the second step follows from Equation (67). It is easy to check that the last inequality implies

Equation (119).

Result (i): We need to show that m̂b1 > mb and ĝs1 > gs. Since Equation (119) holds for χ = 0,

Lemma 1 implies that m̂b1 > mb. Using Equations (60) and (65), we can write inequality ĝs1 > gs

as

κS + κ+κ
2κ

F

κS + κ+κ
κ

F
m̂b1 < mb.

Using Lemma 1, we then need to show that

(1 − 2χ)(F − χκm̂b1) < χF, (120)

for

χ =

κ+κ
2κ

F

κS + κ+κ
κ

F
.

Plugging for χ, we can write Equation (120) as

κS(F − χκm̂b1) <
κ + κ

2κ
FF ,

which holds because of Equation (16) and m̂b1 > 0.

Result (ii): We need to show that m̂b2 < mb and ĝs2 < gs. Using Equations (112) and m̂b2 = m̂b,

we can write inequality m̂b2 < mb as

F − κS

F − κS + F
m̂b1 < mb.
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Using Lemma 1, we then need to show Equation (120) for

χ =
F

F − κS + F
.

Plugging for χ, we can write Equation (120) as

F − κS − F

F − κS + F

(

F − κS + F − κm̂b1

)

< F,

which holds because m̂b1 > 0. Using Equations (60), (63), and (112), we can write inequality

ĝs2 < gs as

F − κS

F − κS + F

κS + κ+κ
2κ

F

κS
m̂b1 > mb.

Using Lemma 1, we then need to show Equation (119) for

χ =
F

F − κS + F

(

1 −
κ + κ

2κ

F − κS

κS

)

.

Equation (16) implies that

χ <
F

F − κS + F

(

1 −
κ + κ

2κ

)

<
F

2(F − κS + F )
≡ χ̂.

Because χ̂, m̂b1 > 0, Equation (119) holds for χ if it holds for χ̂. The latter is easy to check using

Equation (16).

Result (iii): Equations (20), (24), and ĝs1 > gs, imply that the short-selling surplus Σi in the

symmetric equilibrium is smaller than Σ1 in the asymmetric equilibrium. Since, in addition, ĝbo >

gbo (from Equations (59) and (64)), Equations (19) and (23) imply that the lending fee wi in the

symmetric equilibrium is smaller than w1 in the asymmetric equilibrium.

Result (iv): For φ = 0, the result follows from Equations (18), (21), m̂b1 > mb > m̂b2, ĝbo > gbo,

and the fact that the short-selling surplus Σi in the symmetric equilibrium is smaller than Σ1 in the

asymmetric equilibrium. An example where the prices of both assets are higher in the asymmetric

equilibrium is r = 5%, κ = 1, κ = 3, F = 15, F = 3, S = 2.9, δ = 4, x = 3, x = 5, y = 2,

φ = θ = 0.5 (i.e., the parameter values in Section 6), and any n.
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Result (v): Social welfare is equal to the PV of the flow benefits derived by all agents. By station-

arity, this is equivalent to the flow benefits derived at a given point in time. Because lending fees

are a transfer, they cancel, and we only need to consider the certainty equivalents associated to the

long and short positions. Summing over agents, we find

2
∑

i=1

[

(µℓi + µni)C(ρ, 1) + µsiC(0, 1) + µniC(ρ,−1) + µbiC(0,−1)
]

, (121)

because long positions are held by high-valuation agents ℓi and ni, and average-valuation agents si,

while short positions are held by low-valuation agents ni, and average-valuation agents bi. Using

Equations (9) and (10) to substitute for µℓi and µni, and replacing the certainty equivalents by

their values, we can write Equation (121) as

2
∑

i=1

[

S(δ + x − y) + µni(x + x − 2y) − µsix − µbi(2y − x)
]

.

When search frictions become small, µsi converges to zero. To determine the limit of
∑2

i=1 µni, we

use Equation (40), summing over assets:

2
∑

i=1

µni =
2

∑

i=1

νiµboµℓi

κ + κ
−

2
∑

i=1

µsi.

The second term in the RHS converges to zero, while the first term converges to 2gboS/(κ + κ) in

the symmetric case, and ĝboS/(κ+κ) in the asymmetric case. Equations (59) and (64) imply that in

both cases the limit is F/κ. Therefore, the welfare comparison hinges on
∑2

i=1 µbi. Equation (44)

implies that this converges to F/(κ+gs) in the symmetric case, and F/(κ+ ĝs1) in the asymmetric

case. Since ĝs1 > gs, welfare is higher in the asymmetric case.

Proof of Proposition 7: Generalizing the analysis of Section B.3, we can show that a solution

for ε = 0 exists, and is close to that for small ε. The limiting equations are (55) and

F =
κ

κ + κ

2
∑

i=1

αigboSi, (122)

mbi = mb +
καigboSi

(κ + κ)(κ + gsi)
, (123)

gsi =
κSi

mbi

+
αiγboSi

mbi

, (124)
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where the supply Si now depends on i.

Result (i): We proceed by contradiction, assuming that for a given S1 − S2 > 0 there exists an

equilibrium where ν1 = ν2 = ν, even when search frictions converge to zero. Since the parameters

ai, bi, ci, and gi in Equation (103) converge to finite limits, while fi converges to ∞, Σi must

converge to zero, and fiΣi to a finite limit. But then Equation (103) implies that the limits of c1

and c2 must be the same. This, in turn, implies that gs1 = gs2 ≡ gs, which from Equations (123)

and (124) means that

κSi + gboSi

mb +
καigboSi

(κ+κ)(κ+gs)

is independent of i, a contradiction when asset supplies differ.

Result (ii): An equilibrium where ν1 = ν and ν2 = 0 can exist if Σ1 > 0 and Σ2 < 0. Condition

Σ1 > 0 can be ensured by Equation (17). For small search frictions, condition Σ2 < 0 is equivalent

to ĝs1 > ĝs2, as shown in the proof of Proposition 4. Using Equations (122) and (124), we can write

condition ĝs1 > ĝs2 as

κS1 + κ+κ
κ

F

m̂b1
>

κS2

m̂b

. (125)

When asset supplies differ, Equation (67) generalizes to

m̂b1 =
F

κ
−

2
∑

i=1

Si −
F

κ
, (126)

and Equation (112) to

m̂b =
F − κS2

F − κS2 + F
m̂b1. (127)

Using Equation (127), we can write Equation (125) as

[

κ(S1 − S2) +
κ + κ

κ
F

]

(F − κS2) > κS2F . (128)

This equation holds for all values of S1 ≥ S2 because Equation (4) implies that F − κS2 > κS1 ≥

κS2.
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Result (iii): The existence condition is now (128), but with S1 and S2 reversed. It does not hold,

for example, when

κ(S2 − S1) +
κ + κ

κ
F < 0 ⇔ S1 > S2 +

κ + κ

κκ
F .

Result (iv): When short-selling is concentrated on asset 1, social welfare is determined by µb1,

which converges to F/(κ + ĝs1) from the proof of Proposition 6. Equations (122), (124), and (126)

imply that

ĝs1 =
κS1 + κ+κ

κ
F

F
κ
−

∑2
i=1 Si −

F
κ

. (129)

Conversely, when short-selling is concentrated on asset 2, social welfare is determined by µb2,

which converges to F/(κ + ĝs2). Moreover, ĝs2 is determined by Equation (129), but with S1 and

S2 reversed. Since S1 > S2, social welfare is higher when short-selling is concentrated on asset 1.

Proof of Proposition 8: With one asset in supply 2S, the limiting equations of Section B.3

become

F = κmb + mbgs,

F =
2κ

κ + κ
gboS,

mb = mb +
2κgboS

(κ + κ)(κ + gs)
,

gs =
2κS

mb
+

2γboS

mb
.

Using m̃ and g̃ to denote their solution, we find

m̃b =
F

κ
− 2S −

F

κ
= m̂b1 > mb > m̂b2,

g̃s =
2κS + κ+κ

κ
F

m̃b

> ĝs1 > gs > ĝs2,

g̃bo =
(κ + κ)F

2κS
= gbo =

ĝbo

2
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Proceeding as in the proof of Proposition 4, we can show that the asset price is asymptotically

equal to

p =
δ + x − y

r
−

κ

λm̃b

x

r
−

φ(r + κ + g̃s)

λ(1 − φ)m̃b

x

r
+

g̃boθΣ

r
, (130)

where

Σ =
x − r+κ+κ+g̃s

r+κ+g̃s
(2y − x)

ν(1 − θ)2S
.

Result (i): We compare Equations (18) and (130), noting that m̃b > mb, g̃sm̃b = 2gsmb, g̃bo = gbo,

and that the surplus Σ under integration exceeds Σi in the symmetric equilibrium because g̃s > gs.

Result (ii): To show that p > p2, we compare Equations (22) and (130), noting that m̃b = m̂b1 > m̂b2

and g̃sm̃b = ĝs1m̂b1 + ĝs2m̂b2. An example where p > p1 is r = 5%, κ = 1, κ = 3, F = 15, F = 3,

S = 2.9, δ = 4, x = 3, x = 5, y = 2, φ = θ = 0.5, and n = 0.2 (i.e., the parameter values in Section

6). An example where p < (p1 + p2)/2 is for the same parameter values except φ = 0 and θ = 0.75.

Result (iii): This is because g̃s > ĝs1.
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